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Abstract
Due to cluster instability, not in the cluster monitoring system. This paper focuses on the missing data imputation processing
for the cluster monitoring application and proposes a new hybrid multiple imputation framework. This new imputation
approach is different from the conventional multiple imputation technologies in the fact that it attempts to impute the missing
data for an arbitrary missing pattern with a model-based and data-driven combination architecture. Essentially, the deep
neural network, as the data model, extracts deep features from the data and deep features are further calculated then by a
regression or data-driven strategies and used to create the estimation of missing data with the arbitrary missing pattern. This
paper gives evidence that if we can train a deep neural network to construct the deep features of the data, imputation based
on deep features is better than that directly on the original data. In the experiments, we compare the proposed method with
other conventional multiple imputation approaches for varying missing data patterns, missing ratios, and different datasets
including real cluster data. The result illustrates that when data encounters larger missing ratio and various missing patterns,
the proposed algorithm has the ability to achieve more accurate and stable imputation performance.

Keywords Missing data · Cluster monitoring · Deep belief networks · Multiple imputation

1 Introduction

Clusters not only making an accurate decision but also
monitoring with partial missing cluster data is the practical
problem. Systems are becoming increasingly complex due
to the large number of services and resources. The cluster
monitoring system is what we use in a systematic way to
process or analyze cluster data at a remote location under
normal circumstances. It is quite necessary for the cluster
system to address many threats that may arise in systems by
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providing a statistic overall summary, especially a detailed
view of computing resources.

Collecting, analyzing and drawing inference from cluster
data are three primary procedures in a cluster monitoring
system [1]. This cluster can be a sensor cluster or computer
cluster. Unfortunately, for any number of reasons such as
single point of failure or network unreliable, it is rarely
possible to reliably collect the intended data for all nodes in
a cluster environment. It means that data values intended by
monitoring design to be observed are in fact missing. The
ubiquity missing data not only means low performance for
monitoring decision but also many traditional data analysis
applications that depend on good access to accurate data
cannot be immediately used in the system [2, 3]. The ability
to manipulate missing data has become a fundamental
requirement for classification, regression, and time series
prediction problems [4]. Therefore, processing missing data
among the original data in order to get an unbiased analysis
result becomes a primary problem in the cluster monitoring
research area.

A simple approach to deal with missing data is to
delete them, and it is called list-wise deletion method [5].
The disadvantage of the method is that it may result in
a significant loss of statistical information and precision
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under a complex multivariate analysis [2]. On the other
hand, to relieve the impact of missing data is to use missing
data imputation technique. The main idea of those methods
for dealing with missing data is using an approach to fill
them in and maintain the original distribution of the data
as approximate as possible, so that standard methods that
have been developed to analyze complete data sets can be
applied [6]. Many imputation methods have been proposed
in statistics, mathematics and other various disciplines. In
general, they can be classified into two classes:

1) Single Imputation (SI): Single imputation approaches,
such as mean/mode substitution, dummy variable
method, and single regression, aim to fill a single
value for missing observation. One of its intrinsic
disadvantages is that it reduces variability, resulting in
biased estimates or the uncertainty associated with the
model used for imputation.

2) Multiple Imputation (MI): Instead of imputing a single
value for each missing data, multiple imputation creates
many completed candidate datasets about the missing
data case, and then combines these candidate datasets
into one estimate for the missing data [7]. Multiple
imputation does not attempt to give an accurate
estimate for the missing data, but rather to represent a
random sample of the missing data which constructs
the valid statistical inferences that properly reflect the
uncertainty due to missing data [3]. Hence, it retains the
advantages of single imputation while allowing the data
analysts to obtain valid assessments of uncertainty.

In the last decades, a large number of multiple imputation
methods have been proposed and some of them will be
discussed in the Section 2. In general, in a data imputation
procedure, some experience and knowledge about the
missing pattern of the original data is required so that we
can choose an available imputation method according to the
type of the missing data pattern. However, in real-world
data analysis applications that face massive volume of data,
at the same time many missing data patterns may exist. In
addition, as the volume of data rapidly growing, the effects
of these traditional methods reduce.

In this paper, we focus on resolving the partial data
missing problem in data preprocessing part of a cluster mon-
itoring system, with arbitrary missing data patterns. The
deep neural network shows the capability for modelling
complex structures and dependencies in the data. Imputa-
tion of the missing data on features extracted from data
by deep neural network may be better than the traditional
methods which directly analyze on original data. This adan-
tage motivates us to combine the deep neural networks into
multiple imputation framework. Firstly, we investigate a
model-based multiple imputation algorithm for monotone

missing data pattern by using deep neural networks to gen-
erate multiple estimations of the missing data. We show
that the deep neural network has the ability to accurately
model missing data. In addition, we extend the ability of
this method to deal with the various missing data pattern by
constructing a new data-driven imputation model to build
filling candidates that will be fused with a top k nearest
neighbors’ weighted matrix and output the final fill values
of that missing data. Finally, we construct a hybrid MI sys-
tem (HMI) with the proposed two methods for overcoming
missing data imputation problem with huge data volume,
large missing ratio and arbitrary missing data pattern. Our
experimental results prove that if we can train a deep neural
network to construct the deep features of data, imputation
based on deep features is better than that directly on original
data. We construct a new Hadoop cluster monitoring system
by applying HMI to recover the missing node data before
they are input into the traditional decision module. This new
system has shown the ability to handle partial data missing
problems and restore the node data.

The rest of this paper is organized as follows. Section 2
presents the related work on missing data imputation.
Section 3 illustrates the background of multiple imputation
and deep learning, followed by the proposed method
in Section 4. Section 5 provides the experiments and
discussions, and finally, Section 6 concludes the paper and
introduces future work.

2 Related work

One of the classic missing data processing methods in the
monitoring system is the missing data imputation. As an
example, Zhang and Liu [8] applied least squares support
vector machines (LS-SVMs) to predict missing traffic flow
in an intelligent transportation monitoring systems. Suh
et al. [9] proposed to use imputation technology into remote
congestive heart failure monitoring system for predicting
the missing sensor data.

The missing data imputation technology recovers incom-
plete data by generating an estimation of missing data to
create a ”completed” data set, which will be further fed
into the following learning and analysis applications. In last
few decades, a number of methods were developed for the
imputation of missing data. Some of them were reviewed by
Allison and Paul [10].

