
Omid Ghorbanzadeh   · Hejar Shahabi · Alessandro Crivellari · 
Saeid Homayouni · Thomas Blaschke · Pedram Ghamisi 

Landslide detection using deep learning 
and object‑based image analysis

Abstract  Recent landslide detection studies have focused on 
pixel-based deep learning (DL) approaches. In contrast, intuitive 
annotation of landslides from satellite imagery is based on distinct 
features rather than individual pixels. This study examines the fea-
sibility of the integration framework of a DL model with rule-based 
object-based image analysis (OBIA) to detect landslides. First, we 
designed a ResU-Net model and then trained and tested it in the 
Sentinel-2 imagery. Then we developed a simple rule-based OBIA 
with only four rulesets, applying it first to the original image dataset 
and then to the same dataset plus the resulting ResU-Net heatmap. 
The value of each pixel in the heatmap refers to the probability that 
the pixel belongs to either landslide or non-landslide classes. Thus, 
we evaluate three scenarios: ResU-Net, OBIA, and ResU-Net-OBIA. 
The landslide detection maps from three different classification 
scenarios were compared against a manual landslide inventory 
map using thematic accuracy assessment metrics: precision, recall, 
and f1-score. Our experiments in the testing area showed that the 
proposed integration framework yields f1-score values 8 and 22 
percentage points higher than those of the ResU-Net and OBIA 
approaches, respectively.

Keywords  Convolutional neural network (CNN) · Deep learning 
(DL) · Fully convolutional network (FCN) · Object-based image 
analysis (OBIA) · Optical satellite imagery · Rapid mapping · 
ResU-Net

Introduction
Landslides are among the most dangerous and complicated natural 
hazards, resulting in severe destruction, natural resource damage, 
and human life and property (Li et al. 2020; Mondini et al. 2021). 
Landslides usually occur in different types (e.g., debris flow and 
rockfall), frequencies, and intensities worldwide (Mondini et al. 
2011). Therefore, it is critical to study and analyze this severe natu-
ral hazard and provide susceptibility modeling and mappings to 
prevent and mitigate its calamitous consequences (Catani 2021; 
Hua et al. 2021; Piralilou et al. 2021). Such analysis and modeling 
need precise landslide inventory maps (Huang et al. 2020; Thi 
Ngo et al. 2021). Moreover, rapid mapping of landslides follow-
ing heavy rainfalls or major seismic events is essential for quick  
responses, humanitarian aid, and other disaster mitigation (Piralilou  
et al. 2021, Pourghasemi and Rahmati 2018).

Satellite imagery is considered the primary available data 
source for detecting landslides and updating inventory maps. 
Obtaining information from satellite imagery is primarily carried 
out through two approaches, pixel-based and object-based image 
analysis (OBIA) (Chen et al. 2018). The pixel-based approaches 

such as maximum likelihood, minimum distance, and parallelepi-
ped are the conventional and widely used models for image clas-
sification and natural hazard inventory mapping like landslides 
(Nichol and Wong 2005). However, these models fail for images 
with intricate textures and intensive spectral heterogeneity (Goetz 
et al. 2015). Thus, machine learning (ML) models such as decision 
trees, support vector machines (SVMs), artificial neural networks 
(ANN), and random forest (RF) are applied to address these issues 
(Hölbling et al. 2012). Several studies have reported that those ML 
models presented higher transferability and accuracy in image 
classification and object detection than conventional models like 
maximum likelihood (Peña et al. 2014). On the one hand, despite the 
different performances of ML models, the pixel-based approaches 
have some deficiencies, especially when dealing with very high 
resolution (VHR) satellite imagery (Chen et al. 2018). Due to the 
rich information content of VHR imagery, problems such as “salt 
and pepper” appear, adversely affecting image classification and 
landslide detection results (Hölbling et al. 2012).

