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Abstract
We initiate the study of a novel problem in mechanism design without money, which we 
term Truthful Interval Covering (TIC). An instance of TIC consists of a set of agents each 
associated with an individual interval on a line, and the objective is to decide where to 
place a covering interval to minimize the total social or egalitarian cost of the agents, 
which is determined by the intersection of this interval with their individual ones. This 
fundamental problem can model situations of provisioning a public good, such as the use 
of power generators to prevent or mitigate load shedding in developing countries. In the 
strategic version of the problem, the agents wish to minimize their individual costs, and 
might misreport the position and/or length of their intervals to achieve that. Our goal is to 
design truthful mechanisms to prevent such strategic misreports and achieve good approxi-
mations to the best possible social or egalitarian cost. We consider the fundamental set-
ting of known intervals with equal lengths and provide tight bounds on the approximation 
ratios achieved by truthful deterministic mechanisms. For the social cost, we also design a 
randomized truthful mechanism that outperforms all possible deterministic ones. Finally, 
we highlight a plethora of natural extensions of our model for future work, as well as some 
natural limitations of those settings.

Keywords Mechanism design · Approximation · Interval covering

1 Introduction

We introduce the Truthful Interval Covering (TIC) problem, a novel problem in the field of 
mechanism design without money Procaccia and Tennenholtz [16]. In this problem, there 
is a set N of n agents, each of whom is associated with an interval Ii on the line of real 
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numbers. There is also a covering interval C, which should be placed somewhere on the 
line. The cost of agent i ∈ N is a function of the portion of Ii that C covers; in the simplest 
version of the problem, the cost is just the part of Ii that is not covered by C. The goal is to 
place the interval so as to minimize the social cost (total cost of the agents) or the max cost 
(maximum individual agent cost), while taking the incentives of the agents into account. 
Indeed, agents might misreport information about their intervals (e.g., their position or 
length) if that would lead to an outcome that is preferable for them.

The TIC problem captures applications in which a public good is provisioned and 
shared among a set of participants. We provide a few indicative of many examples below.

• The covering interval could represent the time interval during which a power genera-
tor can be operated, and the individual intervals capture the times during which each 
citizen would like to have access to electricity. The minimum-social cost solution is one 
that covers as much demand for electricity as possible. This is particularly relevant in 
developing countries where electricity might be a scarce resource, and can be used to 
prevent or mitigate the effects of load shedding.1

• The covering interval could correspond to the range of a public WiFi hotspot to be 
placed in an area with low broadband connectivity, when the agents’ intervals are the 
signal ranges of their devices.

• The covering interval could capture the time in which to schedule a university open-
day or a job fair, given the preferences of the potential attendees over the different time 
intervals in the day.

• The covering interval could be an express public transportation line connecting parts of 
a city or intercity network, and the agents express which parts of the route they would 
like this service to cover.

Despite its fundamental nature, and its resemblance to other classic algorithmic problems 
like the interval scheduling problem and its variants Kolen et al., [12], the interval cover-
ing problem has seemingly not been studied systematically from a purely algorithmic point 
of view. This can likely be attributed to the fact that the optimal covering can be found in 
polynomial time via a rather simple algorithm (see Theorem 2.3 in Sect. 2). Once we move 
to a mechanism design regime however, where the incentives of the agents for misresort-
ing come into effect, the problem becomes much more challenging. Truthful mechanisms, 
which eliminate those incentives, are necessarily suboptimal, and resort to approximations. 
Our goal is to design truthful mechanisms that achieve approximations that are as small as 
possible, and identify the limitations of such mechanisms via appropriate inapproximabil-
ity results.

1.1  Our contribution

In this paper, we introduce the Truthful Interval Covering (TIC) problem as a novel and 
interesting problem in mechanism design without money. Our technical contribution is as 
follows; see also Table 1 for an overview.

1 E.g., see https:// en. wikip edia. org/ wiki/ South_ Afric an_ energy_ crisis.

https://en.wikipedia.org/wiki/South_African_energy_crisis
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• We provide upper and lower bounds on the approximation ratio of truthful mechanisms 
for the most fundamental version of the problem, where all of the interval lengths are 
known and equal, which already turns out to be quite challenging.2 We start with the 
social cost objective and deterministic truthful mechanisms, for which, in Sect. 3, we 
prove a tight bound of 2 − 2∕n on the approximation ratio. In Sect. 4, we present a sim-
ple randomized, universally truthful mechanism that achieves an approximation ratio of 
5/3, thus outperforming all deterministic ones. In Sect. 5, we turn our attention to the 
max cost objective, for which we show a tight approximation ratio of 2 for determinis-
tic mechanisms, and a lower bound of 2 for a natural class of randomized mechanisms, 
thus showing that randomization might not be able to lead to improvements for this 
objective.

• We also consider two natural extensions of the main model in Sect. 6. In the first one, 
the agent intervals are assumed to be unknown, and thus the agents can misreport their 
starting positions as well as the lengths of their intervals. We show that no truthful 
mechanism can achieve a meaningful approximation ratio in terms of both the social 
and the max cost. In the second extension, we consider the case where the interval 
lengths are known but might be unequal. We show that a simple mechanism, which 
places the covering interval at the starting position of the agent with the maximum-
length interval is truthful and achieves a linear approximation ratio in terms of the 
social cost, and an approximation ratio of at most 2 for the max cost; the latter is best 
possible when the interval lengths are known (any might be equal or unequal).

In Sect.  7, we present and discuss several other interesting variants of the main model, 
which capture a wealth of different possible application domains. We believe that there is 
great potential for follow-up work, and the problem could enjoy similar success as other 
problems within the research agenda of mechanism design without money, such as truthful 
facility location Chan et al. [6], Procaccia and Tennenholtz [16], truthful resource alloca-
tion Krysta et al. [13], Filos-Ratsikas et al. [9], Abebe et al. [1], or impartial selection Alon 
et al. [2], Fischer and Klimm [10], Bjelde et al. [4].

Table 1  An overview of our bounds on the approximation ratio of truthful mechanisms for the different set-
tings and social objectives that we consider

Here, n is the number of agents, and unbounded means that there is no truthful mechanism with finite 
approximation ratio. The results marked with ⋆ hold for randomized truthful mechanisms that are convex 
combinations of statistic mechanisms

Social cost Max cost

Deterministic Randomized Deterministic Randomized

Known, equal 2 [3∕2⋆, 5∕3] 2 2⋆

Known, unequal n 2
Unknown Unbounded Unbounded Unbounded Unbounded

2 This setting captures important restricted versions of the applications we discussed above. For example, 
every citizen might be asked to report a single, say 1-hour, time slot during which they would like to have 
access to electricity; similarly, each participant of a university open day might be asked to report their most-
preferred fixed-time slot within a day that they would like for the event to take place.
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1.2  Related work and discussion

The research agenda of approximate mechanism design without money was put forward by 
Procaccia and Tennenholtz [16] and aims to capture settings involving selfish participants, in 
which truthful mechanisms are used to optimize a social objective. These mechanisms are 
compared, via their approximation ratio, against the performance of the best-possible out-
come, which would be achievable if the participants were not selfish. The prototypical prob-
lem in this field is that of truthful facility location, which has flourished into an extremely 
fruitful research area, giving rise to a plethora of works on several different variants; see the 
survey of Chan et al. [6] for details, and the related work discussion in Procaccia and Tennen-
holtz, [16] for earlier references.

Our setting is markedly different from facility location, where the cost of an agent depends 
on the distance from the location of the facility. In contrast, in our case, the cost of an agent 
is a function of how much her associated interval is covered. Still, there are some conceptual 
similarities between the two problems, namely in terms of the truthful mechanisms employed 
to achieve the approximation guarantees. In particular, similarly to the literature of facility 
location, we also employ mechanisms that are based around k-th ordered statistics (e.g., the 
median) of the agents’ reports. These are in fact not particular to facility location, but more 
generally centered around the concept of single-peaked preferences Black, [5],Moulin, [15]. 
Despite this superficial connection, the proofs for the performance of these mechanisms are 
very much different in the TIC problem; it is worth mentioning that, contrary to the setting of 
Procaccia and Tennenholtz, [16], in TIC these mechanisms provably do not admit social-cost 
minimizing outcomes.

