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Abstract
Presently, Supervisory Control and Data Acquisition (SCADA) systems are broadly adopted in remote monitoring large-

scale production systems and modern power grids. However, SCADA systems are continuously exposed to various

heterogeneous cyberattacks, making the detection task using the conventional intrusion detection systems (IDSs) very

challenging. Furthermore, conventional security solutions, such as firewalls, and antivirus software, are not appropriate for

fully protecting SCADA systems because they have distinct specifications. Thus, accurately detecting cyber-attacks in

critical SCADA systems is undoubtedly indispensable to enhance their resilience, ensure safe operations, and avoid costly

maintenance. The overarching goal of this paper is to detect malicious intrusions that already detoured traditional IDS and

firewalls. In this paper, a stacked deep learning method is introduced to identify malicious attacks targeting SCADA

systems. Specifically, we investigate the feasibility of a deep learning approach for intrusion detection in SCADA systems.

Real data sets from two laboratory-scale SCADA systems, a two-line three-bus power transmission system and a gas

pipeline are used to evaluate the proposed method’s performance. The results of this investigation show the satisfying

detection performance of the proposed stacked deep learning approach. This study also showed that the proposed approach

outperformed the standalone deep learning models and the state-of-the-art algorithms, including Nearest neighbor, Random

forests, Naive Bayes, Adaboost, Support Vector Machine, and oneR. Besides detecting the malicious attacks, we also

investigate the feature importance of the cyber-attacks detection process using the Random Forest procedure, which helps

design more parsimonious models.

Keywords Stacked deep learning � SCADA system � Intrusion detection � Critical infrastructure protection �
Cyber-attacks

1 Introduction

Today, Supervisory Control and Data Acquisition

(SCADA) systems have been widely deployed for online

operation and monitoring of most critical infrastructures.

Abnormal operating conditions can be sensed from a

remote location by a SCADA system. Accordingly, the

response time for correcting an abnormal condition is

decreased, and the appropriate real-time controls can be

applied. These systems are already on board for a wide

range of applications, including electric power (generation,

transmission, and distribution), water, transportation,

telecommunication, pharmaceutical, and manufacturing

industries, and are commonly involved in the constitutions

of vital enterprises such as pipelines, manufacturing plants

and building climate control [1]. Typical SCADA systems

include components like computer workstations, Human

Machine Interface (HMI), Programmable Logic Con-

trollers (PLCs), Remote Terminal Units (RTU), sensors,

and actuators [2]. Historically, early (i.e., monolithic)

SCADA systems had private and dedicated networks. They

were designed to run as isolated and independent systems

without connecting to other systems [3]. The current

SCADA systems are generally distributed, networked, and

communicated over wide area network (WAN) systems,

such as public IP networks (e.g., internet) and wireless

cellular networks (e.g., 3G and 4G) using the Modicom

Communication Bus (Modbus) TCP (Transmission ControlExtended author information available on the last page of the article
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Protocol), Distributed Network Protocol (DNP3), and IEC

60870-5-104 protocols [4] principally. Therefore, the

SCADA systems’ infrastructure cost is significantly

reduced by adopting the internet of things (IoT) technol-

ogy, which involves the commercially available cloud

computing services. For instance, many studies on

embedded SCADA systems have been conducted [3, 5].

Although technology is advancing, SCADA systems are

becoming increasingly vulnerable to various cyber-attacks.

Different types of attacks, such as denial-of-service (DOS),

data modifying, and packet injection, can seriously affect

the SCADA system’s components. For instance, several

cyber-attacks targeting SCADA systems have been repor-

ted, including the distributed denial of service (DDOS)

attacks that shut down Alabamas’s Browns Ferry nuclear

plant, attacks against water purification systems in Har-

risburg, Pennsylvania, and malware attacks that paralyzed

the train signal system at the CSX corporation [6].

Remarkably, the most prominent attack has targeted

Stuxnet using a virus that infected hundreds of thousands

of industrial controllers around the world [7]. Besides, the

Ukrainian power system had seen colossal attacks con-

ducted with the BlackEnergy malware, which leads to

current interruption for more than 10,000 homes and

facilities over several days [8]. Miller et al. [9] presented

meticulous documentation that emphasized cyberattacks in

SCADA critical infrastructures. Indeed, the existence of

this bulk of cyber-attacks offers sufficient evidence to

unearth the harshness of the security concerns in the

SCADA systems and demands immediate attention from

the cybersecurity and forensic science community to tackle

such challenges.

This paper introduces a stacked deep learning-driven

anomaly detection technique to detect and identify cyber-

attacks in SCADA systems. The introduced stacked deep

learning model consists of five deep learning models for

deeply learning the malicious activities’ features and dis-

criminating them from nominal features. This choice is

mainly motivated by deep learning models’ high efficiency

in discovering layer-by-layer complex nonlinearity in

multivariate data, making them efficient to separate mali-

cious from non-malicious and natural disturbances in

SCADA systems. In other words, deep learning methods

are efficient and flexible tools for modeling implicit rela-

tionships between process variables and enabling the

recognition of complicated patterns. Note that the idea

behind the proposed stacked deep learning model is

inspired by the ensemble learning methods, such as Ada-

boost and random forest. It has been proved that Adaboost

[10] and random forest [11] improves the classification

accuracy of individual trees. Thus, classification accuracy

can be improved using ensemble models combining mul-

tiple learners versus single learners. Importantly, exploiting

the stacked deep learning model is advantageous in the

sense that it has the potential to improve the detection of

cyberattacks in SCADA systems. Real data sets from two

laboratory-scale SCADA systems, a two-line three-bus

power transmission system and a gas pipeline, are used to

evaluate the proposed method’s performance. Specifically,

we investigate the capability of stacked and standalone

deep learning-driven techniques in detecting different

attacks in a modern power system and analyzing the remote

terminal unit (RTU) serial communications in a gas pipe-

line system. These datasets are made publicly available by

the Mississippi State University’s Critical Infrastructure

Protection Center [12]. To compare and check the models’

performance detection quality, we use four common per-

formance metrics: accuracy, precision, recall, and F-mea-

sure. To verify the proposed scheme’s efficiency, we

compare the obtained results to state-of-the-art approaches,

including Nearest neighbor, Random forests, Naive Bayes,

Adaboost, Support Vector Machine, Decision tree, One R,

and J48. The results reveal promising performances of the

stacked deep learning-driven scheme in detecting cyber-

attacks in SCADA systems. Also, we investigated the

variable importance by the Random Forest algorithm; more

parsimonious models can be constructed based on impor-

tant variables.

