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Abstract This paper summarizes the main characteristics of the RCP8.5 scenario. The
RCP8.5 combines assumptions about high population and relatively slow income growth
with modest rates of technological change and energy intensity improvements, leading in
the long term to high energy demand and GHG emissions in absence of climate change
policies. Compared to the total set of Representative Concentration Pathways (RCPs),
RCP8.5 thus corresponds to the pathway with the highest greenhouse gas emissions. Using
the IIASA Integrated Assessment Framework and the MESSAGE model for the
development of the RCP8.5, we focus in this paper on two important extensions compared
to earlier scenarios: 1) the development of spatially explicit air pollution projections, and 2)
enhancements in the land-use and land-cover change projections. In addition, we explore
scenario variants that use RCP8.5 as a baseline, and assume different degrees of greenhouse
gas mitigation policies to reduce radiative forcing. Based on our modeling framework, we
find it technically possible to limit forcing from RCP8.5 to lower levels comparable to the
other RCPs (2.6 to 6 W/m2). Our scenario analysis further indicates that climate policy-
induced changes of global energy supply and demand may lead to significant co-benefits
for other policy priorities, such as local air pollution.

1 Introduction

The Representative Concentration Pathways (RCPs) form a set of greenhouse gas concentration
and emissions pathways designed to support research on impacts and potential policy responses
to climate change (Moss et al. 2010; van Vuuren et al. 2011a). As a set, the RCPs cover the
range of forcing levels associated with emission scenarios published in the literature. The
Representative Concentration Pathway (RCP) 8.5 corresponds to a high greenhouse gas
emissions pathway compared to the scenario literature (Fisher et al. 2007; IPCC 2008), and
hence also to the upper bound of the RCPs. RCP8.5 is a so-called ‘baseline’ scenario that does
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not include any specific climate mitigation target. The greenhouse gas emissions and
concentrations in this scenario increase considerably over time, leading to a radiative forcing
of 8.5 W/m2 at the end of the century.

Underlying assumptions about main scenario drivers of the RCP8.5, such as
demographic and economic trends or assumptions about technological change are based
upon the revised and extended storyline of the IPCC A2 scenario published in Riahi et al.
(2007). Many scenario assumptions and outcomes of the RCP8.5 are thus derived directly
from the co-called A2r scenario (Riahi et al. 2007), which was selected from the literature
to serve as the basis for the RCP8.5 (for an overview of RCPs, see van Vuuren et al.
(2011a), and for the RCP process and selection see Moss et al. (2010), and IPCC (2008)).

While many scenario assumptions and results of the RCP8.5 are already well
documented, we review in this paper some of the main scenario characteristics with
respect to the relative positioning compared to the broader scenario literature. In addition,
we summarize main methodological improvements and extensions that were necessary to
make the RCP8.5 ready for its main purpose, i.e., to serve as input to the Coupled Model
Intercomparison Project Phase 5 (CMIP5) of the climate community. CMIP5 forms an
important element in the development of the next generation of climate projections for the
forthcoming IPCC Fifth Assessment Report (AR5). Finally, we use the RCP8.5 as a
baseline for developing scenarios that lead to similar forcing levels as the other RCPs
summarized in this SI (i.e. 2.6, 4.5 and 6.0 W/m2). For this purpose, we introduce
constraints on greenhouse gas emissions within the RCP8.5 storyline.

The main methodological improvements of the RCP8.5 since the original publication of
the A2r scenario of Riahi et al. (2007) include the explicit representation of present and
planned air quality legislation for the projection of regional air pollutant emissions; new
downscaling approaches for pollutant emissions that account for dynamic changes in spatial
relationships between exposure and mitigation; and finally, a more refined accounting of
land-use categories for the spatial representation of the land-transformation, including in
particular a new definition for grasslands.1

The paper is structured as follows. Section 2 presents an overview of the modeling
framework with primary focus on the new methodological enhancements. Section 3 details
the results of both the RCP8.5 and a set of climate mitigation scenarios that lead the forcing
levels similar to the other RCPs. We first compare the main RCP trends to the broader
scenario literature, and then present implications for the energy-system, land-cover changes,
and emissions. Finally, Section 4 provides a summary of the main findings.

2 Methodology

2.1 IIASA modeling framework

RCP8.5 was developed using the IIASA Integrated Assessment Modeling Framework that
encompasses detailed representations of the principal GHG-emitting sectors—energy,
industry, agriculture, and forestry. The framework combines a careful blend of rich
disciplinary models that operate at different spatial resolutions that are interlinked and
integrated into an overall assessment framework (Fig. 1). Integration is achieved through a

1 The A2r scenario included some details of land use categories such as cultivated land, built-up land and
forests and grassland area (for further details see Tubiello and Fischer 2007).

34 Climatic Change (2011) 109:33–57



series of hard and soft linkages between the individual components, to ensure internal
scenario consistency and plausibility (Riahi et al. 2007).

The three principal models of the IA framework (Fig. 1) are MESSAGE–MACRO (Messner
and Strubegger 1995; Rao and Riahi 2006), DIMA (Rokityanskiy et al. 2007) and AEZ–WFS
(Fischer et al. 2007) (see below for further details). The three models are driven by a set of
harmonized inputs at the regional, national, and grid (0.5×0.5°) level. For this purpose, the
regional population and GDP scenarios of the A2r scenario (see Section 3.1) are disaggregated
to the level of countries through a combination of decomposition and optimization methods. In
a subsequent second step, national results are further disaggregated to the grid-cell level, which
provides spatially explicit patterns of population and economic activities (Grubler et al. 2007).
The latter indicators are particularly important for the spatially explicit modeling of emissions
and land-cover changes in the forestry and agriculture sectors. They provide the basis for the
estimation of comparable indicators (such as relative land prices or population exposures to
pollutant emissions) that define e.g. the relative comparative advantages of agriculture- and
forestry-based activities or the stringency of spatial pollutant emissions reductions.