Another related problem is that of strategyproof activity scheduling studied by Xu et al. 
[18], in which an activity (represented by an interval) is to be placed on a line based on the 
preferences of self-interested agents. Despite the superficial similarity, this setting is again 
notably different from ours; in activity scheduling, each agent reports a single point and her 
cost is the distance from the closest endpoint of the activity interval. This makes the problem 
much closer to facility location rather than our covering problem. The work of Bei et al. [3] 
on truthful cake sharing is also related to our paper. In contrast to our model, where the agents 
report their intervals on the line and have costs for the chosen covering interval, in the cake 
cutting model of Bei et al., [3], the agents report piecewise uniform utilities over a cake (repre-
sented as a fixed-size interval) and the objective is to choose an interval of certain length that 
they will all share.

From a purely algorithmic point of view (without incentives), problems related to inter-
vals (like scheduling or coloring) are rather fundamental and included in most textbooks on 
algorithms, e.g., see Kleinberg and Tardos, [11],Roughgarden, [17]. As we mentioned earlier, 
the algorithmic variant of TIC admits an easy polynomial-time algorithm, and the problem 
becomes challenging once studied under the mechanism design regime.

Finally, we remark that the term “truthful interval cover” has been used before in the litera-
ture for mechanisms with money for solving a crowdsourcing problem, where agents bid for 
intervals of tasks that they are willing to get; see Dayama et al., [7],Markakis et al., [14]. This 
model is completely different compared to the one we propose and study here, and, thus, we 
do not expect any ambiguity between our problem and theirs.
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2  The setting

In the Truthful Interval Covering (TIC) problem, there is a set N of n agents, each 
associated with an interval Ii = [si, ti] on the line of real numbers. There is also a 
covering interval C = [s, t] whose position needs to be determined. We focus on the 
most fundamental version of the problem, in which the interval lengths are all known 
and equal, i.e., |Ii| = |Ij| = |C| for any agents i, j ∈ N . Given this, we can assume without 
loss of generality that |Ii| = 1 for any i ∈ N and |C| = 1 . Let I = (I1, I2,… , In) be the 
vector of the agents’ intervals, to which we refer to as an instance. Without loss of 
generality, we assume that for any two agents i, j ∈ N with i < j , si ≤ sj , i.e., the intervals 
in I  appear in non-decreasing order of left endpoints. Using this, we may refer to an 
agent i being before or after another agent if i < j or i > j , respectively. We will also say 
that an agent i is before or after a point x if si ≤ x or si > x.

Given a position for the covering interval C, the cost of an agent i ∈ N is the part of 
her interval Ii that does not overlap with C, i.e.,

The social cost of C is the total cost of all agents:

The max cost of C is the maximum cost over all agents:

When the objective (social or max cost) is clear from context, for any instance I  , we will 
use O(I) to denote the covering interval that minimizes the objective for instance for I  ; 
when I  is also clear from context, we will simply write O.

A deterministic mechanism M takes as input an instance I  and outputs the position 
of a covering interval M(I) , i.e., the position s ∈ ℝ of the left endpoint of the covering 
interval. We also consider randomized mechanisms, which, instead of a single position, 
output a probability distribution DM(I) over possible positions of the covering interval.

The approximation ratio of M in terms of an objective f ∈ {SC,MC} is the worst-
case ratio of the objective value of the covering interval computed by M over the small-
est possible objective value achieved by any covering interval, over all instances of the 
problem:

For randomized mechanisms, the definition is very similar, with the only difference that the 
expected objective value �M(I)∼DM(I)[f (M(I))] appears in the numerator.

The term “Truthful” in the name of the TIC problem comes from the fact that the 
information about the intervals is not public knowledge, but has to be elicited from the 
agents. The agents are self-interested entities who might misreport this information if 
that results in them achieving a smaller cost. In the setting we consider, since the interval 
lengths are all 1, the elicited information is the position of the interval of each agent i ∈ N , 

costi(C) = |Ii ⧵ (Ii ∩ C)| = 1 − |Ii ∩ C|.

SC(C) =
∑

i

costi(C).

MC(C) = max
i

costi(C).

sup


f ( ())
minC f (C)

.
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i.e., the left endpoint si ∈ ℝ of Ii . For simplicity, we say that each agent reports her interval 
Ii rather than si.

A mechanism M is said to be truthful if it does not incentivize the agents to misreport 
their intervals, that is, for every agent i and every possible interval I′

i
 that the agent could 

report,

where I−i is the vector I  without the i-th coordinate.
For randomized mechanisms, the definition of truthfulness extends to truthfulness in 

expectation, which stipulates that no agent can decrease her expected cost by deviating. In 
our positive results, we will actually use a stronger truthfulness guarantee called universal 
truthfulness. A mechanism is universally truthful if it is truthful for any realization of truth-
fulness, i.e., Inequality (1) holds for any M(I) ∼ DM(I).

Our goal in this paper is to design truthful mechanisms (either deterministic truthful or 
universally truthful) with approximation ratios as close to 1 as possible. To achieve this, we 
focus on the following class of mechanisms, called k-ordered statistics.

Definition 2.1 [k-ordered statistic] For k ∈ [n] , the k-ordered statistic mechanism M out-
puts the interval reported by the k-th ordered agent i in instance I  , i.e., M(I) = Ii.

For example, for k = ⌊n∕2⌋ , the k-ordered statistic mechanism outputs exactly the inter-
val reported by the median agent. k-ordered statistic mechanisms (as well as their convex 
combinations) are well-known to be truthful in other contexts, e.g., see [8, 15]. We prove 
that, for similar reasons, any k-ordered statistic mechanism is truthful in our setting.

Theorem 2.2 For any k ∈ [n] , the k-ordered statistic mechanism is truthful. Furthermore, 
any convex combination over k-ordered statistic mechanisms is universally truthful.

Proof Let M be the k-ordered statistic mechanism outputs the interval of the k-th ordered 
agent i. Clearly, agent i has cost 0 as her interval is completely covered. Consider the �-th 
ordered agent j with � < k ; the case � > k is essentially symmetric. If j reports any position 
s′
j
< si , then the outcome of the mechanism will not change. If j reports some position s′j ≥ si , 

then the mechanism will place the covering interval so that it starts at some position x ≥ si , 
which cannot decrease the cost of j as it is farther from j’s true interval. Hence, j has not 
incentive to misreport and the mechanism is truthful.

Finally, observe that, since any k-th ordered statistic mechanism is truthful, any convex 
combination of such mechanisms is universally truthful by definition.   ◻

Before we proceed with the design of truthful mechanisms, we state and prove the fol-
lowing statement, which establishes that the purely algorithmic version of the problem, 
without any regard to agent incentives, can be solved in polynomial time with respect to the 
social cost and the max cost. We refer to this problem as the Interval CoverIng Problem.

Theorem 2.3 The social cost-minimizing position and the max cost-minimizing position for 
the covering interval in the Interval CoverIng Problem can be computed in linear time.

Proof For the social cost, let S be the set of left and right endpoints of the intervals of 
all agents. We will prove that the social cost-minimizing position of the covering interval 

(1)costi(M(I)) ≤ costi(M(I�
i
, I−i))
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starts or ends at a point in S. From that, it follows that the optimal covering interval can 
be computed in linear time by simply checking all the points of S. Suppose that there is an 
instance in which the optimal position of the covering interval does not start or end at some 
point of S. Let L and R be the sets of agents whose rightmost and leftmost endpoints are 
covered by this interval, respectively; so any agent of L starts before the interval, any agent 
of R starts after the interval, and all of them have positive intersection with the interval. 
Clearly, either |L| ≥ |R| or |R| > |L| . If |L| ≥ |R| , we can shift the interval towards the left 
until we meet the rightmost endpoint of one of the agents in L. As we do this, the social 
cost decreases due to increasing the intersection with the agents of L at least as much as 
it increases due to decreasing the intersection with the agents of R, and thus the this new 
interval must also be optimal. The case |R| > |L| is similar with the only difference that the 
interval can be moved towards the right.

For the max cost, the max cost-minimizing position of the covering interval is 
(s

�
+ sr)∕2 , where s

�
 and sr are the starting positions of the leftmost and the rightmost 

agent intervals. Clearly, if the optimal interval starts at some position smaller than s
�
 or 

larger than sr , then the interval that starts at exactly s
�
 or exactly sr , respectively, leads to at 

most the same max cost and is thus optimal as well. Now, suppose that the optimal interval 
starts at a position (s

�
+ sr)∕2 + x for some x > 0 ; the case x < 0 is symmetric. Then, the 

max cost is equal to the cost of the leftmost agent, which is equal to min{1, (sr − s
�
) + x} . 

