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   Abstract
The task of predicting entities and relations in Temporal Knowledge Graph (TKG) ex-
trapolation is crucial and has been studied extensively. Mainstream algorithms, such as 
Gated Recurrent Unit (GRU) models, primarily focus on encoding historical factual fea-
tures within TKGs, often neglecting the importance of incorporating entities and relational 
features during decoding. This bias ultimately leads to loss of detail and inadequate pre-
diction accuracy during the inference process. To address this issue, a novel ChronoBridge 
framework is proposed that features a dual mechanism of a chronological node encoder 
and a bridged feature fusion decoder. Specifically, the chronological node encoder em-
ploys an advanced recursive neural network with an enhanced GRU in an autoregressive 
manner to model historical KG sequences, thereby accurately capturing entity changes 
over time and significantly enhancing the model’s ability to identify and encode temporal 
patterns of facts across the timeline. Meanwhile, the bridged feature fusion decoder uti-
lizes a new variant of GRU and a multilayer perception mechanism during the prediction 
phase to extract entity and relation features and fuse them for inference, thereby strength-
ening the reasoning capabilities of the model for future events. Testing on three standard 
datasets showed significant improvements, with a 25.21% increase in MRR accuracy and 
a 39.38% enhancement in relation inference. This advancement not only improves the 
understanding of temporal evolution in knowledge graphs but also sets a foundation for 
future research and applications of TKG reasoning.

Keywords  Temporal knowledge graph reasoning · Gated Recurrent Unit · Chronological 
node encoder · Bridged feature fusion decoder

Abbreviations
KG	� Knowledge Graph
TKG	� Temporal Knowledge Graph
GRU	� Gated Recurrent Unit
GNN	� Graph Neural Network
GCN	� Convolutional Network
IGRU	� Improved Gated Recurrent Unit
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Self-GRU	� Self-Gated Recurrent Unit
MLP	� Multi-Layer Perceptron
MRR	� Mean Reciprocal Rank
Hits@K	� Hits at Rank K

1  Introduction

In response to the dynamic nature of information in the digital era, Temporal Knowledge 
Graphs (TKGs) have evolved from traditional Knowledge Graphs (KGs) by integrating a 
time dimension to capture the transient aspects of real-world data (Ji et al. 2024; Bai 2023). 
TKGs enhance static triples with timestamps, creating quadruples that offer a dynamic and 
temporal narrative of relations, as exemplified by Jean-Claude Juncker’s presidency of 
the European Union between 2015 and 2019, as shown in Fig. 1. This innovation enables 
advanced temporal reasoning, trend analysis, and predictive modeling, thereby providing a 
more comprehensive and precise representation of knowledge over time (Zhang et al 2023; 
Ge et al. 2022; Negro et al. 2023).

However, reasoning over TKGs introduces novel challenges, specifically in the encod-
ing and decoding processes. Encoding involves transforming temporal information along 
with entities and relations into vector representations, whereas decoding utilizes these rep-
resentations to infer and predict temporal relations. Traditional methods adept at handling 
static KGs fall short of capturing the temporal dynamics essential for TKGs. For example, 
models such as RotatE (Sun et al. 2019) excel in static environments, but lack the temporal 
sensitivity required for TKGs. Conversely, methods that incorporate timestamps often do 
so without fully leveraging the temporal dimension, leading to incomplete understanding 
of the evolution of knowledge graphs (Shang et al. 2019; Goel et al 2020). Advanced algo-
rithms, such as RE-GCN (Li et al. 2021), attempt to address this by capturing the evolution 
of representations at individual timestamps. However, they often neglect the integration 
of entity and relation characteristics during decoding, which is crucial for adapting to the 
complexity. Thus, while effective methods are available, a comprehensive understanding of 
TKG evolution and efficient encoding-decoding processes remains elusive. The potential to 
enhance the precision of reasoning within TKGs is substantial and largely untapped. This 
study focused on reasoning tasks within the TKGs, as depicted in Fig. 2.

These tasks involve predicting the future state of a graph based on historical data, encom-
passing two specific subtasks: entity prediction and relation prediction. Entity prediction 
involves forecasting future relations based on a given timestamp and entity relation, such 
as predicting future diplomatic visits of a country. Relation prediction involves predicting 

Fig. 1  An example of a TKG 
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the future relation between a pair of entities, such as the diplomatic stance between two 
countries on a future timestamp.

Challenges and our approach
The task of predicting future entities and relations in TKGs is fraught with several chal-

lenges. While recurrent models, such as GRUs, are proficient at encoding historical TKG 
data, they struggle to integrate entity and relation features effectively, leading to a loss of 
detail and decreased prediction accuracy. Capturing the complex patterns of entity evolution 
over time and integrating bridging features to infer future events are areas that the current 
algorithms falter. To overcome these challenges, we propose the ChronoBridge framework, 
a novel approach that includes a chronological node encoder and bridged feature fusion 
decoder. The encoder employs an enhanced GRU-based recursive neural network to capture 
the temporal dynamics of the entities with greater precision. The decoder, a novel variant 
of the GRU combined with a multilayer perceptron, fuses the entity and relation features to 
improve the prediction accuracy.

Key contributions
The key contributions of our study are as follows: 

(1)	 Pioneering Feature Fusion for TKG Decoding: We propose the first algorithm to fuse 
entity and relation features for TKG decoding embodied in the ChronoBridge frame-
work with its novel chronological node encoder and bridged feature fusion decoder.

(2)	 Advancements in GRU Technology: We propose two innovative GRU variants, IGRU 
and Self-GRU, which enhance long-term dependency handling and self-memory, 
respectively, improving the model’s ability to capture temporal dependencies.

(3)	 Empirical Validation: Our extensive testing on benchmark datasets reveals that the 
ChronoBridge significantly outperforms existing state-of-the-art methods, solidify-
ing its position as a cutting-edge TKG reasoning framework.The subsequent sections 
of this paper are organized as follows. Section 2 reviews the literature on knowledge 
graphs and temporal reasoning, comparing traditional models with those designed for 

Fig. 2  Schematic diagram of temporal reasoning on TKGs, highlighting the prediction tasks at different 
timestamps
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temporal data. Section  3 elaborates on foundational concepts including knowledge 
graphs, TKGs, and GRUs, which are essential for comprehending the ChronoBridge 
framework. Section 4 explains the ChronoBridge methodology and emphasizes its core 
components. Section 5 presents the experimental setup and results, benchmarking the 
ChronoBridge against established models in various scenarios. Section 6 discusses the 
strengths, weaknesses, and practical implications of the proposed framework. Finally, 
Sect. 7 concludes with a summary of our findings, future research avenues, and the 
potential for chronobridge applications in broader contexts.

2  Related work

In this section, common techniques for reasoning within knowledge graphs and reasoning 
using TKGs are outlined.

2.1  Knowledge graph reasoning

Models for reasoning over knowledge graphs can be broadly classified into two types: those 
that rely on embeddings and those that utilize graph structures. The former involves map-
ping entities and relations from knowledge graphs into compact vector spaces for inferential 
processing. Common methods include TransE (Bordes et al. 2013), TransH (Wang et al. 
2014) and TransR (Lin et al. 2015), etc. These models achieve prediction of new reasoning 
problems by learning the relation vector representation and relation conversion methods 
between entities, such as entity relation prediction  (Yuan et al. 2021), entity classifica-
tion (Sun et al. 2022), etc. The benefit of this method is its ability to grasp semantic similari-
ties and connections between entities and relations. However, its drawback is its inability 
to leverage the inherent structural information of a graph. The reasoning model based on 
graph structure uses the graph structure of the knowledge graph for reasoning. Common 
methods include path-reasoning models (Bai et al. 2023) and graph neural networks (Zhou 
2020). The path-reasoning model performs relation prediction or entity classification by 
determining the associated paths among the entities and relations within the graph. A graph 
neural network employs GNN techniques to characterize the vertices and links within a net-
work, and performs reasoning through message passing, node updating, and edge modeling. 
The benefit is that it can fully exploit the graph’s structural data, yet its downside is that it 
might demand extensive computational resources for reasoning over large-scale networks. 
Although the above two types of knowledge graph reasoning models are effective in static 
knowledge graphs, they only consider the static associations between entities and relations, 
and cannot dynamically capture changes in relations and entities.