According to the number of imputed values, imputation
methods can be divided into two categories: single imputation
and multiple imputation, as described above. Also, consid-
ering the model constructing approaches used for imput-
ing data, these technologies mostly can be classified into
statistical-based and model-based.
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Hot deck is a widely used statistical-based method.
Srebotnjak et al. [11] demonstrated that the hot-deck
imputation method can get better inform decision makers on
the types and extents of water quality problems in the context of
limited globally comparable water quality monitoring data.
Turrado C.C et al. presented the missing data imputation
method based on multivariate adaptive regression splines for
handling missing data in electrical data loggers and showed
that the proposed method outperformed the multivariate
imputation by chained equations [12].

Imputation methods based on model strategy learn the
predictive models from the available information in the data
sets, and these models are then used to estimate absent
values. Approaches such as multi-layer perception (MLP),
k-nearest neighbors (KNN), self-organi-zing maps (SOM)
and decision tree (DT) construction algorithms were com-
monly used for learning models [5, 13, 14]. Recently, the
deep neural networks were also applied for modeling miss-
ing data. Duan et al. [15] proposed an approach based on
deep learning networks to impute the missing traffic data. The
deep learning network approach discovers the correlations
contained in the data structure by a layer-wise pre-training
and improves the imputation accuracy by conducting a fine-
tuning afterwards. Che et al. [16] proposed to capture the
long-term temporal dependencies of time series observa-
tions as well as utilizes the missing patterns for improving
the prediction results by incorporating masking and time
interval into a deep model architecture. The difference with
our model is that above methods predict the missing data
directly by a deep neural network.

Recently, many researchers have done a lot of studies in
missing data imputation. Thirukumaran and Sumathi [17]
utilized well-known classifiers, such as LSVM, RIPPER,
C4.5, SVMR, SVMP and KNN to improve the imputation
accuracy, and finally found that the mean method by step
digression imputation method is better among all other
methods. A fuzzy-neighborhood density-based clustering
technique was used in literature [18] to group the similar
patterns and find the best donors for each incomplete target
pattern in the imputation system. Azim S and Aggarwal
[19] implemented a 2-stage hybrid model for filling in the
missing values, which used fuzzy c means and multi layer
perceptron.

In 2017, based on the random forest algorithm(RF), Tang
and Ishwaran [7] revealed RF imputation to be generally
more robust performance with increasing correlation.
Nikfalazar et al. [2] and Soni and Sharma [20] both
made some improvement on the imputation data with
fuzzy clustering. In addition, Myneni et al. [21] presented
a framework for correlated cluster-based imputation to
improve the quality of data for data mining applications.
Another work in literature [22] handled the missing data

by using dynamic bayesian network and support vector
regression algorithm is used for predicting the filling values.

In 2018, Chen [23] proposed a missing values imputation
method by combining sample self-representation strategy
and underlying local structure of data in a uniformed
framework. The evidence chain approach [24] was also
applied to mine all relevant evidence of missing values and
build the further estimation of missing values. Moreover,
Zhao et al. [25] developed a novel local similarity
imputation method that estimates missing data based
on fast clustering and top k-nearest neighbors, and in
order to improve the imputation accuracy, a two-layer
stacked autoencoder combined with distinctive imputation
is applied to locate the principal features of a dataset for
clustering. Tsai et al. [26] introduced a class center based
missing value imputation approach to produce effective
imputation results more efficiently based on measuring
the class center of each class and then the distances
between it and the other observed data are used to define
a threshold for the later imputation. In addition, literature
[4] presented a new approach based on an extension of the
incremental neuro-fuzzy gaussian mixture network, using
an approximated incremental version of the expectation
maximization algorithm, to carry out the imputation process
of the missing data during the execution of the recalling
operation in the network layer.

The difference with our model is that above methods
predict the missing data directly and individually by a
neural network, cluster or regression model. In our task,
the deep neural networks are used to extract the deep
features and imputation data estimation is implemented
on the deep features by both regression and data-driven
strategies. Hence, the performance of these methods should
be lower than our hybrid method, described in Section 4.

3 Preliminaries

3.1 Multiple imputation

The Multiple Imputation framework consists of a two-step
processes, as described in literature [27]:

– Firstly estimating M ”complete” data sets candidates.
– The M data candidates are pooled into one estimation

for the missing data.

Figure 1 depicts the common Multiple Imputation
architecture. This architecture is also used in our proposed
methods.

Many types of missing data patterns and analysis models
can be handled within this framework, making it presently,
the best option for dealing with most missing data problems.
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Fig. 1 The brief architecture and mechanism of the Multiple
Imputation(MI)

Facing different types of missing data patterns, we should
choose various analysis models within the first step of MI.

For the monotone missing data pattern, the missing
variables can be ordered in such a way that once a case has
a missing data on one observation it is then subsequently
missing on everything else [6], such as in Fig. 2a.

Imputation tasks are relatively easier if the missing
pattern is monotone either a parametric regression method
that assumes multivariate normality or a nonparametric
method that uses propensity scores is appropriate to apply
in monotone missing condition [5].

However, the missing data do not satisfy the requirement
of monotone missing pattern in most real cases, and usually
appear a kind of arbitrary missing data pattern. An arbitrary
missing data pattern is that the missing data of variables is a
random distribution in one observation [6], shown in Fig. 2b.

Analyzing this data with arbitrary missing pattern is
more difficult, ultimately special procedures are required.
A Markov Chain Monte Carlo [28] method, which creates
multiple imputations by using simulations from a Bayesian

prediction distribution for normal data. It is often used to
solve arbitrary missing data pattern.

3.2 Deep belief networks

Deep learning, mentioned in [29] neatly, is a part of machine
learning which has been used in various aspects.

Bengio, Courville and Vincent [30] reviewed the works
in the area of unsupervised feature learning and deep
learning, covering advances in probabilistic models, auto-
encoders, manifold learning, and deep networks.

The Deep Belief Networks(DBNs) was mentioned first
by Geoffrey Hinton [32] in 2006. It with many hidden
layers is appeared capable of modelling complex structures
and dependencies in the data. Hence the DBNs has been
widely applied in the feature extracting stage recently. By
training the weights between neurons, the whole neural
network generates training data with maximum probability.
In 2011, Hinton and Alex Krizhevsky [33] used DBNs to
obtain semantic codes which mean a high-level expression
of image features for image retrieval. And in 2015,
Mehdi Hajinoroozi et al. [34] explored the cognitive states
prediction based on DBNs for effective features extraction.
Besides, Zhikui Chen et al. [35] proposed a data imputation
method which makes DBNs remove the noise brought
by incomplete data and extract high quality features. In
our imputation methods, we implement the missing data
imputation with model-based technology. We will apply
Deep Belief Networks within the first step of MI for
extracting the representative features and then creating M

”complete” data sets. In this section, we first give a brief
theoretical background of Deep Belief Networks.