Consequently, the cost is minimized for x = 0 .   ◻

3  Social cost: deterministic mechanisms

We start by showing bounds on the approximation ratio of deterministic truthful mecha-
nisms for the social cost. As mentioned in Sect. 1.1, for this case we obtain a tight bound 
of 2 − 2∕n on the approximation ratio achievable by any such mechanism. The mechanism 
that achieves this bound is the medIan mechanism, the k-ordered statistic mechanism with 
k = ⌊n∕2⌋ (see Definition 2.1). Similar mechanisms (that choose the reported action of the 
median agents) have played a prominent role in other domains in mechanism design with-
out money [6]. However, as we mentioned earlier, the nature of our problem is different 
from those, and hence the proof is also rather different.

Theorem 3.1 The medIan mechanism achieves an approximation ratio of 2 − 2

n
 for the TIC 

problem.

Proof Consider an arbitrary instance. Let m be the median agent so that Im = [sm, tm] is the 
unit-size interval that is chosen by the mechanism. Let O = [so, to] be the optimal unit-size 
interval. Without loss of generality, we can assume that so ≥ sm and that n is even. Let 
x ∈ [0, 1] be the length of the intersection Im ∩ O = [so, tm] between the interval chosen by 
the mechanism and the optimal interval. Let L be the set of n∕2 − 1 agent at the left of m, 
M the set of agents between m and so , and R the set of agents at the right of so ; note that 
|M ∪ R| = n∕2 . Clearly, the maximum cost of the mechanism is n and the minimum opti-
mal cost is 0. We make the following observations:



 Autonomous Agents and Multi-Agent Systems           (2024) 38:41    41  Page 8 of 25

• The median agent decreases the cost of the mechanism by 1 and increases the optimal 
cost by 1 − x (the part of the median interval that the optimal solution does not cover).

• Any agent i ∈ L such that |Ii ∩ [so, tm]| = 0 increases the optimal cost by 1; let A be the 
set of all such agents.

• Any agent i ∈ L such that |Ii ∩ [so, tm]| = xi > 0 decreases the cost of the mechanism 
by at least 1 − x + xi and increases the optimal cost by least 1 − xi (since the interval 
of i starts before sm but reaches so ); let B be the set of all such agents.

• Any agent i ∈ M decreases the cost of the mechanism by at least x.
• Any agent i ∈ R such that |Ii ∩ [so, tm] = xi > 0 decreases the cost of the mechanism 

by some length xi ∈ [0, x] and increases the optimal cost by 1 − xi − (1 − x) = x − xi ; 
let Γ be the set of all such agents.

• Any agent i ∈ R such that |Ii ∩ [so, tm]| = 0 increases the optimal cost by at least x; let 
Δ be the set of all such agents.

Hence, we have

 So, the approximation ratio is at most

Since the ratio is at least 1 (by definition), it is an increasing function in terms of ∑
i∈B xi ≤ �B�x and it terms of 

∑
i∈Γ xi ≤ �Γ�x , and is thus at most

Since |A| + |B| + 1 = n∕2 and |M| + |Γ| + |Δ| = n∕2 , we further obtain

This is a decreasing function in terms of |Δ| ≥ 0 , and is thus at most

This is a decreasing function in terms of |B| ≥ 0 , and is thus at most

Finally, this is a decreasing function in terms of x and thus attains its maximum value of 
2 − 2∕n when x = 0 .   ◻

Next, we present a lower bound for deterministic truthful mechanisms that matches 
the upper bound of Theorem 3.1. Before we do so though, we will provide a structural 

SC(Im) ≤ n − 1 − |B|(1 − x) −
∑

i∈B

xi − |M|x −
∑

i∈Γ

xi

SC(O) ≥ 1 − x + |A| + |B| −
∑

i∈B

xi + |Γ|x −
∑

i∈Γ

xi + |Δ|x.

n − 1 − �B�(1 − x) −
∑

i∈B xi − �M�x −∑
i∈Γ xi

1 − x + �A� + �B� −∑
i∈B xi + �Γ�x −∑

i∈Γ xi + �Δ�x
.

n − 1 − |B| − (|M| + |Γ|)x
1 − x + |A| + |B|(1 − x) + |Δ|x .

n − 1 − |B| − (n∕2) ⋅ x + |Δ|x
n∕2 − x − |B|x + |Δ|x .

n − 1 − |B| − (n∕2) ⋅ x

n∕2 − x − |B|x .

n − 1 − (n∕2) ⋅ x

n∕2 − x
.
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property of any deterministic truthful mechanism. This property will be repeatedly used 
in order to prove the lower bound.

Lemma 3.2 Consider a deterministic truthful mechanism M , an instance I  , and an 
agent i such that Ii ∩M(I) ≠ ∅ . In addition, consider the instance I� = (I�

i
, I−i) , where 

I�
i
∩ Ii ∩M(I) ≠ ∅ , and let M(I�) be the location of the covering interval in I′ under 

mechanism M . Then, it must hold that I�
i
∩M(I�) ≠ ∅.

Proof Assume by contradiction that for the instance I
′ it holds that I�

i
∩ I� = ∅ . 

Thus, on instance I′ agent i incurs a cost of 1. In this case though, agent i could report 
Ii as their true interval, which would force the mechanism to locate the covering inter-
val at M(I) . This in turn implies that agent i incurs cost strictly less than 1, since 
I�
i
∩ Ii ∩M(I) ≠ ∅ ⇒ I�

i
∩M(I) ≠ ∅ .   ◻

Theorem  3.3 Let M be any deterministic truthful mechanism. Then the approximation 
ratio of M is at least 2 − 2

n
.

Proof Let M be any deterministic truthful mechanism. At a high level, the proof will con-
struct a series of instances and will use the truthfulness of M to argue about the possible 
positions of the covering interval on each one of those instances.

The starting point is the following instance 
0
 , with two groups of agents: group 

G0 contains n
2
 agents with Ii = [0, 1] for all i ∈ G0 and group G1 contains n

2
 agents with 

Ii = [n, n + 1] for all i ∈ G1 . Without loss of generality, we will assume that on instance 
I
0 , mechanism M locates the covering interval [a0, b0] such that it covers some part of 

the intervals of the agents from cluster G0 ; the other case is symmetric. Observe here 
that throughout the proof it is without loss of generality to assume that the covering 
interval always covers a strictly positive part of an agent; if this was not the case, 
then the optimal cost would be n/2 while the mechanism would achieve cost of n and 
thus it would be 2-approximate. In addition, again without loss of generality, we will 
assume that 0 ≤ a0 ≤ 1 . Observe that since the covering interval has length 1, then it 
cannot cover any agent from cluster G1.

The proof will construct a sequence of families of instances  0, 1, 2,… , k  , 
where k ≤ n∕2 − 1 , which will guarantee that, on any instance in any of these families: 

(a) mechanism M cannot place the covering interval and cover (part of) the cluster of 
agents located at [n, n + 1];

(b) mechanism M can move the covering interval only to the right of its position in the 
previous instance and never to the left;

(c) the maximum approximation ratio that mechanism M can achieve will strictly decrease, 
compared to the previous family.

Before we present the formal argument, we define some notation that will make the expo-
sition more clear. For every instance I  , let X(I) = {i ∈ [n] ∶ Ii ∩M(I) ≠ ∅} , i.e., the 
set X(I) contains the agents that have a non-empty intersection with the covering interval 
M(I).

We will prove by induction that for every family  k  with k ∈ {0,… ,
n

2
− 1} and 

every instance  ∈  k  the following two conditions are satisfied. 
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1. The left endpoint of M(I) is in [k, k + 1].
2. On instance  ∈  k , due to truthfulness, mechanism M is able to cover a total mass of 

at most n∕2 − k , for a social cost of at least n − (n∕2 − k) = n∕2 + k , while the optimal 
social cost will remain the same, equal to n/2. Hence, when the argument reaches family 


n
2−1 , i.e., when k = n∕2 − 1 , the social cost of M becomes at least n − 1 , leading to an 

approximation ratio of 2 − 2∕n . For a visual representation of instance  ∈ 
n
2−1 , see 

the right-hand side of Fig. 1.

Now we are ready to complete the proof. Observe that by assumption Conditions 1 and 
2 above hold for I0 , so they hold for the base case,  0 , of our induction. For the induc-
tion step, assume that Conditions 1 and 2 hold for instance  ∈  k , for some k ≤ n∕2 − 1 . 
Hence, we have that the left endpoint of M(I) is in [k, k + 1] and that M(I) intersects with 
at most n∕2 − k agents, formally, |X(I)| ≤ n∕2 − k.