2.2  TKG reasoning

Regarding the reasoning of TKG, it can be partitioned into two modalities: interpola-
tion (Ding et al. 2023) and extrapolation (Zhongwu 2023).

Interpolation is the process of estimating unknown values within a range of known data 
points. In the context of TKG reasoning, interpolation involves predicting the state of rela-
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tions at intermediate time points given the data available at specific times. This approach 
assumes that temporal changes between known data points follow a continuous pattern, 
allowing for accurate estimates of intermediate states. On the other hand, extrapolation 
involves predicting future values or states beyond the range of known data points. For 
TKGs, extrapolation refers to forecasting how relations and interactions evolve beyond the 
existing temporal data. This approach relies on understanding long-term patterns and trends 
to predict future states, often using models that generalize past observations to anticipate 
future developments. Both modalities were crucial for comprehensive TKG reasoning. 
Interpolation helps to understand and fill gaps within the temporal spectrum, enhancing 
the accuracy of predictions for periods where data are sparse. Extrapolation extends this 
understanding to the future, providing insights into potential future scenarios and enabling 
proactive decision making based on projected trends.

In the interpolation setting, some of the entities or events in the time-series knowledge 
graph and their temporal attributes are known, and entities or events at unknown time points 
are filled in through reasoning. For example, models (Zhu et al. 2023; Julien and Wudage 
2018; Dasgupta et al. 2018) strive to discern absent details of past temporal markers. While 
TA-DistMult (Zhu et al. 2023) and TTransE (Zhu et al. 2023) incorporate temporal infor-
mation into relation embeddings, HyTE (Dasgupta et al. 2018) uses a hyperplane to map 
timestamps. However, none of these models can accurately predict future timestamps, and 
cannot be directly applied to extrapolative reasoning scenarios to infer what may happen in 
the future.

In the extrapolation setting focused on in this article, some entities or events in the time-
series knowledge graph and their temporal attributes are known, and entities or events at 
future time points are predicted through reasoning. For example, the models RGCRN (Zhang 
et al. 2022) and RE-NET (Yang and Yin 2020) attempt to perform TKG reasoning by using 
a message-passing mechanism, although they model the entities and relations in KG as a 
graph structure and use message passing in the graph. Carry out information dissemination, 
but they mainly focus on the relation characteristics at a particular point in time and lack the 
ability to capture the relation characteristics at historical time points. To solve this problem, 
the model’s CyGNet (Zhu et al. 2021), xERTE (Han et al. 2020), TLogic (Liu et al. 2022), 
TITer (Sun et al. 2021), CEN (Li et al. 2022a), RE-GCN (Li et al. 2021), TiRGN (Li et al. 
2022b), and RETIA (Liu et al. 2023), the relation characteristics on the timestamp can better 
capture the dynamics and evolution trends of the relation, and then more comprehensively 
understand the relations in the knowledge graph. Among them, RE-GCN and TiRGN are the 
algorithms most closely associated with us. While RE-GCN takes into account the structural 
interdependencies among facts occurring concurrently in the KG, the sequential patterns of 
facts that are adjacent in time, and the invariant attributes of entities, it does not consider the 
characteristics of entities and relations in decoding. Although TiRGN considers the order, 
repetition, and cycle patterns of historical facts and applies temporal features to decoding, it 
does not consider the characteristics of the entities and relations in decoding.

However, these two algorithms do not specifically address the complexity of TKG reason-
ing during encoding. In contrast, the proposed ChronoBridge in this study not only inherits 
the strengths of RE-GCN, but also proposes two variants of GRU. It delves deeper into the 
structural connections among concurrently occurring events in knowledge graphs and the 
sequential patterns between temporally adjacent events. Inspired by TiRGN, it integrates the 
features of facts and relations into a decoding process. These innovations empower Chro-
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noBridge with significant advantages in inference tasks within the TKGs. Having outlined 
the advancements introduced by ChronoBridge and their relation to existing techniques, it 
is essential to delve into the foundational concepts that underpin these developments. There-
fore, the following section covers foundational concepts that are essential for understanding 
TKGs, GRUs, and their associated tasks.

3  Preliminaries

This section elucidates the foundational concepts crucial for understanding the evolution 
and applications of TKGs and Gated Recurrent Units (GRUs), as well as the tasks associ-
ated with TKGs.

TKGs unfold as a sequence of graphs G = {G1, G2, . . . , Gt, . . .} , where each Gt  cap-
tures a temporal snapshot of the Knowledge Graph. They encompass entities V and relations 
R, each fact presented as a tuple (s, r, o, t) , denoting subject s, relation r, object o, and the 
timestamp t when the fact is considered true.

Task 1: entity prediction
The entity prediction task in TKGs aims to predict future entities by scrutinizing histori-

cal KG sequences up to the last k timestamps, encapsulated in an entity embedding matrix 
Ht ∈ R|V |×d . For a query (s, r, ?, t+ 1), a conditional probability vector �p(o|s, r, Gt−k+1:t) 
is derived, indicating the probability of each entity being the correct object at time t + 1 .

Task 2: relation prediction
Relation prediction seeks to identify future relations by harnessing historical KG data up 

to k timestamps back, represented by a relation embedding matrix Rt ∈ R|R|×d . For a query 
(s, ?, o, t+ 1), a conditional probability vector �p(r|s, o, Gt−k+1:t)  is calculated, estimating 
the probability of each relation being the appropriate link at t + 1 .

Fundamentals of GRU
GRUs, as shown in Fig. 3, proposed by Chung et al. (2014) in 2014, are an RNN variant 

designed to overcome the vanishing gradient problem of traditional RNNs. They feature 
a gating mechanism that controls the update and reset of the state, facilitating the cap-
ture of long-term dependencies in sequence data. GRUs consist of two gates: the update 
gate, which determines the retention of past information, and the reset gate, which decides 
how much past information to forget when assimilating new inputs. This gating mechanism 
enables GRUs to dynamically manage information across varying time scales, essential for 
sequential data processing.

4  The proposed approach

This section outlines the proposed approach, beginning with an overview of the model and 
detailing its core components: a Chronological Node Encoder for temporal data, a Bridged 
Feature Fusion Decoder for integrating features, and score functions for predicting entities 
and relations. It also discusses the loss function for optimization, evaluates computational 
complexity, and provides a detailed algorithm for implementation.
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4.1  Model overview

The overall framework of ChronoBridge is shown in Fig. 4. ChronoBridge is a framework 
developed to advance TKG reasoning for future event prediction by analyzing temporal fact 
interactions. It remedies the shortcomings of traditional approaches that neglect the decod-
ing phase and the significance of entity and relation features, through its innovative design 
consisting of a chronological node encoder and a bridged feature fusion decoder.

Chronological node encoder: This component of ChronoBridge utilizes an advanced 
recurrent neural network with an enhanced gated recurrent unit (GRU) to model histori-
cal KG sequences in an autoregressive manner. This innovation significantly improves the 
model’s ability to recognize and encode temporal patterns of facts throughout the timeline.

Bridged feature fusion decoder: In contrast, this component concentrates on the extrac-
tion and integration of entity relation features, thereby providing a more nuanced interpreta-
tion of evolving relations and enriching the reasoning process.

The architecture of ChronoBridge not only tackles the temporal dynamics inherent in 
TKGs but also strategically incorporates entity and relation features, offering a more com-
prehensive approach to TKG reasoning. This framework has undergone rigorous evaluation 
against three real-world datasets, demonstrating substantial improvements over baseline 
methods. The results highlight ChronoBridge’s proficiency in capturing the complex tem-
poral and relational patterns within TKGs, signifying a significant leap forward in predictive 
accuracy and the understanding of knowledge graph temporal evolution.Next, a detailed 
introduction to ChronoBridge will be provided.

Fig. 3  The architecture of a GRU model
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4.2  Chronological node encoder

4.2.1  Improved Gated Recurrent Unit (IGRU)

In TKG reasoning, the standard GRU is a robust model for handling dynamic changes. 
However, it has shortcomings such as limited capacity for long-term dependencies and high 
computational complexity (ArunKumar et al. 2022). To address these issues, the Improved 
Gated Recurrent Unit (IGRU) is proposed, incorporating the ELU activation function for 
better performance in TKG inference and simplifying the update and reset mechanisms to 
enhance long-range dependency capture. The IGRU architecture, depicted in Fig. 5, reduces 
computational complexity by replacing numerous multiplications with additions in each 
time step, resulting in more efficient inference for complex sequences.