The DBNs was built by using multi Restricted Boltzmann
Machines (RBMs). A typical net structure of DBNs is
shown in Fig. 3, A DBNs consists of multiple layers
of neurons, divided into dominant neurons and recessive
neurons. Dominant neurons are used to receive input, and
recessive neurons are used to extract features, so recessive
neurons are also called feature detectors. The connection

Fig. 2 The monotone missing
data pattern (a) and arbitrary
missing data pattern (b). The
shaded cells are missing data
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between the top two layers is undirected and constitutes an
associative memory. Only the upper and lower directional
connections are connected between the lower layers. The
bottom layer (i.e. visiable layer) represents the data vector,
and each neuron represents one dimension of the data
vector. As mentioned earlier, the composition of the DBNs
is a layered structure, and the process of training the DBNs
is carried out layer by layer. In each layer, the data vector is
used to infer the hidden layer, and this hidden layer is used
as the data vector of the next layer.

First, regardless of the two layers that constitute the
associative memory at the top, a DBNs connection is guided
by the top-down generated weights. An RBM is just like
a building block, and it’s easy to connect weights for
learning. In the beginning, RBM pre-trains the weights
of the generated model through an unsupervised layer-by-
layer greedy method. This method is called a contrastive
divergence in Geoffrey Hinton’s paper, and the author
proved its validity. During the training phase, a vector is
generated at the visible layer, passing the value to the hidden
layer. In turn, the input to the visible layer is randomly
selected to attempt to reconstruct the original input signal.
Finally, these new dominant neurons will forward the
reconstructive recessive neurons to obtain a hidden layer. In
the training process, the vector value of the visible layer is
firstly mapped to the hidden layer, then the visible layer is
reconstructed by the hidden layer, and the new visible layer
is mapped to the hidden layer again, which gives a new
visible layer. This repeated step is the Gibbs sampling. The
correlation difference between the input vector of the visible
layer and the hidden layer is the main basis for the weight
update.

In DBNs, it uses RBMs as the base where the standard
type of RBM has binary-valued (Boolean/Bernoulli) hidden
and visible units such as Fig. 4, and consists of a matrix of
weights W = (wij ) associated with the connection between
hidden unit hj and visible unit vi , as well as bias weights
ai for visible units and bj for hidden units. For example, for

Fig. 4 The structure of RBM

an already trained RBM, the weight between each recessive
neuron and dominant neuron is represented by the matrix
W .

W =

⎡
⎢⎢⎢⎣

w1,1 w1,2 · · · w1,m

w2,1 w2,2 · · · w2,m
...

...
. . .

...
wN,1 wN,2 · · · wn,m

⎤
⎥⎥⎥⎦ (1)

Where wi,j represents the weight from the i − th dominant
neuron to the j − th recessive neuron, m represents the
number of dominant neurons, and n represents the number
of recessive neurons. When we assign a new data x =
{x1, x2, · · · , xm} to the visible layer, RBM will decide to
turn on or off recessive neurons according to weight W .

The specific operation is to firstly calculate the excitation
value of each recessive neuron:

hj = Wj ·x + bj (2)

Here we need to use the conditional independence
between the neurons mentioned earlier. Then, the excitation
values of each recessive neuron are normalized by the sigma
function to become the probability value of their open state:

P(hj = 1) = σ(hj ) = 1

1 + e−hj
(3)

Fig. 3 The structure of a 4-layer
DBNs. It is composed of a
visible layer and three hidden
layers
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So we calculate the probability that each recessive neuron
hj is turned on, and the probability of being in the off state
is complement:

P(hj = 0) = 1 − (hj = 1) (4)

So in the end whether the neuron is turned on or off,
we need to compare the probability of opening with a
random variable u ∼ U(0, 1) extracted from the uniform
distribution of 0-1.

hj =
{
1 P(hj = 1) ≥ u

0 P(hj = 1) < u
(5)

let (5) decide whether to turn on or off the corresponding
recessive neurons like that. The calculation in the hidden
layer is similarly as that in visible layer.

The model combines energy function and canonical
distribution to give individual activation probabilities as

P(hj |v, w) = f (

I∑
i=1

wijvi + bj ) (6)

P(vi |h, w) = f (

J∑
j=1

wijhj + ai) (7)

where the function f (·) is the activation function. It can
be a Sigmoid or Relu function. It is worth noting that the
neurons inside the visible layer and the hidden layer are not
interconnected, only the neurons between the layers have
symmetric connections. This approach has the advantage
that, given the values of all dominant neurons, the value
of each recessive neuron is irrelevant. Similarly, when a
hidden layer is given, the values of all the visible layers
are not related to each other. In the acutal training, the
corresponding parameter updating process can be shown as

�wij = �wij + [p(hj = 1|v(0))v
(0)
i −p(hj =1|v(k))v

(k)
j ]

�ai = �ai + [v(0)
i − v

(k)
i ]

�bj = �bj + [p(hj = 1|v(0)) − p(hj = 1|v(k))] (8)

To train an RBM, it is actually to find a probability
distribution, so that the probability of generating training
samples is the largest, which is determined by the weight,
and the goal is to find the best weight, which can be derived
by using the maximum log likelihood function. Training
will use the famous Contrastive Divergence algorithm to
learn [31], and we will describe the process of weight
convergence to the optimal through the i − th epoch of the
process of weight update in algorithm 1.

Such trained RBM can accurately extract the features of the
visible layer, and can also restore the visible layer according
to the features represented by the hidden layer.

4Method

Based on the architecture of Multiple Imputation(MI), we
attempt to propose a hybrid MI system, as a complement of
model-based MI technologies with partial incomplete data.
This hybrid MI framework consists of two MI methods,
identically each method uses deep neural network within the
imputation procedure, however, the designed function of the
network models is not similar. These two methods cover the
monotone and arbitrary missing pattern respectively.

Assume that the missing data is not independent from
some other available variables (i.e., MAR condition) and
the first method, called ”Features Regression”, pre-trains M

deep neural networks and applies the output of these deep
neural networks to learnM regression machines by usingM

complete data sample sets within the overall input data. In
the first step in MI, these M regression machines estimate
M candidates of the missing data and these candidates can
be further evaluated and pooled into an unbiased estimation
for that missing data. The same as traditional regression
MI methods, this method also can be effectively applied to
resolve monotone missing pattern, but neither can suit to
arbitrary missing pattern.

