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Abstract: One Health is a collaborative, interdisciplinary effort that seeks optimal health for people, animals,

plants, and the environment. Toxoplasmosis, caused by Toxoplasma gondii, is an intracellular protozoan

infection distributed worldwide, with a heteroxenous life cycle that practically affects all homeotherms and in

which felines act as definitive reservoirs. Herein, we review the natural history of T. gondii, its transmission and

impacts in humans, domestic animals, wildlife both terrestrial and aquatic, and ecosystems. The epidemiology,

prevention, and control strategies are reviewed, with the objective of facilitating awareness of this disease and

promoting transdisciplinary collaborations, integrative research, and capacity building among universities,

government agencies, NGOs, policy makers, practicing physicians, veterinarians, and the general public.
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INTRODUCTION

Toxoplasmosis, caused by infection with the coccidian

Toxoplasma gondii, is a significant public health problem

worldwide. An estimated 8–22% of people in the USA are

The original version of this article was revised due to a retrospective Open Access

order.

Published online: April 3, 2019

Correspondence to: A. Alonso Aguirre, e-mail: aaguirr3@gmu.edu

EcoHealth 16, 378–390, 2019
https://doi.org/10.1007/s10393-019-01405-7

Review

� 2019 The Author(s), corrected publication 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s10393-019-01405-7&amp;domain=pdf


infected, and similar prevalence exists in the UK (Dubey

2002; Dubey and Jones 2008; Jones et al. 2001, 2003, 2007).

In Central America, South America, and continental Eur-

ope, estimates of infection range from 30 to 90% (Dubey

and Jones 2008; Dubey 2010; Minbaeva et al. 2013; Wilking

et al. 2016).

These infections have significant consequences affect-

ing mortality and quality of life. In the USA, where over a

million people are infected each year and approximately

2839 people develop symptomatic ocular disease annually,

the cost of illness has been estimated to be nearly $3 billion

and an 11,000 quality-adjusted life-year loss annually

(Jones and Holland 2010; Batz et al. 2012; Hoffmann et al.

2012). Mead et al. (1999) suggested that T. gondii is one of

three pathogens (along with Salmonella and Listeria) that

account for > 75% of all deaths due to foodborne disease

in the USA. Scallan et al. (2011) estimated that Toxoplasma

caused 8% of hospitalizations and 24% of deaths in the

USA resulting from foodborne illnesses.

As a global strategy, One Health recognizes the inter-

connectedness of the health of people, animals, plants, and

the environment from the local to the global levels and

employs a holistic approach encouraging and expanding

transdisciplinary collaborations, integrative research,

capacity building, clinical practice, policy, and communi-

cation among many stakeholders. This approach can

overcome bureaucratic boundaries and represents an

opportunity for new partnerships focused on solutions for

humans, animals, plants, and the environment (Zinsstag

2012; Rubin et al. 2014; Aguirre et al. 2016). Toxoplasmosis

qualifies as a One Health disease because it significantly

affects the health of human, domestic animals, wildlife, and

ecosystems, and is perceived as a threat by those who rely

on animal resources (Crozier and Schulte-Hostedde 2014;

Jenkins et al. 2015). The complicated relationships across

taxa are compounded by changing practices and attitudes

toward the control of owned and unowned (stray and feral)

outdoor domestic cats (Felis catus), which are the obligate

reservoirs of the parasite in urban and suburban settings,

where native wild felids are largely absent (Afonso et al.

2008).

New research on the impacts of toxoplasmosis (Ngo

et al. 2017; Suvisaari et al. 2017) increases the need for

greater institutional awareness of the pathways of infection

and comprehensive and transdisciplinary actions to control

transmission using the One Health approach. Such coop-

eration has thus far been elusive, perhaps in part to a lack of

familiarity with the biology of T. gondii or its significant

adverse impacts on health (Efunshile et al. 2017). Herein,

we review the natural history of T. gondii, its transmission

and impacts, and suggest approaches that could help pro-

tect human, domestic animal, wildlife, and ecosystem

health, with the goal of facilitating a better understanding

of this disease and promoting transdisciplinary collabora-

tions, integrative research, and capacity building among

universities, government agencies, NGOs, policy makers,

physicians, veterinarians, and the general public.