Section 2 highlights literature reviews on the related

works and Sect. 3 introduces the proposed deep learning-

based malicious attack detector. Sections 4 and 5 assess the

proposed method and compare its performance using

datasets for the Power system testbed and gas pipeline

system, respectively. Finally, Sect. 6 concludes this study

and sheds light on potential future research lines.

2 Related works

Modern SCADA systems are vulnerable to cyber-attacks

because of their common usage of conventional commu-

nications protocols and extended mutual connection with

corporate networks and the Internet [13]. Accordingly,

cybersecurity has gained considerable attention across

many research communities, and various intrusion detec-

tion systems (IDS) to detect attacks in SCADA systems and

to protect their shared data have been developed [14]. In

[15], a method for assessing oil and gas SCADA security

has been introduced using causality analysis. This approach

adopted the causality analysis evaluation method of fuzzy

Mamdani reasoning for assessing factors neurons in the

introduced method. It has been shown that the causality

analysis-driven approach offers good ability in assessing

SCADA information security. The authors in [16] intro-

duced an intrusion detector, which is based on the concept

of Context Awareness and Anomaly Behavior Analysis
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(ABA), to identify and classify different types of attacks in

Building Automation and Control network (BACnet). The

performance of this detector is verified based on data from

the Smart Building testbed designed at the University of

Arizona Center for Cloud and Autonomic Computing.

Results show the good detection ability of this detector to

identify BACnet attacks. In [17], Linda et al. proposed an

anomaly detection scheme based on neural networks, and

they exploited the SCADA network and system informa-

tion to handle the problem of bad packets. However, this

solution can only handle external attacks; the internal

attackers can still introduce malicious command packets to

infect central equipment. In [18], Sayegh et al. used the

network packets correlation and system behavior to detect

injection attacks. Nevertheless, this proposed rule-based

IDS does not detect novel or unidentified intrusions passed

through traditional IDS in open access networks. The

method in [19] first learns a whitelist of allowed commu-

nication flows based on the network traffic training set.

Then, any non-whitelisted connections are flagged out as

an alarm. Data mining and machine learning methods were

recently largely exploited for designing effective IDS

because of their flexibility to handle large-sized datasets,

which is difficult to implement by a human agent manually

[20]. However, SCADA data scarcity is considered one of

the main issues for establishing efficient intrusion detection

solutions for SCADA systems. For instance, in [21], SVM

is considered to detect and classify malicious and infected

data and potential cyber-attacks in future traffic streams.

However, one of the primary problems of supervised

techniques is that the learning process demands a large size

of training observations. In [22], the fuzzy c-means-based

method has been adopted to develop a network IDS, data

are classified as normal and abnormal. Fovino et al. [23]

suggested an IDS using system monitoring state evolution.

However, the detection rules require prior knowledge of

the physical process and its different critical states. In

[24, 25], authors proposed an IDS based on moving aver-

age and Kalman filter. Unfortunately, such methods are

appropriate when variables are linearly related through a

predefined model-based system. Bayesian framework [26],

graph theory [27] and equivalent line impedances [28]

were used to deal with the false data injection attacks. The

designed methods assume perfect protection of some PMU,

even if such condition is typically invalid in practice. In

[29], a method to detect suspicious activities in a power

system has been proposed. This method employs the cor-

relation coefficient-based procedure to select relevant data

portions and applies Expectation Maximisation (EM)

clustering algorithms to identify intrusive events in the

inspected SCADA system. The detection efficiency of this

approach has been verified using power system datasets for

multiclass attacks and showed superior performance

compared to Random Forests Nearest Neighbour and Naive

Bayes classifiers.

Effective and efficient detection of malicious attacks in

modern industrial systems is indispensable to maintain the

desired specifications and continuous operation. It is worth

pointing out that the cyber-attacks generally could have

similar effects as some typical events, making the separa-

tion between malicious and natural events in complex

systems challenging and infeasible for a human. Tradi-

tional machine learning methods for intrusion detection are

generally not suited to reveal implicit and relevant infor-

mation. Also, the methods mentioned above could not mine

huge data [30, 31]. In recent years, deep learning has

emerged as a promising tool in modeling time-dependent in

time-series data and anomaly detection and used in a wide

range of applications, including intelligent transportation

systems [32], and health informatics [31, 33]. However, not

much research is done to design the SCADA specific IDS

based on deep learning. For instance, In [34], a deep

learning scheme based on the Conditional Deep Belief

Network (CDBN) is introduced to detect false data injec-

tion (FDI) that threatens the data integrity of SCADA

systems. Specifically, a deep learning scheme is employed

for recognizing the behavior features of FDI attacks based

on historical data and then used the learned features for

detecting the FDI attacks. It showed good detection per-

formance compared to ANN-based and SVM-based

methods when applied to four simulated scenarios using

the IEEE 118-bus power test system and IEEE 300-bus

system. The method in [35] used a convolutional neural

network (CNN) model to characterize temporal patterns of

SCADA traffic and then uncover network attacks. Based on

the University of Arkansas’s National Center for reliable

electric power transmission testbed dataset, the results

demonstrated that this method is effective against various

anomalies. The authors in [36] proposed an Intrusion

Detection and Prevention System (IDPS) called DIDEROT

based on machine learning to detect and prevent malicious

attacks and anomalies targeting the Distributed Network

Protocol (DNP3) protocol. This strategy is performed in

two complementary steps using supervised and unsuper-

vised machine learning techniques. Specifically, a decision

tree classifier is first employed to monitor DNP3 network

flow and identify particular DNP3 cyberattacks. Then, an

autoencoder-based anomaly detector is applied to detect

DNP anomalies that could be caused by a potential security

violation or electrical disturbances. Results based on DNP3

network traffic data generated using an emulator showed

the promising detection performance of the DIDEROT

strategy. In siniosoglou2021unified, an effective approach

merging the benefits of Autoencoder and Generative

Adversarial Network (GAN) models is introduced to detect

anomalies and classify malicious Modbus/TCP and DNP3
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attacks. This coupled approach has been designed to detect

and classify anomalies in smart grid environments. Three

datasets have been used to verify the efficiency of this

approach, namely Modbus/TCP network flows, operational

data, and DNP3 network flows, and showed its superior

performance compared to other machine learning models.