The IGRU operates as follows:

a.	 Reset gate rt :

	 rt = ϑ (f ([xt; ht−1]))� (1)

Fig. 4  Illustration of the proposed ChronoBridge model for time inference t + 1  at timestamp
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where ϑ(·)  is a activation function, f (·) is a linear transformation,xt  is the input at the cur-
rent time step t, ht−1 is the hidden state from the previous time step, and [; ] denotes 
vector concatenation.

b.	 Update gate zt :

	 zt = ϑ (f ([xt; ht−1]))� (2)

c.	 Candidate hidden state h̃ :

	 h̃ = tanh (f ([xt; (rt � ht−1)]))� (3)

where �  is element-wise multiplication, tanh(·) is hyperbolic tangent activation function, 
which outputs values between -1 and 1.

d.	 Final hidden state ht :

	 ht = (1− zt)� ht−1 + zt � h̃ � (4)

Fig. 5  IGRU model architecture diagram
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4.2.2  Static attribute definition

In the context of TKG reasoning, static attributes provide a foundational framework for 
constructing static graphs, which are pivotal for encoding persistent relations among enti-
ties. These graphs are instrumental in supporting various reasoning tasks by offering a con-
sistent structure that underpins the dynamic nature of TKGs (Li et al. 2021). To leverage 
the informative power of static attributes, their incorporation into the recurrent encoding 
scheme is proposed. For example, within the ICEWS dataset (Ferreira et al. 2021), static 
representations are derived from entity names, which typically adhere to a structured format 
like "Entity Type (Country)." A novel update mechanism for these static graphs is proposed, 
encapsulated by the following formula:

	

�hsti = σ




∑

(rst,j)∈Es

Wrst
�hstj

|N (i)|



� (5)

where,�hsti  denotes the static attribute embedding for entity i, Wrst  is the relation-specific 
transformation matrix for the static graph, and Es  represents the set of static edges con-
nected to entity i. The normalization factor |N (i)|  is the cardinality of the neighborhood 
set of entity i, ensuring that the influence of the entity’s degree on its embedding is miti-
gated. The function σ(·) is an activation function, such as the sigmoid or hyperbolic tangent, 
which introduces non-linearity into the static attribute embeddings.

4.2.3  Encoding interdependencies among co-occurring events

Events occurring concurrently within a TKG often have intrinsic interdependencies that 
reflect complex relational structures. Capturing these interdependencies is crucial for a 
comprehensive understanding of the graph’s dynamics. To this end, an innovative encod-
ing strategy is proposed that leverages a multi-channel convolutional approach, extend-
ing beyond the capabilities of traditional GCN models like RE-GCN (Li et al. 2021). This 
approach allows for the simultaneous processing of multiple relations and the nuanced inte-
gration of their respective embeddings. The updated formula, which encapsulates the novel 
encoding strategy, is as follows:

	

�hl+1
o,t = σ




∑

(s,r,o)∈Ft

Ml
r ∗

(
�hls,t ◦ �hr,t

)


 � (6)

where, �hl+1
o,t  signifies the next-level embedding for the target entity o at time t. The convo-

lution operation ∗  is applied across the embeddings of source entities �hls,t  and their cor-
responding relation embeddings �hr,t , with a relation-specific convolutional filter Ml

r  that 
adapts to the relational context. The set Ft  represents the set of facts occurring at time t. 
The element-wise product ◦  ensures that the entity and relation embeddings are combined 
in a manner that preserves the unique characteristics of each relation. The activation func-
tion σ(·) is introduced to incorporate non-linearities into the learning process, enabling the 
model to capture complex patterns within the TKG.
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4.2.4  Sequential event patterns between adjacent facts

To capture the trends and preferences of entities, historical facts at adjacent time points are 
considered by the model. This holistic view allows for a better understanding of behavioral 
evolution. In the case of non-initial cycles, to avoid over-smoothing and vanishing gradient 
problems, a time-gated recurrent component is applied to each relation. This component 
dynamically manages relation information across timestamps, maintaining distinct relation 
representations. The formulae for these operations are as follows:

First, the entity matrix Ht−2 is combined with the static graph constraints and a random-
ization matrix R:

	 R′
t−2 = [R;Ht−2]� (7)

Then, the relation matrix Rt  at timestamp t is updated using IGRU and normalized:

	 Rt = Normalize
(
IGRU

(
R′

t−2,R
))

� (8)

For the time-gated component, the following is established:

	 Rt−1 =Ut ⊗ Rt−2 + (1 −Ut)⊗ R′
t−2 � (9)

	 Ut =θ
(
W1R′

t−2 + b1

)
� (10)

Finally, the entity matrix Ht−2 and the relation matrix Rt  are embedded into GCN, and 
the entity matrix Ht  at time t is updated using IGRU and normalization:

	 Ht = Normalize (IGRU (Ht−1,Ht−2))� (11)

4.3  Bridged feature fusion decoder

4.3.1  Self-Gated Recurrent Unit (Self-GRU)

Within the ChronoBridge framework, it is crucial that not only the features of entities and 
their relations, including those of adjacent entities and relations, are captured, but also 
the intrinsic features of the focal entity are extracted. Entities and relations are treated as 
sequences, and to more accurately extract their features, the Self-Gated Recurrent Unit 
(Self-GRU) is proposed? as shown in Fig. 6. The Self-GRU utilizes the sequence itself both 
as the current input and as the output from the previous timestep, building upon the IGRU 
model. Compared to IGRU, the Self-GRU is streamlined, shedding unnecessary contextual 
information to fully exploit the sequence’s inherent features. These enhancements enable 
the Self-GRU to extract more effective sequence features, proving highly effective in TKG 
reasoning tasks.

The data formula for the Self-GRU is as follows:

a.	 Reset gate rt :

1 3

Page 11 of 33  344



Q. Liu et al.

	 rt = ϑ(f ([xt; xt])) � (12)

where ϑ(·)  is the Exponential Linear Unit (ELU) activation function, f (·) is a linear trans-
formation, and [; ] denotes vector concatenation.

b.	 Update gate zt :

	 zt = ϑ(f ([xt; xt]))� (13)

The process for calculating zt  mirrors that of rt .
c.	 Candidate activation h̃ :

	 h̃ = tanh(f ([xt; (rt � xt)]))� (14)

where �  denotes element-wise multiplication.
d.	 Final output ht :

	 ht = (1− zt) · xt + zt · h̃ � (15)

4.3.2  Extraction and fusion of entity and relation features

In TKG reasoning, Multi-Layer Perceptrons (MLPs) can be leveraged for feature extraction 
of entities and relations. The MLP is adept at learning non-linear feature transformations 
and managing complex combinations of features. With backpropagation, the MLP adapts its 
parameters, enabling the model to discern data patterns and relations autonomously. Conse-

Fig. 6  Self-GRU model architecture diagram
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quently, MLPs are employed for feature extraction in TKGs, enhancing the modeling capa-
bilities for entities and relations. Concurrently, the novel Self-GRU algorithm is applied to 
further refine feature extraction, aiming to boost inference accuracy. Specifically, the dataset 
is traversed, compiling all unique timestamped subject entities into matrix s, relations into 
matrix r, and object entities into matrix o. These matrices are then processed by MLPs and 
Self-GRU to yield the final feature embeddings.

	 s1 =Self-GRU(MLP(f (U1 � s + c1)))� (16)

	 s2 =Self-GRU(MLP(f (U2 � s + c2)))� (17)

	 r1 =Self-GRU(MLP(f (U3 � r + c3)))� (18)

	 r2 =Self-GRU(MLP(f (U4 � r + c4)))� (19)

	 o1 =Self-GRU(MLP(f (U5 � o + c5)))� (20)

	 o2 =Self-GRU(MLP(f (U6 � o + c6)))� (21)

where, �  signifies the Hadamard product, and f (·) extracts the upper triangular part of the 
matrix to eliminate redundant information, easing the model’s computational load. Matrices 
U1 . . .U6 and vectors c1 . . . c6 are learnable parameters.Next, the features of entities and 
relations are fused. Concatenation not only combines different features into a comprehen-
sive tensor but also, when dealing with sequential data, aligns feature tensors over time to 
construct the input sequence. Hence, entity and relation features are concatenated for fusion.

	 F = [s1‖s2‖r1‖r2‖o1‖o2]� (22)

where ‖  denotes vector concatenation, and F is the fused feature matrix.