Further, we propose an imputation method to handle
missing data involved in the arbitrary missing pattern. ”Data
Driven Imputation”, a new MI architecture, is formed by
combining the model-based and data-driven strategies.

This method selects M reference sample sets, each
sample set includes N complete samples randomly sampled
from the input analysis data set. In each reference sample
set, these N reference samples are classified into C number
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of clusters. Thus the number of samples in each cluster
is equal to N/C. Before the imputation process, M deep
networks are pre-trained with M reference sample sets and
M × N features are calculated by these M deep networks.
In imputation task, we extract M deep features for the
input data with partial missing values also by using these
pre-trained M deep networks.

The j−th, {j = 1, 2, ..., M} deep feature for the input
data is sorted to one of C clusters belong to j−th reference
sample set. Then k nearest data candidates from this cluster
are chosen by measuring the distance between the feature
and associative features of the reference samples. These
k nearest candidate estimations are further fused into one
estimation for j−th deep feature with a weight matrix.
Overall M estimations from M deep features consist the
M fill candidates for the missing data. Because these
imputation estimations are generated directly from k nearest
reference sample data, it means the imputation result values
are driven by the reference sample data. Therefore, we call
this is a data-driven strategy.

Choosing the samples based on the deep features level
makes this method more robust and accurate compared
with traditional data-driven methods that directly get the
evaluations on the original data or statistics information
of the original data. Any missing data conditions can be
imputed by this data-driven method and thereby it can be
used to deal with imputation tasks with arbitrary missing
pattern.

We combine the first and second methods to construct
the new hybrid MI system for providing higher accurate
and efficient missing data imputation with different missing
patterns. The detail of these methods will be described in
the following subsections.

4.1 Data preparing procedure

Before describing these methods, we should first give the
detail of the data used in our systems and the experiments
that follow. Assume K-sample analysis data sets X =
{x1, x2, x3, · · · , xK}, and each sample xi has m attributes
(ai

1, a
i
2, · · · , ai

m).
All the data set is separated into two subsets, Co and

Im, Co notes the complete dataset, where all attributes
can be observed in the set (no missing data), and Im is
the incomplete dataset, where partial missing data can be
found). The intersection of Co and Im is null.

The Co subset is used in three parts: pre-training the
DBNs, training regression machines and as the reference
dataset for the data-driven. During the experiments, the
DBNs is used as the feature extracting tool and pre-trained
before imputation process. In each training the dropout
strategy is applied, so some samples in Co subset are
partial replaced by zero value to let the DBNs can finish

fault-tolerant feature extraction when the input data suffers
from partial missing. The Im is used for all imputation
performance testing. When the pre-trained DBNs is used to
extract features of samples in Im, that missing value parts
will be replace by zero.

Both missing data patterns, monotone and arbitrary
missing data pattern, exist in the subset Im. As Fig. 2
shows, it is said to have a monotone missing pattern when
an attribute ai

j is missing for the individual i−th sample

that all subsequent attributes ai
j ′ , j ′ > j , are all missing

for the sample. Arbitrary missing data pattern is where
attributes missing for the individual i−th sample is random.
We further artificially segment the incomplete data set Im

into two subsets, according to the prior knowledge about
the dataset. Subset Mo ⊂ Im consists of missing data with
monotone missing pattern, and subset Ar ⊂ I represents
arbitrary missing data pattern.

4.2 The first MI method - features regression

Assume each missing attribute of a sample is not
independent of other available attributes (i.e., MAR),
a regression model handles a monotone missing data
pattern and makes an estimation for each missing attribute,
using the non-missing attributes as covariance. Traditional
regression models use original data in the calculation, even
though, regression with original data is more sensitive to
the increase of missing data ratios than using the features of
original data, due to obtaining a high-level abstract from the
original data and therefore is more robust to partial missing.
For this reason, the first method extracts the features of
original data as the input of regression method instead of
direct regression on the original data.

This feature extracting implementation by the DBNs
is described in the Section 3.2 and the DBNs extracts
deep features of the original data, consequently these
deep features are fed to the regression method to get the
estimations of missing data. In our following experiments
these features have showed more robustness to the increase
in missing data volume. Moreover, these features can
represent original data very well and the dimension of
features can be smaller than original attributes, thus helping
decrease the complexity of regression calculation.

Assume one of the samples in data set Mo miss two
attributes, noted am−1, am, and other m − 2 attributes can
be observed. For detail, we further define this sample as
xmissing = (a1, a2, · · · , am−2). The imputation method can
fill one missing attribute each time. For multiple-missing
attributes, overall missing attributes can be imputed one
by one. For the monotone pattern, we should first fill the
attribute am−1.

Assume d samples selected randomly from set Co

generate the instance set E = {xi |i = 1, 2, · · · , d}, xi =
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(ai
1, a

i
2, · · · , ai

m). The training set T = {x̃i |i = 1, 2, · · · , d}
is constructed from the instance set E by deleting the
attributes ai

m−1, a
i
m for each sample in the set E. All deleted

values ai
m−1 compose the training goal sets Gtraining =

{g1, g2, · · · , gd},gi = (ai
m−1).

To ensure that subset Co and E have no significant
difference in statistical distribution, a T-test with Statistical
Product and Service Solutions (by SPSS) between the data
sets Co and E [36] are performed. If the result of T-test
passes a predefined significant factor, the above procedure
will repeat until the result is lower than the predefined
significant factor.

The DBNs just need to be trained with the unsupervised
learning procedure organized by one input layer and Ln(≥
1) hidden layers. The dropout strategy is adopted in training
procedure. Using algorithm 1 described in Section 3.2 with
x̃i as the input, the last hidden layer output of DBNs can
be defined as (9), where W = (w(1), w(2), · · · , w(Ln)) is
weight and b = (b(1), b(2), · · · , b(Ln)) is bias.

v(Ln) = f (Wx̃i + b) (9)

These trained matricesW , b are applied to extract feature set
Tf eature of training set T with (9). The Tf eature and training
goal sets Gtraining are together used to learn a regression
model formulated in (10).

Gtraining = W̃ × Tf eature + b̃ (10)

The W̃ and b̃ in Formula (10) can be trained by a regression
method.

When the incomplete record xmissing needs to be actually
filled, with the learned W , b, W̃ and b̃ through the (11) we
can predict one of the candidates for one missing variable at
each time.