NATURAL HISTORY OF TOXOPLASMA GONDII

Toxoplasma gondii is a member of the Apicomplexa, a di-

verse group of parasitic protozoans including Babesia,

Cryptosporidium, Cyclospora, Isospora, and Plasmodium

(Kim and Weiss 2004). It was first isolated from a common

gundi (Ctenodactylus gundi) in Tunis in 1908 and the same

year in a rabbit from South America. Six clades have been

characterized using population genetic structure studies

indicating that globally diverse isolates originate from a

small number of ancestral lineages (Su et al. 2012). It is

postulated that T. gondii originated in South American

felids with relatively recent expansion through migratory

birds and in particular the transatlantic slave trade that

promoted migration of domestic cats, rats, and mice

(Lehmann et al. 2006). Three predominant archetypal

clonal lineages of T. gondii have been identified (Howe and

Sibley 1995; Ajzenberg et al. 2004; Dardé 2004; Saeij et al.

2005). Diverse atypical genotypes have also been found in

the Americas and China (Miller et al. 2008; Khan et al.

2011; Chaichan et al. 2017). Shwab et al. (2014) used 10

PCR–RFLP markers to classify 1457 T. gondii specimens

into 189 genotypes, most of which fell into genotypes 1

through 5. Although no dominant genotype has been

found in the southern hemisphere, a few genotypes were

predominant in the northern hemisphere, specifically

genotypes 1 (type II clonal), 2 (type III), and 3 (type II

variant), which comprise the majority of isolates and are

prevalent in Europe. Genotypes 2 to 5 (4 and 5 collectively

known as type 12, and prevalent in wildlife) are common in

North America. Genotypes 2 and 3 predominated in Africa,

whereas genotypes 9 and 10 were highly prevalent in China

(Wendte et al. 2011; Shwab et al. 2014; Chaichan et al.

2017). Certain genotypes are associated with increased

virulence in humans and wildlife (Sibley and Boothroyd

1992; Miller et al. 2004; Carme et al. 2009; Xiao and Yolken

2015). Lorenzi et al. (2016) compared the genomes of 62
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globally distributed isolates, identifying that T. gondii is

characterized by clade-specific inheritance of large con-

served haploblocks with different ancestries that may

influence transmission, host range, and pathogenicity.

Clonal lineages 1–4 are extremely abundant, with highly

similar multilocus genotypes, high levels of linkage dise-

quilibrium, and infrequent recombination.

The parasite can only sexually reproduce and, thereby,

complete its life cycle in felids, which are definitive hosts

capable of excreting massive numbers of oocysts into the

environment via feces (Frenkel 1973). Oocysts will sporu-

late to contain infectious sporozoites. If as few as a single

sporulated oocyst is ingested or inhaled by an intermediate

host, including all classes of warm-blooded (homeotherm)

vertebrates, T. gondii may then reproduce asexually in the

host’s tissues (Miller et al. 1972; Dubey et al. 1996). Asexual

reproduction results in the formation of tachyzoites and

bradyzoites from sporozoites. While bradyzoites form tis-

sue cysts in the intermediate host, tachyzoites invade many

host tissues to include the heart, lung, and central nervous

system and will spread by intrauterine infection and

transplacental migration to infect the fetus; (Georgi 1985;

Markell 1986). The life cycle is completed when the tissues

of an intermediate host are consumed by a cat, and sexual

reproduction in the definitive host may begin again

(Fig. 1). One of the ways by which T. gondii facilitates the

completion of its life cycle is host manipulation. Infected

rodents, for example, lose their innate fear of cats and

demonstrate an attraction to cat urine (Berdoy et al. 2000;

Vyas et al. 2007). Host manipulations associated with T.

gondii infection have also been observed or hypothesized in

other taxa, including primates and birds (Poirotte et al.

2016; Work et al. 2016).