4.3.3  Building the feature fusion decoders

Having obtained the feature matrices for entities and relations, two feature fusion decoders, 
FConvTransE and FConvTransR, were devised to concurrently predict entities and rela-
tions. The decoders perform convolution operations on the composite embeddings-com-
prised of the entity embedding matrix Ht , relation embedding matrix Rt , and the fused 
feature matrix F-and then split the resulting composite representation.

	 EM = [F‖Ht‖Rt] � (23)

The convolution operation is calculated as follows:

	
convnc = convc(EM, n) =

K−1∑

i=0

wc · (EMi(n + i)) � (24)
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where c is the number of convolution kernels, K is the size of the kernels, n ranges from 
0 to d− 1, d is the dimensionality of the output vector, and wc  are the learnable kernel 
weights.Post convolution, the final feature output for FConvTransE is:

	 ζ(EM) = ReLU (vector(CONVFconv) · W) · Ho,t � (25)

where, vector denotes a feature mapping operation, and W ∈ Rcd×d  is a linear transforma-
tion matrix. FConvTransR computes scores similarly, substituting Rt  with Ho,t .

4.4  Score functions for entity and relation prediction tasks

In the ChronoBridge framework, the intricacies of temporal and relational data are modeled 
using Graph Convolutional Networks (GCNs), which are integrated into our decoder design 
to improve entity and relation predictions in TKGs.

For the entity prediction task, the FConvTransE decoder integrates a one-dimensional 
convolutional layer with a subsequent dense layer to process the features. Similarly, the 
FConvTransR decoder is structured for the relation prediction task. The score functions 
FConvTransE(.) and FConvTransR(.) correspond to these two-layered structures, respec-
tively. The probability vectors representing all possible entities and relations are computed 
as follows:

For entities:

	 �pe = σ (Ht · FConvTransE (�st, �rt,F))� (26)

For relations:

	 �pr = σ (Ht · FConvTransR (�st, �ot,F))� (27)

where, σ(·) denotes the sigmoid activation function, which maps the output to a probability 
distribution over entities and relations. The vectors �st , �rt , and �ot  represent the embeddings 
for subjects, relations, and objects at time t, extracted from the temporal entity embeddings 
Ht  and temporal relation embeddings Rt . Both FConvTransE(.) and FConvTransR(.) pro-
duce embeddings of dimensionality R1×d , where d is the embedding size.By leveraging 
these score functions, the model can predict the likelihood of a given entity or relation being 
the correct completion of a TKG triplet at a specific timestamp. This approach allows for a 
nuanced understanding of temporal dynamics in TKGs, providing a robust mechanism for 
reasoning over time-sensitive information.

4.5  Loss function

The ChronoBridge framework proposes innovative methodologies for predicting entities 
and relations by treating them as multi-label classification tasks with a temporal dimension. 
The vectors −−→xet+1 ∈ R|V |  and −−→xrt+1 ∈ R|R|  represent the multi-label aspect of the tasks at 
timestamp t + 1 , where elements are assigned a value of 1 for verified facts and 0 otherwise. 
The innovation in the loss function is its capacity to encompass both the temporal dynamics 
and the complexity of multi-label scenarios.
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The loss for entity prediction, Lentity , is reformulated to mirror the log probabilities of 
the accurate entities, given a source entity s, a relation r, and the historical embeddings up 
to time t, across all entities in the vocabulary:

	
Lentity =

T−1∑

t=0

∑

∀(s,r,o,t+1)∈Et+1

|V |−1∑

i=0

−−−→
xet+1,i · logPi (o|s, r,Rt,Ht,F) � (28)

In a similar vein, the loss for relation prediction, Lrelation , accounts for the log prob-
abilities of the correct relations, given the source and target entities as well as the historical 
backdrop:

	
Lrelation =

T−1∑

t=0

∑

∀(s,r,o,t+1)∈Et+1

|R|−1∑

i=0

−−−→
xrt+1,i · logPi (r|s, o,Rt,Ht,F)� (29)

where,Pi (o|s, r,Rt,Ht,F): The predicted probability of the target entity o, given the 
source entity s, relation r, the embeddings of relations up to time t (Rt ), historical embed-
dings (Ht ), and additional features (F). Pi (r|s, o,Rt,Ht,F): The predicted probability 
of the relation r, given the source entity s, target entity o, the embeddings of relations up 
to time t (Rt ), historical embeddings (Ht ), and additional features (F).Et+1: The set of 
confirmed facts at time t + 1 , each fact represented as a tuple (s, r, o, t+ 1) , where s is the 
source entity, r is the relation, and o is the target entity.The objective of the loss functions is 
to minimize the prediction errors for entities and relations while considering the dynamics 
over time and the intricacies of a multi-label context, thus enabling the model to account for 
the characteristics of temporal sequence data in its predictions.

This paper proposes a new mathematical formulation for the static graph constraint 
loss, aimed at penalizing large deviations in the embedding space while ensuring temporal 
consistency of the embeddings. The approach involves introducing a time-weighted loss 
function that penalizes the Euclidean distance between embeddings, allowing for a natural 
evolution of the embeddings over time. The formula is as follows:

	
Lstatic =

m∑

y=0

|V |−1∑

i=0

ω(y) ·
∥∥∥
−→
hsi −

−−−−−→
ht−m+y,i

∥∥∥
2

2
� (30)

where, ‖·‖2  denotes the Euclidean (L2) norm, and ω(y) is a time-decay function that can 
be defined to control how much change is allowed over time. For instance, ω(y) could be a 
decreasing function such as an exponential decay:

	 ω(y) = e−αy � (31)

where, α  is a hyperparameter that determines the rate of decay, allowing for more change in 
the embeddings as time progresses. This alternative loss function still captures the essence 
of penalizing large deviations in the embedding space, but does so in a way that is more 
aligned with traditional regularization techniques in machine learning.The total loss func-
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tion, Ltotal , as defined by the equation, represents an innovative approach to combining 
different aspects of a learning task. Here’s an in-depth explanation of each component:

	
Ltotal = λ1Lentity · exp(−αLrelation) + λ2

Lrelation

1 + βLstatic
+ λ3 sin(γLstatic)� (32)

The first term, λ1Lentity · exp(−αLrelation), captures the entity loss, Lentity , modulated 
by an exponential function of the relation loss, Lrelation . The weight λ1 is a hyperparam-
eter that determines the overall impact of the entity loss on the total loss. The exponential 
term, exp(−αLrelation), serves to dynamically scale down the entity loss as the relation loss 
increases, with α  controlling the sensitivity of this attenuation. This means that when the 
model is more confident about the relations within the data (i.e., Lrelation  is low), the entity 
loss has a stronger influence on the total loss.The second term, λ2

Lrelation
1+βLstatic

, represents the 
relation loss, Lrelation , adjusted by the static loss, Lstatic . The hyperparameter λ2 sets the 
weight of this term within the total loss. The relation loss is divided by a term that increases 
with the static loss, moderated by the hyperparameter β . This creates a conditional depen-
dency where the influence of the relation loss on the total loss is inversely related to the 
magnitude of the static loss. In other words, when the static loss is high, the contribution 
of the relation loss is scaled down, which could be useful if the static features’ correctness 
implies less concern about the relations.

The third term, λ3 sin(γLstatic), incorporates a sinusoidal modulation of the static loss, 
Lstatic . The amplitude of this term in the total loss is determined by the hyperparameter 
λ3. The sinusoidal function proposes a periodic characteristic to the impact of the static 
loss, with γ  adjusting the frequency of this periodicity. This term allows the influence of 
the static loss on the total loss to vary in a non-linear and potentially cyclic manner, which 
could be beneficial for capturing patterns that have a periodic nature in the static component 
of the data.

In this loss function, the hyperparameters λ1, λ2, and λ3 are crucial for balancing the 
different components according to their importance to the specific learning task. Adjusting 
these weights allows the model to prioritize different aspects of the data during training. The 
use of non-linear and conditional terms in the loss function is designed to capture complex 
dependencies and interactions between different types of losses, which could lead to more 
robust learning in complex domains. However, this complexity also requires careful tuning 
of the hyperparameters to ensure that the model does not overfit and can generalize well to 
unseen data.