The MESSAGE model (Model for Energy Supply Strategy Alternatives and their General
Environmental Impact) stands at the heart of the integrated assessment framework. It is a
systems-engineering optimization model used for medium-to long-term energy system
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planning, energy policy analysis and scenario development. The model maps the entire energy
systemwith all its interdependencies from resource extraction, imports and exports, conversion,
transport and distribution to end-use services. The model’s current version provides global and
sub-regional information on the utilization of domestic resources, energy imports and exports
and trade-related monetary flows, investment requirements, the types of production or
conversion technologies selected (technology substitution), pollutant emissions, inter-fuel
substitution processes, as well as temporal trajectories for primary, secondary, final, and useful
energy. In addition to the energy system, the model includes a stylized representation of the forest
and agricultural sector and related GHG emissions mitigation potentials. It is a long-term global
model operating at the level of 11 world-regions and a time horizon of a century (1990–2100).
For each scenario the model calculates the least cost solution for the energy system given a set of
assumptions about main drivers such as energy demand, resources, technology performance and
environmental constraints.2

The AEZ–WFS (Agro-Ecological Zoning—World Food System) model framework projects
alternative development paths of the agriculture sector using three components: (i) a spatially
detailed agronomic module assessing crop suitability and land productivity (AEZ); (ii) an
applied general equilibrium model of the world food system (WFS); and (iii) a spatial
downscaling model allocating the aggregateWFS production levels and agricultural land use to
spatial biophysical resources. AEZ simulates land-resource availability, crop suitability, farm-
level management options, and crop production potentials as a function of climate, technology,
economic productivity, and other factors (for further details see Fischer et al. 2002, 2009;
Fischer 2009). Land is broadly classified as built-up land, cultivated land, forests, grass/wood
land areas, including managed and natural grassland areas, and sparsely vegetated and other
land. WFS is an agro-economic model (Fischer et al. 2005, 2009) that estimates regional
agricultural consumption, production, trade and land use. Applying the AEZ-WFS
framework, use and conversion of land is determined for food and feed production to meet
the global demand in accordance with agronomic requirements, availability of land resources,
and consistent with national incomes and lifestyles of consumers. Land for residential use and
transport infrastructure is assigned according to spatial population distribution and density.
The remaining land, i.e. part of grass/wood land, forest areas and sparsely vegetated areas, is
further evaluated in the DIMA model (see below) for possible use in dedicated bioenergy
systems and for forestry purposes (for additional details see Tubiello and Fischer 2007).
Agricultural residue supplies based on the agricultural land use are also available for energy
use and picked up where cost-effective. The delineation of pasture and unmanaged grasslands
is based on the projections of livestock numbers computed in the WFS model.

The DIMA model (Dynamic Integrated Model of Forestry and Alternative Land Use;
Rokityanskiy et al. 2007) is used to quantify the economic potential of global forests,
explicitly modeling the interactions and feedbacks between ecosystems and land use related
activities. Regional demand trajectories for timber and prices for carbon and bioenergy are major
drivers for the relevant estimates. Food security is maintained by introducing an exogenous
scenario-specific minimum amount of agricultural and urban land per grid cell as projected by
AEZ-WFS (and used as input by DIMA). The DIMA model is a spatial model operating on a
0.5×0.5° grid raster. It determines for each grid and time interval, which of the forestry
processes (afforestation, reforestation, deforestation, or conservation and management options)
would be applied in order to meet a specific regional timber demand and how much woody

2 As computational algorithm the model uses linear programming with a commercial solver (CPLEX) to
compute minimum discounted system costs over the entire time-frame. The time horizon is split into 5 year
time-steps between historical periods 1990–2010, and 10 year time periods between 2010 and 2100.
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bioenergy and forest sink potential would be available for a given combination of carbon and
bioenergy prices. Main determinants of the land-use choices in each grid are assumptions about
the costs of forest production and harvesting, land-prices and productivity, age structure of
standing forest, and age-specific plant growth. Forest dynamics are thus a result of interactions
between demand-pull (price of bioenergy and carbon as well as timber demand), and inertia on
the supply-side (imputed through growth limitation of the forest). A schematic illustration of the
main linkages between the three principal models is shown in Fig. 1.

In the sequel of Section 2 we discuss the main methodological improvements for the
RCP8.5. We particularly focus on those aspects most relevant for the development of spatial
land-cover and emissions projections, which serve as inputs to the climate modeling
community (see also Hurtt et al. 2011 and Lamarque et al. 2011 in this SI).

2.2 Spatial land use and land-cover change projections

The spatial land cover information of the RCP8.5 builds upon the dynamic land-use
projections available from the original A2r scenario as published in Fischer et al. 2007;
Tubiello and Fischer 2007, and Riahi et al. 2007. The categories comprise 1) built-up land
(residential plus infrastructure), 2) cultivated land (arable and permanent crops, separated by
irrigated and non-irrigated land), 3) forests (separated by managed and unmanaged forests), 4)
grassland/woodland/shrubland (GWS), and 5) other land (water, desert, rocks, and ice).

Major improvements of the RCP8.5 (compared to the original A2r scenario) include updates
with respect to the representation of base-year land-cover statistics, updates in the AEZ resource
inventory, as well as the split of the aggregated GWS category into pasture and natural
grasslands. The latter was done specifically as input for the climate modeling teams of the
IPCC-AR5 to represent dynamic land-cover changes in their future climate projections.

The base-year (2000) land inventory uses a continuous representation of different shares
of land-uses at 5 min latitude/longitude, i.e. each 5 min grid cell is characterized by shares
of the above classes.

Six geographic datasets were used for the compilation of an inventory of seven major land
cover/land use categories: (1) GLC2000 land cover, regional and global classifications at 30 arc-
seconds (JRC 2006); (2) IFPRI Agricultural Extent database, which is a global land cover
categorization providing 17 land cover classes at 30 arc-seconds (IFPRI 2002), based on a
reinterpretation of the Global Land Cover Characteristics Database (GLCCD 2001), EROS Data
Centre (EDC 2000); (3) The Global Forest Resources Assessment 2000 of FAO (FAO 2001) at
30 arc-seconds resolution; (4) Digital Global Map of Irrigated Areas (GMIA) version 4.0.1 of
(Siebert et al. 2007) at 5 arc-minute latitude/longitude resolution, providing by grid-cell the
percentage land area equipped with irrigation infrastructure; (5) IUCN-WCMC protected
areas inventory at 30-arc-seconds (http://www.unep-wcmc.org/wdpa/index.htm), and (6)
Spatial population density inventory (30 arc-seconds) for year 2000 developed by FAO-
SDRN, based on spatial data of LANDSCAN 2003, LandScanTMGlobal PopulationDatabase
(http://www.ornl.gov/landscan/), with calibration to UN 2000 population figures.