Toxoplasmosis in Humans

Toxoplasmosis is the second leading cause of death among

foodborne illnesses in the USA (Scallan et al. 2011; Gao

et al. 2016). In humans, symptoms, or lack thereof, at the

time of infection do not predict disease manifestation later

in life. The disease may be either acute or chronic and can

cause active infection at any age (Boyer et al. 2011; Delair
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Figure 1. Life cycle of Toxoplasma gondii and transmission in humans, domestic animals, wildlife and ecosystems
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et al. 2011). Postnatal T. gondii infection may appear to be

asymptomatic or cause fever and lymphadenopathy

(Montoya and Remington 1995) and affect any organ,

especially the eyes (Delair et al. 2011; Undseth et al. 2014),

and cause seizures (McAuley et al. 1994). Virulence varies

by strain and susceptibility based on an individual’s genetic

traits (Ngo et al. 2017). Genotypes in French Guiana, for

example, cause significant damage and even death in adults

who are not known to be immunocompromised (Carme

et al. 2009). In the USA, an estimated 1.1 million people are

infected with T. gondii each year, and approximately 10.4%

of the population demonstrate seroprevalence linked to

past exposure (Jones and Holland 2010; Jones et al. 2018).

Initial infection acquired by pregnant women may

cross the placenta and reach the fetus (McLeod et al. 2014).

Toxoplasma tachyzoites multiply and invade fetal tissues to

cause acute or chronic disease (Markell 1986). This con-

genital infection may be systemic and result in fetal death,

premature birth, intrauterine growth retardation, fever,

pneumonia, hepatosplenomegaly, thrombocytopenia, or

involve the eyes and brain (McAuley et al. 1994; Peyron

et al. 2016). Manifestations of ocular or encephalic disease

in the fetus may include chorioretinitis, meningoen-

cephalitis, hydrocephaly, microcephaly, or calcifications of

previous areas of necrosis; however, infants generally do

not show clinical signs at birth and instead may become

deaf later in life. When women acquire the infection more

than 6 months prior to gestation, risk of transmission to

the fetus is considerably reduced. Although preventable and

treatable, congenital, ocular, and postnatal T. gondii

infection is not curable and persists in all infected persons

(Ortiz et al. 2013; Peyron et al. 2016; Ngo et al. 2017).

Latent or primary toxoplasmosis can be particularly dan-

gerous in individuals with compromised immune systems,

including those treated with corticosteroids, cytotoxic

medicines, and antibody to tumor necrosis factor alpha

(Lykins et al. 2016; Wang et al. 2017). Approximately one

third of HIV-infected individuals with T. gondii infection

develop encephalitis (Walker and Zunt 2005).

Retinal toxoplasmosis (Kianersi et al. 2012) is recog-

nized as a major cause of blindness in many parts of the

world (Balasundaram et al. 2010). About 5000 people de-

velop ocular toxoplasmosis in the USA annually (Jones and

Holland 2010). Chronic infections, previously believed to

be benign, are now a source of increasing concern. Evi-

dence of exposure to T. gondii has been associated with

cognitive decline in older individuals (Gajewski et al. 2014)

and increased disease overall (Flegr et al. 2014). Further-

more, such serological evidence of T. gondii is associated

with a range of neuropsychiatric disorders including

schizophrenia (Torrey and Yolken 2003; Yolken et al.

2009), depression, suicide attempts (Arling et al. 2009;

Flegr et al. 2014), and anxiety disorders. The mechanisms

that define these associations are not known with certainty

but may be related to the immune response to the tissue

cysts and presence of bradyzoite tissue cysts within the

brain following infection (Xiao et al. 2016).

Recent studies have demonstrated that undetected

environmental oocyst transmission is the major route of T.

gondii transmission presenting a direct public and animal

health problem (Tenter et al. 2000, Dabritz and Conrad

2010, Boyer et al. 2011, Hill et al. 2005, 2011, Torrey and

Yolken 2013; VanWormer et al. 2016). The risk factors for

human and animal infection include consuming infected

raw or undercooked meat; ingestion of contaminated wa-

ter, soil, vegetables, or anything contaminated with oocysts

shed in feces; blood transfusion or organ transplants;

intrauterine or transplacental transmission; and drinking

infected unpasteurized milk. The majority (78%) of con-

genital toxoplasmosis cases from four epidemics in North

America originated from oocyst exposure, though only

49% of these cases could be confirmed as foodborne. Two

public health studies in Chile evaluated oocyst-acquired

infections in pregnant women and in swine, which are a

primary food source; T. gondii oocyst-specific IgG anti-

bodies were determined in 193/490 (43%) of serum sam-

ples from pregnant women and in 24/30 (80%) of 30/340

(8.8%) the swine (Muñoz-Zanzi et al. 2010, 2012). Oocysts

can also contaminate drinking water sources, both small-

scale wells (Sroka et al. 2006) and larger reservoirs (Bowie

et al. 1997), and can contaminate surfaces, such as dog fur

(Frenkel et al. 2003) or keypads (Bik et al. 2016).