On the other hand, due to limitations of pixel-based approaches 
in image processing, especially in classification, OBIA has been 
widely used to overcome weaknesses related to per-pixel analy-
sis, mainly in high-spatial-resolution and VHR remote-sensing 
imagery (Blaschke et al. 2014). OBIA applies specific approaches 
to image analysis, including satellite image analysis that studies 
feature entities and phenomena by analyzing image objects derived 
from a segmentation process rather than a single pixel value (Chen 
et  al. 2018). OBIA is a knowledge-driven method that mimics 
human perception by grouping a set of pixels into meaningful units 
that represent corresponding features in the real world (Blaschke 
2010). Compared to conventional pixel-based approaches, which 
depend on the digital number (DN) of individual pixels, OBIA 
integrates and employs spectral information (e.g., color) and spa-
tial properties (e.g., size, shape), together with textural data and 
contextual information (e.g., association with neighboring objects) 
(Blaschke et al. 2014). Although OBIA approaches have solved some 
issues related to per-pixel image classification, achieving higher 
accuracy using ML models in complex tasks entails several chal-
lenges. For example, the optimal scale parameter for object defini-
tion for geographic features (e.g., landslides) is often represented 
in multiple scales within the extent of satellite imagery (Tavakkoli 
Piralilou et al. 2019).

Due to recent developments in the field of computer vision and 
graphics processing units (GPU), some deep learning (DL) models 
such as the convolutional neural network (CNN) and fully convolu-
tional network (FCN) have been developed, reaching state-of-the-
art accuracy in satellite image classification (Längkvist et al. 2016; 
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Mahdianpari et al. 2018), and object detection (Radovic et al. 2017) 
in comparison to conventional pixel-based approaches (Feizizadeh 
et al. 2021; Ghaffarian and Kerle 2019; Panahi et al. 2020). Such DL 
models have recently been employed in landslide detection in natu-
ral hazard monitoring and modeling. Ghorbanzadeh et al. (2019) 
(Ghorbanzadeh et al. 2019) have shown the higher potential of 
CNNs over ML models of ANN, RF, and SVM in landslide detection 
from VHR satellite imagery. Both DL and ML models were trained 
and tested based on optical data from the RapidEye satellite and 
topographic factors, and their highest f1-score and mIOU values 
were 87.8% and 78.26%, respectively. The CNN architectures applied 
in this study were also used effectively by Sameen and Pradhan 
(2019) (Sameen and Pradhan 2019) and similar studies, for land-
slide detection in Malaysia and India. However, when Sameen and 
Pradhan (2019) compared the results of the applied CNN with those 
of a residual network model (ResNets), they achieved the highest 
f1-score of 90% by the ResNets, which was higher than that of the 
CNN’s f1-score of 83%. This trend of applying CNN to landslide 
detection was followed by using FCN models such as the U-Net. 
Soares et al. (2020) and Bragagnolo et al. (2021) used the U-Net 
model for landslide detection in the mountainous region of Rio de 
Janeiro, Brazil, and the Himalayan region, Nepal, with the highest 
f1-score values of 55% and 67%, respectively. In another study, Liu 
et al. (2020) used a U-Net and a residual U-Net (ResU-Net) trained 
and tested on images with different spatial resolutions from North-
ern Sichuan Province. Their highest f1-score and mIOU values were 
more than 83% and 76% for the U-Net, respectively, and 87% and 
93% for the ResU-Net model. A comparison of the U-Net and the 
ResU-Net models also was made by Qi et al. (2020) and Ghorban-
zadeh et al. (2021) for detecting landslides in different case study 
areas, and the ResU-Net usually performed better than the U-Net.

The application of DL models for landslide detection is also well 
described in some current studies (Cai et al. 2021; Huang et al. 2020; 
Su et al. 2021; Tang et al. 2021; Wang et al. 2021); the results indicate 
that these models present promising performance and accuracy in 
landslide inventory mapping.