O = W̃f (Wxmissing + b) + b̃ (11)

In our multiple imputation framework, we learn M DBNs
and M regression models on M training data sets which
is a random sample of total Co. All M regression models
generate M filling candidates (O1, O2, · · · , OM), and
finally these candidates are fused into an estimation Ō for
the missing data am−1.

The following Algorithm 2 illustrates the whole process
of the proposed method for calculating one missing variable.

Note that for multiple-missing variables condition in the
monotone missing pattern, the framework above creates
imputation values for the missing data consecutively. As a
two-missing variables example described in Section 4.2, the
missing variable am−1 is firstly estimated and then a new
incomplete record (a1, a2, · · · , ãm−1) joined the estimation
of variable am−1 is further used to fill the am. The same
as filling am−1, a new training set T́ is constructed on the
instance set E by deleting the attributes ai

m for each record
in set E. All deleted values ai

m compose the new training
goal set Ǵtraining . The Algorithm 2 is repeatedly used to
calculate the estimation of am.

The reason why the method is called Feature Regression
is that it uses the features from DBNs to construct a
regression model and it can solve data missing problem in
MAR mechanism with monotone missing pattern. But it
has drawback mentioned above that it may not be effective
for arbitrary missing data pattern. In the next section, we
discuss a further improvement of this method aiming to
offer an imputation to arbitrary missing data pattern.

4.3 The secondMImethod - data driven imputation

We furthermore extend the capability of the first method for
resolving arbitrary missing data pattern. The proposed new
model, called Data Driven Imputation (DDI), combines the
model-based and data-driven strategies.

In this model, DBNs are also used to extract high-
level features, different from the Feature Regression model,
these extracted features are sent into a proposed data-driven
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system for getting the candidates of missing data. The
DDI framework for generating imputation candidates for a
missing data is illustrated in Fig. 5.

We randomly sample instance set Ej {j = 1, ..., M}
from All Co. Assume we need to handle a sample with
two missing attributes a3, a5, which shows arbitrary missing
data pattern, such as in Fig. 2. A training set Tj = {x̃i |i =
1, 2, · · · , d} is constructed on an instance setEj by deleting
the attributes ai

3, a
i
5 for each record in a set Ej . Using

M training data sets in this framework, we pre-generate
M DBNs models by algorithm 1 as same as Features
Regression method described above. Each training data set
is used to train a DBNs. The j−th (j = {1, 2, · · · , M})
DBNs model is defined as v

(Ln)
j .

All M DBNs models are pre-learned and then used
to extract features of the training set before imputation
process, generating M feature matrices. Each matrix Fj ,
j = {1, 2, · · · , M} can be defined as follows:

Fj =
⎛
⎜⎝

f eaturej,1
...

f eaturej,d

⎞
⎟⎠ (12)

i−th row in Fj is a feature vector of sample i in training
data set Tj , obtained by j−th DBNs model.

In (12), the Fj acts as a feature dictionary of training
samples. We conduct a K-Means [37] clustering on this
feature dictionary, and this phase divides these features
within Fj into C reference clusters and records each cluster
center of these reference clusters in a vector Centerj =
(centerj,1, . . . , centerj,c, . . . , centerj,C).

In imputation task, the system extracts the feature
f missing(j), j = {1, 2, · · · , M} for the incomplete data
xmissing with j−th, j = {1, 2, · · · , M} DBNs model.

Then the distance dis(centerj,c, f missing(j)) between
f missing(j) and every center of centerj,c is calculated by
a distance metric. Various types of distance metrics can
be applied to our system. In this paper, we choose the
Euclidean Distance to calculate the distance values.

The feature f missing(j) is classified to the c−th cluster
if the distance dis(centerj,c, f missing(j)) is minimum.

Assume the c−th cluster in Fj is further defined as

Fj,c =
⎛
⎜⎝

f eaturej,c,1
...

f eaturej,c,s

⎞
⎟⎠ (13)

where s is the size of samples in c−th cluster in the
feature dictionary Fj . For the f missing(j) we further apply
the Euclidean Distance to measure the distance between
f missing(j) and every feature in Fj,c, getting a distance
vector D = (disj,c,1, disj,c,2, · · · , disj,c,s).

In the general data-driven method, the nearest neighbor
in the equation of (13), feature dictionary Fj,c is usually
chosen as the complete substitution for incomplete xmissing .
However, it might be a disadvantage of the nearest neighbor
that does not cover uncertainty of missing variable, hence
it is not a good unbiased estimation for xmissing . To
overcome uncertainty of missing variable, we select the
smallest k (k ≤ s) distances (dis1, dis2, · · · , disk) from
distance vector D and find the nearest k observed attribute
samples (ρ1, ρ2, · · · , ρk) in training data set Tj , which

Fig. 5 The architecture of the Data Driven Imputation (DDI) for creating M candidates of the missing data
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correspond to the nearest k neighbors in feature dictionary
Fj,c respectively.

Equation (14) estimates the final imputation candidate
Oj for the input incomplete data:

Oj =
k∑

i=1

ψiρi (14)

where ρi is corresponding values of attributes in complete
data samples, and in our assumption ρi = (ai

3, a
i
5). The

weight ψi is calculated by (15).

ψi = 1

disi
/

k∑
i=1

1

disi
(15)

The imputation process for creating one imputation
candidate value Oj for the input incomplete data is
described in Algorithm 3 and illustrated in Fig. 5:

Repeating Step7 to Step10, we can generate M

imputation candidates O1, O2, · · · , OM for an incomplete

data xmissing . These M estimations can be pooled into one
final value by method proposed in [27]. In this paper, we use
the method of averaging.

4.4 Hybrid MI system

The first method illustrated above can effectively handle
monotone missing data pattern with low computation
complexity. In contrast, the second method has the ability
to impute arbitrary missing data pattern, but brings high
computation complexity, additionally, it is more robust
than the first method to the increase of missing ratio
based on the results of experiments. Considering respective
advantages of these two methods, we construct a hybrid
MI (HMI) system by integrating these two methods for
resolving different missing patterns with good performance.
Figure 6 shows the framework of hybrid MI system. The
Feature Regression and DDI share M DBNs models. Before
imputation procedure, all DBNs and regression models have
been pre-trained with complete datasets, and all feature
dictionaries have been obtained.

