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Abstract
If robots can merge the appearance-based place knowledge of other robots with their own, they can relate to these places
even if they have not previously visited them. We have investigated this problem using robots with compatible visual sensing
capabilities and with each robot having its individual long-term place memory. Here, each place refers to a spatial region as
defined by a collection of appearances and in the place memory, the knowledge is organized in a tree hierarchy. In the proposed
merging approach, the hierarchical organization plays a key role—as it corresponds to a nested sequence of hyperspheres in the
appearance space. The merging proceeds by considering the extent of overlap of the respective nested hyperspheres—starting
with the largest covering hypersphere. Thus, differing from related work, knowledge is merged in as large chunks as possible
while the hierarchical structure is preserved accordingly. As such, the merging scales better as the extent of knowledge to be
merged increases. This is demonstrated in an extensive set of multirobot experiments where robots share their knowledge and
then use their merged knowledge when visiting these places.

Keywords Place recognition · Multi-robot · Unsupervised learning

1 Introduction

Many robotic tasks such as exploration, rescue and mon-
itoring will benefit from the cooperation of several robots
in sharing their knowledge of places. The goal is to have
each robot expand its place knowledge via incorporating
other robots’ knowledge. As such, its spatial knowledge can
become more comprehensive and the robot can relate to
places even though it has not actually visited thempreviously.
Appearances are integral to defining places since metric
data may not be always available or reliable (Kostavelis and
Gasteratos 2015; Lowry et al. 2016). However, how to man-
age the gathered visual place knowledge has been a major
challenge. Related work in this area have been primarily
based on merging the two maps (of two different robots)
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by finding the matching node pairs where each node encodes
an appearance from a particular location. However, as the
number of nodes increases, both scalability and reliability
become problematic (Park and Roh 2016; Garcia-Fidalgo
and Ortiz 2017). Furthermore, since such maps can become
exorbitantly large, the resulting spatial knowledge is harder
to utilize in future revisits.

In this paper, we present a novel approach that consid-
ers only the merging of place knowledge. Each robot is
assumed to have compatible visual sensing and to retain
its appearance-based place knowledge in its long-term place
memory. This is a memory in which each place refers to a
spatial region as defined by a collection of appearances and
the knowledge of all learned places is organized in a tree hier-
archy (Erkent et al. 2017). In the proposed approach, place
knowledge is merged based on long-term place memories.
Any two robots can communicate, receive other’s long-term
place memory and then incorporate the received knowledge
into their respective place memories as shown in Fig. 1.
The hierarchical organization of the place memory enables
the merging process to be done in a completely different
manner. This is because it defines a nested sequence of
partitions of the learned places. In turn, these nested parti-
tions correspond to a nested sequence of hyperspheres in the
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Fig. 1 Each robot merges other robots’ long-term place memories with
its own

appearance space. Based on this observation, we propose a
method in which merging proceeds by considering the extent
of overlap of the respective nested hyperspheres—starting
with the largest covering hyperspheres and proceeding down
the smaller nested ones. This is achieved using a modified
version of the RACHET algorithm (Samatova et al. 2002).
The advantages of the proposed approach are three-fold: first,
differing from most related work each robot incorporates
other robot’s knowledge in as large chunks as possible. Thus,
the method scales better as the extent of knowledge to be
merged increases. Second, as merging is based only on the
appearances, unlike the merging of metric maps, spatial rela-
tions among different places or robots’ poses are not needed.
Hence, the proposed method can be used prior to map merg-
ing. Finally, as the number of places is considerably less than
the number of associated appearances, the required compar-
ison in the merging of the chunks is much more efficient.

The outline of the paper is as follows: first, we review
related literature in Sect. 2. Next, the form of the place mem-
ories is explained in detail in Sect. 3. The merging process
is explained in Sect. 4. Experimental results with a team of
three robots operating in both indoor and outdoor environ-
ment are presented in Sect. 5. The paper concludes with a
brief summary and future direction.

2 Related literature

One of the major paradigms in distributed intelligence is a
knowledge-based paradigm where the focus is on knowl-
edge sharing among robots (Parker 2008). As discussed,
place knowledge is primarily based on appearances (Lowry
et al. 2016; Kostavelis and Gasteratos 2015). Even if the
connection between places and appearances is subject to
indiscriminate boundaries, appearance variability and per-
ceptual aliasing, appearances are the primary environmental
feedback since metric data may be unavailable as is the case
in gps-denied areas such as indoors or kidnapped robots or

unreliable as is the case with odometry. The use of appear-
ances is also motivated by human vision (Matlin 2005).

Related work has primarily focused on how to merge the
individual maps of the robots (Lee and Lee 2011). In this
work, the goal is to have each robot expand its map as it
gets knowledge from another robot. Let it be noted that this
problem is different from large-scale mapping (Estrada et al.
2005; Thrun and Montemerlo 2006; Grisetti et al. 2010) or
cooperative mapping (Huang and Beevers 2005; Zhou and
Roumeliotis 2006; Nieto-Granda et al. 2014) where multiple
robots concurrently and continuously contribute their data to
a single map. In the former, a single robot tries to integrate
multiple maps into one large-scale map while in the latter,
multiple robots concurrently and continuously maintain and
contribute to a single shared map. The proposed methods
in map merging vary depending on whether the appearance
data is augmented with metric data (metric) or not (purely
appearance-based) and how much is known about robots’
positions.

Metric approaches are categorized depending on whether
they require metric data to be directly available or not. In
direct metric approaches, robots are assumed to know the
initial poses of the other robots (Leung et al. 2011; Aragues
et al. 2012) or that they can identify, rendezvous and com-
municate with each other when in line of sight (Thrun et al.
2000; Williams et al. 2002; Konolige et al. 2003; Ko et al.
2003; Howard 2004; Ozcukur et al. 2009; Gil et al. 2010;
Nieto-Granda et al. 2014). If pose information is not reliable
or unavailable, it is estimated using localization methods.
However, both accuracy and reliability are known to be
problematic in large-scale localization (Park and Roh 2016).
Alternatively, with indirect metric methods, individual maps
are merged via aligning them using a variety of approaches
such as random walks, laser scan integration methods or
genetic algorithms (Carpin et al. 2005; Birk andCarpin 2006;
Amigoni et al. 2006; Adluru et al. 2008; Ma et al. 2008;
Tungadi et al. 2010; Marjovi et al. 2012; Tomono 2013).
However, the merging process has proven to be costly. In
order improve themerging efficiency, different methods such
as pose-graph matching are proposed (Tomono 2013; Carpin
2008; Lee and Lee 2011; Saeedi et al. 2014). However, in
these methods, usually it is required that the initial positions
of the robots are close to each other in order to merge the
maps reliably.