The authors in khan2019hml proposed a hybrid multilevel

scheme to detect intrusion in SCADA systems. In this

detection scheme, at first, dimensionality reduction

approaches, including principal component analysis, are

applied to extract the relevant features. Then, a Bloom

filter is applied for generating a signature database and for

anomaly detection. Lastly, an instance-based categorizer is

trained and tested for predicting anomalies. Results based

on actual data from the gas pipeline demonstrated the

detection efficiency of this hybrid approach. In [37],

intrusion detection and classification approach has been

presented based on Intrusion Weighted Particle-based

Cuckoo Search Optimization (IWP-CSO) and Hierarchical

Neuron Architecture-based Neural Network (HNA-NN).

Essentially, this approach is implemented in two comple-

mentary tasks; the dimensionality of input features is

reduced IWP-CSO and NN, then HNA-NN is applied to the

selected features to detect and classify cyberattacks. It has

been shown that the amalgamation between IWP-CSO

optimization with the HNA-NN classifier enables increas-

ing the classification rate by 12%. Recently in [38], an

ensemble deep learning strategy combining the benefits of

feedforward neural network (FNN) and long-short term

memory (LSTM) has been designed for detecting tempo-

rally uncorrelated and correlated attacks in SCADA net-

works. Results showed the outperformance of this

ensemble model compared to the standalone FNN and

LSTM-based IDSs. A semi-supervised deep learning

autoencoder is employed in [39] to improve the detection

of SCADA attacks in gas pipeline control systems.

Specifically, this scheme learns the most relevant features

based on attacks-free data; thus, malicious data could be

easily flagged out because it leads to a high reconstruction

error. Much research has been done in recent years on

developing intrusion detection mechanisms for SCADA

systems. For instance, see some relevant survey papers

[40–44].

3 Methodology

Deep learning methods have shown its effectiveness in

different areas including speech recognition [45], computer

vision [46], and natural language processing [47]. The deep

learning algorithm processes data through multiple layers

of connected artificial neurons. It automatically extracts

hierarchical information from the input data, and feature

engineering can be largely avoided. The problem of dis-

criminating cyber-attacks is well recognized as a pattern

recognition problem, a field in which deep learning algo-

rithm has been demonstrated as one of the most competi-

tive methods.

3.1 The proposed stacked deep learning-driven
method

To discriminate cyber attacks from normal operations, we

propose a stacked deep learning model that ensembles the

results of five forward neural networks with three fully

connected hidden layers. Stack generalization [48] is a

technique widely used in the machine learning community

to boost performance of basic learners. Stack generaliza-

tion learns a model based on the predictions from basic

learners. In this paper, we use model averaging, which is a

special case of stacked generalization, to boost the per-

formance of deep learning models in cyber-attack detection

in SCADA systems.

Before presenting the details, we will show theoretically

that a stacked deep neural network, which averages the

results of N individual deep learning models, can be arbi-

trarily accurate in a classification problem, and its predic-

tion mean squared error (MSE) can be arbitrarily small

compared to an individual deep learning model. Consider a

binary cyber-attack detection problem, where y ¼ 1

denotes an attack, y ¼ 0 denotes a natural event. Suppose

we already trained N deep learning models

mlðxÞ; l ¼ 1; . . .;N, which are all better than random

guessing, that is PðmlðxÞ ¼ yÞ ¼ p[ 0:5. The stacked

deep learning model is defined as by Eq. (1),

mðxÞ ¼ 1 if
PN

l¼1

mlðxÞ=N [ 0:5

mðxÞ ¼ 0 otherwise:

8
<

:
ð1Þ

Assume that the N deep learning models are independent.

Without loss of generality, assume that the new feature xnew
corresponds to an attack, then the probability of the stacked

deep learning model predicts an attack is

PðmðxnewÞ ¼ 1Þ ¼ P
1

N

XN

l¼1

mlðxnewÞ[
1

2

 !

� 1� exp �2 p� 1

2

� �2

N

 !

;

ð2Þ

where the last inequality follows from Hoeffding’s

inequality for Bernoulli random variables. As N becomes

large, the probability in (2) approaches 1, and this shows

that the stacked deep learning model can be arbitrarily

accurate as the number of averaged models increases. Next,

we show that the prediction MSE of the stacked deep
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learning model can be arbitrarily small. The prediction

MSE of the stacked deep learning model is

E mðxnewÞ � 1ð Þ2 ¼ P
1

N

XN

l¼1

mlðxnewÞ\
1

2

 !

� exp �2 p� 1

2

� �2

N

 !

;

ð3Þ

again, the last inequality follows from Hoeffding’s

inequality. As the number of averaged models N increases,

the stacked deep learning model’s prediction MSE can be

arbitrarily close to 0 as shown in (3). Because the predic-

tion MSE of an individual model is fixed, we proved that

the stacked deep learning model’s prediction MSE can be

arbitrarily small compared to an individual deep learning

model.