The innovation in the logical flow of the loss function is the integration of temporal 
reasoning within a multi-task learning framework, which is particularly challenging due 
to the dynamic nature of TKGs. The proposed loss functions aim to cohesively capture the 
temporal evolution of entities and relations while respecting the inherent structure of the 
graph. This approach is expected to enhance the predictive performance of the Chrono-
Bridge framework by effectively leveraging temporal information and graph topology to 
inform the learning process.
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4.6  Computational complexity analysis

The ChronoBridge framework’s computational complexity is determined by the interplay 
of its chronological node encoder and bridged feature fusion decoder components. The 
encoder utilizes an Improved Gated Recurrent Unit (IGRU) with a per-timestep complex-
ity of O(dxdh + 2d2h + dh), aggregating to O(T (dxdh + 2d2h + dh))  over a sequence of 
length T. The decoder involves a Self-Gated Recurrent Unit (Self-GRU) and Multi-Layer 
Perceptrons (MLPs), with complexity depending on the layer sizes and feature dimen-
sions. The loss function adds complexity based on the number of entities |V|, relations |R|, 
edges |E|, and timestamps T. The overall framework complexity can be approximated as 
O
(
T (dxdh + 2d2h + dh) + ldindout + dfeatures + T |V ||E| + T |V ||R| +m|V |dh

)
, with 

the terms involving |V|, |R|, and T being potentially dominant due to their multiplicative 
nature. Practical optimizations may reduce actual computational load, but the theoretical 
complexity highlights scalability and potential performance constraints of the framework.

4.7  Algorithm steps

The complete detailed algorithm with all steps is shown below:

5  Experiments

In this section, we comprehensively evaluate the ChronoBridge framework, detailing data-
sets, metrics, baseline comparisons, and implementation nuances, culminating in a mul-
tifaceted analysis that includes entity and relation prediction performance, computational 
efficiency, and robustness across various scenarios and datasets, including a practical case 
study on taxi fare prediction and processing the latest ICEWS 2024 dataset.

Table 1  Summary of TKG datasets
Datasets |Entities| |Predicates| |Train| |Validation| |Test| Hourliness
ICEWS14s 6869 230 74,845 8514 7371 24
ICEWS18 23,033 256 373,018 45,955 49,545 24
ICEWS05-15 10,094 251 368,868 46,302 46,159 24
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5.1  Datasets

To accurately assess the performance of the ChronoBridge model, we evaluated our method 
on three public datasets, all sourced from the popular TKG resource ICEWS[32]. Table 1 
summarizes the basic statistics for these three datasets, and the details for each dataset are 
provided below:

	● ICEWS 14: This subset of the ICEWS resource, released by TA-DistMult (Zhu et al. 
2023), covers a short time span from January 1, 2014, to December 31, 2014, with daily 
granularity. It includes 7,128 distinct entities and 230 types of relations.

	● ICEWS 05-15: This is a long-range subset of the ICEWS resource, also released by 
TA-DistMult, and is nearly five times larger than ICEWS 14. It encompasses data from 
January 1, 2005, to December 31, 2015, with daily granularity, featuring 10,488 distinct 
entities and 251 types of relations.

	● ICEWS 18: Another short-range subset of the ICEWS resource, this dataset, released 
by xERTE (Han et al. 2020), covers the year 2018 with daily granularity. It contains 
23,033 distinct entities and 256 types of relations.

5.2  Evaluation metrics

In TKG reasoning, the Mean Reciprocal Rank (MRR) and Hits at ranks 1, 3, and 10 are criti-
cal metrics for assessing the accuracy of entity and relation predictions, as detailed in Li et 
al. (2021). The MRR is the average of the inverse ranks at which correct answers are found 
across all queries, with a higher score indicating a model that more frequently predicts cor-
rect answers at higher ranks. Hits at K, with K being either 1, 3, or 10, represents the propor-
tion of queries for which the model’s prediction is ranked within the top K positions, serving 
as a direct measure of the model’s precision in ranking correct answers at the very top.

In the experiment, we adopt MRR and Hits@1, 3, 10 as the evaluation metrics. The MRR 
and Hits@K are defined as follows:

	
MRR =

1

|G|
∑

(s,r,o,t)∈G

1

rank(s, r, o, t)� (33)

	
Hits@K =

1

|G|
∑

(s,r,o,t)∈G

int(rank(s, r, o, t) ≤ K)� (34)

Where rank(s, r, o, t) refers to the rank of the correct quadruple (s, r, o, t) in the prediction 
table, K = 1, 3, 10, int(.) is the indicator function.To validate ChronoBridge’s effective-
ness, it is contrasted with both static and TKG representation learning techniques. For static 
KG reasoning, the well-known RotatE (Sun et al. 2019) is opted for. In the realm of TKG 
inference, for interpolation scenarios, the established TA-DistMult  (Zhu et al. 2023) and 
HyTE (Dasgupta et al. 2018) are selected, while for extrapolation contexts, the notable RE-
GCN (Li et al. 2021) along with the cutting-edge TiRGN (Li et al. 2022b) and RETIA (Liu 
et al. 2023) are picked.
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5.3  Implementation details

In these experiments, the ChronoBridge framework was meticulously configured to opti-
mize reasoning over TKG. A hidden state dimension of 256 was set for the Improved Gated 
Recurrent Unit (IGRU) within the chronological node encoder for mid-sized datasets, lever-
aging the ELU activation function and initialized using the Xavier method. The learning 
rate was fixed at 0.001, with a decay factor of 0.96 being applied every 10,000 steps. Static 
attribute embeddings were uniformly randomized between [− 0.01, 0.01], and the relation-
specific transformation matrix was initialized via the He method, with non-linearity pro-
posed by the sigmoid function. Convolutional channels were matched to the count of unique 
relations, utilizing filters that were initialized using the He method and ReLU for activation. 
Hidden states within the bridged feature fusion decoder’s Self-Gated Recurrent Unit (Self-
GRU) were initialized between [− 0.05, 0.05], employing the ELU activation function, 
with a learning rate matching that of the encoder. Feature extraction was carried out by 
MLPs with two layers of 512 neurons each, and Hadamard product matrices were initialized 
between [− 0.1, 0.1], with bias vectors set to zero. FConvTransE and FConvTransR pro-
duced 128-dimensional embeddings, with scores mapped to probabilities using the sigmoid 
function. The loss functions were dictated by hyperparameters with α = 0.1, β = 0.01 , 
and γ = 0.001, featuring component weights of λ1 = 1 , λ2 = 0.5, and λ3 = 0.1. The time-
weighted loss function was set to decay exponentially at a rate of α = 0.01. Implementation 
of the framework was done in TensorFlow 2.x, utilizing the Adam optimizer with a batch 
size of 128 and incorporating early stopping after 10 epochs to counter overfitting. Dropout 
was applied at a rate of 0.2 to the MLP layers, with the training being limited to a maximum 
of 100 epochs. Optimal settings, including the historical lengths for various ICEWS datas-
ets and the learning rate adjustments via the cosine annealing algorithm, were determined 
through grid search and manual tuning. For FConvTransE and FConvTransR, 50 convolu-
tion kernels of size 2× 3  with a dropout rate of 0.2 were utilized. The hardware setup 
included a Precision 7920 Tower with 128 GB RAM and an Nvidia TITAN RTX graphics 
card, ensuring robust computational support for the experiments.

Table 2  Performance (in percentage) for the entity prediction task on ICESW14s and ICEWS05-15 with raw 
metrics
Models ICESW14s ICEWS05-15

MRR Hits@1 Hits@3 Hits@10 MRR Hits@1 Hits@3 Hits@10
RotatE [2019] 25.71 16.41 29.01 45.16 19.01 10.42 21.35 36.92
HyTE [2018] 16.78 2.13 24.84 43.94 16.05 6.53 20.20 34.72
TA-DistMult [2018] 26.22 16.83 29.72 45.83 27.51 17.57 31.46 47.32
RE-GCN [2021] 41.31 30.31 46.81 62.26 46.41 35.17 52.76 67.64
TiRGN [2022] 43.88 33.12 49.48 64.98 48.72 37.17 55.48 70.53
RETIA [2023] 45.29 34.60 50.88 66.06 52.17 40.21 59.42 73.98
ChronoBridge 52.01 42.63 57.00 69.83 71.62 65.13 75.71 83.33
The best scores are marked in bold, and the second-best scores are underscored to highlight their 
significance
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5.4  Performance comparison for entity prediction

Tables 2 and 3 highlights the comparative performance of various methods in the entity pre-
diction task, with the best scores marked in bold and the second-best underscored. Several 
key insights emerge from these results:

ChronoBridge significantly outperforms baseline models, taking the lead in the MRR 
metric across all datasets. It shows notable improvements over the conventional RE-GCN 
model, with MRR enhancements of 8.79%, 25.21%, and 6.19% on each dataset respec-
tively, particularly excelling with the ICEWS05-15 dataset. This dataset’s time-stamped 
events and comprehensive facts facilitate the capture of continuous event relations and the 
structural intricacies of knowledge graphs, aiding in the effective extraction of entity and 
relation features. While improvements on ICEWS18 are evident, they are less pronounced 
compared to ICEWS05-15, likely due to the latter’s broader temporal range, encompassing 
15 years of event data versus one year in ICEWS18, providing a richer source for analysis.