In what follows, without loss of generality we will assume that |X(I)| > 1 ; if |X( )| ≤ 1 , 
then M(I) has zero intersection with the intervals of at least n − 1 agents, and hence has 
a social cost of at least n − 1 . The optimal cost is n/2, and hence M has an approximation 
ratio of at least 2 − 2∕n and we are done.

Given the above, we can pick a “rightmost” agent i ∈ X(I) with interval Ii = [si, ti] , i.e., 
an agent i such that ti ≥ ti′ for all i� ∈ X(I) . We define instance I� = (I�

i
, I−i) as follows, 

where left(I�) and right(I�) denote the left and right endpoints of interval I′ respectively.

• If left(M(I)) < ti < right(M(I)) , then I�
i
= [ti, ti + 1].

• If ti ≥ right(M(I)) , then I�
i
= [right(M(I)) − �, right(M(I)) − � + 1] , where 𝛿 > 0 is 

an arbitrarily small quantity.

Fig. 1  The two worst-case instances for the UnIform-StatIStIC mechanism. In each figure there are some 
singleton agents and a group of agents whose intervals overal (these are depicted as a shaded rectangle)
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Observe that in both cases we have that Ii ∩ I�
i
∩M(I) ≠ ∅ . Thus, from Lemma 3.2 and 

due to the truthfulness of mechanism M , it must hold that I�
i
∩M(I�) ≠ ∅ . We distinguish 

between three cases.

• left(M(I�)) < k + 1 and |X(I�)| > 1 . Then, we create a new instance I′′ as before; for-
mally, we set I = I

� and X(I) = X(I�) and we choose an agent from X(I) to move.
• left(M(I�)) < k + 1 and |X(I�)| = 1 . Then, as we have argued above, the approximation 

ratio of mechanism M is 2 − 2∕n.
• left(M(I�)) ∈ [k + 1, k + 2] . In this case, it holds that I� ∈ J

k+1 . Observe that since 
we have assumed that |X(I)| > 1 and that since we have created instance I′ by moving 
the “rightmost” interval of X(I) , it should hold that |X(I�)| ≤ |X(I)| − 1 ≤

n

2
− k − 1 , 

where for the last inequality we have used the induction hypothesis.

This completes the induction step and thus it completes the proof.   ◻

4  Social cost: randomized mechanisms

In this section, we turn our focus to randomized mechanism for the social cost. We present 
a simple randomized, universally truthful mechanism that achieves an approximation ratio 
of 5/3, thus outperforming all deterministic truthful mechanisms. In particular, we consider 
the following mechanism, which we coin UnIform-StatIStIC:

Definition 4.1 [UnIform-StatIStIC] Let � be the (n/3)-th leftmost agent, m be the median 
agent, and r be the (2n/3)-th leftmost agent. The mechanism places the covering interval at 
the starting position of each of {�,m, r} with probability 1/3.

The mechanism is a convex combination of k-ordered statistics, and hence by Theo-
rem 2.2, it is universally truthful. What remains is to bound its approximation ratio, estab-
lished by the following theorem.

Theorem 4.2 The approximation of UnIform-StatIStIC is at most 5/3.

Proof We will show that any arbitrary instance can be transformed into one of the follow-
ing two possible worst-cases instances (up to symmetries), by appropriately moving the 
agents so that the approximation ratio of the mechanism does not decrease.

• WCI1: The first instance is such that there are (approximately) 2n/3 agents grouped 
together, while the remaining n/3 agents are all singletons without any intersection with 
any other agent. The optimal interval completely covers the group of 2n/3 agents for a 
social cost of n/3. The output of the mechanism coincides with the optimal with proba-
bility 2/3 (due to agents � and m, or agents m and r), and has social cost (approxi-
mately) n with probability 1/3 when it chooses a singleton. So, the approximation ratio 
is 2∕3 + 1

3
⋅

n

n∕3
= 5∕3 . See Fig. 1a.

• WCI2: The second instance is such that there are n/2 singleton agents (including m) 
without any intersection with any other agent, while the remaining n/2 agents are 
grouped together. Here, the optimal interval completely covers n/2 agents for a social 
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cost of n/2. The output of the mechanism coincides with the optimal with probability 
1/3 (due to agent r, or agent � ) and has cost (approximately) n with probability 2/3 
when it chooses a singleton. So, the approximation ratio is 1∕3 + 2

3
⋅

n

n∕2
= 5∕3 . See 

Fig. 1b.

In the initial arbitrary instance, there is an optimal position of the covering interval. 
All transformations that we will do will be such that the approximation ratio does not 
decrease (i.e., does not get better) in terms of keeping the same optimal interval. Of 
course, the optimal position for the interval might be different for different instance. 
However, if for two instances I  and I′ we show that

then, since SC(O(I)) ≥ SC(O(I�)) , we can also conclude that

Given this, when we refer to the optimal interval O in the rest of the proof, we refer to the 
optimal position of the interval in the initial instance.

For any agent i ∈ N , let xi ∈ [0, 1] denote the length of the intersection between Ii 
and the optimal interval. The next lemma shows that in many cases, we can move agents 
towards the optimal interval or away from it.

Lemma 4.3 Consider any agent i ∉ {�,m, r} . We can obtain an instance with not-better 
approximation ratio by moving agent i

(a) towards the optimal interval (up to not changing the order of the agents) if xi > 0

(b) towards the optimal interval (up to not changing the order of the agents) if xi = 0 and 
no j ∈ {�,m, r} is inbetween i and the optimal interval;

(c) away from the optimal interval (up to not changing the order of the agents) if xi = 0 
and the intersection between i and any j ∈ {�,m, r} does not increase.

Proof 

(a) If xi > 0 , then moving the interval of i towards the optimal interval increases the 
intersection of i with O and thus decreases the optimal social cost. The intersection 
with any j ∈ {�,m, r} may increase or decrease. If the intersection decreases, then the 
social cost of the mechanism decreases. If the intersection increases, then it increases 
with the same rate as the intersection of i with O, and since each j ∈ {�,m, r} is con-
sidered with probability 1/3, the total decrease in the social cost of the mechanism is 
at most the decrease in the optimal social cost, leading to an instance with not-better 
approximation ratio.

(b) If xi = 0 and no j ∈ {�,m, r} is inbetween i and the optimal interval, then moving i 
towards the optimal interval increases the intersection of i with O. Until i and O meet, 
this move does not increasing the intersection between i with any j ∈ {�,m, r} . After i 
and O meet, this move can increase the intersection between i and j at most as much as 

SC(M(I))

SC(O(I))
≤

SC(M(I�))

SC(O(I))
,

SC(M(I))

SC(O(I))
≤

SC(M(I�))

SC(O(I�))
.
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the increase of the intersection between i and O. Overall, this leads to a new instance 
with not-better approximation ratio.

(c) If xi = 0 and there is some j ∈ {�,m, r} is inbetween i and the optimal interval, then 
moving the interval of i away from the optimal interval does not change the contribu-
tion of i to the optimal social cost, which is the maximum possible. If this move does 
not increase the intersection with the interval of any j ∈ {�,m, r} , then the social cost 
of the mechanism does not decrease (it may increase), and thus the new instance has 
not-better approximation ratio.

  ◻

We will also use the following observation.

Lemma 4.4 In a worst-case instance, x
�
> 0 or xr > 0.

Proof If x
�
= 0 and xr = 0 , then the optimal interval has no intersection with at least 2n/3 

agents. Since the social cost of the mechanism is at most n, this would lead to an approxi-
mation ratio of at most 3/2.   ◻

We now partition the agents in N ⧵ {�,m, r} into four sets according to the order of 
their starting positions as follows:

• A includes the agents before �;
• B includes the agents inbetween � and m;
• C includes the agents inbetween m and r;
• D includes the agents after r.

Note that |A| = |D| = n∕3 and |B| = |C| = n∕6 . Without loss of generality, we can 
assume that the optimal interval starts weakly to the right of the starting position sm of 
m, i.e., sm ≥ so . We will consider two main cases depending on the relative positions of 
the optimal interval and the interval of agent r, i.e., whether sr ≤ so or so < sr . In each 
case, we will distinguish between further subcases depending on whether the optimal 
interval intersects with the intervals of � , m, and r.

Case 1: s
�
≤ sm ≤ sr ≤ so . We first argue that the interval of any agent i ∈ D coincides 

with the optimal interval in a worst-case instance. By Lemma 4.4, since so ≥ sr , it has 
to be the case that xr > 0 and also there is no j ∈ {�,m, r} inbetween any agent i ∈ D 
and O. Therefore, by Lemma 4.3, moving each agent i ∈ D (with xi > 0 or xi = 0 ) to the 
optimal interval leads to an instance with not-better approximation ratio.