As proved above, it is necessary to employ stacked deep

learning models because the stacked model increases the

prediction accuracy while decreasing prediction MSE. The

stacked deep learning model enables more accurate

detection of cyber-attacks in SCADA systems, and it is less

vulnerable than individual deep learning models because of

its low prediction MSE. The theoretical analysis is inspired

by the ensemble learning methods, e.g., Adaboost [10] and

random forest [11]. It has been proved that Adaboost and

random forest improves the classification accuracy of

individual trees, where correlations between individual

models are also discussed. In practice, the individual

models are trained using the same dataset, and therefore

individual models are correlated. A full analysis of the

theoretical property of stacked model under correlated

individual model is beyond the scope of the current paper.

Practically, the stacked deep learning model indeed has

higher accuracy compared to an individual deep learning

model as shown in the empirical study.

3.2 The architecture of the proposed model
and implementing details

Next, we introduce individual deep learning models’

details and how we construct the stacked deep learning

model. We construct five neural networks to demonstrate

the robustness of the network’s performance, that is, a

slight change in the structure of the network will not

deteriorate the detection ability. The structure of our net-

work is motivated as follows. Networks with more hidden

layers will generally enrich the represented features and

achieve greater capability in solving real problems [49].

For example, successful plans for the famous ImageNet

dataset all exploit huge neural networks with more than 30

layers and millions of parameters [49]. Researchers also

benefit from deep neural networks when solving scientific

problems such as protein structure prediction [50], solving

the many-electron Schrödinger equation [51], and fighting

the Coronavirus disease [52]. However, the depth of the

neural network is restricted by the available samples.

Otherwise, an overly large network will overfit the data.

After some experiments, we found that a three-layer net-

work can discriminate the malicious attacks in all the two

classes, three classes, and multiple classes detection prob-

lems. Networks with more than three layers will generally

overfit the data. The same neural network structure has

been used for two classes, three classes, and multiple

classes cyber-attack detection. The number of hidden

neurons in the five networks are (80, 60, 60), (80, 80, 60),

(100, 80, 80), (120, 100, 80) and (180, 120, 80), respec-

tively, all the layers are fully connected. The activation

function for the hidden layers is the rectified linear units

(ReLU) function, while the activation function for the

output layer is the sigmoid function and the softmax

function for the two classes data and the multiple classes

data, respectively. Table 1 shows the structure of the net-

work for the two classes problem. The input layer has 122

units, i.e., 122 input features, and the output layer has 1

unit. There are in total 19,221 parameters in this example.

The networks are implemented by Tensorflow 2.3.0 and

Keras 2.4.3. The optimizer is RMSprop, all the networks

are trained for 4000 epochs with a batch size 128.

We construct five networks to suit our computational

resources, and the number of neurons are chosen to rep-

resent small (Network 1) to moderately large (Network 5)

networks. The stacked network averages the outputs of the

five neural networks. The accuracy of the stacked deep

learning model for cyber-attack detection is higher than

individual deep learning models. Algorithm 1 summarizes

the steps to learn and predict with the stacked deep learning

model.

Table 1 Structure of the used deep learning models
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3.3 The algorithm for training an individual
deep learning model

In the following, we describe the details the training

algorithm for a single deep leanring model. Table 1 sum-

marizes the structure of the constructed neural network, the

number of neurons, and the number of weights in each

layer. Each densely connected layer is followed by a batch

normalization layer and a dropout layer to prevent over-

fitting. The number of weights in the network depends on

the number of input features and the network structure. For

the network used for cyber-attack detection in the SCADA

system, the number of weights is 19,221 in total. In each

middle layer, the input features are first linearly trans-

formed followed by a rectified linear units (ReLU) acti-

vation function. Denote the output of the lth layer as

al ¼ ðal1; . . .; alnÞ
>
, where n is the number of neurons in the

ith layer. For example, n ¼ 60 in the second layer of our

first network. The first layer will be the input layer, and the

last layer is the output layer. Denote L as the number of

layers. The output of the ðlþ 1Þth layer is

alþ1 ¼ r Wlþ1al þ bl
� �

;

where Wlþ1 is an m� n coefficient matrix for the ðlþ 1Þth
layer, m is the number of neurons in the ðlþ 1Þth layer, bl

is the bias vector, and rðxÞ is the activation function. For

the hidden layers, rðxÞ ¼ maxð0; xÞ is the ReLU function.

For the output layer, rðxÞ ¼ 1=ð1þ expðxÞÞ is the sigmoid

function for binary classification, and rðxÞ ¼ expðxiÞ=
ðexpðx1Þ þ . . .þ expðxcÞÞ; i ¼ 1; . . .; c, is the softmax

function for multi-class classification where c is the num-

ber of events.

Denote (x, y) as one observed data, where x is the fea-

ture set, y ¼ ðy1; . . .; ycÞ is the one-hot encoding of the

observed event. For binary classification, where we dis-

criminate whether an event is a cyber-attack, we use the

binary cross-entropy as the loss function. For multi-class

classification, where we also determine the type of the

attack, we use the multi-class cross-entropy as the loss

function. More specifically, the loss function is

LðW; bÞ ¼
Xc

j¼1

yj logðaLj Þ: ð4Þ

To minimize the objective function and estimate the

coefficients, we perform the stochastic gradient descent

(SGD) procedure to train the constructed neural network.

The workhorse of SGD is the backpropagation (BP) algo-

rithm, which computes the gradient of the objective func-

tion with regard to the parameters of the network, i.e., the

weights and biases. The BP algorithm computes the

derivative of the lost function in an iterative way with

regard to coefficients from the last layer back to the first

layer; that is how the name came from. Denote

zl ¼ Wlþ1al þ bl, and dl ¼ oL=ozl. Let � denote the

Hadamard product of two vectors, i.e., element-wise

products. The BP algorithm for one observed sample is

shown in Algorithm 2. The SGD algorithm is presented in

Algorithm 3.

Algorithm 2: The backpropagation algo-
rithm.
Input: Data: (x, y); The number of layers: L.
Output: The partial derivatives:∂L/∂W and

∂L/∂b.
Calculates the activations a2, . . . ,aL.
for l = L : 2 do

1. δL = ∂L
∂aL � σ′(zL).