ChronoBridge significantly outperforms both classic models like RE-GCN and cutting-
edge models such as TiRGN and RETIA. It not only accounts for the influence of historical 
fact features on future predictions but also integrates an innovative component, the IGRU, 
for historical predictions. Its autoregressive modeling of KG sequences proves beneficial in 
identifying patterns across all facts. The newly proposed self-GRU plays a crucial role in 
extracting and fusing entity and relation features, which are then leveraged in the decoder for 
inference, fostering a comprehensive understanding of the facts and significantly enhancing 
prediction accuracy through deep mining and reasoning.

Table 3  Performance (in percentage) for the entity prediction task on ICEWS18 with raw metrics
Models MRR Hits@1 Hits@3 Hits@10
RotatE [2019] 14.53 6.47 15.78 31.86
HyTE [2018] 7.41 3.10 7.33 16.01
TA-DistMult [2018] 16.42 8.60 18.13 32.51
RE-GCN [2021] 30.55 20.00 34.73 51.46
TiRGN [2022] 32.06 21.08 6.75 53.62
RETIA [2023] 34.16 22.97 39.27 55.96
ChronoBridge 36.74 24.89 41.56 57.29
The best scores are marked in bold, and the second-best scores are underscored to highlight their 
significance

Table 4  Performance (in percentage) for the relation prediction task on ICESW14s, ICEWS05-15 and 
ICEWS18 with raw metrics
Models ICEWS14s ICEWS05-15 ICEWS18
RE-GCN [2021] 41.06 40.63 40.53
TiRGN [2022] 41.80 42.12 42.18
RETIA [2023] 47.63 46.70 46.59
ChronoBridge 63.78 80.01 48.27
The best scores are marked in bold, and the second-best scores are underscored to highlight their 
significance
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5.5  Performance comparison for relation prediction

Table 4 in the study presents a comparative analysis of various models on the relation pre-
diction task within TKGs, with ChronoBridge achieving the best performance metrics, nota-
bly in the Mean Reciprocal Rank (MRR). The table highlights the model’s outcomes in bold 
for the best performance and underlines the second-best, emphasizing the stark contrast 
with other models such as RE-GCN, TiRGN, and RETIA. Some models, like RE-NET and 
CyGNet, are deemed unsuitable for this task and are therefore excluded from the compari-
son. The improvements of ChronoBridge are particularly noteworthy against the RE-GCN 
model, with MRR gains of 22.72%, 39.38%, and 7.74% across various datasets.

The detailed analysis of why ChronoBridge outperforms others can be broken down into 
several key innovations and compatibilities with the ICEWS05-15 dataset: 

(1)	 Temporal Encoding: ChronoBridge’s advanced temporal encoding techniques are adept 
at capturing the dynamic nature of TKGs, understanding historical patterns, and pre-
dicting future trends, which are essential for relation prediction.

(2)	 Feature Fusion: The bridged feature fusion decoder in ChronoBridge goes beyond tra-
ditional models by integrating temporal and relational features, creating a richer repre-
sentation that more accurately captures the complexities of temporal relations.

(3)	 Self-GRU Algorithm: The innovative self-GRU algorithm is tailored for TKGs, outper-
forming traditional RNNs in maintaining sophisticated temporal states of entities and 
relations, which is vital for accurate predictions.

(4)	 Decoding Strategy: ChronoBridge’s decoding strategy avoids the information loss typi-
cal in other models during the decoding phase, ensuring that the rich features extracted 
and fused earlier are effectively utilized for more informed inferences, as seen in the 
improved MRR scores.

(5)	 Dataset Compatibility: The ICEWS05-15 dataset’s extensive event data and rich rela-
tional information provide an ideal testing ground for ChronoBridge’s capabilities. The 
model’s architecture is well-suited to leverage such datasets, contributing to its signifi-
cant performance improvement.

(6)	 Comparative Performance: ChronoBridge’s substantial improvements in MRR over 
classic models like RE-GCN and newer benchmarks like TiRGN and RETIA highlight 
its enhanced ability to capture temporal dynamics and provide a more robust represen-
tation of temporal knowledge.In summary, the superior performance of ChronoBridge 
as shown in Table 4 is attributed to its sophisticated temporal encoding, effective feature 
fusion, the introduction of a self-GRU algorithm, and a decoding strategy that ensures 
the comprehensive utilization of temporal and relational features. These innovations 
result in ChronoBridge’s distinct advantage for predicting relations within TKGs, lead-
ing to its outstanding results across all datasets, with particularly pronounced improve-
ments on the ICEWS05-15 dataset. Unlike most methods that focus solely on historical 
event features, ChronoBridge addresses the gap by thoroughly investigating the charac-
teristics of entities and relations from various angles and integrating these features into 
the decoding process, which is more conducive to generating accurate inferences and 
significantly enhancing prediction accuracy.
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5.6  Comparison of prediction time

This section focuses on the eficiency of the ChronoBridge model by comparing thepredic-
tion times, The aim is to assess how quickly the model can deliver predictionsin practical 
scenarios.

The exceptional time efficiency of the ChronoBridge model, as depicted in Fig. 7, can be 
attributed to its innovative design which streamlines the feature extraction process. Unlike 
the TiRGN model, which requires a comprehensive analysis of historical data to identify 
recurring entities and relations, ChronoBridge employs an optimized Incremental Gated 
Recurrent Unit (IGRU) that facilitates autoregressive modeling of historical KG sequences 
more effectively. This allows ChronoBridge to rapidly and accurately capture the dynam-
ics of entities and relations without the exhaustive data processing that TiRGN entails. 
Furthermore, while the RETIA model’s predictive accuracy benefits from its sophisticated 
hypergraph algorithm, this complexity also translates into greater computational demands, 
reducing its time efficiency. In contrast, ChronoBridge’s self-GRU algorithm simplifies the 
feature extraction while maintaining high predictive performance, significantly reducing 
the overall time complexity and enhancing the model’s operational efficiency. This strategic 
balance between complexity and efficiency is what enables ChronoBridge to maintain a 
competitive edge in both speed and accuracy within the realm of TKG reasoning.

5.7  Ablation study

To minimize discrepancies between training and testing and gain clearer insights into the 
impact of different components of the model, an ablation analysis was conducted.In these 
experiments, we systematically removed or replaced key components of the model to evalu-
ate their impact on overall performance. Specifically, we compared the performance differ-
ences between IGRU and self-GRU with propagation GRU, and analyzed how each of these 
algorithms, both individually and collectively, contributes to the model’s performance.Next, 
we will outline the design of our ablation study.

Our ablation study follows these steps: 

(1)	 Baseline model (GRU Only): Use the standard GRU as the encoder and decoder, 
referred to as GRU-Baseline.

Fig. 7  Comparison chart of prediction time
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(2)	 IGRU replacing GRU: Replace the standard GRU with IGRU while keeping all other 
model components unchanged, referred to as IGRU-Enhanced.

(3)	 self-GRU replacing GRU: Replace the standard GRU with self-GRU while keeping 
all other model components unchanged, referred to as self-GRU-Enhanced.

(4)	 Bridged feature fusion decoder: Add our bridged feature fusion decoder to the stan-
dard GRU model without using IGRU and self-GRU, referred to as BFFD-Added 
(bridged feature fusion decoder).

(5)	 Complete ChronoBridge model: The full model that includes IGRU, self-GRU, and 
the bridged feature fusion decoder, referred to as ChronoBridge-Complete.Each step is 
tested on the same dataset to ensure comparability of results.The results of the experi-
ments are presented in Tables 4 and 5, meticulously isolates the contribution of each 
component of the ChronoBridge model to the overall performance.Next, we will ana-
lyze the ablation studies for entity prediction and relation prediction separately.