Purely appearance-based approaches on the other hand
assume that the robots have no explicit position/odometry
information. The lack of position data may be due to unreli-
able (dead reckoning) or unavailable (i.e. being kidnapped,
GPS-less environments) position data as well as problematic
localization. Here, maps are merged by finding correspon-
dences among different nodes in the two maps. Nodes are
considered one-by-one and matched against those of the
other—possibly using their connectedness relations.Thepro-
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posed approaches vary in how appearances are represented
andmatched with representation schemes varying from local
features (Ho and Newman 2005; Huang and Beevers 2005;
Ferreira et al. 2008; Marjovi et al. 2012) to global features
(Erinc and Carpin 2014). In all, as the number of appearances
increases, scalability becomes problematic. Furthermore, a
more conceptual definition of a ‘place’ as a visually or
physically coherent spatial unit is preferable—as this would
facilitate the matching process (Park and Roh 2016).

In this paper,we introduce a novel approach to themerging
of place knowledge. The merging efficiency of the pro-
posed approach is comparably much better than the previous
approaches due to three reasons. First, sincemerging is based
on the determining the overlap of the hyperspheres in the
appearance space starting with the top of the hierarchy, the
knowledge is merged in as large chunks as possible. Thus, it
is very different from most merging approaches where pairs
of places need to be processed one-by-one. Second, with our
definition of a ‘place’, as the number of places is considerably
less than the number of associated appearances, the required
comparison in the merging of the chunks is much more effi-
cient. Finally, as merging is based only on the appearances
associated with places, unlike the merging of maps, spatial
relations among different places or robots’ poses need not to
be considered. Hence, the proposedmethod can be used prior
to map merging. The core of this approach has been previ-
ously presented in Karaoguz and Bozma (2016b). Here we
extend thiswork in two aspects: first, we present the details of
the algorithms for merging place memories and topological
maps. Second, we also present a more comprehensive evalu-
ation of the approach using benchmark indoors and outdoor
visual data and also include a study of performance as com-
pared to that of direct experience.

3 Long-term placememory

Each robot is assumed to retain its appearance-based place
knowledge in its long-term place memory. Let P denote the
known places. This knowledge may have been accumulated
either through direct experience 1 or through previous rounds
of learning from other robots. The accumulation of knowl-
edge in the long-term place memory has been presented
previously in Erkent et al. (2017). Two of its features are inte-
gral to themerging of appearance-based place knowledge.As
such, long-term visual place memory can be viewed as com-
plementing map memory (commonly referred to as metric
or topological map) that encodes the spatial relations among
different places.

1 For this, we use the topological spatial cognition model as presented
in Karaoguz and Bozma (2016a). In the TSC model, the robot detects,
recognizes or learns places based on appearances in a manner that is
completely autonomous and incremental as the robot operates.

(a)

(b)

Fig. 2 Place memory T X of a robot jX

3.1 Places and hierarchical organization

The first feature is related to what is meant by a place. In
this memory, each place p ∈ P refers to a specific area
or region. As such it differs from most related work that
considers each place to be a specific location. It is defined
by a collection of appearances from a multitude of base
points x j (p) (varying in position and heading) as indexed by
j ∈ X (p). If the odometric information is not available or
is unreliable, the coordinates of the base point x j (p) are not
known explicitly—as is assumed here. Sample appearances
from sample places are shown in Fig. 2a. The robot inter-
nally encodes each appearance by a d-dimensional descriptor{
I (x j )

}
j∈X (p). Let C denote the resulting set of descriptors.

C =
⋃

p∈P

{
I (x j (p)) | j ∈ X (p)

}

The descriptors can be based on a suitable representation
scheme. The only restriction is that similar appearances
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generate similar descriptors.2 Here, we use the previously
proposed bubble space representation (Erkent and Bozma
2013). Bubble descriptors3 are rotationally invariant descrip-
tors that simultaneously encode a set of visual features and
their relative S2 geometry from an egocentric perspective.
We prefer to use this representation due to its demonstrated
advantages such as incorporating any number of observa-
tions while allowing incremental computation. However, it
should be emphasized that the developed system is in no way
dependent on this particular choice and thus can be used with
any suitable descriptors—as preferred.As the robot navigates
through a sequence of base points xk , k ∈ K with K being
the index set, place detection—namely determining where a
place starts and ends—can be done either by external guid-
ance or autonomously. We consider the latter case and use a
method4 as presented in Karaoguz and Bozma (2014) based
on the iterative clustering of the index set K—considering
the informativeness, coherency and plenitude of the incom-
ing sequence of appearances as determined by processing the
associated descriptors. Consequently, the index set K is par-
titioned so that appearances belonging to each distinct place
are grouped together as D ⊂ K—referred to as a detected
place. The detected place is then associated with the descrip-
tor ĪD = 1

|D|
∑

k∈D I (xk) based on the collected appearances
from |D| locations.

The second feature pertains to how knowledge is orga-
nized. In particular, the place memory has a tree organization
T as shown in Fig. 2b. The hierarchy is defined by a nested
sequence of partitions of the learned places P . The outer
partition corresponds to the root node and represents all the
learned places P . Inner partitions define a set of inner nodes
where each node N corresponds to a cluster P(N ) ⊂ P of
placeswhile a terminal node corresponds to a distinct place—
namelyP(N ) = {p}where p ∈ P . The partitions are defined
based on the similarity of collected appearances C. The root
node is associated with the whole set while each other node
N is associated with the set C(N ) ⊂ C of descriptors:

C(N ) =
⋃

p∈P(N )

{
I (x j (p)) | j ∈ X (p)

}

The hierarchy is built considering the similarity of appear-
ances associated with the nodes—starting with the terminal
nodes. The similarity of a node N to another N ′ is measured
by the proximity γ̃ of their centroids:

γ̃ (N , N ′) = ∥∥c(N ) − c(N ′)
∥∥2 (1)

2 Interested readers are referred to Kostavelis and Gasteratos (2015)
and Lowry et al. (2016) for alternative representation schemes.
3 For details, interested readers are referred to Erkent and Bozma
(2013).
4 Interested readers are kindly referred to Karaoguz and Bozma (2014)
for details.

where c(N ) is the centroid descriptor defined as:

c(N ) = 1

‖P(N )‖
∑

p∈P(N )

Ī p

The interested readers are kindly referred to Erkent et al.
(2017) for further details.