2. δl = ((Wl+1)�δl+1) � σ′(zl) for l < L.
3. ∂L

∂bl = δl.
4. ∂L

∂Wl = δl(al−1)�.
end

Algorithm 3: The stochastic gradient descent al-
gorithm.
Input: Data: {(x1, y1), . . . , (xn, yn)}; The number

of epochs: E; The size of mini-batches: m.
Output: Network coefficients:W and b.
Randomly initialize the coefficients W and b.
for i = 1 : E do

1. Randomly shuffule the input data and split it
into blocks of size m.

2. For each mini-batch, calculate the partial
derivatives by the BP algorithm and update the
coefficients by

W → W − η
∂L

∂W

b → b − η
∂L

∂b

end

The technique of dropouts is used to prevent overfitting

[53], and the technique of batch normalization [54] is also

adopted because it greatly accelerates training. The

Algorithm 1: The algorithm for the stacked
deep learning model.
Input: Training data: (xi, yi), i = 1, . . . , n; New

data: xnew

Output: The predictions by the stacked deep
learning model: ypred

for l = 1 : 5 do
1. Train individual deep learning model ml using
the training data;

2. Obtain the output of the trained model for the
new data: ŷl = ml(xnew).

end
Calculate the prediction of the stacked model:
ypred = (ŷ1 + . . . , ŷ5)/5.
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network is trained for 4000 epochs, and in each epoch of

training, the training data are shuffled and split into mini-

batches of size 128. Figure 1 illustrates the flowchart of the

proposed cyber-attack detection procedure. The experiment

is divided into the training phase and the detection phase.

In more detail, in the data preprocessing step, we remove

missing values and standardize numeric features. In the

training step, we train the neural network using the SGD

algorithm. Finally, the trained model is verified using the

testing data.

As an illustration of the convergence of the training step,

Fig. 2 shows the history of training a neural network to

discriminate the cyber attacks. In the long run, the loss

decreases and the accuracy increases in the training pro-

cess, meaning that the deep learning model gradually

learned the structure of the data, and converged when the

training completed. In each epoch, the computing cost of

the stochastic gradient descent is approximately O(nm),

where n is the number of samples in the epoch, and m is the

number of parameters in the network, e.g., the number of

weights and biases in the network. Therefore, the compu-

tational burden of training increases as the number of

epochs and samples, the number of neurons in each layer,

and the network’s depth increase. Training deep learning

methods can be significantly accelerated by modern par-

allel computing devices and software. The hardware in our

experiment is a cluster with 24 Intel Xeon E5-2650 CPUs,

each with 64 gigabytes of memory. The model is imple-

mented by Python programming language, and the deep

neural networks are coded and trained by Python packages

Keras and Tensorflow.

We experimented different setups for the neural net-

work, such as different numbers of neurons in each hidden

layer and different numbers of training epochs. All con-

structed neural networks demonstrate very similar

performance.

3.4 Metrics of effectiveness

The confusion matrix (see Table 2) is used to evaluate and

compare the IDS performance of the considered methods.

True positives (TP) refers to the number of intrusions (at-

tacks), False Positive (FP) represents the number of typical

connections flagged out as attacks, True Negative (TN) is

the number of typical observations declared as normal.

False Negative (FN) is the number of attacks flagged out as

typical observations.

To check the detection performance of investigated

schemes for discriminating cyber-attacks, we adopted four

common performance metrics:

Accuracy ¼ TPþ TN

TPþ FPþ TNþ FN
: ð5Þ

Sensitivity ¼ TP

TPþ FN
: ð6Þ

Specificity ¼ TN

TNþ FP
: ð7Þ

Precision ¼ TP

TPþ FP
: ð8Þ

F1 ¼ 2
Precision:Sensitivity

Precisionþ Sensitivity
¼ 2TP

2TPþ FPþ FN
: ð9Þ

The accuracy (5) assesses the proportion of correct detec-

tions. A higher accuracy value indicates more satisfyingz

overall intrusion detection. Sensitivity (6) refers to the

capability to identify cyber-attacks correctly. Note that the

recall is similar to sensitivity in binary classification.

Meanwhile, specificity (7) gives the proportion of actual

negatives that are correctly identified. Specificity points out

the capacity to correctly discriminate typical observations.

Precision (8) quantifies the relevance of the detected pos-

itives, and F1-score (9) denotes the harmonic average of

precision and sensitivity.

4 SCADA system testbed description

To evaluate the performance of the deep-based approach

for attack classification in SCADA systems, the dataset we

use in this work was developed at the Mississippi State

University SCADA Laboratory [55]. The dataset is gen-

erated using the testbed shown in Fig. 3. The power system

includes two power generators (G1 and G2), four breakers

(BR1, BR2, BR3, and BR4) that are controlled by four

Intelligent Electronic Devices (IEDs) (R1, R2, R3, and

R4), respectively, and two transmission lines, one relies

BR1 to BR2 and the other is between BR3 and BR4. The

whole networked system is then monitored through intru-

sion detection system SNORT and Syslog. The dataset

provides measurements during typical activities and when

the system runs under the following types of attacks [55]:

– Short-circuit fault The attacker can create a short-

circuit everywhere in the targeted power line.

– Line maintenance In this scenario, the attacker turns off

one or numerous breakers according to the line to be

maintained.

– Remote tripping command injection Here, the attacker

generates control commands to open one or more

breakers.

– Relay setting change Attacker alters breakers setting to

prevent them from responding to actual fault or a valid

command.
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– Data injection Attacker changes typical values of

current, voltage, sequence components to create various

faults in the system.

This study investigates the designed deep learning

model’s detection performance to detect intrusion on smart

grid systems. Besides, we compare the proposed deep

learning-driven approach with the state-of-the-state art

machine learning methods (i.e., Nearest neighbor, Random

forests, Naive Bayes, Adaboost, Support Vector Machine,

oneR, and coupled Adaboost ?JRipper) applied to the

same data sets [55]. The comparison is performed using

three different classification scenarios, namely multiclass,

three-class, and binary classification.