Case 1.1: x
�
> 0 . Due to the order of the starting positions of � , m, r, and O, x

�
> 0 

implies that xi > 0 for every i ∈ N ⧵ A . By Lemma 4.3, we can move all the agents of 
B ∪ C towards the optimal as long as the order of the agents does not change, which 
means that all agents of B can be moved to coincide with m and all agents of C can 
be moved to coincide with r. Again by Lemma 4.3, we can move any agent i ∈ A with 
xi > 0 to coincide with � and we can move any agent i ∈ A with xi = 0 away from the 
optimal towards the left as a singleton. Let A

�
⊆ A be the subset of agents of A that can 

be moved to coincide with � . We now make the following transformations:



 Autonomous Agents and Multi-Agent Systems           (2024) 38:41    41  Page 14 of 25

• All agents of C ∪ {r} can be moved to O. When this is done, the optimal social cost 
decreases by n

6
(1 − xr) . The social cost of the mechanism does not decrease at all due 

to m or � since the agents of C ∪ {r} move away from m and � . The social cost of the 
mechanism decreases by 1

3
⋅
n

3
(1 − xr) due to the new intersection of r with the agents 

of D which are all exactly at O. Hence, the optimal social cost decreases by more 
than what the social cost of the mechanism can decrease, and thus the approximation 
ratio of the new instance is not smaller.

• All agents of A
�
∪ {�} can be moved away from O as singletons. When this is 

done, the optimal social cost increases by |A
�
|x

�
 . The social cost of the mechanism 

increases by at least 1
3
|A

�
| due to � (who covers completely the agents of A

�
 and 

will have no intersection with them after the move), at least 1
3
|A� |x�  due to m (who 

intersects by at least x
�
 with any agent of A

�
 since sm ≤ so ), and 1

3
|A� |x�  due to r (who 

coincides with O). So, the overall increase of the social cost of the mechanism is at 
least as much of the increase of the optimal social cost, leading to a new instance 
with approximation ratio that is at least as large.

Given the above properties, the optimal social cost is

whereas the social cost of the mechanism is

leading to an approximation ratio of

since xm ≥ 1 . This essentially implies that all agents of B ∪ {m} can be moved to the opti-
mal interval, leading to WCI1.

Case 1.2: x
�
= 0 . Note here that the case where xm > 0 is already covered by Case 

1.1: There, we concluded that the worst-case is when x
�
 is essentially 0. So, it suf-

fices to consider the case where xm = 0 . By Lemma  4.3, we can move all agents of 
A ∪ {�} ∪ B ∪ {m} away from the optimal interval to the left as singletons. We can also 
move every agent i ∈ C with xi > 0 to r, and every agent i ∈ C with xi = 0 as singleton 
to the left. Let Cr ⊆ C ∪ {r} be the set of agents that coincide with r, and thus have inter-
section xr with O. The optimal social cost is

whereas the social cost of the mechanism is

leading to an approximation ratio of

n

3
+

n

6
(1 − xm),

1

3
n +

1

3

(
n

3
+

n

2
(1 − xm)

)
+

1

3

(
n

3
+

n

6
(1 − xm)

)
,

1

3
+

1 +
1

3
+

1

2
(1 − xm)

1 +
1

2
(1 − xm)

=
4

3
+

1

3
⋅

2

3 − xm
≤

5

3
,

n

2
+ |C ⧵ Cr| + |Cr|(1 − xr),

2

3
n +

1

3

(
n

2
+ |C ⧵ Cr| +

n

3
(1 − xr)

)
,
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This is a monotone function of xr and hence it attains its maximum value either for xr = 0 
or xr = 1 . It is not hard to see that for xr = 0 the bound would be at most 6/5 (as then the 
optimal social cost would be 6n/5), whereas for xr = 1 , since |C ⧵ Cr| ≥ 0 , the approxima-
tion ratio is

Observe that this case has led to WCI2.

Case 2: s
�
≤ sm ≤ so < sr . We now first argue that the interval of any agent i ∈ C coincides 

with the optimal interval in a worst-case instance. Observe that there is no j ∈ {�,m, r} 
inbetween any agent i ∈ C and O. Hence, by Lemma 4.3, moving each agent i ∈ C (with 
xi > 0 or xi = 0 ) to the optimal interval leads to an instance with not-better approximation 
ratio.

Case 2.1: x
�
> 0 and xr > 0 . Due to the order of the starting positions of � , m, and r, we 

have that xi > 0 for every i ∈ B ∪ {m} . By Lemma 4.3, we can move any agent i ∈ A with 
xi > 0 to � , any agent i ∈ A with xi = 0 as a singleton to the left, all agents of B to m, any 
agent i ∈ D with xi > 0 to r, and any agent i ∈ D with xi = 0 as a singleton to the right. 
Let A

�
⊆ A and Dr ⊆ D be the subsets of A and D that are moved to � and r, respectively. 

Given all these, we have the following.

• None of � , m, and r cover the agents of A ⧵ A
�
 and of D ⧵ Dr.

• Agent � has intersection at least x
�
 with any agent of B ∪ {m} ∪ C.

• Agent m covers completely the agents of B, has intersection at least x
�
 with any 

agent of A
�
∪ {�} , intersection of length xm with the agents of C, and intersection 

max{0, xm + xr − 1} with the agents of Dr ∪ {r}.
• Agent r covers completely the agents of Dr , has intersection max{0, xm + xr − 1} with 

the agents of B ∪ {m} , and intersection xr with the agents of C.

Putting everything together, the social cost of the mechanism is at most

The optimal social cost is

2

3
n +

1

3

(
n

2
+ |C ⧵ Cr| +

n

3
(1 − xr)

)

n

2
+ |C ⧵ Cr| + |Cr|(1 − xr)

.

2

3
n +

1

3

(
n

2
+ |C ⧵ Cr|

)

n

2
+ |C ⧵ Cr|

≤

2

3
n +

1

3

n

2
n

2

= 5∕3.

|A ⧵ A
𝓁
| + |D ⧵ Dr| +

1

3
⋅

(
n

3
+ |A

𝓁
|
)
(1 − x

𝓁
)

+
1

3
⋅
n

6
(2 − xm − xr)

+
1

3
⋅ (|B| + |Dr|)(1 −max{0, xm + xr − 1})

)
.
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The implied upper bound on the approximation ratio is a multivariate function of x
�
 , xr , xm 

that is monotone in each of these variables. Consequently, its maximum value is attained at 
the extreme values of these variables, i.e., when x

�
, xr, xm ∈ {0, 1} , subject to the constraint 

x
�
≤ xm . It is not hard to verify that the combinations (0, 1, 1), (0, 0, 1), (1, 1, 0) are the 

worst and all lead to the upper bound of 5/3 (with an extra step of optimization in terms of 
sizes of A

�
 and Dr once the values of x

�
 and xr have been settled) and that they correspond 

to symmetric versions of WCI1 and WCI2.

Case 2.2:  x
�
= 0 . By Lemma 4.4, it has to be the case that xr > 0 . Clearly, by Lemma 4.3, 

we can move all agents of A ∪ {�} as singletons away from the optimal to the left. We con-
sider two subcases now.

Case 2.2.1:  xm = 0 . Again by Lemma 4.3, we can move all agents of B ∪ {m} as singletons 
away from the optimal interval to the left, any agent i ∈ D with xi > 0 to r, and any agent 
i ∈ D with xi = 0 as a singleton to the right. Let Dr ⊆ D be the subset of D that is moved to 
r. The social cost of the mechanism is

The optimal social cost is

The approximation ratio is a monotone function in terms of xr and attains its maximum 
value for either xr = 0 or xr = 1 . For xr = 0 , the approximation ratio would be at most 6/5 
(since then the optimal cost would be at least 5n/6), whereas for xr = 1 , the approximation 
ratio is

where the inequality follows since |D ⧵ Dr| ≥ 0 . Observe that this is instance WCI2.

Case 2.2.2:  xm > 0 . By Lemma 4.3, we can move any agent i ∈ B with xi > 0 to m, any 
agent i ∈ B with xi = 0 as a singleton to the left, any agent i ∈ D with xi > 0 to r, and any 
agent i ∈ D with xi = 0 as a singleton to the right. Let Bm ⊆ B and Dr ⊆ D be the subsets 
of B and D that are moved to m and r, respectively. The social cost of the mechanism is at 
least

|A ⧵ A
�
| + |A

�
|(1 − x

�
)

+
n

6
(1 − xm) + |Dr|(1 − xr) + |D ⧵ Dr|.