(1)	 Entity prediction ablation study analysisIn the ablation study for entity prediction, we 
observed a step-by-step improvement from GRU-Baseline to ChronoBridge-Complete 
as evidenced in Table  5. The IGRU-Enhanced model showed a slight improvement 
over the GRU-Baseline across all datasets, which can be attributed to IGRU’s enhanced 
handling of temporal sequence data, capturing the changes in entity states over time. 
In addition, the self-GRU-Enhanced model performed slightly better than the IGRU-
Enhanced model, indicating the key role of the self-attention mechanism in the model, 
helping it to capture complex, time-spanning dependencies between entities.

With the addition of the bridged feature fusion decoder (BFFD-Added), we saw a significant 
leap in performance on the ICEWS05-15 dataset, suggesting that the feature fusion decoder 
is particularly effective when dealing with large amounts of historical information and data 

Table 5  Ablation studies on entity prediction
models ICEWS14s ICEWS05-15 ICEWS18
GRU-Baseline 41.31 46.41 30.55
IGRU-Enhanced 42.01 47.32 31.56
self-GRU-Enhanced 42.35 46.93 31.95
BFFD-Added 46.57 64.12 33.87
ChronoBridge-Complete 48.06 68.46 35.28
The best scores are marked in bold

Table 6  Ablation studies on relation prediction
models ICEWS14s ICEWS05-15 ICEWS18
GRU-Baseline 41.06 40.63 40.53
IGRU-Enhanced 42.23 43.69 42.21
self-GRU-Enhanced 42.62 43.52 41.79
BFFD-Added 55.89 72.24 46.08
ChronoBridge-Complete 58.23 75.29 48.23
The best scores are marked in bold
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spanning longer time frames. This is likely because the FFD is better at integrating features 
from different time points, thus providing the model with a richer context for predicting the 
current state of an entity. Ultimately, the ChronoBridge-Complete model achieved the high-
est performance across all datasets, reflecting the synergistic effect of IGRU, self-GRU, and 
the feature fusion decoder, complementing each other to provide a robust framework for 
comprehensively capturing and utilizing dynamic information in TKGs.

(2)	 Relation prediction ablation study analysisAs shown in Table 6, the ablation study results 
for relation prediction showed a similar trend, but with more significant improvements 
across different models. The enhancements seen with the IGRU-Enhanced and self-
GRU-Enhanced models in relation prediction underscore the importance of temporal 
awareness and capturing long-distance dependencies, although these effects were not 
as pronounced as in entity prediction. This may be due to the inherently more complex 
nature of relation prediction, which involves more interactions between entities.

The significant improvement with the bridged feature fusion decoder (BFFD-Added) in 
relation prediction, especially on large-scale datasets like ICEWS05-15, suggests that it 
provides an effective means of integrating complex interaction features between entities. 
This indicates that FFD is crucial for understanding and predicting how entities interact 
with each other at different time points. The exceptional performance of the ChronoBridge-
Complete model further proves the complementarity of the model components, combining 
the temporal awareness of IGRU, the long-distance dependency capture of self-GRU, and 
the feature fusion capability of FFD, to provide a comprehensive and powerful framework 
for relation prediction.

Overall, these ablation study results emphasize the importance of effectively integrat-
ing temporal sequence information, capturing long-term dependencies, and fusing complex 
features when designing models for TKG reasoning. The innovations in the ChronoBridge 
model have set a new standard for performance, offering valuable insights and potential 
directions for future research.

Fig. 8  Analysis results of sensitive parameters for entity prediction
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5.8  Sensitivity analysis

To understand how ChronoBridge adapts to various dataset categories, the responsiveness 
of its critical hyperparameters is examined. By adjusting these parameters, the performance 
changes of ChronoBridge on three datasets on ICEWS are analyzed.

It is observed from Figs. 8a to 9a that when the embedding dimension of the recurrent 
encoder is set to 200, the MRR of the three datasets reaches the optimal value. Should the 
embedding dimension become too large, improvements in MRR are no longer seen; simi-
larly, a too small embedding dimension also negatively impacts MRR. This suggests that 
embedding dimensions either too large or too small may affect the dependencies between 
events, thus affecting the training efficacy of the model.

According to Figs. 8b and 9b, the optimal history lengths for the three datasets ICE-
WS14s, ICEWS05-15, and ICEWS18 are identified to be 5, 10, and 6, respectively. An 
increase in event history length leads to better model performance. However, exceeding a 
certain history length threshold results in a decrease in MRR, and consequently, a decline in 
model performance. This reflects that the model’s performance is highly dependent on the 
duration of event history, highlighting the importance of selecting an appropriate length for 
historical events to accurately capture the temporal relations among them.

Ultimately, as depicted in Figs. 8c and 9c, it is apparent that when the learning rate is 
0.001, the MRR of the model reaches the optimal value. A higher learning rate accelerates 
parameter adjustments, yet it might cause fluctuations or a lack of stability; conversely, a 
lower learning rate results in more gradual updates to parameters. Hence, selecting a suit-
able learning rate is essential for sustaining enhancements in predictive precision. In addi-
tion, adjusting the learning rate can also avoid the common gradient explosion or gradient 
disappearance problems in deep learning, thereby improving the stability and accuracy of 
training. In summary, the selection of optimal hyperparameters is key not only for bolstering 
the stability and precision of the model’s training process but also for hastening its conver-
gence and augmenting its capacity to generalize.

Fig. 9  Analysis results of sensitive parameters for relation prediction
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5.9  Impact of training ratio

To thoroughly investigate how the proportion of training data influences the efficacy of the 
ChronoBridge framework, a range of experiments were performed, adjusting the quantity of 
training data in relation to the entire dataset. This examination aids in comprehending how 

Fig. 11  Performance analysis of different algorithm with training data variation for relation prediction 
task on ICESW14s, ICEWS05-15 and ICEWS18 with raw metrics

 

Fig. 10  Performance analysis of different algorithm with training data variation for entity prediction task 
on ICESW14s, ICEWS05-15 and ICEWS18 with raw metrics
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the model’s performance fluctuates with varying volumes of training data and offers insights 
for the distribution of data resources in real-world scenarios.

In the experiments, the training data ratio was set to 0.6, 0.7, 0.8, and 0.9, and the perfor-
mance of the ChronoBridge framework was compared with other algorithms under different 
training ratios. The most typical RE-GCN algorithm and the most advanced TiRGN and 
RETIA models were used for comparison.

Figures 10 and 11 illustrate that an incremental rise in the share of training data cor-
responds with an enhancement in the performance of each algorithm. However, Chrono-
Bridge consistently outperforms other algorithms at all training rates and reaches optimal 
performance at a training rate of 80%. These results carry significant weight in ascertaining 
the ideal quantity of training data necessary for attaining desirable outcomes and further aid 
in augmenting the model’s capacity to learn and generalize.

In real-world applications, the quantity and quality of training data are critical factors that 
significantly affect a model’s performance. A scarcity of training data can hinder the model’s 
ability to fully capture the characteristics of the data, resulting in inferior performance. Con-
versely, an excess of training data can bring in noise and superfluous details, which might 
compromise the model’s ability to generalize. Hence, selecting the right amount of training 
data is essential for various datasets and tasks.

Based on the aforementioned analysis, the subsequent conclusions can be deduced: The 
ratio of training data plays a crucial role in determining the performance of a model. As 
the proportion of training data increases, the performance of each algorithm improves. The 
ChronoBridge framework always outperforms other algorithms in entity prediction and rela-
tion prediction. Under different training ratios, ChronoBridge’s performance is better than 
the most typical RE-GCN algorithm and the most advanced TiRGN and RETIA models.

The ChronoBridge framework has good stability and generalization capabilities. Under 
different training ratios, the performance difference of ChronoBridge is small, indicating 
that the performance of the framework on different data sets is relatively stable. Choosing 
the appropriate proportion of training data is the key to improving model performance. By 
adjusting the proportion of training data, the best model performance can be obtained. In 
practical applications, the optimal training data ratio should be determined based on specific 
tasks and data sets.