– Multiclass The multiclass experiment contains 37 event

scenarios, including attack events, normal operations,

and natural events. In this experiment, each event

scenario has its class and is discriminated

independently by the models, which means that there

are 37 classes in total.

– Three-class The 37 scenarios are classified into three

classes: attack class containing 28 events, natural class

containing 8 events, or No events class with 1 event.

– Binary There are two classes: attack class (28 events)

and normal class (9 events).

The data is extracted from fifteen datasets, containing

thousands of individual measurements throughout the

power system for every type of event. The datasets have

been randomly sampled at 1% for reducing the size and

verifying the efficiency of small sample sizes. Essentially,

there is an average of 294 ‘‘No event’’ data points, 3711

attack data points, and 1221 natural data points utilized

over the classification schemes [55]. Here, we compared

the proposed deep learning-driven attack detection

scheme’s detection performance with results obtained in

[55] by using the baseline machine learning methods.

The heatmaps of the accuracy of the deep learning and

machine learning classifiers over the 15 datasets when

applied respectively to multiclass, three-class, and binary

classification are depicted in Fig. 4a–c. Figure 6 displays

the heatmap of the averaged accuracy over the 15 datasets

for each method. It should be noted that tenfold cross-

validation has been performed for each data set. Accuracy

assesses the rate of correct classifications. A high accuracy

value indicates a satisfying overall classification capability.

We observe from Fig. 4a–c that both deep learning and

shallow methods provide consistent results no matter what

the used data set. Only relatively minor changes for each

model, their performances are robust and consistent

regardless of the data set. For example, the stacked deep

learning model’s accuracy fluctuates between 94.63 and

96.1 when applied to the 15 data sets for multiclass

discrimination.

From Figs. 4 and 6, we observe that the deep learning

models are robust to the shape of the networks, the

Fig. 1 The flowchart of the

cyber-attack detection

procedure
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Fig. 2 The history for training a neural network to discriminate the

cyber attacks. Upper panel (a), the history of the loss function. Lower

panel (b), the history of the accuracy measure
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performance measures are close to each other for all the

five constructed neural networks in all the classification

tasks. For example, the average accuracy of Network 1 to

Network 5 is 97.00%, 97.01%, 97.06%, 97.11%, and

97.03%, respectively, for binary intrusion detection over

the 15 datasets. Larger networks, e.g., Network 5, do not

necessarily outperform smaller networks, e.g., Network 3.

Moreover, the stacked neural network, which pools the five

networks’ output, boosts the accuracy by a large margin

compared to any single network; the average accuracy is

97.36% for binary classification tasks.

A paired t test is used to compare the accuracy of an

individual deep learning model and the stacked deep

learning model. The null hypothesis is that the compared

accuracies are the same, the alternative hypothesis is that

the accuracy of the stacked deep learning model is higher

than that of an individual deep learning model. From

Fig. 5, we can see that most of the p values are small,

especially for the multiclass intrusion detection, and the

test is rejected under a significance level of 0.05, meaning

that the stacked deep learning model performs significantly

better than individual deep learning models in terms of

accuracy.

As shown in Fig. 4, shallow machine learning models

including oneR, NNge, RF, Naı̈ve Bayes, and SVM algo-

rithms achieved low accuracy values; these traditional

methods do not discriminate the attack events very well,

especially for multi-class detection. For example, Naı̈ve

Bayes only achieves an average accuracy of 11.3%,

35.35%, and 20.48% in multi-class, three-class, and binary

classification, respectively. All the deep learning driven

approaches exhibited superior performance compared to

shallow methods over the 15 datasets for all classification

types (i.e., binary, triple, and multiple). The highest overall

accuracy is achieved by the stacked deep learning approach

(Fig. 6). For multi-class, three-class, and binary classifi-

cation, the deep learning approach dominates all baseline

models in terms of accuracy by obtaining 95.52% (multi-

class), 97.38% (three-class), and 97.36% (binary), respec-

tively. Especially, the deep learning approach improves the

detection accuracy by a large margin (more than 5%) in

multi-class classification compared to traditional methods,

signifying an exceptional capacity to discriminate different

malicious and anomalous events. The primary reason may

owe that deep learning models can extract relevant infor-

mation from complex multivariate data. The

Adaboost?JRipper approach follows the deep learning

approach by achieving average accuracy values of 89.21%

(multi-class), 95.26% (three-class), and 95.34% (binary).

Whereas accuracy gives a global indication of classifier

performance, precision, recall, and F-measure are more

exhaustive indicators of classifier errors. Recall measures

the rate of a true positive number to the total numbers of

samples in the positive class, while precision corresponds

to the positive predictive value. F-measure is calculated

using both recall and precision. It is the harmonic mean of

precision and recall. Figure 7a–c depicts respectively, the

heatmap results for averaged recall, precision, and

F-measure over the 15 datasets. The stacked deep learning

approach reaches the best precision for multiclass (0.9859)

and binary (0.9781) classification (Fig. 7). It is followed by

the Adaboost?JRipper approach with 0.8559 (multiclass)

and 0.9489 (binary). Adaboost?JRipper achieved the best

average precision value of 0.997 for the three-class case,

followed by the stacked deep learning model with 0.9779.

The averaged recall by each approach for the three

considered classification types are depicted in Fig. 7b.

Table 2 Confusion matrix

associated to intrusion detection
IDS decision

Attack No attack

Actual condition Attack True positive (TP) False negative (FN)

No attack False positive (FP) True negative (TN)

Fig. 3 Power system testbed [55]

Cluster Computing (2022) 25:561–578 569

123



Essentially, recall quantifies the true positive rate; that is, it

indicates which method senses cyber-attacks most appro-

priately. Overall, the stacked deep learning method has the

highest recall values than other traditional methods by

achieving recall values of 0.9862 (multiclass), 0.9858

(three-class), 0.9846 (binary classification). Also, from

Fig. 7b, one observes that some simple methods as Naı̈ve

Bayes and OneR achieve high averaged recall values

(0.961 and 1, respectively), while RF can achieve moderate

performance (i.e., 0.7943 (multiclass), 0.9255 (three-class),

and 0.8865 (binary)). It should be noted that high recall

values and low precision values of some classifiers (e.g.,

OneR and Naı̈ve Bayes) is an indication of the classifier’s

bias towards the positive (malicious attack) class. In other

words, these classifiers enable good classification of mali-

cious attacks, but with an expense of false-positive values.