2

3
n +

1

3

(
n

2
+ |D ⧵ Dr| +

n

6
(1 − xr)

)
.

n

2
+ |D ⧵ Dr| + |Dr|(1 − xr).

2

3
n +

1

3
⋅
n

2
+

1

3
|D ⧵ Dr|

n

2
+ |D ⧵ Dr|

≤
5

3
,
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 The optimal social cost is

Again, the approximation ratio is a monotone function in each of xm and xr , and so it attains 
its maximum value for xm, xr ∈ {0, 1} . It is not hard to verify that the worst are the combi-
nations (1, 1) and (0, 1), leading to WCI1 and WCI2, for which the bound is 5/3.

  ◻

We complement the aforementioned positive result with a lower bound of 3/2 on the 
approximation ratio of any randomized truthful mechanism that is a convex combination of 
k-ordered statistic mechanisms.

Theorem  4.5 The approximation ratio of any convex combination of k-ordered statistic 
mechanisms is at least 3/2.

Proof Let p be the total probability with which any of the first n/2 agents is chosen; hence, 
1 − p is the total probability with which any of the remaining n/2 is chosen. Without loss of 
generality, p ≥ 1∕2 . Now, consider an instance in which the first n/2 agents are singletons, 
whereas the other n/2 agents are all grouped together. The optimal social cost is exactly 
n/2, while the expected social cost of the mechanism is p ⋅ n + (1 − p) ⋅ n∕2 , since with 
probability p we choose some of the first n/2 agents leading to social cost n and with prob-
ability 1 − p we choose some the last n/2 agents leading to the optimal social cost of n/2. 
Therefore, the approximation ratio is 1 + p ≥ 3∕2 .   ◻

5  Max cost

In this section, we focus on the max cost and show that the best possible approximation 
ratio of any deterministic mechanism is 2, and this is achieved by any k-ordered statistic 
mechanism.

Theorem 5.1 For the max cost, the approximation ratio of any k-ordered statistic mecha-
nism is at most 2.

Proof Consider an arbitrary instance and any k-Statistic mechanism. The max cost of the 
solution computed by the mechanism as well that of the optimal solution depend on how 
close the intervals of the leftmost and rightmost agents are. We consider the following 
cases:

• If the intervals of the leftmost and the rightmost agents are disjoint and the distance 
between them is at least 1, then the max cost of the mechanism and the optimal max 
cost are both 1; hence, the mechanism is optimal.

n

3
+

1

3

(
n

3
+ |B ⧵ Bm| +

n

6
(1 − xm) + |D ⧵ Dr| + |Dr|(1 − xr)

)

+
1

3

(
n

3
+ |B ⧵ Bm| + |Bm|(1 − xm) +

n

6
(1 − xr) + |D ⧵ Dr|

)
.

n

3
+ |B ⧵ Bm| + |Br|(1 − xm) + |D ⧵ Dr| + |Dr|(1 − xr).
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• If the intervals of the leftmost and the rightmost agents are disjoint and the distance 
between them is equal to 1 − x for some x ∈ (0, 1) , then the optimal interval can cover 
x/2 of each of these two agents (and any other agent inbetween them), leading to an 
optimal max cost of 1 − x∕2 ≥ 1∕2 . Since the max cost of the mechanism is again 1, 
the approximation ratio is at most 2 in this case.

• If the interval of the leftmost and the rightmost agents have an overlap of x < 1 , then 
the max cost of the mechanism is 1 − x . The optimal solution can cover x + y from each 
of the two agents, where y is such that x + 2y = 1 ⇔ y =

1−x

2
 , leading to an optimal max 

cost of 1 − x − y =
1−x

2
 . Hence, the approximation ratio is 2.

Overall, in any case, the approximation ratio is at most 2.   ◻

Next, we show that there is no better deterministic truthful mechanism.

Theorem 5.2 For the max cost, the approximation ratio of any deterministic truthful mech-
anism is at least 2 − 1

k
 , for any k > 0.

Proof In order to prove our theorem we will produce a sequence of instances with two 
agents – Left agent and Right agent – such that the approximation ratio of any determin-
istic truthful mechanism will be monotonically increasing and tend to 2. The high level 
idea is that at every iteration of the sequence, either Left agent moves � to the left, or Right 
agent moves � to the right; at the same time though, due to truthfulness the mechanism can 
either (a) follow the agent that moves and lose a “large” fraction of the other agent that 
optimal solution covers, or (b) do not follow the agent that moves and thus lose a fraction 
of the agent that is covered by the optimal solution.

Formally, we will prove our claim by induction where at instance Ik the optimal 
solution has cost k⋅�

2
 , while any deterministic truthful mechanism achieves cost at least 

(k − 1) ⋅ � +
�

2
 . The initial instance I1 consists of two agents – Left agent with interval Il

1
 

and Right agent with interval Ir
1
 – whose intervals have overlap 1 − 2� , i.e. 

|Il1 ∩ Ir1| = 1 − 2� 
and thus |Il

1
∪ Ir

1
| = 1 + 2� . Let S1 be the solution some deterministic mechanism chooses 

and assume that S1 is better than 2-approximate. Observe that at least �
2
 from the interval 

of some agent must be uncovered; formally either |Il
1
∩ S1| ≤ 1 −

�

2
 or |Ir

1
∩ S1| ≤ 1 −

�

2
 . 

In order to create I2 we pick the agent that is covered the least by the mechanism and 
move his interval by � ; to keep notation simple, for every interval I = [a, b] we denote 
I + � = [a + �, b + �] and I − � = [a − �, b − �].

• If 
|Il1 ∩ S1| ≤ 1 − �

2
 , then we create I2 by moving Left agent by � to the left, i.e., 

we set Il2: = Il1 − � , and Ir
2
∶= Ir

1
 . The optimal solution achieves cost � . Let S2 be the 

solution of the mechanism on I2 . Observe that due to truthfulness, it must hold 
that |Il

1
∩ S2| ≤ 1 −

�

2
 ; otherwise Left agent could misreport and decrease his cost. 

Hence, there are two possibilities for S2 . (a) it moves to left of S1 . Then, since 
|Il
1
∩ S2| ≤ 1 −

�

2
 , it must hold that |Ir

2
∩ S2| ≤ 1 −

3�

2
 . (b) it moves (weakly) to the 

right of S1 . Then, it is true that 
|Il2 ∩ S2| ≤ 1 − 3�

2
 . in any case the mechanism achieves 

approximation 3�
2
∕� =

3

2
.

• Else, we create I2 by moving Right agent by � to the right, i.e., Ir
2
∶= Ir

1
+ � , and 

Il
2
∶= Il

1
 . Then, the optimal cost is � and due to truthfulness, it must hold that 

|Ir
1
∩ S2| ≤ 1 −

�

2
 . Using identical arguments as before we can prove that no matter 

how the mechanism will choose S2 , the approximation will be at least 3/2.
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For the induction step, assume that we have instance Ik where: |Il
k
∩ Ir

k
| = 1 − 2k ⋅ � 

and that solution Sk of the truthful deterministic mechanism satisfies either 
|Il
k
∩ Sk| ≤ 1 − (k − 1) ⋅ � −

�

2
 or |Ir

k
∩ Sk| ≤ 1 − (k − 1) ⋅ � −

�

2
 ; this can be ensured 

by creating Ik form Ik−1 by continuously moving the interval of an agent until one 
of the two conditions is satisfied, since if the mechanism does not achieve any of 
the above then it will achieve approximation ratio strictly larger than 2. Observe 
that the cost of the optimal solution is k⋅�

2
 . Without loss of generality, assume that 

|Il
k
∩ Sk| ≤ 1 − (k − 1) ⋅ � −

�

2
.

