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Abstract
Deep learning-based image segmentation is by now firmly established as a robust tool in image segmentation. It has been
widely used to separate homogeneous areas as the first and critical component of diagnosis and treatment pipeline. In this
article, we present a critical appraisal of popular methods that have employed deep-learning techniques for medical image
segmentation. Moreover, we summarize the most common challenges incurred and suggest possible solutions.
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Introduction

Medical image segmentation, identifying the pixels of
organs or lesions from background medical images such as
CT or MRI images, is one of the most challenging tasks in
medical image analysis that is to deliver critical information
about the shapes and volumes of these organs. Many
researchers have proposed various automated segmentation
systems by applying available technologies. Earlier systems
were built on traditional methods such as edge detection
filters and mathematical methods. Then, machine learning
approaches extracting hand-crafted features have became
a dominant technique for a long period. Designing and
extracting these features has always been the primary
concern for developing such a system and the complexities
of these approaches have been considered as a significant
limitation for them to be deployed. In the 2000s, owing
to hardware improvement, deep learning approaches came
into the picture and started to demonstrate their considerable
capabilities in image processing tasks. The promising ability
of deep learning approaches has put them as a primary
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option for image segmentation, and in particular for medical
image segmentation. Especially in the previous few years,
image segmentation based on deep learning techniques has
received vast attention and it highlights the necessity of
having a comprehensive review of it. To the best of our
knowledge, there is no comprehensive review specifically
done on medical image segmentation using deep learning
techniques. There are a few recent survey articles on
medical image segmentation, such as [49] and [67]. Shen et
al. in [67] reviewed various kinds of medical image analysis
but put little focus on technical aspects of the medical image
segmentation. In [49], many other sections of medical image
analysis like classification, detection, and registration is also
covered which makes it medical image analysis review not
a specific medical image segmentation survey. Due to the
vast covered area in this article, the details of networks,
capabilities, and shortcomings are missing.

This has motivated us to prepare this article to have an
overview of the state-of-art methods. This survey is focusing
more on machine learning techniques applied in the recent
research on medical image segmentation, has a more in-
depth look into their structures and methods and analyzes
their strengths and weaknesses.

This article consists of three main sections, approaches
(network structures), training techniques, and challenges.
The Network Structure section introduces the major, popu-
lar network structures used for image segmentation; their
advantages; and shortcomings. It is designed to cover the
emerging sequence of the structures. Here, we try to address
the most significant structures with a major superiority over
ancestors. The Training Techniques section explores the
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state-of-the-art techniques used for training deep neural net-
work models. The Challenges section addresses various types
of challenges correlated with medical image segmentation
using deep learning techniques. These challenges are mainly
related to the design of a network, data, and training. This
section also suggests possible solutions according to litera-
ture to tackle each of the challenges related to the design of
network, data, and training.

Approaches/Network Structures

Convolutional Neural Networks (CNNs)

A CNN is a branch of neural networks and consists of
a stack of layers each performing a specific operation,
e.g., convolution, pooling, loss calculation, etc. Each
intermediate layer receives the output of the previous layer
as its input (see Fig. 1). The beginning layer is an input
layer, which is directly connected to an input image with
the number of neurons equal to the number of pixels in the
input image. The next set of layers are convolutional layers
that present the results of convolving a certain number of
filters with the input data and perform as a feature extractor.
The filters, commonly known as kernels, are of arbitrary
sizes, defined by designers, and depending on the kernel
size. Each neuron responds only to a specific area of the
previous layer, called receptive field. The output of each
convolution layer is considered as an activation map, which
highlights the effect of applying a specific filter on the input.
Convolutional layers are usually followed by activation

Fig. 1 The structure of a CNN [20]

layers to apply non-linearity to the activation maps. The next
layer can be a pooling layer depending on the design and
it helps to reduce the dimensionality of the convolution’s
output. To perform the pooling, there are a few strategies,
such as max pooling and average pooling. Lastly, high-
level abstractions are extracted by fully connected layers.
The weights of neural connections and the kernels are
continuously optimized during the procedure of a back
propagation in the training phase [20].

The above structure is known as a conventional CNN.
In the following sub-sections, we review the application of
these structures in medical image segmentation.

2D CNN

With the promising capability of a CNN in performing
image classification and pattern recognition, applying a
CNN to medical image segmentation has been explored by
many researchers.