Toxoplasmosis in Domestic Animals

Despite a high global prevalence, infected domestic cats

typically are asymptomatic and do not have recognizable

clinical disease (Hill and Dubey 2014). Nevertheless, clin-

ical signs may include fever, ocular inflammation, anorexia,

lethargy, pneumonia, abdominal discomfort, and central

nervous system disturbances (Vollaire et al. 2005; Dubey

and Jones 2008). Clinical infection is most severe in kittens,

and feral domestic cats are at a higher risk of infection than

indoor cats (Dubey and Jones 2008).

Domestic dogs may also be infected with T. gondii;

however, clinical infection is less common than subclinical
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disease (Dubey et al. 2009; Hill and Dubey 2013). When

manifested, clinical signs may affect respiratory, neuro-

muscular, or gastrointestinal systems and can prove fatal

(Dubey et al. 2009). Free-roaming dogs are believed to be at

higher risk, though dogs may become infected within

households by eating uncooked infected meat (Cabezón

et al. 2010).

Toxoplasmosis is common in sheep, goats, pigs, and

chickens as intermediate hosts; however, cattle and horses

are notably resistant to the disease. In sheep, congenital

infection is a leading cause of stillbirth and preterm lamb

loss. Lambs that are born infected and survive usually ex-

hibit normal growth, but they still represent a public health

risk if their infected meat is consumed (Dubey 2009).

Toxoplasmosis can also occur in adult goats, and the dis-

ease is more severe than in sheep. Congenital infection

results in loss of kids before or after birth. Pigs may become

infected with T. gondii by consumption of oocysts, con-

genitally by tachyzoite transplacental transmission, and

through consumption of meat containing T. gondii

bradyzoite tissue cysts. Although adult pigs rarely show

clinical signs, the meat of infected pigs serves as a source of

human infection; young pigs can die from toxoplasmosis

without entering the human food chain. Animal infections

with T. gondii appear to be largely driven by environmental

exposure to the oocysts, and the presence of outdoor

domestic cats has been identified as risk factor for infection

in farm animals (Vesco et al. 2007). Consequently, non-

confinement livestock housing and facilities lacking ade-

quate biosecurity and pest management practices represent

significant risk factors for livestock infection (Dubey and

Jones 2008; Hill and Dubey 2016).

Toxoplasmosis in Wildlife

Toxoplasmosis is a global disease found in all habitats and

regions, from the Arctic to the tropics in terrestrial, aquatic,

and marine settings affecting all homeotherms (Sibley

2003). The number of documented infected species is

extensive (e.g., Dubey and Jones 2008; Dubey 2010).

Detection in apparently healthy, free-ranging wildlife sug-

gests that asymptomatic or subclinical infections may oc-

cur. Pathways for wildlife infection include consumption of

infected felids, predation or scavenging of infected inter-

mediate hosts, direct ingestion of oocysts in the contami-

nated environment, and congenital transmission by

transplacental transmission of tachyzoites from the infected

parent (Fig. 1). Environmental transmission to carnivores

and omnivores such as polar (Ursus maritimus), grizzly

(Ursus arctos), and black bears (Ursus americanus) can be

driven by either consumption of infected meat in prey

species or direct ingestion of oocysts (Chomel et al. 1995;

Oksanen et al. 2009).

Depending on their geographic range, serologic studies

in herbivores correlate with density of domestic cats linked

to oocyst density (Fredebaugh et al. 2011). For example,

Hawaiian geese (Branta sandvicensis) have seroprevalences

of 21–48% as a result of exposure to oocysts (Work et al.

2016). Other terrestrial, wild herbivores infected by T.

gondii include white-tailed deer (Odocoileus virginianus),

with reported seroprevalence of 49.5% in suburban areas

and 66.1% in urban areas, indicative of a greater prevalence

of oocysts in the soil as domestic cat densities increase with

human populations (Lélu et al. 2010; Dubey et al. 2014;

Ballash et al. 2015).