Whenever a place D is detected, the robot then attempts
to recognize it as one of the learned places p ∈ P via relat-
ing the collected appearances to its place memory. Memory
association is done via traversing down the hierarchy starting
at the root node and comparing the appearances associated
with a newly detected place D with the knowledge in the
respective nodes. The decision-making at each node N is
based on finding the child node having the minimum cost
function gN (D). The cost function is a heuristically defined
discriminant function that measures how likely the detected
place D is to be associated with the N 1(D) ∈ N↓ of children
nodes N that is most similar to D in the hierarchy:

gN (D) = γ̃ (D, N 1(D)) + (1 − ξ(D, N 1(D)))

+ γ̃ (D, N 1(D))

γ̃ (D, N 2(D))
(2)

The first term measures the similarity of a place D to the
offspring node of N 1(D) where

N 1(D) ∈ arg minN ′∈N↓ γ̃ (D, N ′) (3)

A higher value γ̃ (D, N ) indicates the detected place D to
be less similar to the places associated with node N . The
second term also measures the similarity of detected place
D to the offspring node N 1(D), but now considering the
overlap of the corresponding hyperspheres. This is based on
the function ξ that measures the overlap amount as defined
in “Appendix B”. The third term indicates the reliability of
comparing with N 1(D) by considering N 2(D)—namely the
offspring node of N that is second most similar to D as:

N 2(D) ∈ arg minN ′∈N↓−N1(D) γ̃ (D, N ′) (4)

If the detected place D is found to be appearance-wise sim-
ilar to both of the places N 1(D) and N 2(D), then this term
increases. The minimum cost value is checked against an
association threshold τr that is manually set:

gN (D) ≤ τr (5)

In the case this condition is satisfied and N 1(D) is a terminal
node, then the detected place D is merged with N 1(D), oth-
erwise the traversal goes to the next level. This is repeated
until a terminal node is reached. If the case is not satisfied,
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the robot invokes place learning in order to add the detected
place D into its place memory.

3.2 Placememory versus map-based approaches

The concept of ‘place memory’ may be better conceived
after a qualitative comparison with an map-based approach
such as FAB-MAP (Cummins and Newman 2011). While
both models use only appearance-data and thus appear to
be related, in fact they are of quite different nature as sum-
marized in Table 1. The starting point for this discrepancy
is the difference in the respective definitions of ‘place’. In
our definition of place memory, each place is defined by a
collection of appearances having common perceptual signa-
tures. This is in contrast tomap-based approacheswhere each
different location is treated as a different place. For exam-
ple, in one of the experiments as discussed in Sect. 5, while
the first robot has collected appearances from 997 locations,
it has learned them as 8 places. In parallel, while the sec-
ond robot has collected visual data from 3200 locations, it
has retained this knowledge as 13 places. Places are deter-
mined using a place detection algorithm5 (Chella et al. 2007;
Karaoguz and Bozma 2014). Furthermore, the knowledge
of learned places is organized in a tree hierarchy. Such an
organization should not be confusedwith that used for obtain-
ing the visual vocabulary in map-based methods. Note that
while there have been hierarchical map-based approaches, as
the hierarchy is in metric space, it is used to proceed from
coarse to fine localization (Galindo et al. 2005; Beeson et al.
2010; Park and Roh 2016; Garcia-Fidalgo and Ortiz 2017).
In contrast, in place memory, since the hierarchical organi-
zation is defined in the appearance space, it enables the robot
to efficiently retrieve and store its place knowledge. Thus,
place memory can enable semantic association—which is
not the case in map-based approaches. With place associ-
ation or recognition, the robot determines its whereabouts
coarsely. In contrast, with map-based approaches, the aim is
loop-closure with fine localization. Such a reasoning is pos-
sible even if the robot does not have any metric information
or knowledge of their spatial relations—as may be the case
when it is starting a mission, has unreliable odometry or is
kidnapped.

4 Merging placememories

Consider a robot m that has learned Pm places as retained
in its place memory Tm . A sample place memory Tm is
as shown in Fig. 3a. It is observed that robot’s knowledge
of 6 places is organized in a 4-level hierarchy. Suppose it

5 It should be noted that in general detecting a place does not imply its
recognition—with few notable exceptions such as Ranganathan (2010).

Table 1 Comparison of place knowledge: place memory versus map-
based

Place knowledge

Place
memory

Map-based

Place p Mp
appearances

Single appearance

Number of places |P| ∑|P|
p=1 Mp

Place detection Automated –

Hierarchy Knowledge
organiza-
tion in
appearance
space

Visual vocabulary

Spatial relations Not required Required

Enable semantic association ✓ ✗

Recall (localization) Recognition
(coarse)

Loop-closure (fine)

(a) (b)

Fig. 3 Place memories of robotsm and n, respectively. Robotm knows
6 places while robot n knows 3 places. Note that an identical index
across both memories will not necessarily refer to the same place

has communicated with robot n with a place memory T n .
Suppose T n is as shown in Fig. 3b. This memory contains
3 places as organized in a 3-level hierarchy. Note that an
identical index across both memories does not necessarily
refer to the same place. The goal of merging is to incorporate
T n into Tm as:

Tm(km + 1) ← Tm(km) ⊕ T n(km)

where km denotes the update index of robotm and⊕ denotes
themerging operator. In the sequel,wewill omit update index
km for notational simplification. There are three requirements
for the merging of robot m’s own place memory Tm with
place memory T n of another robot n.

– First, it should incorporate all the places known by the
other robot, but not known by itself Pn − Pm . As such,
the robot learns new places without duplication.
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– If possible, it should incorporate the knowledge of places
that are also known by the other robotPm ⋂Pn . As such,
the robot augments its knowledge of such places.

– Finally, the resulting placememory Tm(km+1) should be
comparably similar to the placememory that is generated
by visiting all the places individually Pm ∪Pn since the
revisited places should be merged into one in both cases.
The advantage of the merged memory Tm(km +1) is that
the whole area is covered faster in a distributed fashion
and the resulting place hierarchy will be almost the same.