Now we will explain how to get instance Ik+1 . Without loss of generality, assume that 
|Ilk ∩ Sk| ≤ 1 − (k − 1) ⋅ � − �

2
 . We will move left agent � to the left. Hence, we set Il

k+1
∶= Il

k
− � 

and Irk+1: = Irk . This means that |Il
k+1

∩ Ir
k+1

| = 1 − 2(k + 1) ⋅ � . So, the cost of the optimal 
solution is (k+1)⋅�

2
 . Let Sk+1 be the solution that the deterministic mechanism chooses for 

Ik+1 . Due to truthfulness, it must be true that |Il
k
∩ Sk+1| ≤ 1 − (k − 1) ⋅ � −

�

2
 . Using the 

above and the exact same arguments as in the base case, it must be true that either 
|Il
k+1

∩ Sk+1| ≤ 1 − k ⋅ � −
�

2
 (when the mechanism does not move the solution to the left), 

or 
|Irk+1 ∩ Sk+1| ≤ 1 − k ⋅ � − �

2
 (when the mechanism does move the solution to the left). Thus, in 

any case, the approximation ratio of the mechanism is bounded by 
k⋅�+

�

2
(k+1)⋅�

2

= 2 −
1

k
 .   ◻

Our next result shows that no randomized mechanism that is a convex combination of 
k-ordered mechanism can achieve an approximation ratio better than 2.

Theorem 5.3 For the max cost, the approximation ratio of any mechanism that is a convex 
combination of k-ordered mechanisms is at least 2.

Proof Consider any mechanism that is a convex combination of k-ordered statistic mecha-
nisms, and the following instance: Half of the agents have the interval [0, 1] and the other 
half of the agents have the interval [1, 2]. For this instance, the interval is either places at 
0 (with total probability equal to the probability assigned to all (k,  0)-mechanisms with 
k ≤ n∕2 ) or 1 (with total probability equal to the probability assigned to all (k, 0)-mecha-
nisms with k > n∕2 ). Hence, the expected max cost is 1. On the other hand, the optimal 
solution is to place the interval at 1/2 to cover half of the interval of each agent for a max 
cost of 1/2, thus leading to an approximation ratio of 2.   ◻

6  Two natural extensions

Our results so far concerned the case of known intervals of equal length and settled the 
problem for deterministic truthful mechanisms, while the best possible approximation ratio 
for randomized mechanisms is still to be determined. We now present two very natural 
extensions of the main model which could be better fitted to several of the potential appli-
cations of the problem. In particular, we first consider the setting where the lengths of the 
agent intervals are private information; for this model, it turns out that meaningful approxi-
mations and truthfulness are incompatible. Second, we consider the case where the lengths 
of the agent interval are known but unequal; for this, we show that a finite approximation 
ratio is possible for the social cost, and we also identify the best possible mechanism for 
the max cost.
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6.1  Unknown interval lengths

In general, it seems natural to assume that the length of the agent intervals, as well as 
their positions, could constitute reported information. In this case, however, we prove stark 
impossibilities for the social cost and the max cost. In particular, we show that there are no 
truthful mechanisms with finite approximation ratio.

Theorem  6.1 For the social cost, when the lengths of the intervals are unknown, the 
approximation ratio of any randomized truthful in expectation mechanism is Ω(1∕�) , for 
any � ∈ (0, 1).

Proof To begin with, we will prove the lower bound for any deterministic mechanism M 
and then explain how we can suitably augment the idea in order to get the bound for rand-
omized mechanisms. Consider an instance I  with two agents, where the leftmost agent is 
associated with the interval I1 = [0, 1] and the rightmost agent is associated with the inter-
val I2 = [3, 3 + �] . In addition, assume that the covering interval C has length 1; clearly 
C can have a non-zero intersection with at most one of the agents’ intervals. Given I  , M 
must locate C such that it intersects [0,  1]; otherwise, its approximation ratio would be 
larger than 1

�
 . In fact, it has to be the case that |C ∩ [0, 1]| > 𝜀 . Without loss of generality, 

we can assume that 0 ∈ C ; that is, C covers the left-agent from the left. Now, consider the 
instance I′ , where the left-agent has the interval [0, �2] while the right-agent still has the 
interval [3, 3 + �] . Here, the optimal cost is �2 , achieved when the right-agent is completely 
covered. Observe that, since |C ∩ [0, 1]| > 𝜀 and 0 ∈ C , [0, �2] is contained in the cover-
ing interval of the mechanism for instance I  . We argue that, due to truthfulness, M has to 
locate C at I′ such that [0, 𝜀2] ⊂ C as well; otherwise, the left-agent could declare [0, 1] as 
her interval, lead to I  , and thus get cost 0. Hence, when given instance I′ as input, mecha-
nism M achieves cost � , and its approximation ratio is �

�2
=

1

�
.

Next, we show an asymptotic bound for randomizes mechanisms. Let M be 
any randomized, truthful in expectation mechanism. We will prove that M is Ω( 1

�
)

-approximate, for any � ∈ (0, 1) . Our starting point is instance I  presented above. Observe 
that the minimum social cost on I  is � . Let p be the total probability with which M 
chooses a covering interval that has non-zero intersection with [0, 1] (observe that this is 
not necessarily a single interval, but rather a collection of intervals j, each chosen with a 
probability pj , with 

∑
j pj = p ). If p <

1

2
 , the expected social cost of M is at least 1/2 (since 

with probability at least 1/2 it has zero intersection with [0, 1]), and thus the approximation 
ratio is at least 1∕2� . So, let us focus on the case where p ≥ 1∕2 . Observe that at least one 
of the intervals [0, �] and [1 − �, 1] has to be covered with probability at least p∕2 ≥ 1∕4 . 
To see this, observe that the covering interval cannot intersect with the “inner” interval 
[�, 1 − �] without covering at least one of the two above-mentioned intervals. So, if both 
intervals are covered with probability smaller than 1/4 each, we get that the cost of M is 
at least 1 + � and thus its approximation ratio is at least 1∕� . Without loss of generality 
assume that the interval [0, �] is covered with probability at least 1/4. Now, consider the 
instance I′ where the leftmost agent is associated with the interval [0, �2] . Clearly, the 
optimal cost for this instance is �2 . We claim that the mechanism should cover the interval 
[0, �2] with probability at least 1/4. To see this, observe that if this was not the case, then 
the leftmost agent could declare the interval [0, 1] instead and decrease her cost. Hence, 
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given instance I′ , the cost of M is at least 1
4
� +

1

4
�
2 which implies that the approximation 

ratio of M for I′ is at least 1∕4� . This concludes the proof.   ◻

Theorem 6.2 For the max cost, when the lengths of the intervals are unknown, the approxi-
mation ratio of randomized truthful in expectation mechanism is Ω(1∕�) , for any � ∈ (0, 1).

Proof We will show the bound for all mechanisms using the following two instances: 
Instance I consists of two agents that are associated with the intervals [0, 1] and [�, 1 + �] . 
Instance J is the same as I with the difference that the first agent now has the interval [0, �2] . 
We first present the argument for deterministic mechanisms, and then for randomized ones.

Deterministic mechanisms. Clearly, the optimal max cost in I is � , achieved by completely 
covering one of the agents. Let C be the interval chosen by an arbitrary deterministic 
mechanism when given I as input. The mechanism must cover at least a fraction 1/2 of the 
intervals of both agents since otherwise the approximation ratio would be at least 1∕(2�) . 
Since the mechanism covers at least 1/2 of each agent and |C| = 1 , it must be the case that 
either [0, 𝜀] ⊂ C or [1, 1 + 𝜀] ⊂ C . Without loss of generality, suppose that [0, 𝜀] ⊂ C.

Now consider instance J. The mechanism must place the interval C in J such that 
[0, 𝜀2] ⊂ C ; otherwise, the first agent would have incentive to misreport her interval as 
[0, 1], thus leading to instance I, in which the mechanisms places the interval so that the 
entire interval [0, �2] of the agent is covered. Consequently, the max cost of the mechanism 
is at least � , since it is not possible to cover more that 1 − � of the interval of the second 
agent. However, the optimal max cost in J is �2 by covering entirely the second agent, thus 
leading to an approximation ratio of at least �∕�2 = 1∕�.

Randomized mechanisms. Consider again instance I with optimal max cost � , and an arbi-
trary randomized mechanism. Suppose that with probability p ≥ 1∕2 mechanism covers 
at most a fraction 1/2 of the intervals of both agents; then, the expected max cost of the 
mechanism would be at least 1/4, leading to an approximation ratio of 1∕(4�) . Hence, with 
probability at least p ≥ 1∕2 , the mechanism covers at least a fraction 1/2 of the intervals of 
both agents. When it does so, the mechanism covers either [0, �] or [1, 1 + �] (since it can-
not cover both at the same time). Without loss of generality, suppose that the mechanism 
covers [0, �] with probability at least p∕2 ≥ 1∕4.