On the other hand, the proposed deep learning-based

detection approach can consistently detect malicious

attacks with high recall and precision values. Figure 7c

summarizes the averaged F-measure values obtained by

each method. It can be seen clearly that the deep learning

approach overall and the stacked deep learning approach

especially performed better than the other shallow learning

methods in terms of F-measure in all the cases by reaching

the highest overall values of 0.9861 (multiclass), 0.9818

(three-class), and 0.9813 (binary).

In summary, the deep learning approach, especially, the

stacked deep learning approach, demonstrated a promising

detection performance. The comparison results recommend

that the deep model significantly outperforms the shallow

machine learning methods in reliably discriminating

abnormal events in power systems. This could be attributed

to the extended capacity and the deep learning model’s

flexibility in extracting relevant information from multi-

variate data.

4.1 Features importance identification

The considered dataset contains 128 features (Table 3).

There are 4 phasor measurement units (PMUs) or syn-

chrophasors, which measure the electrical waves on an

electricity grid, records 29 features each for a total of 116

PMU measurements.

Still within the cyber-attacks detection framework, it is

worth noticing that some features generally have a low

contribution to the modeling and cyber-attacks detection,

but they are used in the modeling and can increase the

complexity of the model. Thus, identifying essential fea-

tures is undoubtedly an essential step in designing parsi-

monious modeling by eliminating useless features. The

identification of important features to cyber-attacks detec-

tion is achieved by the random forest algorithm, as

depicted in Fig. 8. We describe the permutation importance

of a feature as follows. The out-of-bag accuracy of the

trained Random Forest is denoted as Abase. To calculate the

importance of a feature, we permute its values and then

pass all the out-of-bag samples back through the Random

Forest. The resulting accuracy is denoted as Aperm. The

variable importance of that feature is the drop in overall

accuracy caused by permutation, that is

variable importance ¼ Abase � Aperm:
Fig. 4 Accuracy a multiclass, b Three-class, and c Binary
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Fig. 5 The P value for testing

the hypothesis that the stacked

deep learning model has higher

accuracy than individual deep

learning models. a multiclass,

b Three-class, and c Binary

Fig. 6 Binary class accuracy

over Fifteen Datasets
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Features were ordered according to their importance. We

observe the absence of notable contributions of specific

features to the detection process. The largest contribution is

obtained by the feature called R4.PM2.V (i.e., Phase A-C

Voltage Phase Magnitude measured by PMU R4) with

2.59%. The second observation is that 69 features are

contributing to the learning value with 95.24% (Fig. 8).

These features include Voltage Phase Magnitudes Voltage

Phase Angles, Current Phase Magnitudes, Zero Voltage

Phase Angles, Zero Current Phase Magnitudes, and

Appearance Impedance measurements. Using only the

features with 95.24% contribution may enable dimension-

ality reduction and make a model less complicated than

including all features.

5 Gas pipeline system

The dataset we use in this work was created at the SCADA

Laboratory of Mississippi State University [56] using a

real-world gas pipeline system. It includes two actuators to

monitor the system state and maintain the pressure level;

the network’s interface serial Modbus RTU and the

supervisory controls (MTU and the iFIX HMI). The dataset

represents the MODBUS traffic, which was collected by a

network logger through an RS-232 connection. The dataset

provides measurements during normal operating activities

and when the system runs under different types of attacks.

There are three groups of attacks:

– Reconnaissance Attacks include different scanning

operations (e.g., address scan, function code scan,

device identification attack, and points scan.

– Command Injection Attacks consist of injecting spoofed

(fake, forged) control and administration commands to

modify system behavior. Three types were imple-

mented, including malicious state command injection

(MSCI), malicious parameter command injection

(MPCI), and malicious function code command injec-

tion (MFCI) attacks.

– Denial-of-Service Attacks through resources exhaust-

ing, such attacks make an effort to shut down a part or

the whole SCADA system. Two examples of DOS are

available: the invalid cyclic redundancy code (CRC)

and jamming attack.

From a total of 274,627 records that make the dataset,

normal traffic is about 214,580 instances (i.e., 78.13%), and

attacks appear in 60,048 instances (i.e., 21.87%). The

overall details of such attacks are in [56]. Table 4 sum-

marizes the list and the distribution of normal and attacks

records considered in this study.

5.1 Command injection results

SCADA systems have an essential role in monitoring

modern plants. With the increase of cyber-attacks, the

security of these systems becomes indispensable to avoid

serious problems. This section investigates the capability of

the proposed deep learning methods in identifying and

discriminating malicious intrusions in the gas pipeline

system testbed.

We assess the performance of the deep learning-driven

attack detection method when applied to discriminate the

data injection attack types and normal (attacks-free) RTU

transactions. The corresponding validation metrics are

calculated and listed in Table 5. Multiclass discrimination

results using the deep learning-driven method implies that

almost all attacks are well detected, except the address scan

attacks. Also, we observe that the proposed method

achieved perfect detection of the normal (attacks-free)

RTU transactions. As expected, high detection perfor-

mances are obtained using the deep learning approach due

to the simplicity of the command injection attacks com-

pared to data/response injection. The low detection per-

formance for address scan attacks can be attributed to the

meager amount of the exemplar data for this type of attack

(only 2 data points). The availability of only two instances

of address scan attacks compared to the total amount of

data makes discrimination difficult.In this experiment, after

organizing the data as a binary classification problem (at-

tack-free and malicious data), we applied the deep learn-

ing-driven attack detection scheme for further assessment.