Algorithm 1 Merging place memories Tm and T n .
Tm , T n , N , N ′
if S(cm , ρm) ∩ S(cn, ρn) = ∅ then

create_parent(Tm , T n)

Tm(km + 1) = T n(kn + 1)
else if N and N ′ are hyperterminals of Tm and T n then

if N and N ′ do not intersect then
add_child(Tm(N ),T n(N ′))

end if
if N does not have terminal nodes as children then

add_sibling(Tm(N ),T n(N ′))
else

∀P ′ ∈ T n(N ′)
if gN∗ (P ′) ≤ τr then

Update N∗1
else

add_sibling(Tm(N∗),T n(P ′))
end if

end if
Tm(km + 1) = T n(kn + 1)

end if

Our proposed approach is based on the observation that
the nested sequence of partitions that define the tree structure
corresponds to a nested sequence of hyperspheres in the d-
dimensional appearance space. Thus, each node N in the
hierarchy Tm is associatedwith a d-dimensional hypersphere
S(cm(N ), ρm(N )) ⊂ Rd with centroid cm(N ) and radius
ρm(N ):

cm(N ) = 1

|Pm(N )|
∑

p∈Pm (N )

Ī p

ρ2
m(N ) = 1

|Pm(N )|2
∑

p∈Pm (N )

∥∥ Ī p − cm(N )
∥∥2

Here, recall thatPm(N ) ⊆ Pm is the set of places associated
with the subtree of Tm having node N as its root. The radius
ρm(N ) is defined as the average squared Euclidean distance
of the associated children nodes from the centroid of N , it
serves to measure the size of the respective hypersphere. If
N is the root node, then the hypersphere S(cm(N ), ρm(N ))

is a covering in the d-dimensional appearance space for the
whole place memory Tm . Let this hypersphere be denoted

by S(cm, ρm) for simplicity of notation. Otherwise, it is a
covering for the subtree of Tm having node N as its root.
Any nested hypersphere is related to S(cm, ρm) as:

S(cm(N ), ρm(N )) ⊆ S(cm, ρm)

Themerging of placememories is then based on the extent
and nature of overlap of the respective nested sequence of
hyperspheres in the appearance space. This is because any
overlap indicates overlap of respective knowledge. For this,
we use a modified version of ‘RACHET’ algorithm (Sama-
tova et al. 2002). This is a distributed hierarchical clustering
algorithm that is known to satisfy all the three require-
ments. The original algorithm is summarized in “Appendix
C”. It starts from the root nodes in the two hierarchies Tm
and Tn and proceeds to the children nodes N ∈ Tm and
N ′ ∈ Tn as necessary. The subtrees corresponding to the
non-overlapping hyperspheres are simply added together
while subtrees corresponding to overlapping hyperspheres
are combined depending on the extent of their overlap. As
such, while new knowledge is learned, duplication of knowl-
edge is minimized. In the latter case, the robot needs to
determine the overlap among the two place memories. There
may be a multitude of overlap regions depending on the
overlap of the robots’ knowledge. We have modified this
algorithm as given in Algorithm 1. First, instead of compar-
ing all inner nodes, we start by comparing the hyperterminals
in order to couple them formerging.A hyperterminal is either
an inner node that has terminal nodes as children or the union
of all children nodes of an inner node that are terminal nodes
themselves. For example, there are three hyperterminals in
the place memory in Tm of robotm while T n has two hyper-
terminals. While merging Tm into T n , each hyperterminal
N ′ ∈ T n , is paired with a hyperterminal node N∗ ∈ Tm

where their hyperspheres overlap maximally—namely

N∗ ∈ arg max
N∈Tm

∣∣S(cm(N ), ρm(N )) ∩ S(cn(N
′), ρn(N ′))

∣∣

(6)

The amount of overlap is computed as explained in “Appendix
B”.As this is not done for each terminal node separately, there
is an increased computational efficiency. Second, in contrast
to making the merge decision of two nodes based only on
the percentage of the hypersphere overlap, the robots also
consider associating the terminal nodes of the maximally
overlapping hyperterminals as explained in Sect. 3. Each
computation is actually very simple—it involves associat-
ing the terminal nodes N∗T with the terminal nodes N

′T by
evaluating the cost function gN∗(N

′T ) as given in Eq. 2 with
N = N∗T and D = N ′T . In case of association, the place
knowledge is updated. Otherwise, it is learned as a new place
via adding it as a terminal node of N∗. As such, while redun-
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(a) (b)

(d)(c)

Fig. 4 Merging of place memories

dancy is minimized, the hierarchy of the place memory is
preserved as much as possible. Note that as such, each robot
is able to handle multiple mergings over time. Namely, if
a robot merges another robot’s place memory with its own,
and then later does the same thing after covering more terri-
tory, the organization of the place memory will change only
depending on the new place knowledge—as places learned
previously will be recognized—pending on the similarity of
their appearances to past experiences.

4.1 Non-overlapping hyperspheres

First, we consider the case in which there is no knowledge
common to both of the robots. This occurs when the places
Pm known by the robot m are appearance-wise completely
different from those Pn of the other robot. Of course, the
robots do not know this when they exchange their place
memories. This manifests itself with the two corresponding
hyperspheres not intersecting at all as shown in Fig. 4a:

S(cm, ρm) ∩ S(cn, ρn) = ∅

This can be checked as follows:

‖cm − cn‖2 > (ρm + ρn)
2 (7)

Themerged place memory is simply the union of two respec-
tive memories as shown in Fig. 4c. From the perspective
of the individual robots, the resulting place memories are
identical—namely

Tm(km + 1) = T n(kn + 1)

Thus, in case of no overlap, the memory hierarchies are pre-
served.

4.2 Intersecting hyperspheres

Alternatively, we also consider the case in which some of
the place knowledge is common to both of the robots. For
example, some parts of the knowledge may be overlapping
while some are completely different. In this case, the two
hyperspheres partially or fully overlap with each other as
shown in Fig. 4b:

S(cm, ρm) − S(cn, ρn) �= ∅
S(cn, ρn) − S(cm, ρm) �= ∅

This can be checked as:

‖cm − cn‖2 ≤ (ρm + ρn)
2

The amount of commonality can vary from the perspective of
each robot as well. A special case is when one of the robots
already knows all the places known by the other robot. This
results in one hypersphere being completely containedwithin
the other. It has a simpler check as:

‖cm − cn‖2 ≤ (ρm − ρn)
2 (8)

The restructuring of the individual hierarchies depends on the
overlap of the respective knowledge. However, the RACHET
algorithm enables a restructuring that is minimal whenever
possible.