Although DL models and CNNs, in particular, have dem-
onstrated the high capability of feature learning (low-, mid-, and 
high-level information), in some scenarios, they are unable to 
resolve issues in image classification that can arise from the similar-
ity between the targets of interest and other features (Mboga et al. 
2019). Therefore, using knowledge-based approaches to deal with 
such problems is essential. Moreover, image classification using 
OBIA preserves precise information from object borders and edges, 
unlike pixel-based methods (Majd et al. 2019).

This study aims to improve the landslide detection map gen- 
erated by a well-known FCN model of the ResU-Net using prior  
knowledge in the context of OBIA. Thus, the integration of the  
OBIA with an FCN model is the novel characteristic of this study  
compared to the state-of-the-art works cited in the review of land- 
slide detection literature. Although there have been some previ- 
ous efforts that combined CNNs with OBIA, e.g., for refugee camp  
classification (Ghorbanzadeh et  al. 2020) and rock glacier map- 
ping (Robson et al. 2020), this is the first study that evaluates the feasibility of the  
integration framework of an FCN model with a rule-based OBIA  
for landslide detection. Also, in contrast to the studies mentioned  
above that used a heatmap in the segmentation process, here we  

used the layers of the original image to reduce the bias of the heat- 
map in the final classification results. Therefore, the heatmap is  
only used to classify objects based on their probability value as well  
as some spectral, topographical, and spatial characteristics. Our  
proposed framework aims to refine the landslide detection map  
resulting from the ResU-Net using prior knowledge in addition  
to the data from the original image and the resulting probabilities  
from the ResU-Net.

The remainder of the study is organized as follows: “Study area 
and data used” presents the study area and data used, “Method” 
describes the methodology of the integrated framework, and results 
and accuracy assessment are presented in “Method”, and “Results 
and accuracy assessment”, followed by a brief discussion and con-
clusion in “Discussion” and “Conclusions”, respectively.

Study area and data used
In early August 2009, a destructive typhoon called Morakot, the 
deadliest typhoon in Taiwan’s recorded history, hit Western Tai-
tung County in Taiwan. It brought around 2884 mm of precipitation 
into the region during 5 days, which led to severe flooding. As a 
result, nearly 652 people died, and 47 were missing, and there was 
damage estimated at over 3 billion USD to personal property and 
infrastructure (Lin et al. 2011). The typhoon also triggered nearly 
22,700 landslides across the region, an area of 274 km2. The major-
ity of landslides were shallow, while a few deep-seated landslides 
occurred in mountainous areas of the southern part of Taiwan (Lin 
et al. 2011, 2013). The study area’s geological structures are compli-
cated, and there are many faults and fold systems. The lithology of 
our case study area comprises metamorphic rocks, sedimentary 
rocks, and terrace deposits.

The main directions of the fault systems are north–south and 
east–west (Nguyen and Liu 2019). The extent of the study area was 
selected to characterize different geographical features, including 
rivers, lakeshore, non-vegetated regions, and rocky terrains. In our 
study site, presented in Fig. 1, the total number of landslides is 895, 
with a total area of 31.33 km2. Images used in this study for land-
slide mapping are from Sentinel-2 level-1C products accessed on the 
Google Earth Engine (GEE) website. Since GEE only provides Level-
1C products of Sentinel 2 data, which does not include atmospheric 
correction, we used the Sen2Cor plugin (Main-Knorn et al. 2017) in 
SNAP software to apply atmospheric corrections.

There was no reliable landslide inventory map for our study 
area. Therefore, we manually digitized landslides within the study 
area based on Sentinel-2 imagery acquired before July 21, 2016, and 
corrections were made using Google Earth’s archive imagery after 
the Morakot typhoon. The slope layer was generated from the ALOS 
digital elevation model (DEM) (12.5 m) produced by the ALOS sen-
sor of the Japanese aerospace exploration agency (JAXA), available 
from https://​search.​asf.​alaska.​edu/#/.