Infection in marine mammals is geographically and

taxonomically widespread, driven by land-to-sea coastal

oocyst pollution linked to oocysts from storm water runoff

(Cole et al. 2000; Dubey et al. 2003; Littnan et al. 2006;

Aguirre et al. 2007; Lindsay and Dubey et al. 2009; Oksanen

et al. 2009; Jensen et al. 2012; Rengifo-Herrera et al. 2012).

The threatened southern sea otter (Enhydra lutris nereis),

exposed through the consumption of invertebrate prey,

(Johnson et al. 2009; Shapiro et al. 2014), serves as a sentinel

of the land-to-sea flow of T. gondii oocysts originating from

runoff carrying infected domestic or wild felid fecal matter

(Jessup et al. 2004; Conrad et al. 2005). This route of exposure

has been confirmed for other marine mammals (Miller et al.

2002, 2008; Conrad et al. 2005). Similar genotypes have been

detected in tissues from sea otters, terrestrial wildlife, i.e.,

bobcats, mountain lion, and wild canids, and feral domestic

cats sharing the California coast (Miller et al. 2008; Van-

Wormer et al. 2014; Verma et al. 2017).

Aquatic invertebrates may significantly influence

waterborne transport of Toxoplasma, by enhanced settling

and subsequent benthos concentration, and by facilitating

ingestion by invertebrate vectors that can transmit the

infective stage to susceptible hosts, including marine

mammals and humans. Recent studies by Shapiro et al.

(2014) have demonstrated the critical role of invisible

polymers in transmission of T. gondii in food webs through

particle aggregates and biofilms increasing the retention of

the parasite in snails grazing on kelp and facilitating

infection of California sea otters.

Land-to-sea coastal exposure has resulted in fatal

toxoplasmosis in phocids, otariids, mustelids, and ceta-
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ceans, negatively impacting some threatened and endan-

gered populations (Holshuh et al. 1985; Inskeep et al. 1990;

Migaki et al. 1990; Jardine and Dubey 2002; Dubey et al.

2004; Carlson-Bremer et al. 2015; Barbieri et al. 2016). Yet

data on mortality in marine mammals are limited to those

obtained through necropsies of stranded animals. More

animals die than are found dead every year, particularly for

offshore and migratory taxa; hence, the number of affected

marine mammals is likely underrepresented.

Toxoplasmosis in Ecosystems

Domestic cats are likely the major source of ecosystem

contamination in many areas due to their high abundance

on the landscape relative to native felids (VanWormer et al.

2013). A large percentage of domestic cats in the USA may

carry T. gondii during their lifetime (Tenter et al. 2000),

and each infected cat sheds up to hundreds of millions of

oocysts (Dubey 1996), with the high probability that any

location with free-roaming cats will become contaminated

with oocysts (Torrey and Yolken 2013). Each oocyst may

remain infectious for months to years (Tenter et al. 2000;

Lélu et al. 2012). Dabritz et al. (2007) estimated that

owned, domestic cats in Morro Bay, California, annually

deposited 77.6 tons of feces and that free-roaming cats in

the same area deposited 30 tons of feces, resulting in an

estimated annual oocyst loading of over 4500 oocysts/m2.

The greater the number of cats, the greater the accumula-

tion of oocysts, and, presumably, the greater the probability

of transmission to humans, other domestic animals, and

wildlife.

An estimated 30–80 million feral domestic cats exist in

the USA (Loss et al. 2013); all of which defecate outdoors,

and each of which are at a much higher risk of hosting and

spreading T. gondii (Dubey 2010; VanWormer et al. 2013).

Unlike with other domestic animals (e.g., domestic dogs),

many states do not address who or what entity is respon-

sible for unowned and feral domestic cats. A patchwork of

local or nonexistent regulations may increase confusion,

hampering the ability to control domestic cats even on

one’s own property. This regulatory confusion, combined

with the efforts by some private organizations to eliminate

all euthanasia for animal control (Longcore et al. 2009;

ASPCA 2017), has contributed to the establishment of

programs and policies that preserve unowned and feral

domestic cats on the landscape. Such programs remain in

place despite calls for the removal of unowned and feral

domestic cats from the environment for a variety of reasons

(e.g., public health, wildlife conservation, animal welfare)

from numerous professional organizations and government

agencies and evidence of public support (Levy and Craw-

ford 2004; Lohr and Lepczyk 2014). Public opposition to

removal policies may be partially influenced by misinfor-

mation that minimizes the risks of toxoplasmosis and

downplays the role of domestic cats as vectors for disease

transmission in many ecosystems as documented in the

scientific literature (Loss and Marra 2018).