Note that the learning order does not change the descrip-
tive statistics of the resulting hyperspheres (Samatova et al.
2002). However, this does not necessarily hold for the result-
ing hierarchies—namely Tm �= T n in general. To see this,
consider Tm ← Tm ⊕ T n and T n ← T n ⊕ Tm . Note that
Tm = T n iff

(i) S(cm, ρm) = S(cn, ρn)
(ii) ∀N ∈ Tm, ∃N ′ ∈ T n s.t.S(cm(N ), ρm(N ))

= S(cn(N ′), ρn(N ′))
(iii) ∀N ′ ∈ T n, ∃N ∈ Tm s.t.S(cn(N ′), ρn(N ′))

= S(cm(N ), ρm(N ))

Even if condition (i) holds, in general, this will not be the case
for conditions (ii) and (iii). Thus, the resulting place memory
of robotm after the knowledge transfer from robot n to robot
m will not be the same as the place memory of robot n after
the knowledge transfer from robotm to robot n. Surprisingly,
this implies the organization of prior knowledge is integral
to the shaping of incoming new knowledge.
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4.3 Merging efficiency

The computational efficiency of the proposed merging pro-
cess is due to two factors. First, as the merging is done
considering the overlap of the nested hyperspheres in the
appearance space, its merging complexity depends on the
overlap and the structure of the respective place memories.
Both are designated by the statistics of the associated hyper-
spheres, the number of hyperterminals h and the number of
terminal nodes belonging to the hyperterminals as denoted
by |N∗| and

∣∣N ′∣∣, respectively. If there is no knowledge
overlap, the merging complexity is constant O(1). In case
of overlap, the merging complexity of a pair of hyperter-
minals will be O(h2 + h |N∗| ∣∣N ′∣∣). This is comparably
much smaller than comparing appearances with complexity
O(

∑|Pm |
p=1 Mp

∑|Pn |
q=1 Mq) or comparing places simply with

complexity O(|Pm | |Pn|)—since both h and |N∗|,∣∣N ′∣∣ will
be in general much smaller that |Pm | and |Pn| respectively.
Second, the definition of a place enables efficiency—since
the number of places known by each of the robot is consider-
ably smaller than the number of appearances. For example,
in one set of experiments, while the first robot has collected
appearances from altogether 997 locations, it has learned
them as 8 places. In parallel, while the second robot has
collected visual data from 3200 locations, it has retained this
knowledge as 13 places. Note that with typical map-based
approaches, merging would require matching appearances
from 997 locations with those from 3200 base points—if
each location is viewed as a distinct place. On the other hand,
with our definition of place, merging requires the matching
of 8 places of the first robot with the 13 places of the second
robot.

Moreover, our approach is not communication intensive,
as such, the information exchangewill only occur on-demand
or periodic intervals. As a result, the communication band-
width will not be allocated for long periods.

4.4 Merging (topological) maps

The merging of place memories also enables the robots to
merge their respective topological maps more efficiently. Let
topological maps of robots m and n be denoted respectively
by the graphs Gm = (Pm,Em) and Gn = (Pn,En) where
Em and En denote the edges existing among the nodes Pm

andPn . Note that these correspond to simple adjacency rela-
tions.6 The merged topological map Gm(km + 1) is required
to satisfy the following:

– First, it should incorporate places known by either while
not duplicating common places.

6 They may be amended with other data such as relative odometry. In
this case, the resulting maps will be topometric.

– Second, it should incorporate the spatial relations known
to either.

The merging of topological maps is simplified by the merg-
ing of the place memories. If the robot can associate a place
P ′ ∈ Pn known by the other robot to its place memory
Tm(km), no node addition is done. Memory association is
done as described in Sect. 3. Otherwise, a new node is added
to Gm(km + 1). The associated edges are checked to deter-
mined if they exist inEm(km) and are added if necessary. The
merging process is summarized in Algorithm 2.

Algorithm 2Merging topological maps Gm and Gn .
Map memories Gm and Gn

if S(cm , ρm) ∩ S(cn, ρn) = ∅ then
Gm = Gm ∪ Gn

else
if ∀P ′ ∈ T n(N ′) ∃P ∈ Tm(N∗) gN∗ (P ′) ≤ τr then

P = P ∪ P ′ � Merge corresponding nodes
end if
Gm = Gm ∪ Gn

end if

5 Experiments

We have conducted extensive experiments using a team of
three robots—referred to as jX, jY and jZ respectively. At
the beginning of experiments, each robot has its individ-
ual long-term place memory. The robots have learned places
from direct experience either by using the images collected
while navigating in the campus in a tele-operated manner or
from the COLD data set (Pronobis and Caputo 2009). All
the appearance data have been obtained using perspective
cameras, but with possibly different intrinsic and extrinsic
parameters. Furthermore, as their fields of view are limited,
the appearances at any location may be completely differ-
ent depending on the robot’s heading. Each robot encodes
each incoming appearance with a d = 600-dimensional bub-
ble descriptor. Learning through direct experience is based
on the previously introduced topological spatial cognition
(TSC) model (Karaoguz and Bozma 2016a). For ease of
visualization, places learned by each robot are identified
uniquely as jX:i, jX:k and jZ:l where i, k, l are their indices.
We consider the results of merging with varying cases of
place knowledge overlap and also evaluate recognition per-
formance with the resulting merged place memories as well
as a comparative study with direct learning of places from
experience.
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Fig. 5 Learned places non-overlapping

(a) (b)

(c)

(d)

Fig. 6 Learned places mostly overlapping
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(a)

(b) (c) (d)

(e) (f) (g)

Fig. 7 Learned places are partially overlapping

5.1 Learned places non-overlapping

This iswhen two robots navigate in areaswith almost noover-
lap. Here, the expected result is to have both place memories
merged from the top node since none of the hyperspheres
should be overlapping with each other. In the experiment,
robots jX and jZ visit two different sites with no overlaps. Of
course, the robots do not know this.

Robot jX knows 13 places based on data collected from
3200 base points along a 175 m path as shown in Fig. 2a.
Note that since it returns to where it is started at the end of
the tour, the last detected place is recognized as 5th place
which is correct. The hypersphere associated with T X has
radius ρX = 0.478. Robot jZ has visited the Saarbrucken
(Sa) site from theCOLDdata set and knows 8 places based on
appearances collected at 997 base points in a 50 m tour. The
associated hypersphere has radius ρZ = 0.607. The squared
Euclidean distance between the two respective hyperspheres
‖cX − cZ‖2 = 1.6118 is larger than the squared sum of radii
(ρX ⊕ ρZ )2 = 1.1772 which satisfies the condition for non-
overlapping hyperspheres. The memories T X ← T X ⊕ T Z

and T Z ← T Z ⊕ T X resulting from their merging are iden-
tical and are as given in Fig. 5b. It is observed that the places
of both sites are separated from the top root node. The left

Table 2 Descriptive statistics of hyperspheres SX , SY and SZ

Robot jX jY jZ Robot ρ

(a) Pairwise distances (b) Radii

jX 0 0.367 0.22 jX 0.244

jY 0.367 0 0.218 jY 0.307

jZ 0.22 0.218 0 jZ 0.415

subtree corresponds to the placememory of the robot jX prior
to merging while the right subtree corresponds to that of the
second robot again prior to merging.