Method
In this section, we explore the improvement of the results of 
the well-known FCN model of the ResU-Net using OBIA. The 
designed rulesets of OBIA are used to contribute prior knowledge 
to the landslide segmentation by the ResU-Net. The main steps 
of this paper are represented in Fig. 2 and can be summarized as 
follows:
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Stack the layers of the acquired bands of 2, 3, 4, and 8 of Senti-
nel-2 and generate a slope layer from ALOS DEM for training 
and testing areas.
Structure, train, and test the ResU-Net based on five stacked 
layers and the inventory data.
Develop rule-based OBIA based on the data from original 
images.
Use the same rule-based OBIA for the resulting probabilities 
from the ResU-Net plus with data from original images.

Residual U‑Net (ResU‑Net)

In this study, a ResU-Net is designed to combine the strengths of 
both the FCN model and the high learning performance of the 
residual neural network (Qi et al. 2020; Zhang et al. 2018). The 
residual learning blocks can improve the training process of the 
U-Net, and the skip connections in a residual learning block and 
between the encoding (downsampling) path and the decoding 
(upsampling) path can ease information propagation deprived of 
degradation (Mohammadimanesh et al. 2019; Ronneberger et al. 
2015; Zhang et al. 2018). The input of the ResU-Net is the stacked 
five layers of four Sentinel-2 and one slope layer, with a total size of 
128 × 128 × 5, and the output of the ResU-Net is the detected land-
slide with the size 128 × 128. This window size was selected based 
on a previous study that used the same case study area, in which 
its landslide detection performance was greater than that of other 
window sizes (Ghorbanzadeh et al. 2021). Similar to the standard 
U-Net, the general structure of the ResU-Net includes an encoding 
(downsampling) path and a decoding (upsampling) path for cap-
turing low-level and high-level representations, respectively. The 

downsampling path of our ResU-Net comprises three levels, each 
including a residual learning block that consists of two convolu-
tion layers with a filter size of 3 × 3. Each has a batch normalization 
layer and a ReLU activation layer in advance (Liu et al. 2020; Zhang 
et al. 2018). The first convolution layer in each residual learning 
block uses a stride of 2 instead of a pooling operation for down-
sampling. The input information (xi) of each residual learning 
block is added to its output (F(xi) + (xi)) by an identity mapping 
(see Fig. 3).

After the third level in the downsampling path, one level con-
nects from this path to the upsampling path. The upsampling path 
also consists of three levels. However, an upsampling before each 
residual learning block is used in the upsampling path, along with a 
concatenation of the feature maps resulting from the corresponding 
downsampling path. The Adam optimization algorithm (Kingma 
and Ba 2014) and the binary cross-entropy (Ronneberger et al. 2015) 
were used as the model optimizer and loss function. Thus, The DL 
model was trained via backpropagation through mini-batch sto-
chastic training, binary cross-entropy loss function, and the Adam 
optimizer. We leveraged the early-stopping strategy to avoid over-
fitting problems, saving the optimized weights in correspondence 
to the best-achieved performance on the validation set. Finally, a 
convolutional layer with a filter size of 1 × 1 and a sigmoid activa-
tion function are used on top of the network to project the result-
ing multichannel feature maps of the last level into the landslide/
non-landslide labels.

The overall network structure of the ResU-Net is shown in 
Table 1. The experimental setup of the DL model (implementation, 
training, and evaluation) was carried out in a Python 3.6 environ-
ment using the TensorFlow2 library with the Keras API.