As illustrated in Fig. 6, (1) the system firstly divides the
input incomplete data into different missing patterns, and
analyzes the missing ratio in the monotone missing pattern.
(2) For the data involved monotone missing pattern, if the
missing ratio is lower than a threshold T h, the system will
choose the low computation complexity method (i.e. the
first method, Feature Regression) to implement the multiple
imputation procedure, otherwise it applies the DDI to fill
the missing data. The arbitrary missing pattern data set can
only be processed by the DDI method.

The threshold T h is a hyperparameter for the system
based on our experience, it should be set a value lower than
9%.

As shown in Fig. 6, (3) the MI framework can generate
M imputation candidates for an incomplete data. Overall M
candidates then will be used to calculate the final value.

4.5 Complexity Analysis

Before imputation calculation, all the DBNs models have
been pre-trained; all feature dictionaries have been prepared
and the center list of these reference clusters has been
calculated by K-Means method. The main computation
cost of HMI is in regression and data-driven processing,
therefore, the computation cost of HMI is similar to the
traditional regression and clustering methods.

In imputation step, only the time consumption of feature
extraction for the input data is considered. The time
consumption is related to the matrix dimension and the
network depth, which can be roughly expressed as O(α2 ∗
β2 ∗ Cin ∗ Cout ). The α represents the side length of each
feature map that convolution kernel outputs, which is related
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Fig. 6 Hybrid Multiple Imputation (HMI) architecture for dealing with arbitrary missing data pattern by an analysis of missing ratio and missing
pattern in input data. All DBNs models shared by two methods are pre-trained with complete datasets before imputation procedure. Imputation
procedure consists of 3 steps

to the matrix size Γ ,the convolution kernel size β, padding
p, and stride γ , expressed as follows:

α = (Γ − β + 2 ∗ p)/γ + 1 (16)

β is the side length of each convolution kernel, and Cin

is the number of channels per convolution kernel, that is,
the number of input channels, is also the number of output
channels of the previous layer, and Cout is the number
of convolution kernels that the convolution layer has, that
is, the number of output channels. In actual application,
the type of data missing will be judged first through a
simple conditional judgment, so the time complexity can
be approximated as O(1). If it is judged to use the Feature
Regression method, the complexity only need to add a
logistic regression time cost O(M ×O(Cregression)), where
M is the number of regression machines and O(Cregression)

is the complexity for the regression method. If it is judged
to use Data Driven Imputation method, in addition to the
time consumption of the feature extraction by M DBNs, the
data-driven time complexity can be approximated asO(M×
(O(Clocating) + O(Cchoosing))) ,where O(Clocating) means
the time cost for locating the cluster, M means the number
of DBNs and O(Cchoosing) means the computational
burden for choosing k nearest reference samples in the c −
th cluster. Therefore, the most important time consumption
in HMI method is the time cost on the feature extraction of
DBNs and candidate samples selected, which is feasible in
parallel implementation. The HMI method is able to process
efficiently the imputation task within a big incomplete data
set.

The spatial complexity of the model is mainly composed
of the space occupied by the DBNs model and the space

occupied by the reference data samples for calculating
imputation values. The spatial complexity of DBNs mainly
includes the total parameter quantity and the output feature
map of each layer. The total parameter quantity refers to
the total weight parameters of all layers, and the space
complexity can be approximated as O(

∑D
l=1 β2

l · cl−1 · cl)

, which is only related to the size of the convolution kernel
β , the number of channels c , and the number of layers D

, regardless of the size of input data.The spatial complexity
of the output feature map is relatively simple, that is, the
product sum of the space size α2 and the number of channels
c , which is approximately O(

∑D
l=1 α2 · cl) . Therefore,

the spatial complexity of DBNs can be approximated as
O(

∑D
l=1 β2

l · cl−1 · cl +∑D
l=1 α2 · cl) . In addition, the space

complexity of the HMI method is related to the number of
clusters C and the number of reference samples per cluster
s , which can be approximated as O(M ×C × s ×d) ,where
d means the dimension of feature. For a cluster system with
thousands of GB memory resource that space complexity
can be ignorable.

4.6 Application in a Hadoop cluster monitoring
system

As we all know, Hadoop is a fantastic distributed platform,
which provides so powerful parallel and distributed
computation. It’s obvious from above that HMI can be
joined into the preprocessing module of any monitoring
systems to resolve the partial data missing problem,
therefore, for our purpose, we apply the HMI method to
construct a new Hadoop cluster monitoring system based on
the Ganalia framework [38].
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The proposed monitoring system gets statistical data
about the cluster resource information for further supporting
better job schedule planning and job behavior prediction.
As described in Fig. 7, the system architecture has been
designed as three levels: 1) cluster information collection
level, 2) data preprocessing level and 3) data analysis level.
The Ganglia collects data from each host. Different from
other Hadoop cluster monitoring system also constructed
with Ganglia, this new system adds the HMI method
into the preprocessing module before the data integrating
processing. The HMI extends the capability of the new
system to deal with the missing data. Finally, data analysis
module takes the integration data and some statistical
analysis methods are applied to get the decision.

5 Performance evaluation

In this section, we describe the experiments conducted to
evaluate the effectiveness and efficiency of the new Data
Driven Imputation(DDI) and hybrid MI(HMI) system for
dealing with partially missing data and large data volume.
In addition to our new methods, we also implement the
following eight existing techniques for comparison:

1. Regression method: the traditional regression model
described in [27].

2. MCMC method: the traditional MCMC method pro-
posed by Schafer [28].

3. Expectation Maximization Imputation (EMI): Expecta-
tion Maximization Imputation method is a popular tool
for statistical missing data imputation in various fields,
the algorithm has reasonable accuracy in missing data
imputation [39].

4. KNN method: KNN is the most common method
because it shows a stable performance regardless of
the size of the missing data with easy implementation.

Therefore, many researchers use this method as a
benchmark to compare imputation performance [17].

5. Random Forest regression method(RF): The random
forest algorithm(RF) used in [7] as a regression model
to estimate the missing data.

6. Iterative Fuzzy Clustering(IFC): Presented in [2], the
iterative fuzzy clustering approach is applied to obtain
the clusters, then the non-missing data in the cluster
with their membership degree and the centroids provide
information for estimating the missing values.

7. Sample Self-representation Strategy(SSR):This method
combines sample self-representation strategy and
underlying local structure of data in a uniformed frame-
work for estimating missing data [23].

8. Class Center based Missing Value Imputa-
tion(CCMVI): Proposed in [26], it produces imputation
results based on the distance between the class center
of each class and a threshold calculated by the other
observed data.