Therefore, by studying the influence of training data volume proportion on the perfor-
mance of the ChronoBridge framework, it is found that ChronoBridge has excellent per-
formance in entity prediction and relation prediction. Furthermore, selecting the optimal 
ratio of training data is a critical element in enhancing model performance. These insights 
contribute to the advancement of the model’s learning and generalization abilities and offer 
direction for the distribution of data resources in real-world applications.

5.10  Case study

This section demonstrates the practical applications and effectiveness of ChronoBridge by 
illustrating its use in predicting taxi fares and processing the latest ICEWS 2024 data.
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5.10.1  Predicting taxi fare using ChronoBridge

The ChronoBridge algorithm stands out in its application to the New York City Taxi Trip 
Dataset (Huang et al. 2023), which includes a comprehensive collection of over 600 million 
taxi trips from 2009 to 2016. This dataset is rich with details such as the taxi provider’s ID, 
pickup and drop-off timings, locations, passenger count, trip distance, duration, and pay-
ment methods. For effective model training and evaluation, the data was divided into an 
80% training set, with the remaining 20% split equally for validation and testing.

ChronoBridge utilizes this data within a TKG, where timestamps are derived from pickup 
and drop-off times, and taxi fares are the target relations to predict. Taxi identifiers and trip 
details serve as the entities in the TKG. The algorithm’s Graph Convolutional Network 
framework is pivotal in structuring this data for the model.

Training ceases after 500 iterations, similar to ChronoBridge’s validation procedure, and 
each session requires 7–8 h on a high-performance Nvidia TITAN RTX GPU. Post-training, 
ChronoBridge can infer and predict fares in about 30 s, outpacing the previously leading 
algorithm in terms of efficiency.

ChronoBridge’s prediction accuracy is remarkable, with an MRR of 98.92%, and 
Hits@1, Hits@3, and Hits@10 at 98.72%, 99.87%, and 99.99%, respectively. These metrics 
reflect the algorithm’s adeptness at learning and encoding historical data patterns through its 
advanced gated recurrent units. Furthermore, the decoder’s ability to extract and fuse entity 
and relation features leads to a robust reasoning process.

In essence, ChronoBridge’s effectiveness in fare prediction enhances the taxi service 
experience by ensuring customer satisfaction and improving operational efficiency. The 
algorithm’s dual-component structure, which combines a sophisticated encoder with a pow-
erful decoder, allows for a deep understanding of temporal and relational data dynamics. 
This approach not only achieves high accuracy in predictions but also sets a new standard 
for real-time data processing in urban transportation and the broader field of smart city 
infrastructure.

5.10.2  Latest ICEWS 2024 data processing using ChronoBridge

To validate the ChronoBridge framework’s efficacy, the recurrent encoder’s capability to 
identify sequential data trends and the decoder’s adeptness in feature extraction and fusion 
were tested using data from March and April 2024, as depicted in Table  7 of the latest 
ICEWS dataset. The results, as indicated in the Answer section, align perfectly with real-
world outcomes, thus confirming the predictions made by ChronoBridge.

History at  
t− 2

History at t− 1 Query at t Answer

World Health 
Organization-
Global, Make a 
visit, China

World Health Or-
ganization Global, 
Make statement, 
China

China, Share 
intelligence or 
information?

World 
Health Or-
ganization 
Global

Ukraine, Host a 
visit, Moldova

Moldova? Military, 
Russia Slove-
nia, Praise or 
endorse,Ukraine

Russia? Retreat 
militarily,? 
or Russia?, 
Ukraine

Ukraine 
or Retreat 
militarily

Table 7  2024 latest ICEWS case 
studies. The first row is the case 
of entity prediction, and the last 
row is the case of entity predic-
tion and relation prediction
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In the first scenario, the encoder successfully deduced that the sequence of events (A, 
Make a visit, B, t− 2) followed by (A, Make statement, B, t− 1) would logically lead 
to (B, Share intelligence or information, A, t), exemplifying its proficiency in capturing 
and processing temporal patterns of facts. The second scenario further demonstrates the 
decoder’s sophistication, where it utilizes the context provided by (A, Host a visit, B, t− 2
), (B, Military, C, t− 1), and (D, Praise or endorse, A, t− 1) to not only predict the event 
(B, Retreat militarily, ?, t) but also to infer the nature of the relation between entities B and 
A at time t. This underscores the decoder’s logical reasoning in handling simultaneous fact 
dependencies.

The recurrent encoder in ChronoBridge, enhanced with an Improved Gated Recur-
rent Unit, is particularly adept at autoregressive modeling of historical knowledge graph 
sequences. This enables a more effective capture of factual sequence patterns. The decoder 
complements this by meticulously extracting and fusing features related to entity relations, 
thereby refining the accuracy of predictions.

In essence, the precision of ChronoBridge’s predictions demonstrates its substantial 
practical and application significance. It not only processes datasets with high accuracy but 
also provides insights into the temporal evolution of knowledge graphs, marking a signifi-
cant leap in the field of TKG reasoning. This underscores the potential of ChronoBridge 
to be a valuable tool for future applications requiring dynamic and accurate predictions of 
events based on historical data.

6  Discussion

In the discussion of the ChronoBridge framework, it is important to delve into the implica-
tions and potential areas for further exploration that stem from its innovative approach to 
TKG Reasoning.

Firstly, the use of an advanced recurrent neural network with a revamped Gated Recur-
rent Unit (GRU) in the chronological node encoder represents a significant technical 
enhancement. This allows for a more effective autoregressive modeling of historical knowl-
edge graph sequences, which is crucial for recognizing and encoding temporal patterns. The 
implications of this could be vast, potentially leading to improvements in other areas that 
require sequence prediction, such as natural language processing, financial forecasting, and 
even predictive healthcare.

Secondly, the bridged feature fusion decoder’s focus on entity and relation feature extrac-
tion and fusion is a strategic move away from traditional approaches that might neglect 
these aspects during the decoding phase. This could have important consequences for the 
development of reasoning systems that are more aligned with the way humans understand 
and interact with temporal information, suggesting that future systems could become more 
intuitive and context-aware.

Moreover, the holistic approach that ChronoBridge takes by integrating both temporal 
dynamics and entity-relation features could inspire new lines of research. For instance, it 
raises questions about the potential for cross-domain applications and whether the prin-
ciples of ChronoBridge could be adapted to other types of graphs or networks that are not 
strictly temporal in nature.

1 3

Page 29 of 33  344



Q. Liu et al.

The empirical validation of ChronoBridge against three real-world datasets and its dem-
onstrated improvements over baseline methods also opens up a discussion about the bench-
marks used in TKG reasoning. There may be a need to develop more comprehensive and 
challenging datasets that can better test the limits of such advanced frameworks and drive 
the field towards more innovative solutions.

Lastly, while ChronoBridge marks a substantial advancement, there are always limita-
tions and considerations for future work. For example, the computational complexity of the 
framework, its scalability to even larger datasets, and the interpretability of its reasoning 
processes are all areas that could benefit from further research. Additionally, exploring how 
ChronoBridge handles noisy, incomplete, or evolving data could also be a valuable direc-
tion, as real-world TKGs are often imperfect and subject to change.

In summary, the discussion around ChronoBridge touches upon its technical contribu-
tions, its potential impact beyond TKG reasoning, the need for better benchmarks in the 
field, and considerations for future research directions. The framework sets a new precedent 
in the field and offers a rich ground for future exploration and innovation.

7  Conclusion

In this paper, a novel ChronoBridge framework is proposed that incorporates a chronologi-
cal node encoder and a bridged feature fusion decoder, enhancing the model’s understand-
ing of temporal evolution and its ability to infer future events. This approach addresses 
issues of detail loss and inadequate prediction accuracy in reasoning processes.Additionally, 
two variants of Gated Recurrent Units (GRUs) are proposed: IGRU and self-GRU. These 
are utilized within the ChronoBridge framework to respectively tackle problems of complex 
sequence inference and long-term dependency capture. Extensive experiments validate the 
superiority of our method in extrapolating entity reasoning tasks. Looking ahead, several 
directions can be explored to further advance ChronoBridge in TKG reasoning. Firstly, 
exploring how to extend the framework to handle more complex temporal patterns and a 
wider variety of relations. Secondly, considering the integration of multimodal information 
such as text and image data to enrich the model’s input. Additionally, researching methods 
to optimize the framework’s efficiency and scalability to meet the reasoning demands of 
large-scale knowledge graphs.
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