An iterative calculation procedure has been implemented to estimate land cover class
weights, consistent with aggregate FAO land statistics and spatial land cover patterns
obtained from (the above mentioned) remotely sensed data, allowing the quantification of
major land use/land cover shares in individual 5 arc-minute latitude/longitude grid-cells.
The estimated class weights define for each land cover class the presence of respectively
cultivated land and forest. Starting values of class weights used in the iterative procedure were
obtained by cross-country regression of statistical data of cultivated and forest land against land
cover class distributions obtained from GIS, aggregated to national level. The percentage of
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urban/built-up land in a grid-cell was estimated based on presence of respective land cover
classes as well as regression equations, obtained using various sub-national statistical data,
relating built-up land with number of people and population density.

When land is spatially allocated to various uses in the AEZ-WFS model sequence, first
the conversion to built-up land is quantified, driven by changes in population numbers and
density. Second, changes in agricultural land simulated in WFS are spatially allocated,
simultaneously affecting the other land use types, except built-up land. Finally, other land
use changes (not driven by agriculture or built-up conversion), mainly between forest and
grass/wood land types, are accounted for. The conversion of agricultural land is allocated to
the spatial grid for 10-year time steps by solving a series of multi-criteria optimization
problems for each of the countries/regions of the world food system model.

The criteria used in the land conversion module depend on whether there is a decrease or
increase of cultivated land in a region. In the case of a decrease the main criteria include
demand for built-up land and abandonment of marginally productive agricultural land. In
case of increases of cultivated land, the land conversion algorithm takes land demand from
the world food system equilibrium and applies various constraints and criteria, including: (i)
the total amount of land converted from and to agriculture in each region of the world food
system model, (ii) the productivity, availability and current use of land resources in the
country/regions of the world food system model, (iii) agronomic suitability of land for
conversion to crop production, (iv) legal land use limitations, i.e. protection status, (iv)
spatial suitability/propensity of ecosystems to be converted to agricultural land, and (v) land
accessibility, i.e. in particular a grid-cell’s distance from existing agricultural activities.

The classification of GWS into areas that predominantly correspond to pastures vs.
natural GWS is based on spatial calculations of fodder supply versus livestock feed
requirements. For this purpose feed balance calculations were performed to compare
estimated feed requirements of livestock in a grid-cell to estimated feed supply from
grassland and cropland in each grid cell. Feed requirements were calculated as energy
requirements per unit of a reference livestock times number of ruminants (cattle, buffalo,
sheep, goat). Feed supply assumes a grass harvest index of 60% (on grass/wood land) and a
harvest index of 30% crop residues on crop land in the grid cell. These calculations were
done at 5 min latitude/longitude and aggregated later to 0.5×0.5° resolution of the RCP8.5.
By doing so the global grass/wood land cover was classified into four different categories.
For areas with no ruminants or a share of GWS <10% in a grid-cell, these grid-cells were
assigned to class 1; class 2 comprises areas with a ratio of feed requirements over feed
supply of less than 0.1; class 3 corresponds to calculated ratios of 0.1 to 0.5, and finally
class 4 corresponds to ratios greater than 0.5. The resulting global map of grazing intensity
is presented in Fig. 2.

2.3 Pollutant emissions

2.3.1 Base year estimates and environmental legislation

For the estimation of air pollutant emissions we rely on detailed technology activity data
and emissions coefficients from the Greenhouse Gas and Air Pollution Interactions and
Synergies model (GAINS, Amann et al. 2008a, b) and the recent assessment of
environmental legislation until 2030 (Cofala et al. 2007). The activity data including
improvements of emissions coefficients due to legislation was subsequently aggregated and
implemented into the MESSAGE modeling framework to derive projections for pollutant
gases, including sulfur-dioxide (SO2), nitrogen oxide (NOx), carbon monoxide (CO),
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volatile organic compounds (VOCs), black and organic carbon aerosols (BC and OC).
Details of the methodology describing the linkage between MESSAGE and GAINS are
summarized in Rafaj et al. (2010).

The main sectors covered in our analysis include power plants, fossil fuel extraction, gas
flaring, waste and biomass burning (deforestation, savannah burning, and vegetation fires),
industry (combustion and process), domestic (residential and commercial sectors), and road
transport. We separately include estimates of air pollutants from international shipping and
aviation sectors, which have recently been identified as important sources of air pollutants.
Projections of emissions from international ships are based on the methodology described
in Eyring et al. (2005a, b) and reflect the implementation of recent updates of IMO
standards (amendments to the MARPOL Annex VI regulations). Lee et al. (2005) is used to
derive estimates of aviation fuel consumption and controls.

The main control policies and strategies for air pollutants until 2030 across different
sectors in both OECD & Non-OECD regions are detailed in Table 1.3

For the medium to long term trends of RCP8.5 (beyond 2030) we assume a further
reduction in emissions intensity based on the assumption that higher environmental quality
will be associated with increasing welfare. To mimic this behavior, the Environmental
Kuznets Curve (EKC) theory is applied to derive changes in future emission coefficients
(see e.g. Dasgupta et al. 2001). Based on empirical observations, the EKC assumes first an
increase in emissions (with increasing economic activities) followed by a decrease. Many EKC
studies assume an income level between 5000 and 8000 $/cap as the turning point for the
introduction of stringent environmental controls. Recent evidence, however, suggests that in
many developing countries controls of air quality are introduced at faster rates than suggested by
the experience of industrialized countries in the past (see Dasgupta et al. 2001; Smith et al. 2005).
Increased environmental awareness and accelerated technological diffusion are major
contributors to this trend. The turning point of the EKC are likely to happen thus at lower
GDP/capita levels than assumed earlier. Consequently, we use in the RCP8.5 analysis an
income level of 5000$/capita as the threshold for increasing environmental consciousness

Fig. 2 Grazing intensity of grass, wood, and shrublands for the year 2000. Areas of moderate and intensive
grazing were classified as pasture, while other areas with lower grazing intensity as predominantly natural

3 The implementation of these policies and technologies vary across different regions.
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triggering declines in emissions intensities.4 For resulting development of emissions intensities
and overall emissions trends see Section 3 on “results”.

As a final step in the development of the regional projections of the RCP, the MESSAGE
model results for all major air pollutant emissions and reactive GHGs were harmonized
with the historical and current inventories as described in Granier et al. (2011). A simple
harmonization algorithm was assumed, where emissions growth of the native MESSAGE
results were combined with the base-year values from Granier et al. (2011). For some
sectors, where the algorithm led to qualitative changes in the overall trends, a declining
offset over time was employed for the harmonization.