5.2 Learned places mostly overlapping

Next, we consider when the learned places are overlapping,
but one of the robots covers a larger area. Again, the first
robot jX has the same place knowledge from the previ-
ous case with 13 places based on appearances from 3200
locations along a 175 m path as shown in Fig. 2a. The sec-
ond robot jY navigates along a longer path similar to robot
jX. Its place memory T Y contains 15 places with radius
ρY = 0.8445 based on appearances from 2550 locations.
Note that due to variation of appearances based on head-
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Fig. 8 Merged place memories–learned places partially overlapping

ing, robot jX and jY detect different number of places. From
the perspective of robot jY, the resulting place memory is
as shown in Fig. 6. Here, blue nodes represent the places
learned by jX while green nodes represent that of jY. Orange
nodes indicate the merged place knowledge. For analysis,
the actual correspondences between the learned places of
robot jX and jY are given in Fig. 6c. The squared Euclidean
distance |cX − cY ‖2 = 0.2150 between the respective hyper-
spheres is smaller than ρY . This shows that the placememory
of the jY fully covers that of jX. Note that while most of
the appearance-wise corresponding places are actually at
the same geometric locations, there are also few exceptions.
For example, while places jX:3 and jX:4 appear similar to
jY:3 and jY:4, they are actually from different physical loca-
tions. On the other hand, places jY:10, jY:11, jY:12, jY:13
and jY:14 that are visited only by robot jY do not have
any appearance-wise correspondence in P X . As such, we
expect the merged memories to contain about 15 places.
With association threshold τr = 2, themerged placememory
T Y ← T Y ⊕ T X of robot jY is as shown in Fig. 6d. It con-
tains 18 places. Note that this is the same for robot jX since its
place memory is updated as T X ← T Y ⊕ T X . It is observed
that six of these places are correctly merged. Some of them
are merged with nearby places whose appearances are very
similar. As such, these mergings are also acceptable. Exam-
ples include jX:7 and jX:9. The robot wrongly adds places
jX:1, jX:2 and jX:3 as newplaces. This is attributed to the fact

that with limited field of views, appearances change drasti-
cally as the traversal heading changes. Perceptual aliasing is
also an issue. For example, the robot finds places jX:12 and
jX:13 to be the same as jY:4 and jY:2. This is expected since
all of these places are views of the garden area with similar
vegetation and trees.

5.3 Learned places partially overlapping

We also consider the case when robots visit places that are
partially overlapping. This experiment is conducted with a
team of three robots—jX, jY and jZ in outdoors settings.
Robots start at different parts of the campus and converge to
a final destination at the end of their respective tours as shown
in Fig. 7a. Robot jX knows of 5 places based on appearances
from 1050 locations on a path of 150 m. The resulting place
memory T X is as shown in Fig. 7b. It is seen that jX has a
memory structure composed of 2 levels. The places 2 and
3 are in one level while places 1,4 and 5 are on the other.
Robot jY knows of 7 places based on appearances collected
from 370 locations along a path of 80 m. Its place mem-
ory has structure T Y as shown in Fig. 7c consists of two
levels, where place 5 is at the first level and the remaining
places are the second level. Here place 5 serves as a transition
region between the street and the campus entrance. Thus, it
is placed further away from the other places. The remaining
places are on the same level probably due to similarity of
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their appearances. Finally, robot jZ knows of 8 places based
on appearances from 710 locations along a path of 130 m. Its
place memory has structure T Z as shown in Fig. 7d. T Z has
a more complex structure with 3 levels. This can attributed
to the fact that environmental changes along the robot jZ’s
path are more than those of robots jX and jY. Note that while
the number of places known to all sum up to 20, there are
actually 13 distinct places—since some of these places are
the same. These overlaps are shown in Fig. 7e–g based on
manual inspection. It is observed that appearances associated
with places jX:4, jY:7 and jZ:7 are very similar. They also
geometrically correspond to the same area. This is also the
case for jX:5 and jZ:8. On the other hand, while some places
are geometrically nearby, their appearances are different as
the respective robots move through them in opposite direc-
tions. For example, places jY:6 and jZ:7 are in this category.
Similarly, this holds for jX:5 and jZ:6 as well as jZ:4, jX:2
and jY:4. As such, we expect them to be learned as different
places. Finally, there are also places whose appearances are
similar while they are geometrically distant such as jX:1and
jY:6. Pairwise distances between the centroids of the respec-
tive hyperspheres and their radii are given in Table 2(a) and
(b).

s
The merged place memories vary depending on the order

of merging as seen in Fig. 8. Places that are only learned
by one robot are indicated by corresponding color (blue—
robot jX, green—robot jY and red—robot jZ) while places
shown by orange nodes indicate merged places. For robot jX,
with the merged place memory T X ⊕ T Y ⊕ T Z , the robot
increases its place knowledge from 5 to 15 places. When
the order of learning is changed, the robot expands its place
knowledge from 5 to 14 places. As we expect this number to
be 13, this discrepancy is attributed to two factors. First, there
are missed mergings. For example while we expect jZ:5 to
be merged with jX:2 or jX:3, this is not the case. Similarly,
we expect jY:7 to be merged with jX:4, they are learned as
different places. Second, there are also wrong mergings. For
example, while places jX:1 and jZ:6 are appearance-wise not
similar, they are wrongly merged. Closer inspection reveals
that wrong mergings tend to occur across places that while
appearance-wise different nevertheless contain similar dom-
inant entities such as sky, building and walkway. In case of
robot jY, its merged memory T Y ⊕ T X ⊕ T Z contains 13
places that are arranged in three levels. This is as expected.
Manual inspection indicates that some places are wrongly
found to be same. When the learning order is reversed to
T Y ⊕ T Z ⊕ T X , again the robot increases its knowledge of
places from 7 to 13 with the knowledge organized in three
levels. As the robot correctly merges five of the seven places,
merging performance is considerably much better. This case
shows the effect of the merging order. The knowledge that
is acquired first considerably affects the hypersphere config- Ta
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Fig. 9 Merged topological maps

urations and as a result affects the further mergings. Finally
for the robot jZ, its merged place memory T Z ⊕ T X ⊕ T Y

contains 13 places—again arranged in 3 levels. As such, its
knowledge of places expands from 8 to 13. It finds the knowl-
edge associated with 7 places as overlapping with its own.
Two of these are correct while the remaining are incorrectly
merged. For example,while places jZ:4 and jX:2 are correctly
found to be overlapping, this is not the case for places jZ:6 and
jX:1 or jX:5.With the reversedmerging order T Z⊕T Y ⊕T X ,
the robots expands its knowledge of places from 8 to 11.
Since we expect this number to be 13, some of the places are
wrongly merged. The obtained results show that there are
3 places that are correctly merged while 6 places are incor-
rectly merged. Closer analysis indicates that wrongmergings
are due to perceptual aliasing (Table 3).