The general idea is to perform segmentation by using a
2D input image and applying 2D filters on it. In the study
done by Zhang et al. [89], multiple sources of information
(T1, T2, and FA) in the form of 2D images are passed
to the input layer of a CNN in various image channels
(e.g., R, G, B) to investigate if the use of multi-modality
images as input improves the segmentation outcomes. Their
results have demonstrated better performance than those
using a single modality input. In another experiment done
by Bar et al [4], a transfer learning approach is taken into
account and low-level features are borrowed from a pre-
trained model on Imagenet. The high-level features are
taken from PiCoDes [6], and then all of these features are
fused together.

2.5D CNN

2.5D approaches [54, 60, 65] are inspired by the fact that
2.5D has the richer spatial information of neighboring pixels
with less computational costs than 3D. Generally, they
involve extracting three orthogonal 2D patches in the XY ,
YZ, and XZ planes, respectively, as shown in Fig. 2, with
the kernels still in 2D.

The authors in [60] applied this idea for knee cartilage
segmentation. In this method, three separate CNNs were
defined, each being fed with the set of patches, extracted
from each orthogonal plane. The relatively low number of
training voxels (120,000) and a satisfactory achievement of
0.8249 Dice coefficient proved that a triplaner CNN can
provide a balance between performance and computational
costs. In [65], three orthogonal views were combined and
treated as three channels of an input image.

Moeskops et al. [54] used a 2.5D architecture for multi-
task segmentation to evaluate if a single network design
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Fig. 2 Orthogonal representation of 3D volume [92]

is able to perform multi-organ segmentation. They even
further expanded the idea by applying different modalities
(i.e., brain MRI, breast MRI, and cardiac CTA) for each
segmentation task. The choice of a small kernel size of 3×3
voxels allowed them to go deeper in the structure and design
a 25-layer depth network. This design can be considered
as a very deep structure, first proposed by [69]. The final
results appear to be in line with previous studies, which
demonstrate that a single CNN can be trained to visualize
different anatomies with different modalities.

The 2.5D approaches are benefiting from training the
system with 2D labeled data, which is more accessible
compared to 3D data and has a better match to the current
hardware. Moreover, the decomposition of volumetric
images into a set of random 2D images helps to alleviate
the dimensionality issue [24]. Although the approach seems
to be an optimal idea with acceptable performance (slightly
better than 2D methods), some people (e.g., [42]) hold
the opinion that employing just three orthogonal views out
of many possible views of a 3D image is not an optimal
use of volumetric medical data. Moreover, performing 2D
convolutions with an isotropic kernel on anisotropic 3D
images can be problematic, especially for images with
substantially lower resolution in depth (the Z-axis) [12].

3D CNN

The application of a 2.5D structure was an attempt to
corporate richer spatial information. Yet, 2.5D methods are
still limited to 2D kernels, so they are not able to apply 3D
filters. The use of a 3D CNN is to extract a more powerful
volumetric representation across all three axes (X, Y , and
Z). The 3D network is trained to predict the label of a central
voxel according to the content of surrounding 3D patches.

The structure of the network is generally similar to a 2D
CNN with the difference of applying 3D modules in each
necessary section, for example, in 3D convolutional layers
and 3D subsampling layers.

The availability of 3D medical imaging and also the huge
improvement in computer hardware has brought the idea of
using 3D information for segmentation to fully utilize the
advantages of spatial information. Volumetric images can
provide comprehensive information in any direction rather
than just having one view in the 2D approaches and three
orthogonal views in the 2.5D approaches.

One of the first pure 3D models was introduced to
segment the brain tumor of arbitrary size [76]. Their idea
was followed by Kamnitsas [41] who developed a multi-
scale, dual-path 3D CNN, in which there were two parallel
pathways with the same size of the receptive field, and the
second pathway received the patches from a subsampled
representation of the image. This allowed to process greater
areas around the voxel, which benefited the entire system
with multi-scale context. This modification along with using
a smaller kernel size of 3 × 3 has produced better accuracy
(an average Dice coefficient of 0.66). On top of that, a lower
processing time (3 min for a 3D scan with four modalities)
compared to its original design has been achieved.

To address the dimensionality issue and reduce the
processing time, Dou et al. in [23] proposed to utilize a set
of 3D kernels that shared the weights spatially, which helped
to reduce the number of parameters.

To segment an organ from complicated volumetric images,
usually we need a deep model to extract highly informative
features. But training such deep network is considered as a
significant challenge for 3D models. In “Challenges and
State-of-the-Art Solutions,” we will address this issue in detail
and summarize some of the effective solutions available.