2.3.2 Downscaling of pollutant emissions

In addition to detailed representation of air-pollution legislation, another important improvement
of the RCP8.5 comprises the development of new downscaling algorithms for the spatially explicit
projections of pollutant emissions. These spatial air pollutant projections are important inputs to
the AR5 climate experiments, and related atmospheric chemistry models (Lamarque et al. 2011).

The vast majority of downscaling approaches have traditionally employed proportional
downscaling (van Vuuren et al. 2010), where emissions of individual grid-cells are scaled
following aggregate changes at the regional level. While proportional algorithms are simple
to implement and easy to reproduce, they generally do not account for important local
differences in efforts to reduce pollutant emissions. Empirical evidence, for example, shows
that efforts to reduce air-pollution have generally been stronger where the returns in terms

Table 1 Control measures for pollutant emissions (2000–2030)

Sector Control policies and strategies

Road Transport Directives on the SO2 content in liquid fuels; directives on quality of petrol
and diesel fuels; adoption of pollution standards for light and heavy duty
cars after 2010 (EURO III–IV, CARB, Tier II, other national equivalents)

Industry and Power Plants Use of high efficient electrostatic precipitators (ESP) in the power and
industrial sectors, increased use of low SO2 coal, increasing penetration
of flue gas desulphurization (FGD) after 2005 in new and existing plants,
primary measures for control of NOx

Domestic Shift from solid biomass based fuels towards clean cooking fuels and
improved cooking stoves, standards on sulfur contents in domestic fuels

International Shipping Revised MARPOL Annex VI regulationsa

Others Reduced flaring, improved NOx controls in waste incinerators, decreased
agricultural waste burning, forest fire control approaching OECD
standards throughout the world, etc.

a International Maritime Organization announced amendments to MARPOL Annex VI regulations which
include progressive reduction SO2 emissions from ships, progressively to 0.50%. Progressive reductions in
nitrogen oxide (NOx) emissions from marine engines were also agreed, with the most stringent controls on
so-called “Tier III” engines.

4 In order to explore uncertainties in the actual implementation of legislation beyond 2030, a sensitivity
analysis was carried out (Rafaj et al. 2010). Results indicate that the effect on the long-term pollutant
emissions depend on assumptions about further improvements in intensities beyond 2030. This effect was
found to be significant for NOx, but comparatively smaller for other emissions where technical shifts
dominate (CO, SO2). It is thus important to note that air pollutant emissions trends in RCP8.5 are the result
of dedicated policy interference. The trends should thus not be interpreted as autonomous developments in
absence of air pollution policies.
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of health benefits have been the largest. In the past this has been particularly the case in
cities of today’s industrialized countries, where dedicated urban air pollution legislation has
successfully reduced exposure and thus health impacts for millions of people (WEA 2000).

This trend is likely to continue in the future, particularly in the developing world, where
urban air quality is one of the prime concerns. We thus employ an exposure-driven spatial
algorithm for the downscaling of the regional air-pollutant emissions projection. By doing so,
we generate dynamic spatial maps at the resolution of 0.5×0.5° for all world regions and major
pollutant emissions (SO2, NOx, CO, BC, OC, VOCs). As a surrogate proxy for the spatial
distribution of exposure we compute “population x emissions” of each grid-cell. The weight
of each individual cell in the aggregate regional exposure (i.e., the numerical sum of all
exposure values of the cells in the region) defines the allocation of emissions reductions for
each cell. As a result emissions are reduced most in those cells with the highest exposure. Vice
versa, in cells with either very low population or low emissions density the reductions are
comparatively smaller. Technically, we solve the problem by creating a rank-size distribution of
each region from the cells with the highest exposure to those with lowest. We start reducing
emissions first in those cells that have the highest exposure.5 Following a review of Air Quality
Monitoring Information of US cities (EPA 2008; see also UNEP and WHO 1996) we adopt a
maximum rate of reduction of up to 80% emissions reduction per decade for each grid-cell.6

Obviously, the exposure driven algorithm is applied only if emissions are reduced
on the regional level due to increasing stringency of air pollution legislation. In the
case of regionally increasing emissions, we use spatial changes of economic activity
(GDP) as a proxy to allocate increasing emissions across grid-cells. I.e., we assume
that emissions increase proportionally to where economic activity is accelerating the
strongest. For the spatial distribution of population and GDP we rely on the
downscaled projections of the original scenario (A2r) as described in Grubler et al. 2007
(data can be downloaded at http://www.iiasa.ac.at/web-apps/ggi/GgiDb/).

Figure 3 gives a schematic illustration of the effect of the exposure algorithm for SO2

emissions in the Centrally Planned Asia region (including China) between 2020 and 2100.
The two important features are: 1) that top exposed cells corresponding to the Chinese mega-
cities improve air quality by about two orders of magnitudes by 2050, and 2) improvements
in cities are complemented by important distributional changes, shifting e.g. emissions
intensive activities to surrounding neighborhoods of cells with lower population density. For a
comparison see also resulting spatial maps of SO2 emissions in Fig. 11 (Section 3).

2.4 Scenarios considered in this paper

The main scenario described in this paper is the RCP8.5. As indicated in the introduction,
however, we also use the MESSAGE model for the development of mitigation scenarios
that use the RCP8.5 as a baseline. As targets for the mitigation scenarios we adopt forcing
levels of 2.6, 4.5 and 6 W/m2 by the end of the century, which corresponds to the same
radiative forcing levels as assumed by the other RCPs in this SI (see van Vuuren et al.
2011b; Thomson et al. 2011; Masui et al. 2011). For each mitigation scenario the
MESSAGE optimization model computes least-cost pathways to stay below the specified
target. This corresponds to the introduction of a cumulative GHG emissions budget and a

6 EPA (2008) reports on air pollution trends of US cities between 1990 and 2008. For CO, O3, and SO2 the
most rapid air quality improvements among the US cities were between 60 and 80% per decade.

5 For example, if a grid-cell has 0.5% of the aggregated regional exposure at time t0, then 0.5% of the
regional emissions reductions between t0 and t1 are allocated to that specific cell.
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globally uniform price vector for greenhouse gas emissions (assuming full temporal and
spatial flexibility in emission reductions across regions and gases).