Fig. 1   Sentinel-2A false-color composite of the study area indicating the training area, testing area, and landslide inventory map
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Knowledge‑based OBIA

Compared to the pixel-based methods, OBIA allows users to cre-
ate and use more features, such as spectral information, textural, 
geometrical (such as size and shape), and topological relationships, 
among the generated objects for image classification (Majd et al. 
2019). This study uses the object’s spectral information and the 
geometrical properties in our applied OBIA approach. In complex 
tasks such as landslide detection, employing such features through 
the knowledge-based rulesets can improve and refine results gen-
erated by ML and DL models. In this regard, we aimed to improve 
the landslide inventory map generated by ResU-Net using such 
object features and hierarchical knowledge-based rulesets to 
limit omission and commission errors in detection procedures. 
With the multi-resolution segmentation method implemented in 

eCognition™ (www.​ecogn​ition.​com), Sentinel-2 imagery with 10-m 
resolution was segmented into homogeneous objects using various 
scales. Estimating the optimal segmentation parameters to create 
the most representative objects is challenging, and they are usu-
ally obtained using trial and error (Karantanellis et al. 2021). The 
segmentation process using scale 55, shape 0.7, and compactness 0.3 
provided image objects with the lowest under-segmentation error 
based on visual inspection. During the segmentation process, only 
five stacked layers from the Sentinel-2 imagery and slope feature 
were involved. Other features, such as the landslide probability map 
generated by the ResU-net and normalized difference vegetation 
index (NDVI) (Eq. 1), were later used in rulesets.

(1)NDVI = (NIR − Red)∕(NIR + Red)

Fig. 2   Methods used in this 
study

19 & (2022)Landslides Landslides 932932

http://www.ecognition.com


where NIR and Red are the near-infrared and red bands of the elec-
tromagnetic spectrum of Sentinel-2 imagery. Since the produced 
image object was mainly associated with the over-segmentation 
error, we applied a spectral difference algorithm to merge objects 
with a maximum of 10% dissimilarity in their spectral values, 
resulting in objects with a better representation of landslides’  
spectrally similar neighbors, such as riverbeds. In landslide-affected 

areas, the NDVI values tend to be around zero or negative. Thus, 
all objects with NDVI values less than 0.1 were extracted from all 
selected objects with slopes more than 15° in the first ruleset. The 
output of each ruleset was used as an input for a second ruleset. In 
this second ruleset, a landslide probability map (with values rang-
ing between 0 and 1) was added to select objects that had a prob-
ability of more than 0.5 of being landslide objects. However, some 
riverbeds were still detected as landslides after applying such a 
ruleset. Since they had negative NDVI values and slopes of more 
than 17°, their probability values in the U-net map were more than 
0.6. To solve this issue, in the context of OBIA objects, a spatial and 
geometric feature of the length-to-width ratio (L2W) is used for 
the segmented objects as the landslide so that such errors can be 
removed. The L2W is calculated based on the covariance matrix 
(Eq. 2) of the pixels’ coordinates that shaped the object’s boundary.

where X and Y are vectors that refer to a composition of the x and 
y coordinates of the boundary pixels, and Var and Cov refer to the 
variances and the covariance of the values, respectively. The L2W 
is calculated based on the covariance matrix by Eq. (3).

where eigmax(S) and eigmin(S) are the maximum and the minimum 
eigenvalues of the matrix S (Lin et al. 2017). A ruleset was defined 
based on objects L2W to eliminate these riverbeds, and objects that 
had values more than 100 were removed from the detected objects 
as landslides.

(2)S =

[

Var(X) Cov(XY )

Cov(XY ) Var(Y )

]

,

(3)L2W = eigmax(S)∕eigmin(S),

Fig. 3   Display of the residual learning block with identity mapping 
used in the ResU-Net. BN refers to batch normalization