Besides observing various missing data patterns, miss-
ing ratios, different databases in performance comparison
between these imputation methods by Mean Absolute Per-
centage Error(MAPE), we also compare the effectiveness
and efficiency of our two MI methods (Feature Regression
and DDI)in the following experiments.

5.1 Database

All the experiments are conducted on three data sets: A real
Hadoop Cluster Monitoring Dataset, Cover Type Dataset
and TV News Channel Commercial Detection Dataset. The
Hadoop Cluster Monitoring data are collected by a Ganglia
system from a real Hadoop cluster. The cluster has 30 nodes
and each node is a X86 server with dual 3.7Ghz i3-6100
processors, 32GBRAM, 500GB disk and Gigabit Ethernet
networking. The whole monitoring data includes 103,418

Fig. 7 The structure of the
proposed Hadoop monitoring
system based on Ganalia and
using HMI to impute missing
data in preprocessing module
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Fig. 8 Performance of MAPE, as a function of missing ratios, obtained
by our two methods (Feature Regression, DDI), the Regression method
and RF method on three datasets, respectively

Fig. 9 Performance of MAPE for different missing ratios and datasets,
obtained by HMI, EMI, KNN, MCMC, DDI, IFC, SSR, CCMVI
methods respectively
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records, 116 attributes which include data(percentage CPU,
memory used, I/O...) for each node in a Hadoop system.
The last two datasets called Cover Type Dataset were the
simulated data of the sensor clusters from the UCI Machine
Learning Repository, which records the cover type data
from four wilderness areas located in the Roosevelt National
Forest of northern Colorado. It includes 581,012 records,
54 attributes and 7 classes.There are 129,685 records in
the TV News Channel Commercial Detection Dataset, and
each record has 98 attributes and 2 classes (Commercials/
Non-Commercials).

We randomly select 600,000 records from Hadoop
Cluster Monitoring Dataset, 300,000 records from Cover
Type Database and 80,000 records from TV News Channel
Commercial Detection Database to construct three analysis
data sets.

Although each data attribute in these analysis datasets
has a different domain, we preprocess all the values in
these three datasets so that make them normalized to
[0, 1] for better learning computing. In real imputation
task, the system output can be conducted an anti-
normalization processing to recover the original domain. In
our experiments, we test these algorithms under the same
conditions and hence do not execute anti-normalization.

Cover Type Dataset and TV News Channel Commercial
Detection Dataset are artificially regenerated to six data
subsets such that have 1%, 3%, 6%, 9%, 12%, 15% missing
data ratios respectively. The missing mechanism is MAR,
missing patterns include monotone missing pattern and
arbitrary missing data pattern. For the Hadoop Cluster
Monitoring Dataset we artificially regenerate five arbitrary
missing test data subsets for missing data ratios=3%, 6%,
9%, 12%, 15%. Meanwhile, we artificially construct six
monotone missing testing data subsets with missing data
ratios=1%, 3%, 6%, 9%, 12%, 15% on this dataset.

5.2 Quantitativemeasures for evaluation

To evaluate the performance of the imputation algorithms,
well-known evaluation MAPE is used, formulated as
follows:

MAPE =
∑ | ei

Oi |
N

× 100% (17)

where ei = Ōi − Oi is the error for estimate value, Ōi

is the imputed value of the i−th missing data, Oi is the
actual value of the i−th artificially created missing data,
and N is the number of artificially created missing data.
It’s important to note that we use the actual average of
i−th value to replace the zero of Oi . The values of MAPE
can range from 0 to ∞, and a lower value indicates better
accuracy.

5.3 Results and discussions

The DBNs, in these experiments, have three hidden layers,
and the nodes for each layer are 40, 28, 14 respectively. All
the layers are randomly initialized before training. We chose
Sigmoid as the activation function. The learning rate is set
to 0.01, alpha is set to 1, and hyper parameters are set to 0.

In the following experiments the multiple imputation
M = 15 for all methods means randomly sample 15 training
data sets under total training data. Depending on the classes
of each dataset, we select the number of cluster C = 7,
10 and 2 for our systems under three different datasets
respectively. k = 
0.01 × s� is used for the DDI method,
where the s is the size of samples in the chosen cluster.

5.3.1 Experiment onmonotonemissing pattern data

The first experiment investigates the performance of the two
proposed methods Feature Regression and DDI in dealing
with missing data imputation in monotone missing pattern.
We choose the traditional regression method and RF method
as the control group, based on the imputation ability of the
monotone missing pattern.

Figure 8 shows the MAPE values, as a function of
missing ratios, obtained by our two methods, the Regression
method and RF method on the three datasets, respectively.

Figure 8 indicates that all the systems can achieve good
performance in case of low missing ratio < 6%. After
averaging all three datasets, the accuracy of regression
and RF methods show a result which is slightly 1.0 ∼
1.2 higher than our methods, while missing ratio < 2%
and RF method gives better performance than all other
methods within missing ratio < 3%. The regression
strategy is contained in our Feature Regression method
for estimating the imputation candidates similar as the
traditional regression method. These better MAPE results
show that regression method has better prediction ability
than data-driven approach when it is applied to get the
estimation candidates for the missing data on a low missing
ratio condition. As observed in Fig. 8, with the increase of
missing ratio, a rise of the MAPE values are found for all
methods, but comparing with the traditional regression and
RF approach, our methods especially the DDI method show
more robustness. Our experiments show the same results as
literature [7] and prove that the RF regression method can
perform better than traditional regression model.

Our Feature Regression method shows lower MAPE
values than the traditional regression system and RF for
all test databases, when the missing ratio is greater than
9%, except 0.59% drop compared with RF method for
missing ratio at 9% in the Hadoop Cluster Monitoring
Dataset. Especially when missing ratio > 12%, our two
methods both outperform the traditional regression and
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Table 1 MAPE values obtained by the MCMC, EMI, KNN,IFC, SSR, CCMVI, DDI and HMI respectively, averaging overall results on arbitrary
missing pattern and three datasets

MisRatio DDI MCMC EMI KNN IFC SSR CCMVI HMI

3% 7.33% 8.95% 10.39% 8.03% 7.33% 7.23% 7.41% 6.65%

6% 7.95% 9.72% 11.33% 9.08% 7.86% 7.57% 8.05% 7.16%

9% 9.02% 11.02% 12.20% 9.99% 9.07% 8.58% 8.92% 8.27%

12% 10.31% 12.16% 13.26% 10.88% 10.61% 9.37% 10.67% 9.55%

15% 10.97% 12.89% 13.84% 11.45% 11.18% 11.04% 11.26% 10.21%

RF regression method on all datasets. The deep features
can give a better abstract for the data and improve the
regression effectiveness when the missing ratio rises. This
explains why our two models show the possibility to
outperform the traditional regression methods in these
experiments as the missing ratio increases. The larger the
attribute volume, the more effective using DBNs features in
imputation.Comparing the attribute number between each
database (Cover type=54, TV News Channel Commercial
Detection=98, Hadoop index = 116), the higher MAPE
improvement can be produced by our methods in the larger
attribute volume database, as showed in Fig. 8b and c.