3 Scenario assumptions and results

3.1 Storyline and main scenario drivers of RCP8.5

The RCP8.5 is based on the A2r scenario (Riahi et al. 2007), which provides an updated and
revised quantification of the original IPCC A2 SRES scenario storyline (Nakicenovic et al. 2000).
With a few exceptions, including an updated base year calibration (to 2005) and a
revised representation of short-term energy trends, especially in developing countries,
the RCP8.5 builds thus upon the socio-economic and demographic background,
resource assumptions and technological base of the A2r scenario.7

The scenario’s storyline describes a heterogeneous world with continuously increasing
global population, resulting in a global population of 12 billion by 2100. Per capita income
growth is slow and both internationally as well as regionally there is only little convergence
between high and low income countries. Global GDP reaches around 250 trillion US2005$
in 2100. The slow economic development also implies little progress in terms of efficiency.
Combined with the high population growth, this leads to high energy demands. Still,
international trade in energy and technology is limited and overall rates of technological
progress is modest. The inherent emphasis on greater self-sufficiency of individual
countries and regions assumed in the scenario implies a reliance on domestically available
resources. Resource availability is not necessarily a constraint but easily accessible
conventional oil and gas become relatively scarce in comparison to more difficult to harvest
unconventional fuels like tar sands or oil shale. Given the overall slow rate of technological
improvements in low-carbon technologies, the future energy system moves toward coal-

Fig. 3 SO2 exposure (population x
emissions) of grid-cells with highest
exposure in Centrally Planned Asia
(CPA). Different colors indicate
changes in exposure over time
from 2020 to 2100. All cells are
ordered according to their rank-size
distribution in 2020

7 The MESSAGE model projects historical time periods from 1990 onwards, and is calibrated to reproduce
past trends up to the year 2005. As the harmonization of the RCPs was done for the year 2000, we show in
most of the figures historical trends up to 2000 only.
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intensive technology choices with high GHG emissions. Environmental concerns in the A2
world are locally strong, especially in high and medium income regions. Food security is
also a major concern, especially in low-income regions and agricultural productivity
increases to feed a steadily increasing population.8

Compared to the broader integrated assessment literature, the RCP8.5 represents thus a
scenario with high global population and intermediate development in terms of total GDP
(Fig. 4). Per capita income, however, stays at comparatively low levels of about 20,000 US
$2005 in the long term (2100), which is considerably below the median of the scenario
literature. Another important characteristic of the RCP8.5 scenario is its relatively slow
improvement in primary energy intensity of 0.5% per year over the course of the century.
This trend reflects the storyline assumption of slow technological change. Energy intensity
improvement rates are thus well below historical average (about 1% per year between 1940
and 2000). Compared to the scenario literature RCP8.5 depicts thus a relatively
conservative business as usual case with low income, high population and high energy
demand due to only modest improvements in energy intensity (Fig. 4).

3.2 Development of the energy system

3.2.1 Energy system of RCP8.5

As discussed earlier, the RCP 8.5 is a baseline scenario with no explicit climate policy,
representing the highest RCP scenario in terms of GHG emissions. In this section we will
first briefly describe the main energy system changes of the RCP 8.5 baseline. In addition to
baseline trends, we will congruently analyze also the required GHG emissions reductions in
order to limit radiative forcing to levels comparable to the other RCPs highlighted in this
SI. We primarily focus in this section on the transition of the energy system and move later
to results for land-use (Section 3.3) and GHG and pollutant emissions (Section 3.4).

A growing population and economy combined with assumptions about slow improve-
ments of energy efficiency lead in RCP8.5 to a large scale increase of primary energy
demand by almost a factor of three over the course of the century (Fig. 5). This demand is
primarily met by fossil fuels in RCP 8.5. There are two main reasons for this trend. First,
the scenario assumes consistent with its storyline a relatively slow pace for innovation in
advanced non-fossil technology, leading for these technologies to modest cost and
performance improvements (e.g., learning rates for renewables are below 10% per doubling
of capacity; see also Riahi et al. 2007 for further detail). Fossil fuel technologies remain
thus economically more attractive in RCP8.5. Secondly, availability of large amounts of
unconventional fossil resources extends the use of fossil fuels beyond presently extractable
reserves (BP 2010). The cumulative extraction of unconventional fossil resources lies,
however, within the upper bounds of theoretically extractable occurrences from the
literature (Rogner 1997; BGR 2009; WEC 2007).9

Coal use in particular increases almost 10 fold by 2100 and there is a continued reliance
on oil in the transportation sector. This fossil fuel continuance does not necessarily mean a
complete lack of technological progress. In contrast to most other technologies, there are
significant improvements in existing fossil alternatives as well as the penetration of a
number of new advanced fossil technologies, thus increasing their efficiency and

8 For further details on the scenario storyline see Riahi et al. 2007.
9 In RCP8.5 unconventional natural gas extraction amounts to 17 ZJ and unconventional oil extraction to
about 21 ZJ over the course of the century.
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performance in the longer-term. In the electricity sector, this results in a shift towards clean
coal technologies from current sub-critical coal capacities. In addition, with conventional
oil becoming increasingly scarce, a shift toward more expensive unconventional oil sources
takes place by 2050 and the subsequent increases in fossil fuel prices also leads an
increased penetration of “synthetic” fuels like coal-based liquids. The increase in fossil fuel
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prices (about a doubling of both natural gas and oil prices by mid-century) triggers also
some growth for nuclear electricity and hydro power, especially in the longer-term. Overall,
however, fossil fuels continue to dominate the primary energy portfolio over the entire time
horizon of the RCP8.5 scenario (Fig. 5).

In terms of final energy, significant transformations occur in the manner in which energy
is used in RCP8.5 (Fig. 6). Particularly electricity continues its historical growth and
becomes the dominant mode of energy use mostly in the residential and partly also in the
industrial sector. In the long term (beyond 2050) electricity is provided in RCP8.5 to a large
extent from non-fossil sources (nuclear and biomass).

3.2.2 Impact of mitigation measures

The high energy demand and fossil intensity associated with RCP8.5 implies that achieving
climate stabilization will require a massive reduction of emissions and drastic energy
system transformations compared to the baseline. In fact, previous studies indicated that
achieving low climate stabilization levels from the A2r scenario—the predecessor of
RCP8.5—may technically not be feasible (Rao et al. 2008). The earlier studies employed
though a qualitative criterion for target attainability that limited energy intensity
improvement of a given stabilization targets to stay within relatively narrow margins of
the baseline scenario storyline (see Riahi et al. 2007 and Rao et al. 2008). In our
assessment, however, we allow pronounced reductions in energy demand beyond this
criterion and observe that 2.6 W/m2 target under a fossil intensive RCP8.5 scenario
would become feasible, if more rapid energy intensity improvements were possible to
achieve.