Table 1   The network structure 
of the ResU-Net applied in this 
study

Module Layer name Kernel size Stride Kernel no Output size

Input 128 × 128 × 5

Conv 1 3 × 3 1 64 128 × 128 × 64

Conv 2 3 × 3 1 64 128 × 128 × 64

Encod-ing Conv 3 3 × 3 2 128 64 × 64 × 128

Conv 4 3 × 3 1 128 64 × 64 × 128

Conv 5 3 × 3 2 256 32 × 32 × 256

Conv 6 3 × 3 1 256 32 × 32 × 256

Conv 7 3 × 3 2 512 16 × 16 × 512

Conv 8 3 × 3 1 512 16 × 16 × 512

Conv 9 3 × 3 1 256 32 × 32 × 256

Conv 10 3 × 3 1 256 32 × 32 × 256

Decod-ing Conv 11 3 × 3 1 128 64 × 64 × 128

Conv 12 3 × 3 1 128 64 × 64 × 128

Conv 13 3 × 3 1 64 128 × 128 × 64

Conv 14 3 × 3 1 64 128 × 128 × 64

Output Conv 15 1 × 1 1 1 128 × 128 × 1
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Results and accuracy assessment
This paper used the ResU-Net as a DL approach and a rule-based 
OBIA as a knowledge-based approach for landslide detection. We 
used the resulting landslide probabilities from the ResU-Net as 
an input feature and original data from the images to our OBIA 
approach for the integration framework. Figure  4a shows the 
resulting landslide heatmap from the ResU-Net. The results of 
each applied knowledge-based ruleset are represented in Fig. 4b. 
The resulting landslide detection maps from the ResU-Net and 
our integrated approach are overlaid in Fig. 4c for better visual 
comparisons.

The resulting landslide detection maps are shown in Fig. 5. Con-
sidering our inventory map, which labeled only landslides and com-
prised landslide and non-landslide areas, we classified the images 
into two categories: landslides and non-landslides.

To prove the superiority of our integrated framework and its 
performance, we compared our landslide detection results with 
those of ResU-Net and OBIA alone. For quantitative evaluation of 
the integrated framework and other resulting maps, a validation 
dataset is required to compare the results of each method. For this 
aim, part of the study area that was not used in the training pro-
cess was held apart for testing, validation, and accuracy assessment 
of the resulting landslide detection maps. Therefore, the applied 
landslide detection approaches were validated against the inventory 
data set of the testing area.

The landslide detection results were validated by measuring 
the number of pixels allocated as true positive (TP), false posi-
tive (FP), and false negative (FN). Thematic accuracy assessment 
metrics were used to quantitatively assess the landslide detection 
performance, including precision, recall, and f1-score. Two areas 
were selected and enlarged in Fig. 6 to illustrate better the TP, FP, 
and FN in the landslide detection maps resulting from the three 
different methods used, ResU-Net, OBIA, and ResU-Net-OBIA. The 
Precision metric calculates how specific models are in landslide 
detection, and Recall represents how many landslide pixels are cor-
rectly detected. The F1 measure is a combined measure between 
Precision and Recall. The metrics are derived from Eqs. (4–6), and 
the accuracy assessment results are represented in Table 2.

The thematic accuracy assessment metrics in Table 2 demon-
strate that the ResU-Net results in higher accuracy than our simple 

(4)Precision =
TP

TP + FP

(5)Recall =
TP

TP + FN

(6)F1 − score = 2 ×
Precision × Recall

Precision + Recall

OBIA approach. However, using the same OBIA approach on top 
of the ResU-Net landslide probabilities significantly increased the 
precision from 61.29 for the ResU-Net to 73.14, which means the 
integrated approach could correctly detect more landslides than 
using ResU-Net alone. Moreover, the higher precision values sug-
gest that the integrated system could reduce FP by reducing the 
number of non-landslide pixels detected as a landslide by ResU-
Net. The improvement in recall value is not as significant as that  
of precision: only a three percentage-point increase is obtained. In 
addition, the considerable difference between the resulting accu-
racy assessment values of the OBIA, and the ResU-Net-OBIA can 
be attributed to the substantial role of the ResU-Net landslide prob-
abilities in the integrated approach.