Animal sheltering policies can influence the risk of T.

gondii transmission by affecting the number of free-roam-

ing domestic cats. Management policies that remove cats

from ecosystems reduce environmental transmission risks

by eliminating the interaction of definitive and intermedi-

ate hosts. Conversely, policies that intentionally maintain

unowned and feral domestic cats on the landscape facilitate

and may increase the risk of disease transmission. As a

growing number of municipalities and their animal shelters

adopt policies that purposely maintain domestic cats

unconfined outdoors (Holtz 2014), T. gondii transmission

risks for people, domestic animals, and wildlife increase.

A better understanding of the environmental abun-

dance of oocysts is critical to holistic determinations of

health risks. Studies indicate that large regions of terrestrial,

aquatic, and marine environments may be contaminated

(Du et al. 2012a, b; Gao et al. 2016; VanWormer et al.

2013). T. gondii is known to be influenced by environ-

mental conditions, and survival of oocysts in the soil may

be influenced by geological and environmental character-

istics such as soil temperature, texture, and chemistry

(Frenkel et al. 1975; Lindsay and Dubey 2009; Lélu et al.

2012). Broader environmental sampling of oocysts in soil

and stormwater runoff should be undertaken and modeled

by land use, feline density, and animal shelter policies. The

environmental parameters responsible for long-term sur-

vival and resistance of oocysts, regional extent of environ-

mental contamination with oocysts, and duration of

survival or infectivity of tissue cysts following host death

are poorly understood and require additional research. The

ubiquity of T. gondii oocysts in the environment increases

the likelihood of infection for all at-risk species in the

ecosystem. Perhaps the most important ecosystem man-

agement tool is to control contaminated runoff to mitigate

the health impacts of coastal habitat pathogen pollution.
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ENVISIONING A ONE HEALTH RESPONSE

One Health focuses on transdisciplinary collaborations to

solve issues across human health, animal and plant health,

and the environment. Accordingly, for the near- and long-

term future, One Health has little choice but to engage in

the study, mitigation, and prevention of daunting chal-

lenges (Aguirre et al. 2016). Critical to One Health will be

effective monitoring of toxoplasmosis and T. gondii

prevalence. In the USA, toxoplasmosis is not a nationally

reportable disease and, thus, its true magnitude is unknown

(Jones et al. 2001; Torgerson and Mastroiacovo 2013).

Likewise, although the burden of toxoplasmosis in other

countries like Brazil is very high, we can only hypothesize,

for example, the incidence of congenital disease in children

(Dubey et al. 2012). Although some screening of pregnant

women and newborns exists in the USA, these programs

are largely absent and fall behind the regular screening in

many countries (Peyron et al. 2017). Furthermore,

screening programs associated solely with congenital tox-

oplasmosis may miss large segments of the infected popu-

lation. Enhanced screening programs would deliver greater

data that can be used to develop more responsive tools for

risk reduction. Integrating human, domestic animal, and

wildlife data could better assess risk and devise methods of

control.

Current patterns of human-driven environmental

change and globalization of travel and trade can enhance

the spillover and spillback of Toxoplasma and parasites of

animal origin into human populations, introduce patho-

gens into critically endangered animal populations, and

further facilitate propagation locally, regionally, and glob-

ally. The odds of an infectious disease pandemic have never

been higher. Furthermore, given that most emerging

infectious diseases in humans are of animal origin (zoo-

notic), there is a pressing need to integrate human–animal–

ecosystem health within a common framework. The recent

convergence of global problems, including global environ-

mental change, biodiversity loss, habitat fragmentation,

globalization, and infectious disease emergence, demands

integrative approaches breaching disciplinary boundaries

leading to ‘‘One Health.’’ This integration requires com-

mitment not only from government agencies, universities,

and other organizations but eventually will attempt to

generate new international structures (Aguirre 2011; Gor-

tazar et al. 2014; Suzán et al. 2015).