In addition to responses in energy demand, our analysis considers a number of
options for reducing energy-related CO2 emissions on the supply-side of the energy
system (see Riahi et al. 2007 for details). These include switching from fossil fuels to
renewable or nuclear power; fuel switching to low-carbon fossil fuels (e.g., from coal to
natural gas); and carbon capture and storage (both fossil and biomass based). Also
included in this analysis is the full basket of non-CO2 gases and related mitigation options
(see Rao and Riahi 2006 for details), both energy related (e.g. extraction and transport of
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coal, natural gas, and oil) and non-energy related (livestock, municipal solid waste,
manure management, rice cultivation, wastewater, and crop residue burning).10

The primary energy mix of the climate mitigation scenarios (reaching 6, 4.5, and 2.6 W/m2

radiative forcing by the end of the century) are illustrated in the right bars of Fig. 5. In the
short and medium term, transition options like fossil based CCS (in particular natural gas
with CCS) become particularly important while in the longer-term, dominant technological
options include energy conservation and efficiency improvements, nuclear, and
biomass with carbon capture (BECCS). This trend is robust across all analyzed
stabilization targets, but is obviously most pronounced in the low 2.6 W/m2 forcing
scenario. While electricity from other renewables, like solar PV, increase their
contribution in the longer-term, the majority of the carbon free electricity comes from
centralized nuclear and biomass power plants. This technology choice reflects the
underlying storyline of the RCP8.5 and related technology assumptions, which favor
traditional centralized supply-options (including fossil CCS, nuclear and biomass). The
results highlight that in principle lower stabilization goals might be possible to reach
from high baselines as the RCP8.5, and that mitigation solutions would not necessarily
require a shift from large-scale centralized energy production to dispersed intermittent
sources (for a discussion of alternative mitigation paradigms with higher shares of
intermittent renewables see Riahi et al. 2007).

In terms of final energy, the pace of electrification is accelerated further in the
climate mitigation scenarios, where non-fossil electricity becomes a major driver of the
decarbonization, leading to electricity shares in final energy of up to about 60% by
2100 (compared to about 30% in RCP8.5). Oil use peaks around middle of the century
and declines in the longer term. In RCP8.5 the resulting gap for the supply of liquid
fuels is filled by other liquefaction processes like coal- and biomass-based liquids. In the
climate mitigation scenarios, hydrogen becomes an additional important long-term final energy
carrier in the transport sector. Important wide ranging consequences of the transformation away
from oil-products to electricity and hydrogen are at the one hand improvements of regional
energy security in terms of decreased oil dependency (oil imports). At the other hand the
transformation enables also major environmental improvements through decreasing pollutant
emissions, particularly in urban areas (see Section 3.5).

Figure 7 compares the required pace of energy intensity and carbon intensity
improvements in the RCP8.5 and the mitigation scenarios that have been derived with
historical trends and selected scenarios from the literature (SRES B1 and B2). Reducing
GHG emissions requires both demand-side changes (improvements in energy intensity) as
well as supply-side structural changes (improvements in carbon intensity of the economy).
The required pace of the transition is particularly challenging in the case of the low target of
2.6 W/m2. In terms of carbon intensity the 2.6 W/m2 scenario shows for example a six-fold
increase in the rate of decarbonization compared to the RCP8.5 baseline. This corresponds
also to a major trend-break and a five-fold acceleration of the decarbonization pace
compared to the long run historical improvement rate for the world (1940 to 2000). With
respect to energy intensity the 2.6 W/m2 is less ambitious. It depicts improvement rates
roughly in line with historical trends between 1940 and 2000 of about 1% per year. This
rate is also comparable to assumptions for intermediate baseline scenarios in the literature
such as the B2 SRES (Fig. 7). While this improvement rate is quite modest considering the

10 Note that the mitigation scenarios assume full “when and where” flexibility to reduce emissions, subject to
a global cumulative GHG emissions constraint for each radiative forcing level. Different measures are thus
deployed based on endogenous model decisions to derive a least-cost solution.
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stringent climate target, it means nevertheless a drastic departure from the RCP8.5 baseline,
where energy intensity improves at only half this rate (0.5% per year). Our results thus also
indicate the importance of path dependency and conditionality of the transformation
strategy depending on the choice of the baseline and its underlying assumptions. Clearly, any of
the climate targets would have been achieved by a different mix of measures (and costs) if we
had used for example the sustainable SRES B1scenario with its relatively high rates of
improvements as the counterfactual of our analysis (see Fig. 7).

3.3 Land-use and land-cover change

Some 1.6 billion ha of land are currently used for crop production, with nearly 1 billion ha
under cultivation in the developing countries. During the last 30 years the world’s crop area
expanded by some 5 million ha annually, with Latin America alone accounting for 35% of
this increase. The potential for arable land expansion exists predominately in South
America and Africa where just seven countries account for 70% of this potential. There is
relatively little scope for arable land expansion in Asia, which is home to some 60% of the
world’s population. These constraints are also reflected by the land-use change dynamics of
the RCP 8.5 scenario. Projected global use of cultivated land in the RCP8.5 scenario
increases by about 185 million ha during 2000 to 2050 and another 120 million hectares
during 2050 to 2100. While aggregate arable land use in developed countries slightly
decreases, all of the net increases occur in developing countries. Africa and South America
together account for 85% of the increase. This strong expansion in agricultural resource use
is driven by the socio-economic context assumed in the underlying emission scenario with a
population increase to over 10 billion people in 2050 rising to 12 billion people by 2100.
Even then yield improvements and intensification are assumed to account for most of the
needed production increases: while global agricultural output in the scenario increases by
85% until 2050 and 135% until 2080, cultivated land expands respectively by 12% and
16% above year 2000 levels (Fig. 8).

An important characteristic of RCP8.5 are transformative changes the biomass use for
energy purposes from presently traditional (non-commercial) use in the developing world to
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commercial use in dedicated bio-energy conversion facilities (for power and heat) in the
future. Globally the contribution of bioenergy is increasing in RCP8.5 from about 40 EJ in
2000 to more than 150 EJ by 2100. The vast majority of this biomass is harvested in
forests, resulting in increased land-requirements for secondary managed forests. While total
area of forests is declining in RCP8.5 (Fig. 8), the share of managed forests and harvested
areas for biomass are thus increasing considerably. The latter grows from about 17 million
ha to more than 26 million ha by 2100. Uncertainties in the interpretation of the underlying
land developments are nevertheless very large. Hurtt et al. (2011) for example estimate
about a factor of six higher land requirements for the same amount of wood harvest for
the year 2000. Differences between the estimates increase over time. The results
indicate the need for further harmonization of underlying data and definitions of carbon
harvest in forest models.