Discussion
Riverbeds with a high probability of being a landslide were the 
main reason for the low precision value in the landslide detection 
map obtained by applying ResU-Net. Based on pixel-based context, 
spatial properties were not considered, and the individual pixels of 
riverbeds had similar spectral and slope behavior as a landslide. 
Still, in OBIA, geometrical object properties like length and width 
were used to filter riverbeds quickly, leading to a high precision 
value improvement. This case shows that even complex algorithms, 
including DL models applied in the pixel-based domain, are limited 
in the complex mapping of objects like a landslide. Using OBIA 
makes it possible to take advantage of knowledge-based rulesets 
like L2W to mitigate some DL limitations in landslide detection.

Moreover, OBIA itself is highly dependent on expert knowledge  
and experience to obtain satisfactory results. However, in cases 
where a certain level of knowledge is absent, the OBIA will fail 
on segmentation (Majd et al. 2019), as shown by our simple OBIA 
approach. Therefore, our experiments in this study can be an exam-
ple of the importance of integrating object-based classification with 
the DL approaches, such as segmentation tasks like landslide detec-
tion. Since no study has integrated a DL model or an FCN approach 
with the OBIA framework for landslide detection, we cannot com-
pare our results with the literature. Moreover, almost all of the land-
slide detection studies that have been done with DL models used 
VHR imagery (e.g., WorldView and GeoEye), and spatial resolution 
of the image plays a leading role in landslide detection accuracy. In 
comparison, our experiments have been done based on freely avail-
able medium resolution satellite imagery. These images are ideal for 
getting and interpreting information from large areas, like landslide 
detection for regions affected by earthquakes or heavy rainfalls.

Our proposed integration approach will work for other geo-
graphical, geological, and climatological settings. However, the 
segmentation and rule-based classification parameters may differ. 
It means that the defined parameter must be localized to other geo-
graphical locations considering the factors such as landslide size, 
vegetation density, slope, and season.
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Fig. 4   Representation of a the resulting landslide probabilities from the ResU-Net, b merged segments after each applied OBIA ruleset, and c 
comparison of the ResU-Net result and that of our integrated approach
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Fig. 5   Representation of the landslide detection map resulting from a the ResU-Net, b OBIA, and c the ResU-Net-OBIA approaches
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Fig. 6   Representation of two enlarged areas from the spatial overlapping of the inventory map and landslide areas obtained from three dif-
ferent methods that illustrate the true positive (TP), false positive (FP), and false negative (FN) areas
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Conclusions
The main focus of this study was to evaluate the possibility of inte- 
grating two domains of pixel-based DL model and OBIA for a spe-
cific example of landslide detection. We have shown one possible 
solution of using OBIA as a refinement process for the DL model. 
Therefore, a new integration approach was proposed to detect land- 
slides from Sentinel-2 imagery. Specifically, a rule-based OBIA was  
designed to add knowledge to refine the landslide detection results  
based on the ResU-Net. We found the geometric feature L2W help- 
ful in discriminating between landslides and riverbeds and conse- 
quently increased the landslide detection accuracy. The proposed  
approach successfully improved the f1-score values of the result- 
ing landslide detection maps from the ResU-Net and the OBIA 
approaches by more than 8 and 22 percentage points, respectively.

Although many DL models have resulted in state-of-the-art 
results in different object detection and instance segmentation 
tasks, there remains a great deal of room for improvement, espe-
cially using object-based classification approaches instead of 
pixel-based ones. The OBIA approaches use homogeneous sets of 
image pixels for landslide detection, similar to the way an expert 
can detect landslide areas as individual entities. Therefore, given 
the difficulties in distinguishing landslides using pixel-based DL 
like the Res-UNet model, the combination of the resulting heatmap 
of such models with OBIA offers a promising method for adding 
prior knowledge to the process of mapping landslides over regional 
scales. It leads to a reduction in the adverse impacts of some associ-
ated DL limitations (e.g., fuzzy borders in the classification results). 
Our future work will evaluate such integrations on other use cases, 
such as building extraction.
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