Now, when given instance J as input, the mechanism must cover the interval [0, �2] with 
probability at least 1/4; otherwise, the first agent would have incentive to misreport her 
interval as [0, 1], thus leading to instance I, in which the mechanism covers [0, �2] with 
probability at least 1/4 (since it covers [0, �] with probability at least 1/4). Consequently, the 
expected max cost of the mechanism is at least �∕4 , since it is not possible to cover more 
that 1 − � of the interval of the second agent when [0, �2] is covered. However, the optimal 
max cost in J is �2 by covering entirely the second agent, thus leading to an approximation 
ratio of at least �∕(4�2) = 1∕(4�) .   ◻



 Autonomous Agents and Multi-Agent Systems           (2024) 38:41    41  Page 22 of 25

6.2  Known but unequal interval lengths

Another interesting variant that directly generalizes our main setting is that in which the 
interval lengths are known, but they are not necessarily equal. In the case of electricity 
supply for example, it is reasonable to assume that the government has good estimates of 
how much time each household requires to complete essential chores, based on verifiable 
information (e.g., the size of their property or the number of family members), not about 
their preferences on the different times of the day.

For the social cost, it is not hard to see that the vanilla median mechanism, and in fact 
any unweighted k-th ordered statistic, has an infinite approximation ratio for this case. 
However, we can show a linear approximation ratio by considering the max-length mech-
anism, which places the interval at the starting position of the agent with the maximum-
length interval among all agents. This mechanism is clearly truthful since the lengths are 
known.

Theorem 6.3 Let c be the length of the covering internal and � = maxi |Ii| . For the social 
cost, the approximation ratio of the max-length mechanism is at most n when � ≥ c and at 
most n − 1 when � < c.

Proof Consider any arbitrary instance. Suppose that i is the agent with the max-length 
interval among all agents and let � = |Ii| . Let C be the covering interval chosen by the 
mechanism which has starting point the same as Ii , an denote by O the optimal interval; 
c be the length of the covering interval, that is, c = |C| = |O| . Without loss of generality, 
suppose that O is at the right of Ii , and thus also at the right of C. Let x ∈ [0,min{c,�}] be 
the overlap between Ii and O.

We first consider the case � ≥ c . Then, C covers a subinterval of Ii of length c and does 
not cover the remaining subinterval of length � − c . Given this and since i is the agent with 
the max-length interval, SC(C) ≤ � − c + (n − 1)� ≤ n(� − c) , thus leading to an approxi-
mation ratio of at most n. In addition, the optimal interval does not cover a subinterval of 
Ii of length � − x , and thus SC(O) ≥ � − x ≥ � − c . Consequently, the approximation ratio 
is at most n.

Next we consider the case � < c . For j ∈ {C,O} , let Lj be the total interval length 
of agents at the left of j that is not covered by j. Similarly, let Rj be the total inter-
val length of agents weakly to the right of j that is not covered by j. Since si ≤ so , we 
have that LC ≤ LO . Since C covers agent i completely, we have that RC = A + RO , where 
A is the total agent interval length that is not covered by C but is covered by O. Since 
there is an intersection of length x between Ii and O and C extends by c − � after the 
end of Ii , O has c − (c − �) − x = � − x length remaining to cover other agents, and thus 
A ≤ (n − 1)(� − x) . Given that O does not cover a length of � − x of Ii , the approximation 
ratio is

where the second inequality follows by bounding A and since �+�
�+�

≤
�

�
 for any � ≥ � and 

� ≥ 0 .   ◻

For the max cost, we show that max-length achieves an approximation ratio of at 
most 2. Due to Theorem 5.2, this show that max-length is essentially the best possible 

SC(C)

SC(O)
=

LC + RC

LO + � − x + RO

≤
LO + A + RO

LO + � − x + RO

≤
(n − 1)(� − x)

� − x
= n − 1.
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among all deterministic mechanisms when the lengths of the intervals are known (equal or 
unequal).

Theorem 6.4 For the max cost, the approximation ratio of the max-length mechanism is at 
most 2.

Proof Consider any arbitrary instance. Let i be the agent with the max-length interval 
among all agents. Without loss of generality, we can assume that this agent is the one with 
the leftmost starting point. Clearly, the approximation ratio is 1 in case there is no overlap 
between the optimal covering interval O and Ii since then MC(Ii) ≤ maxj≠i |Ij| ≤ |Ii| and 
MC(O) = |Ii|.

Now, suppose that there is an intersection of length x > 0 between Ii and O. Then, the 
optimal max cost is MC(O) = |Ii| − x ; indeed, the optimal max cost cannot be smaller than 
this, whereas if it was larger, then we could move the optimal covering interval towards 
the right to decrease it. This means that there is an interval of length at most |Ii| − x after 
the end of O that is not covered by O. Hence, the max cost of the mechanism is at most 
2(|Ii| − x) , that is, it is equal to the remaining length |Ii| − x of O that is not covered by the 
mechanism plus another |Ii| − x that is after O. Consequently, the approximation ratio is at 
most 2.   ◻

7  Other open problems and directions

We envision that the model we have introduced in this paper can serve as a basis for a 
plethora of further extensions motivated from real life scenarios. Having completely 
resolved the foundational version of the model, at least with respect to deterministic mech-
anisms, below we highlight what we consider to be some of the most prominent avenues 
for future work.

Multiple intervals. A very meaningful extension is the one where each agent is asso-
ciated with multiple intervals (say, ki intervals for agent i), and there are kc covering 
intervals to be placed (think of the the choice of several different open days at a uni-
versity); those intervals could be of equal or unequal (known) length. A similar setting 
is one in which there is a covering budget (a total covering length �c ) which can be 
partitioned into intervals freely over the line. Similarly, the agents themselves could also 
have such interval budgets �i ; one could even impose some restrictions on the number 
of intervals that can be used by each agent, or by the covering budget.

Different cost functions and objectives. In this paper, we have considered perhaps the 
simplest and most intuitive cost function for the agents, namely the part of their inter-
vals that is not covered by C. One could consider more complicated cost functions, e.g., 
functions where the cost is a convex or concave function of the proportion of the agents’ 
interval(s) that are covered, or some most specific functions like a piecewise linear 
function (e.g., capturing cases where a certain amount of the interval has to be covered 
for the agent to have any reduction in cost). In addition to different cost functions for 
the agents, one could also consider different cost functions for the aggregate objectives, 
such as the popular maximum cost objective, e.g., see Procaccia and Tennenholtz [16].

Utilities and social welfare. We could even consider (positive) utilities rather than 
(negative) costs. For example, in the simplest case of known and equal length intervals 



 Autonomous Agents and Multi-Agent Systems           (2024) 38:41    41  Page 24 of 25

that we studied here, the utility of an agent would be the part of her interval that is cov-
ered, and the approximations would be in terms of the social welfare, the total utility of 
the agents. It is not hard to observe that the social welfare and the social cost of a cover-
ing interval C are related in this case; it holds that SW(C) = n − SC(C) . Given this, if we 
have a mechanism M with a provable approximation ratio of � in terms of the social 
cost, the approximation ratio of the same mechanism is at most 1

�
+

n(�−1)

�⋅SW(M)
 in terms of 

the social welfare. This directly gives us that the approximation ratio of the medIan 
mechanism is at most n/2, since � = 2 − 2∕n and SW(M) ≥ 1 (since at least one agent is 
completely covered). It is not hard to verify that the same arguments as in Theorem 3.3 
can lead to an essentially matching lower bound for all deterministic truthful mecha-
nisms, thus showing that the medIan mechanism is best possible even in terms of utili-
ties and the social welfare. For more general settings, such relations between the social 
cost and social welfare might not exist however, and studying both of them is 
interesting.

Obnoxious and hybrid models. There are also applications in which the agents might 
want to avoid any intersection with the covering interval. For example, when the inter-
val corresponds to a public transportation line, the agents might want to not have any 
intersection with the interval since they have no interest in using the public transporta-
tion and want to avoid possible congestion or noise. On the other hand, some agents 
might want to have intersection with the interval in such a case as they want to use the 
public transportation, thus leading to interesting hybrid interval covering models. This 
sort of application draws parallels to similar models in the facility location literature [6].

Higher-dimensional spaces. One does not have to restrict attention only to intervals; 
a very similar setting can be defined in which each agent is associated with one or more 
geometric shapes on a higher dimensional space (e.g., the plane) and there is also one or 
more covering geometric shapes to be placed, aiming to minimize the cost of the agents 
as a function of the intersection with their shapes. For example, think that the covering 
comes from cellular antennas and every agent wants to minimize the area that they are 
not covered by the radius of the antenna.
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