3.4 GHG emissions

3.4.1 GHG emissions in RCP8.5

GHG emissions of the RCP8.5 continue to rise as a result of the high fossil-intensity of the
energy sector as well as increasing population and associated high demand for food. The
development of main GHG emissions of RCP8.5 and the corresponding mitigation
scenarios is shown in Fig. 9. The RCP8.5 emissions are high, not only compared to the
overall emissions scenario literature, but also compared to the set of baseline scenarios. In
RCP8.5 CO2-eq. emissions more than double by 2050 and increase by three fold to about
120 GtCO2-eq. by 2100 (compared to 2000). Roughly about three quarter of this increase is
due to rising CO2 emissions from the energy sector. The rest of the increase is mainly due to
increasing use of fertilizers and intensification of agricultural production, giving rise to the
main source of N2O emissions. In addition, increases in life-stock population, rice
production, and enteric fermentation processes drive emissions of methane (CH4).
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The high GHG emissions in RCP8.5 imply the need of large-scale emissions reductions
to limit radiative forcing to levels comparable to the other RCPs. For the mitigation
potentials from livestock and agricultural sectors we rely on estimates from Rao and Riahi
(2006), which assumes no major technological breakthroughs in these sectors. Globally the
mitigation potential is thus limited to about 50% and 30% of the RCP8.5 baseline emissions
for CH4 and N2O respectively. This explains also the comparatively limited role of CH4 and
N2O emissions mitigation in our mitigation scenarios compared to the official RCP2.6,11

RCP4.5, and RCP6 (see Fig. 9 and papers on the other RCPs in this SI).

3.4.2 GHG Emissions in the mitigation scenarios

The comparatively limited potential for non-CO2 mitigation options in RCP8.5 implies also
that the bulk of the emissions reductions in the longer term will need to come from CO2 in
the energy sector (Fig. 9). Cumulative CO2 emissions in RCP8.5 amount to about 7300
GtCO2 over the course of the entire century. In order to limit forcing to 6 W/m2 about 40%
of these emissions would need to be avoided. The more stringent targets require further
emissions mitigation in the order of 60% and 87% of the RCP8.5 emissions to stay below
the 4.5 and 2.6 W/m2 target. The cumulative mitigation requirements have large
implications for the emissions pathways, which in all mitigation scenarios are characterized
by a peak and decline of CO2 emissions. As indicated in Fig. 9, the peak of emissions in the
scenario leading to 6 W/m2 occurs around middle of the century. If, however, emissions
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11 Note that RCP2.6 is often also referred to as RCP3-PD, indicating that its radiative forcing pathway is
peaking at about 3 W/m2 and declining later to 2.6 W/m2. In the sequel of the paper we will refer to this RCP
as RCP2.6.
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growth over the next decades is considerably slower than in our scenarios (as illustrated by
the official RCP6), the same target could be achieved with a later peaking date around
2080. Staying below 2.6 W/m2 requires much more rapid emissions reductions, leading to
comparatively limited flexibility for the peak of emissions. Both the official RCP2.6 and our
2.6W/m2 scenario indicate the need of emissions to peak before around 2020. This finding is
also consistent with other assessments in the literature (e.g., van Vuuren and Riahi 2011).
There are nevertheless important differences between the CO2 emissions pathways,
particularly with respect to the required negative emissions for limiting forcing to below
2.6 W/m2. As illustrated by Fig. 9, there is a considerably larger need for negative emissions
in our scenario than in the official RCP2.6. The main reason for this difference is the higher
non-CO2 emissions in our scenario, which are compensated by more pronounced negative
CO2 emissions compared to the official RCP2.6 in the long term (Fig. 9).

3.5 Emission of air pollutants

3.5.1 Air pollutants in RCP8.5

While RCP8.5 depicts baseline developments in absence of climate mitigation policies, air
quality legislation plays an important role for the scenarios’ projection of pollutant
emissions. This reflects the fact that in contrast to climate policies, air quality measures
have already been introduced in many parts of the world. Specifically, RCP8.5 assumes the
successful implementation of present and planned environmental legislation over the next
two decades to 2030. Beyond 2030 we further assume that increasing affluence may lead to
tightening of pollutant legislation in the long term (see also Section 2.3.1).

RCP8.5 explicitly considers varying levels of legislation, economic growth and
technological progress across regions, resulting in regionally different developments for
emission intensities as illustrated in Fig. 10. Air quality standards are presently the highest
in the OECD region. Emission intensities in the OECD are thus already comparatively low,
and planned legislation is expected to reduce emissions intensities even further by 2030.
For economies in transition and regions with medium development,12 current legislations
imply most significant declines across all regions by 2030. This trend reflects tightening of
policies particularly in the power sector (e.g., through application of flue gas desulfurization
or DENOx) and for vehicles (e.g., catalytic converters). Today’s low income regions are
generally characterized by modest air quality controls. These regions show also the least
pronounced declines in emissions coefficients to 2030, reflecting the lack of concrete plans
for future legislation over the short term.

In RCP8.5 many regions exhibit a catch-up in economic levels beyond 2030 to income
levels greater than 5000$/capita (Fig. 10). After this point the regions follow the EKC
assumptions of declining emissions coefficients explained in Section 2.3.1. In addition, an
important trend in RCP8.5 is the pervasive shift in the energy system towards cleaner fuels
and advanced fossil technologies, which together with the EKC assumptions explain the
long-term decline in pollutant emissions intensities (Fig. 10). For example in the case of
SO2 emissions in the power sector, tightening of legislation results in emissions reductions
from end-of-the-pipe technologies, but at the same time a growing share of inherently
cleaner coal technologies (e.g., through gasification processes) fosters additional emissions
reductions through technology shifts.