The corresponding validation metrics are computed and

tabulated in Table 6. Similarly to data/response injection,

by merging the malicious RTU data points, the two classes’

discrimination becomes an easy task, and we obtain a

powerful detector. Moreover, the proposed deep learning

scheme achieves perfect detection performance when

applied to detect DOS attacks (Table 7).

5.2 Features importance identification

Now, we identify the most important variables that con-

tribute to the cyber-detection output. The feature impor-

tance calculated using the random forest is shown in Fig. 9.

The features which contributed the most discriminating

power to detect cyber-attacks are data length and setpoint,

followed by control mode and control scheme. While, we

can observe from Fig. 9 that six features (i.e., command,

invalid data length, invalid function code, PSI, pump state,

and solenoid state) barely contribute to cyber-attack

detection and be ignored when designing a cyber-attack

detector.
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Fig. 7 Averaged Binary class

performance over the fifteen

datasets
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We repeated the experiment based on the deep learning

model using only the four important variables (i.e., control

mode, control scheme, data length, and setpoint), which

permit reduce the dimensionality of the dataset (Tables 8,

9).

In summary, this study demonstrated the promising

performance of a stacked deep learning-driven approach

for improving intrusion detection in industrial systems.

This approach also exhibited a suitable capacity in

detecting broad classes of attacks in SCADA systems using

a very basic set of features. Results revealed that the

stacked deep learning approach exhibits superior detection

performance in comparison to the baseline machine

learning methods and also to standalone deep learning

models. It has also been shown that by using feature

importance the data dimensionality can be reduced, and a

more parsimonious deep learning model can be designed.

6 Conclusion

Accurate cyber-attacks detection in modern industrial

systems is undoubtedly indispensable to enhance their

resilience and guarantee continuous production with the

desired specifications. However, traditional intrusion

detection systems based on shallow machine learning

methods are generally limited for appropriately detecting

malicious attacks in modern industrial systems. As shown

in the literature, deep learning technologies are promising

for intrusion detection in SCADA systems because their

ability to tackle the non-linear, dynamic SCADA data.

Towards this purpose, this paper introduces a stacked deep

learning-driven approach for cyber-attacks detection.

Results show that the proposed stacked deep learning

model can deeply learn the suspicious activities’ relevant

features and recognize them from normal activities. Thus,

the stacked deep learning-based intrusion detection method

outperforms various state-of-the-art shallow methods,

including the standalone deep learning models, Nearest

neighbor, Random forests, Naive Bayes, Adaboost, Sup-

port Vector Machine, and oneR. Besides detecting the

malicious attacks in the two considered SCADA systems,

we also provide the feature importance on the cyber-attacks

Table 3 Variables definition

Feature Description

PA1:VH—PA3:VH Phase A–C Voltage phase angle

PM1:V—PM3:V Phase AC Voltage phase magnitude

PA4:IH—PA6:IH Phase A–C Current phase angle

PM4:I—PM6:I Phase A–C Current phase magnitude

PA7:VH—PA9:VH Pos.–Neg.–Zero Voltage phase angle

PM7:V—PM9:V Pos.–Neg.–Zero Voltage phase magnitude

PA10:VH—PA12:VH Pos.–Neg.–Zero Current phase angle

PM10:V—PM12:V Pos.–Neg.–Zero Current phase magnitude

F Frequency for relays

DF Frequency delta (dF/dt) for relays

PA:Z Appearance impedance for relays

PA:ZH Appearance impedance angle for relays

S Status flag for relays

Fig. 8 Feature importance ranked using the RF algorithm

Table 4 Distribution of training

data instances
Command injection

Dataset Instances

Normal 28,086

Address scan 2

Func code scan 9

Illegal setpoint 197

Illegal PID 49

Table 5 Detection performance

of the proposed detector for

command injection attacks

(Multiclass)

Accuracy Sensitivity Specificity Precision Recall F-measure

Address scan 0.9998 0 0.9999 0 0 0

Function code scan 0.9999 0.9 0.9999 0.8333 0.9 0.85

Good 0.9999 0.9999 1 1 0.9999 0.9999

Illegal setpoint 1 0.995 1 1 0.995 0.9974

PID modification 1 1 1 0.9833 1 0.9909
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detection process based on the Random Forest procedure.

Feature importance identification enables dimensionality

reduction and designing parsimonious and less complicated

models.

As the time-series data from two investigated SCADA

systems are multiresolution in nature and contain signifi-

cant temporal noises, it would be attractive to build multi-

scale deep learning models involving wavelet-based pre-

sentations to improve cyber-attack detection. Another

important direction of improvement is using the developed

stacked deep learning models to design an intrusion

detection system for the internet of things (IoT) applica-

tions [57].
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Table 6 Detection performance

of the proposed detector for

command injection attacks

(Binary classification)

Accuracy Sensitivity Specificity Precision Recall F-measure

Normal 0.9999 1 0.9960 1 1 1

Malicious 0.9999 0.9960 1 0.9963 0.9960 0.9961

Table 7 Detection performance

of the proposed detector for

DOS attacks detection (Binary

classification)

Accuracy Sensitivity Specificity Precision Recall F-measure

Normal 1 1 1 1 1 1

Malicious 1 1 1 1 1 1

Table 8 Variable selection

Command Injection Binary

class

Accuracy Sensitivity Specificity Precision Recall F-measure

Good 0.9995 0.9999 0.9575 0.9996 0.9999 0.9998

Malicious 0.9995 0.9575 0.9999 0.9923 0.9575 0.9742

Table 9 Variable selection

Command Injection multiple

class

Accuracy Sensitivity Specificity Precision Recall F-measure

Address scan 0.9999 0 1 0 0 0

Function code scan 0.9997 0 1 0 0 0

Good 0.9995 0.9999 0.9578 0.9996 0.9999 0.9998

Illegal setpoint 0.9999 0.9950 0.9999 0.9852 0.9950 0.9899

PID modification 1 1 1 1 1 1

Fig. 9 The feature importance for detecting cyber-attacks in the gas

pipeline system
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