Transdisciplinarity

Simple solutions are rarely evident in addressing regional

or global ecological and environmental problems. A multi-

pronged, transdisciplinary, One Health approach is re-

quired in infectious disease ecology. For example, this ap-

proach has been used in echinococcosis in North America

(Massolo and Liccioli 2016); during evaluation of rabies

control programs in Sri Lanka (Häsler et al. 2014); during

parasitic zoonosis surveillance in Australian wildlife

(Thompson 2013); and in foodborne diseases resulting

from Cryptosporidium spp., Giardia duodenalis, Cyclospora

cayetanensis, and T. gondii, in developed countries (Dixon

2016); in the past 10 years, new tools and institutional

initiatives for assessing and monitoring emerging patho-

gens have been developed. Landscape epidemiology, disease

ecological modeling, and web-based Google analytics have

emerged. New types of integrated ecological health assess-

ment are being deployed; these efforts incorporate envi-

ronmental indicator studies with specific biomedical

diagnostic tools. Other innovations include the develop-

ment of noninvasive physiological and behavioral moni-

toring techniques, the adaptation of modern molecular

biological and biomedical techniques, the design of popu-

lation-level disease monitoring strategies, the creation of

ecosystem-based health and sentinel species surveillance

approaches, and the adaptation of health monitoring sys-

tems for appropriate low-income country situations. Ulti-

mately, a data-driven decision support tool must be created

to help practitioners and managers devise choices for action

and intervention. Epidemiologists, modelers, public health

officials, veterinarians, and sociobiologists need to employ

strong inference techniques including model selection,

disease inference techniques, to apply a rigorous approach

to establishing causation in disease ecology (Azeez and

Prabhakar 2016). Mathematical modeling, predictive tools,

and novel prevention strategies of emerging infectious

diseases have evolved enormously in the last decade. These

exciting tools now allow for improved characterization and

prediction of disease dynamics and disease behavior (Vi-

netz et al. 2005; Aguirre et al. 2016; Guo et al. 2016).

Toxoplasma gondii is known to be influenced by

environmental conditions, and measures to mitigate

exposure can affect ecosystem health. The environmental

parameters responsible for long-term survival and resis-

tance of the parasite in oocyst form or the duration of

survival or infectivity of tissue cysts from an infected ani-

mal that dies in the field are poorly understood. Filling
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these science and knowledge gaps will require effective,

truly transdisciplinary collaborations involving scientists

from a broad spectrum of disciplines including but not

limited to earth, environmental, biological, ecological, so-

cial, engineering, and health sciences, and their many

subdisciplines (Aguirre and Wilcox 2008).

Integrative Research

Research is needed to integrate data across scales to assess

risk and devise methods of control, as links are made be-

tween toxoplasmosis and significant adverse health out-

comes beyond acute infection in humans, i.e., congenital

infection, increased death rates in traffic accidents (Flegr

et al. 2002, 2009), and environmental transmission rather

than meat consumption emerges as a significant pathway

for infection (Dabritz and Conrad 2010; Boyer et al. 2011;

Hill et al. 2011; Torrey and Yolken 2013). Soil sampling for

oocysts has been undertaken around the world and needs

to be expanded and modeled by land use and outdoor cat

management policies to understand risk. Relationships of

policies for animal sheltering and outdoor cat density and

resulting oocyst loads are foreseeable but require integrative

research. Such research efforts will require transdisciplinary

teams to integrate field and laboratory methods, spatial,

geographic, and other mathematical modeling, and veteri-

nary and medical practices.

Future research should also focus on vaccine devel-

opment. A vaccine is available for sheep in some countries,

but no vaccine exists for other livestock, humans, or

wildlife. A vaccine for domestic cats was produced, but its

implementation has been limited by high costs of pro-

duction, short shelf life, and lack of interest from domestic

cat owners (Dubey 2010). The development of a vaccine, as

well as more effective therapies for the long-term effects of

tissue cysts in the brain, eye, and other vital organs, remain

important goals. Such research would also benefit efforts to

conserve highly endangered species in the wild that are at

risk from death from toxoplasmosis (Work et al. 2016).

The increasing demand for food safety together with

the potential economic impact of legislation aimed at risk

reduction has brought attention to the need for the

development and standardization of diagnostic tests for

Toxoplasma infection. Such tests will need to provide an

accurate estimate of risks of transmission of toxoplasmosis

to humans and must perform with comparable specificity

and sensitivity across a range of animal species. Despite the

lack of widespread, effective screening processes are in place

for consumer meats, with new standardized tests which

may be useful for disease monitoring and control (Nunes

Mecca et al. 2011).