The robots use their place memories to merge the topo-
logical maps. For example, for robot jX, the resulting maps
are given in Fig. 9. The number of nodes in each merged map
is equal to the number of places in the place memory. Again,
places that are known by only one robot are indicated by
corresponding color (blue—robot jX, green—robot jY and
red—robot jZ) while places shown by orange nodes indicate
places that were known by at least two of the robots. As
some mergings are correct while some are not, some edges
are geometrically correct while others are not. For example,
with robot jX, 20 of the 35 spatial relations are geometrically
correct in the merged map memory GX ⊕ GY ⊕ GZ . It is
observed that the robot can successfully navigate from place
j X :4 directly to place j Z :8. On the other hand, as places
j X :1 and j Z :6 are incorrectly viewed as overlapping, the
robot trying to navigate directly from j X : 1 to j Z : 5

will end unsuccessfully. With GX ⊕ GZ ⊕ GY , there are 14
places with the knowledge associated with three places being
revised based onmerged knowledge. As such, 39 spatial rela-
tions are inferred. 20 of these are geometrically correct while
19 are not—due to incorrectly merged places. In summary,
the resulting merged maps are correct with around 50–60%
reliability. This is quite good considering only appearances
are used in the merging process.

Another aspect of ourmerging process is that, if the result-
ing memory is merged with another robot in the future,
mismerged places that belong to same physical location
might be merged during that process assuming that the third
robot also visits the same location. Thus, error recovery to
some extent is possible in furthermergings although this case
did not occur during our experiments. However, when two
places are erroneously merged, it is not recoverable in the
future mergings since we continue the merging process with
available terminal nodes.

5.4 Using themerged knowledge

We have also tested the use of merged knowledge. These
experiments aim to assess how the robots leverage each
other’s experiences to recognize these places as it actually
visits them for the first time. Each of the robots is made to
follow two alternative paths as shown in Fig. 10. The places
along these paths have been learned by either the robot itself
or through merging of knowledge. Let it be noted as these
experiments are done about 2 months after knowledge has
been merged, appearances have changed to some extent due
to seasonal changes. As such, we are able to test the recogni-

123



1022 Autonomous Robots (2020) 44:1009–1027

Fig. 10 Navigating in places that have been learned through merging
of place memories after 2 months

tion performance of themerged placememories—even under
changing environmental conditions.

The first path shown in blue is about 100 m and goes
through two places that have been learned by robot jX in the
previous visit. Robots jY and jZ have learned these places via
knowledge sharing. As the scenes associated with each of the
places are mostly composed of buildings, appearances are
not much affected by seasonal changes. The precision-recall
results with τr = 1.5 for each robot and merged memory
are given in Table 4. It is observed that all the robots can
perfectly recognize these places except robot jY with the
merged memory T Y ⊕ T Z ⊕ T X . In this case, it recognizes
one of the places as a new place. As robot jY has learned
this place through merging, apparently its knowledge is not
sufficient in information content.

The second path shown in red goes through seven places
(containing car park, garden and a concrete trail) that have
been learned by robot jZ. Robots jX and jY have learned
these places through knowledge merging. It is observed that
this path is rather challenging compared to the first path
because of the significant seasonal changes in the appear-
ance of the garden area. Robot jZ has the highest recognition
performance with the merged place memory T Z ⊕T Y ⊕T X

memory. It has 80% recall at 25% precision. Interestingly,
with merging order changed to T Z ⊕T X ⊕T Y , performance
changes to 66% recognition at 33% precision. Interestingly,
for robot jXwhich as learned these places basedon theknowl-
edge of robot jZ, performance is at the same level with again
66% recognition at 33% precision. The merged memories of
Robot jY enable 40% recall at 50%precision.Despite the fact
that there are seasonal changes in the appearances of these

Table 4 Recognition performance of merged place memories with τ =
1.5

Place memory Blue path Red path
R (%) P (%) R (%) P (%)

T X ⊕ T Y ⊕ T Z 100 100 60 33

T X ⊕ T Z ⊕ T Y 100 100 60 33

T Y ⊕ T X ⊕ T Z 100 100 40 50

T Y ⊕ T Z ⊕ T X 50 100 40 50

T Z ⊕ T X ⊕ T Y 100 100 60 33

T Z ⊕ T Y ⊕ T X 100 100 80 25

places, the robots can still recognize them using their merged
place memory with acceptable accuracy—even if they have
been learned through merging of their knowledge with those
of other robots.

5.5 Merging versus direct experience

Finally, the recognition performance of knowledge acquired
by merging is compared with that of learning from direct
experience. The place recognition updates of direct expe-
rience are given in Table 5. The comparison is done with
respect to processing time and recognition performance
(using association threshold τr = 1.5) as given in Table 6.
Interestingly, learning through knowledge merging takes
considerably shorter time as compared to learning fromdirect
experience. It takes about 85 ms in contrast to 450–1145 ms
for learning from direct experience—ignoring time taken to
navigate in the associated places. This is attributed to the
processing of knowledge as awhole or in portions. The recog-
nition performance of robot jX does not seem to be affected
by how knowledge is learned. On the other hand, this does
not seem to be the case for robot jZ. Its performance learn-
ing from direct experience is considerably poorer. This is
probably due to it not recognizing a lot of the places. With
learning from direct experience, the place memory T X of
robot jX contains 8 distinct places while that of robot jZ con-
tains 11 places. For example, robot jX wrongly recognizes
places jY:1 and jY:2 as place jX:3. Furthermore the places
that are confused are different from those that are confused
after knowledge merging. As an example, places jX:3, jY:1
and jY:2 are confused after learning fromdirect experience—
while this is not the case with merging. For T Z ⊕ T Y ⊕ T X ,
places jZ:8, jZ:4 jZ:6 and jZ:7were updatedwhile for jZ after
direct experience learning jZ:2, jY:6 were updated. This is
attributed to the handling the knowledge as a whole or in por-
tions which implies that knowledge structure is preserved to
some extent—in contrast to learning from direct experience
where this does not hold.
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Table 5 Obtained place updates with learning from direct experience

Places jX:3 jX:2 jY:2 Places jZ:2 jY:6

(a) T X Direct experience (b) T Z Direct experience

Updated with jY:1,3,7 jZ:4,5,6,7 jY:4, jZ:1,2,3,8 Updated With jY:2,3,4,7 jX:1,2,4,5 jX:3

Table 6 Comparative
performance: learning from
other robots’ versus learning
based on direct experience

Robot Learning Processing time (ms) Blue path Red path
R (%) P (%) R (%) P (%)

jX T X ⊕ T Y ⊕ T Z 80 100 100 66 33

Direct experience 1145 100 100 80 25

jZ T Z ⊕ T Y ⊕ T X 85 100 100 80 25

Direct experience 450 0 0 66 33

5.6 Summary

Our evaluations show that appearance based knowledge
merging is an efficient way of combining data that is obtained
from multiple robots. Each robot maintains its own knowl-
edge hierarchy and this can be exploited further to discover
semantics of the tree branches in the future developments.
We also observed that the order of merging affects the
merged tree structure and place recognition performance
considerably for both the current and future mergings. The
compactness of appearance data and our non-geometric
approach makes the system very flexible for it to be used
both in smaller scale indoor environments as well as larger
scale outdoor environments. Recognition performance with
themergedmemories is quite good considering that nometric
information is used. The merged place memories also enable
efficient merging of the topological maps.