From Fig. 8, we observe that the DDI method
outperforms the Feature Regression method when the
missing rate is greater than 9% because of poor ability of the
regression algorithm with the loss of reliable information
to build the prediction model while getting an accurate
statistical estimation. In contrast, the DDI method estimates
the missing variable by data-driven method, which reduces
the dependence of the system on missing data.

The results give us an experience T h value for our hybrid
MI system. The T h = 9% is set in our hybrid MI system in
the second experiment.

5.3.2 Experiment on arbitrary missing pattern data

Furthermore, we validate the performance of our system
(Data Driven Imputation (DDI) and hybrid MI(HMI))
in these datasets involved arbitrary missing pattern and
different missing ratios. We have compared the MAPE
values of our methods, MCMC, KNN, IFC, SSR and
CCMVI methods in these three analysis datasets, all with
arbitrary missing pattern. We do not use the RF method
in this experiments, because it is a kind of regression
model which can not work well in the arbitrary missing
pattern.

Figure 9 shows the MAPE values, as a function
of missing ratios, obtained by DDI, HMI, EMI, KNN,
MCMC, IFC, SSR and CCMVI methods on three datasets,
respectively. Although, the MAPE rises for the all methods
with the increase of the missing ratio, our DDI method
shows more robustness than MCMC, KNN and EMI. Broad

range missing attributes may reduce the effectiveness of
statistical distribution estimation, and this causes the poor
performance of MCMC. Unlike the MCMC method, DDI
method creates the imputation candidates in a data-driven
way on some data dictionaries, thus avoids the offer of the
statistical error caused by missing variables in imputation.

Our hybrid MI(HMI) system is a combination of Feature
Regression and DDI methods as described in Section 4.4.
The results of this experiment show that our new HMI
performs evidently better than the EMI, MCMC and KNN
methods and slightly better than IFC, SSR and CCMVI
methods, but SSR for the missing ratio 12% in Cover Type
Dataset. In some cases the SSR method generates similar
results as HMI, such as for missing ratio 6% − 12% in
Hadoop Cluster Monitoring Dataset. The HMI, IFC and
CCMVI methods construct the fill values for missing data
all by similar cluster-based and sample-based strategies.
However, different from the IFC and CCMVI methods both
calculated on the original data, the HMI method constructs
the cluster method above the deep features of data.

As mentioned above, the deep features also contribute
to the improved performance for the HMI method. The
better performance brought by the feature of data also can
be seen in SSR method. From Fig. 9, we can see that
SSR method is slight better than other methods in many
cases in these experiments. Self-representation framework
of data explains that the SSR method obtains more effective
estimation for the missing data. In contrast to the SSRmodel
which uses the graph regularized local self-representation
framework to represent structure features of data, our
method utilizes DBNs to extract the deep features of data.
The better results obtained by HMI show that the DBNs
has better ability for modeling complex structures and
dependencies in the data.

Table 1 shows each MAPE value obtained by the
MCMC, EMI, KNN, IFC, SSR, CCMVI, DDI and HMI
respectively, averaging all results on all missing patterns
in three datasets. As indicated in Table 1, our new method
HMI improve the adaptability and robustness for missing
data imputation while dealing with missing data which
involves large missing ratios and arbitrary missing pattern.
The performance of HMI is better than that of the DDI
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because HMI chooses the optimal system between Feature
Regression and DDI to impute missing data for different
missing patterns and missing ratios.

6 Conclusion and future work

Within the multiple imputation frameworks, we investigate
a Hadoop cluster monitoring system which is robust to
partial missing data, apart from this, two novel missing data
imputation methods: Feature Regression and Data Driven
Imputation have been presented in this paper firstly.

These methods are different from the conventional
algorithms in following two aspects:

1. Missing-data estimation procedures of two methods are
both dependent on the deep features rather than original
data. The benefit of working on deep features is that
these methods enhance the ability to represent the high-
level structure and dependence of the original data, so
that this way improves the robustness to a larger data
missing ratio.

2. The combination of the model-based and data-driven
imputation strategies reduces the dependence on the
accuracy in statistical estimation. As a result, it
consequently improves the performance to a larger
missing ratio.

Furthermore, we construct a hybrid MI system (HMI)
with the proposed methods which inherits the advantages
of both methods regardless of low or high missing
ratios, regardless of monotone missing patterns or arbitrary
missing patterns.

Experimental results show that proposed methods out-
perform the other methods with the most testing datasets
and missing ratios except the 1% drop compared with the
regression method in the monotone missing pattern and
missing ratio lower than 2%. By taking consideration of the
above point, compared with traditional multiple imputation
- Regression and MCMC, our methods improve the robust-
ness for larger missing ratios. Meanwhile, comparing the
HMI with other two commonly used imputation methods
- Expection Maximization Imputation and KNN, the pro-
posed HMI method outperforms other two systems in all
testing datasets and missing ratios. It gives the proof that
the HMI is a selectable technology to deal with partial miss-
ing data within a cluster monitoring application,at the same
time, briefly speaking, since DBNs is offline training, the
running time of HMI in application mainly includes DBNs
feature extraction time and linear regression or classifica-
tion selecting candidate time. The judgment time about the
missing rate and the missing type is almost negligible, so it
is more feasible in practical applications.

To improve this algorithm even further, it will be
beneficial to study the performance of imputation methods
with respect to difference missing mechanisms, i.e. Missing
Completely at Random. Moreover, our future work should
study a strategy to determine the number of cluster C and
the threshold T h, and compare various deep neural network
technologies to determine which is the best deep neural
network for application in cluster monitoring system.In
addition, the DBNs training process can be accelerated
with larger data sets, larger memory, more advanced GPU
devices and CUDA programming, and higher-frequency
CPU devices. In the future practical application, PCA
dimensionality reduction or Laplacian feature mapping can
be used to reduce the complexity of regression calculation
after feature extraction, so as to achieve better real-time
effect.
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