Building Local Capacity

A key component of a One Health response to toxoplas-

mosis must include greater communication of the risks and

pathways of exposure to T. gondii. Human and veterinary

health practitioners, as well as all professionals interacting

with the public, should seek to more effectively explain

current understandings of the life history, transmission

routes, and best practices for avoiding exposure. For

example, while acknowledging the risks of infection

through consumption of tissue cysts, the risks of oocyst

exposure should not be downplayed. Outdoor cats should

be prevented from accessing community gardens as a food

biosecurity issue and exclude cats from any location where

food is grown. Children should avoid areas where cat feces

may be found, domestic cat access to the outdoors should

be limited, and steps taken to reduce the number of free-

roaming domestic cats and the associated number of T.

gondii oocysts.

Widespread participation, especially with human and

veterinary health practitioners, is necessary to stem the

societal and ecosystem impacts of toxoplasmosis. Doctors,

public health specialists, veterinarians, and even wildlife

biologists should know to caution the public to always

wash hands after working in any soil where cat feces may be

found, exclude cats from any location where children or

others play in a manner that might lead to hand-to-mouth

contact with contaminated soil, and take steps to reduce

the number of free-roaming domestic cats on the land-

scape. Children should be taught to wash their hands

thoroughly after touching a pet that has access to the

outdoors.

Local capacity also includes a commitment to laws to

control the number of feral domestic cats on the landscape

to minimize the risk of transmission of T. gondii. Current

discussions surrounding animal sheltering, as discussed

above, often dismiss this risk as minimal and almost never

incorporate the clear society-level impacts from chronic

infection that have now been shown in the literature for

over a decade. Veterinary schools have a particular

responsibility to educate their students on the risks of this

disease and not to allow specialized programs with outside

funding, e.g., ‘‘shelter medicine’’ programs funded by ani-

mal rights organizations, to put out messages that under-
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mine established science. Such changes will be difficult,

given that promoting unowned free-roaming domestic cats

as perfectly acceptable features of the landscape has gar-

nered significant funding. Progress to address this situation

can come from a transdisciplinary, integrative approach

that considers the substantial advances in research on T.

gondii of recent years. In addition, controlling the feral cat

population will have a positive conservation outcome for

wildlife. For example, annual mortality of wild birds in the

USA reaches 2.4 billion and 204 million in Canada due to

feral cat predation, increasing the probability of population

extinction or decline for some bird species. In addition,

6.3–22.3 billion mammals are killed each year in the USA

(Loss et al. 2013, 2015). Comprehensive and sound policies

and control interventions based on science are required to

reduce these astronomical impacts.

CONCLUSIONS

One Health has emphasized the need to bridge disciplines

linking human health, animal health, and ecosystem health.

Toxoplasmosis demands integrative approaches breaching

disciplinary boundaries. This integration is needed to

generate new approaches to manage and control the dis-

ease. The complexity of toxoplasmosis requires the devel-

opment of a dashboard system of measures that are a

combination of health and ecological indicators, that is, an

easy set of indicators for quick reference to identify pre-

vention and management needs.

Transdisciplinarity, integrative research, and capacity

building are core elements in establishing One Health

interventions that address toxoplasmosis. Innovative par-

ticipatory methodologies that operationalize knowledge

flow among stakeholders should consensually and sus-

tainably address this major problem confronting society,

wildlife, and ecosystems globally (Aguirre et al. 2019). The

One Health approach to toxoplasmosis epidemiology and

control requires practical, sustainable, and effective solu-

tions with a keen understanding of local socioeconomic

and cultural factors as well as a solid grasp of complex local,

regional, national, and international health and environ-

mental policies. One Health offers time-sensitive oppor-

tunities for practitioners to apply their expertise to give rise

to simultaneous benefits for humans, animals, and the

environment.
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Lélu M, Langlais M, Poulle M-L, Gilot-Fromont E (2010)
Transmission dynamics of Toxoplasma gondii along an urban–
rural gradient. Theoretical Population Biology 78:139–147

388 A. A. Aguirre et al.

https://doi.org/10.1371/journal.pntd.0003270
https://doi.org/10.1371/journal.pntd.0003270
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