6 Conclusion

This paper has presented a novel approach to the merging of
appearance-based place knowledge. Robots are assumed to
have compatible visual sensing and to retain their knowledge
in their respective long-term place memories. In each place
memory, the respective knowledge is organized in a tree hier-
archy with terminal nodes corresponding to distinct places
and with each place defined by a collection of appearances.
The merging is based on the observation that the tree hierar-
chy corresponds to a nested sequence of hyperspheres in the
appearance space. It proceeds by considering the extent of
overlap of the respective nested hyperspheres—starting with
the largest covering sphere. Thus, differing from the current
related work, as knowledge is merged in as large chunks as

possible, the merging process scales better as the extent of
knowledge to bemerged increases. Thus, the approach can be
used in large-scale and long-term operations. Furthermore,
the hierarchical structure is preserved as much as possible.
The resulting merged place memories are compact in the
sense that they represent data from thousands of locations
with fewer number of places. Interestingly, we observe that
merging knowledge from other robots can enable more effi-
cient learning with shorter learning times. This is attributed
to the fact that other robot’s knowledge is processed as a
whole or in large portions. In parallel, association perfor-
mance based onmerged learned knowledge enables the robot
to be relatively less lost in comparison to using only its own
gathered knowledge.

For futurework,weplan to study related three aspects. The
first pertains to how to improve the memory association as to
minimize missing mergings and wrongly merged places—as
thiswill improve the reliability of themergedknowledge.The
second aspect will be to use the merged topological maps in
navigation and multirobot tasks. Finally, since merged place
memories differ depending on the order of merging, we plan
to integrate some combinatorial exploration of the best order
to merge them.
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Appendix A: Symbols

The summary of the most commonly used symbols in the
paper, their definitions and the sections where they are
defined are presented in Table 7 for convenience.

Appendix B: Measuring overlap

Consider nodes N in the place memory Tm and N ′ in the
place memory T n . Recall that each node encodes a cluster
of places. The overlap amount of these places is measured
based on the intersecting volume of the two correspond-
ing hyperspheres S(cm(N ), ρm(N )) and S(cn(N ′), ρn(N ′)).
These hyperspheres are as defined in Sect. 4 with centroids
cm(N ) and cn(N ′) and radii ρm(N ) and ρn(N ′) respectively.
The intersecting volume is equal to:

Table 7 List of symbols Symbol Definition Section

P Index set of learned places 3

p Index of a learned place in P 3

x j (p) k’th base point in place p 3

X (p) Indices belonging to place p 3

K Index set of base points 3

D Indices of detected place 3

I (x j ) Descriptor encoding appearance of x j 3

ID Mean descriptor vector of detected place D 3

C The set of all descriptors 3

N A node place memory 3

P(N ) ⊂ P Places associated with node N 3

C(N ) ⊂ C Descriptors associated with node N 3

N↓ Children nodes of N 3

gN Cost function of node N 3

γ (N , N ′) Similarity of nodes N and N ′ 3

N 1(D) Closest child of node N 3

γ̃ (D, N ) Similarity of detected place D to node N 3

N 2(D) Second closest child of node N 3

τr (Max.) Place association threshold 3

Tm Place memory of robot m 4

cm(N ) Node N centroid in place memory m 4

ρm(N ) Radius of N th node of place memory m 4

S(cm(N ), ρm(N )) Hypersphere of N th node of place memory m 4

Gm Topological map of robot m 4.4

Em Edges of topological map Gm 4.4
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∣∣S(cm(N ), ρm(N )) ∩ S(cn(N
′), ρn(N ′))

∣∣ =

3π
(ρl+ρs − d)2(d2+2dρs − 3ρ2

s +2dρl+6ρsρl − 3ρ2
l )

12d

where

ρl = max
{
ρm(N ), ρn(N

′)
}

ρs = min
{
ρm(N ), ρn(N

′)
}

d = γ̃ (N , N ′)

The value d measures the distance between two hyperspheres
as defined by Eq. 1. The overlap percentage is then computed
simply by taking the ratio of intersecting volume to the vol-
ume of the smaller hypersphere as:

ξ(N , N ′) = 3
∣∣S(cm(N ), ρm(N )) ∩ S(cn(N ′), ρn(N ′))

∣∣

4ρ3
n

Note that as ξ(N , N ′) ∈ [0, 1], a higher percentage indicates
a larger overlap. The overlap between a detected place D and
a set of places as represented by node N in the place memory
Tm can also be computed in the same manner. In this case,
the hypersphere S(cD, ρD) associated with a detected place
has centroid cD = ĪD and radius ρD defined as:

ρD = 1

MD

∑

j∈X (D)

∥∥I (x j (D)) − cD
∥∥2 (9)

where X (D) is the index set of the appearances associated
with the detected place.

Appendix C: RACHET algorithm

RACHET algorithm (Samatova et al. 2002) aims to merge
local dendrograms into one global dendrogram. The den-
drograms are assumed to be formed by data points that are
represented by N-dimensional feature vector x ∈ RN The
algorithm aims that the dendrogram formed after the merg-
ing process is as similar as the dendrogram that can be formed
from scratch using the data of both dendrograms. The algo-
rithm is as follows:

– Given a set of local dendrograms di ∈ D, each of those
are represented by amean feature vector ci ∈ RN and the
average distance of data points in di to themean vector ri .
These two parameters define the covering hypersphere of
the local dendrogram.

– In the second step, the closest local dendrogram pairs
are formed using the Euclidean distance between their
centroids.

– In the third step, for each local dendrogram pair, global
dendrogram is formed by checking the amount of overlap
between them and merging accordingly. The details of
this merging process can be found in Samatova et al.
(2002).
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ing from Boğaziçi University in
2015 and 2009 respectively. He
received his B.S. degree in Elec-
trical and Electronics Engineer-
ing from Koç University in 2007.
His research interests include
computer vision, machine learn-
ing and mobile robotics.

123



Autonomous Robots (2020) 44:1009–1027 1027
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