12 The definitions of medium and low development are based on the GDP/capita assumptions of the modeled
region, and do not consider more complex indices like for instance the HDI (Human Development Index.
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Assumptions about environmental legislations in combination with ongoing structural and
technological change imply thus in RCP8.5 that pollutant emissions decline significantly as
seen in the example of SO2 emissions in Figs. 11 and 12. Growing regional environmental
concerns combined with the lack of a global climate change regime thus also imply a clear
decoupling of CO2 emissions from pollutants. For example, the power sector remains a major
contributor to CO2 emissions by the end of the century; although SO2 emissions from this
sector are almost negligible due to increasing use of advanced coal technologies. Also in the
transport and residential sector, CO2 emissions continue to rise globally while in most
developing regions, there is either a slowing down of growth of pollutants from this sector or
even a decline where air quality legislations are stringent enough to offset growing demand.
This is important as the RCP8.5 while representing the highest levels of GHG emissions
among the RCP set, is not necessarily a ‘high pollution’ case as well.13

Fig. 10 Illustrative examples for the development of emissions intensities for different pollutant emissions
and sectors. Current and planned environmental legislation drive improvements in emissions coefficients to
2030. Thereafter technology shifts and EKC assumptions explain further improvements. Colored ranges
depict sub-regional differences between regions at similar economic development stages (slow development,
medium development, and OECD)

13 An important caveat to note is that the RCP8.5 assumes the full implementation of present air quality
legislation in all regions. However if we took into account the uncertainty in implementation of present plans
for legislation, pollutant emissions might be higher than as depicted by the RCP8.5. In the longer term,
uncertainty in technological availability and controls may also lead to a higher emissions profile than
estimated here. For a sensitivity analysis of the impact of e.g., different EKC assumptions for long-term
pollutant emissions see Rafaj et al. 2010.
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Fig. 11 Distribution of SO2 Emissions in RCP8.5 for the years 2000, 2020, 2050, and 2100
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While globally aggregated trends for pollutants show continues improvements and
declines in emissions, there are pronounced regional and spatial differences with local
implications for human health, environment, and climate change. The maps of Fig. 11
illustrate some of the main spatial dynamics for the evolution of SO2 emissions in
RCP8.5. The spatial dynamics are similar for other pollutant emissions and to large extent
also for the mitigation scenarios. Initially, the majority of the reductions happen in OECD
countries whereas developing regions, in particular Asia, continues to grow in terms of
SO2 emissions, mainly due to growing energy demands (see map for 2020). This clearly
indicates that currently legislated environmental policies are most likely not sufficient in
reducing pollution levels of emerging economies where growth in energy demands can
offset the effects of control policies. This may particularly be the case in China and India.
In the longer-term, however, increasing affluence and technological shifts in these regions
(Fig. 10) imply in RCP8.5 that global emission levels decline significantly, leading to
reduced impacts from pollutants at global scale.

3.5.2 Air pollutants in the mitigation scenarios

With respect to the mitigation scenarios, we observe significant co-benefits from climate
mitigation for pollutant emissions. As explained earlier, the greenhouse gas emissions
reductions in the mitigation scenarios lead to major improvements of the carbon-
intensity and the energy-intensity compared to the RCP8.5 baseline. This switch to
carbon-free and non-fossil technologies is generally associated with lower pollutant
emissions. In addition, also the application of CCS requires cleaner combustion
processes, and thus reduces pollutant emissions in the climate mitigation scenarios
further. Perhaps most importantly, the higher rates of energy-intensity improvements in
the climate mitigation scenarios leads to pronounced energy savings, and each unit of
energy that is not consumed is obviously climate friendly as well as pollution free.

The co-benefit of climate mitigation for pollutants is particularly pronounced over
the short to medium-term (Fig. 12). For instance, the 2.6 W/m2 scenario reduces
global SO2 emissions by about 55% in 2030 compared to the year 2000. This steep
decline corresponds to roughly a doubling of pollutant emissions reductions compared
to the RCP8.5 baseline (25% reductions in 2030 compared to 2000). Or put in other
words, stringent climate mitigation may reduce pollutant emissions by about the
same order of magnitude as the entire legislated air pollution policy that is presently
in the pipe.
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4 Discussion and conclusions

RCP8.5 depicts, compared to the scenario literature, a high-emission business as usual
scenario. Its socio-economic development pathway is characterized by slow rates of
economic development with limited convergence across regions, a rapidly rising population
to comparatively high levels, and relatively slow pace of technological change. The latter
assumption is reflected also by the scenario’s modest improvement rates of energy intensity,
which drives energy demand towards the high end of the scenario literature. The primary
energy mix of RCP8.5 is dominated by fossil fuels, leading to the extraction of large
amounts of unconventional hydrocarbon resources well beyond presently extractable
reserves. GHG emissions grow thus by about a factor of three over the course of the
century, mainly as a result of both high demand and high fossil-intensity of the energy
sector as well as increasing population and associated high demand for food. The
resulting radiative forcing is the highest among the RCPs presented in this SI, with the
emissions profile of RCP8.5 being representative of high GHG emissions scenarios in
the literature.

For the development of RCP8.5 we employed new methodologies for the spatial
representation of land-cover changes as well as the improved representation of pollutant
emissions legislation, including spatial downscaling algorithms for exploring local
implications of regional/global air pollution trends. Our results indicate that successful
implementation of presently legislated pollutant control measures would reduce global
pollutant emissions significantly over the short term (e.g. global reductions of about
25% of SO2 emissions between 2000 and 2030). This trend occurs despite the high GHG
intensity of RCP8.5, illustrating the possibility to decouple air pollutant emissions from
greenhouse gases through end-of-the-pipe technologies. In the long term additional
technological shifts to advanced fossil technologies reduce pollutant emissions further to
very low levels in RCP8.5.

The results from the mitigation analysis indicate that it would be technically
possible to reduce GHG emissions from RCP8.5 down to levels comparable to the
other RCPs presented in this SI. In contrast to earlier studies we found that this was
possible even for the most stringent radiative forcing target of 2.6 W/m2. This finding is
conditional, however, on the feasibility of massive changes in the energy system
compared to the RCP8.5 development path, accelerating energy intensity improvements
by a factor of two and carbon intensity even by a factor of about six over the entire
century. The mitigation scenarios would thus require a pronounced departure from the
original RCP8.5 storyline.

Finally, form the policy perspective, an important finding of our analysis is the
significant potential of climate mitigation to further reduce pollutant emissions. In the
case of the most stringent forcing target of 2.6 W/m2 the co-benefit for air pollutants are
globally of the same order of magnitude as the effect of presently legislated pollutant
measures over the next two decades. The results thus indicate the importance of better
integration of local policy priorities, such as health and air pollution into the global
climate mitigation debate.

Open Access This article is distributed under the terms of the Creative Commons Attribution
Noncommercial License which permits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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