For the subsampling layer, 3D max pooling is introduced
which filters the maximum response in a small cubic
neighborhood to stabilize the learned features against the
local translation in 3D space. This helped to achieve a
much faster convergence speed compared to pure 3D CNN
thanks to the application of the convolution masks with
the same size of the input volume. In [44], Kleesiek et al.
performed the challenging task of brain boundary detection
using 3D CNN. They applied binary segmentation using a
cut-off threshold function and mapped the outputs to the
desired labels, and have achieved nearly 6% improvement
over other conventional methods. The 3D receptive field
of Kleesiek’s model is able to extract more discriminative
information compared to 2D and 2.5 since the kernels have
learned more precise and more organized oriented patterns
as a volume. This is good for segmenting large organs which
have more volumetric information than small organs which
exist in very few slices of the image.
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Fig. 3 The structure of FCN [50]

Fully Convolutional Network (FCN)

In the fully convolutional network (FCN) developed by Long
et al. [50], the last fully connected layer was replaced with
a fully convolutional layer (see Fig. 3). This major improve-
ment allows the network to have a dense pixel-wise pre-
diction. To achieve better localization performance, high-
resolution activation maps are combined with upsampled
outputs and passed to the convolution layers to assemble
more accurate output.

This improvement enables the FCN to have pixel-wise
predictions from the full-sized image instead of a patch-wise
prediction and is also able to perform the prediction for the
whole image in just one forward pass.

The same experiment as in [89] has been done by Nie et al.
but with the application of FCN [57]. As the same modalities
and same dataset has been used in both experiments, the result
clearly showed the superiority of FCN over CNN by achieving
a mean Dice coefficient of 0.885 compared to 0.864.

FCN for Multi-Organ Segmentation

Multi-organ segmentation aims to segment more than one
organs simultaneously, widely used for abdominal organ seg-
mentation [27]. Zhou et al. [92] used the FCN in a 2.5D
approach for the segmentation of 19 organs in 3D CT images.
In this study, a pixel-to-label training approach using 2D
slices of 3D volume [91] was employed. One separate
FCN for each 2D sectional view was designed (totally
three FCNs). Ultimately, the segmentation results of each
pixel were fused with the results of other FCNs to gen-
erate the final segmentation output. The technique pro-
duced higher accuracy for big organs such as the liver

(a Dice value of 0.937) but yielded lower accuracy while
dealing with smaller organs, for instance, the pancreas (a
Dice value of 0.553). FCN has also been used for multi-
organ segmentation from 3D images [37]. The authors in [66]
applied a hierarchical coarse-to-fine strategy that signifi-
cantly improved the segmentation results of small organs.

Cascaded FCN (CFCN)

Christ et al. [15] believed that by cascading the FCNs, the
accuracy of liver lesion segmentation could be improved.
The core idea of cascade FCN is to stack a series of FCN
in the way that each model utilizes the contextual features
extracted by the prediction map of the previous model.
To do so, a solution is applying a parallel FCN [42, 88]
which may increase model complexity and computational
cost. The simpler design proposed is to combine FCNs
in a cascade manner, where the first FCN segments the
image to ROIs for the second FCN, where the lesion
segmentation is done. The advantage of using such a design
is that separate sets of filters can be applied for each stage
and therefore the quality of segmentation can significantly
increase. Similarly, in [78], Wu et al. investigated the
cascaded FCN to increase the potential of FCN in fetal
boundary detection in ultrasound images. The results have
shown better performance compared to other boundary
refinement techniques for ultrasound fetal segmentation.

In [16], Christ et al. performed liver segmentation by
cascading two FCNs, where the first FCN performed the
liver segmentation as the ROI for the second FCN which
focused on segmenting the liver lesions. This system has
achieved 0.823 Dice score for lesion segmentation in CT
images and 0.85 in MRI images.
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Focal FCN

Zhou et al. [93] proposed to apply the focal loss on the
FCN to reduce the number of false positives occurred due to
the unbalanced ratio of background and foreground pixels
in medical images. In this structure, the FCN was used to
produce the intermediate segmentation results and then the
focal FCN was used to remove the false positives.

Multi-Stream FCN

Input images often vary in modality (multi-modality
techniques) and resolution (multi-scale techniques). A
multi-stream design may allow a system to take benefit
from multiple forms of an image from the same organ.
In [87], a multi-stream technique was applied to 3D FCN
to maximize the utilization of contextual information from
various image resolution at the same time applying a multi-
modality technique that improved the robustness of the
system against the wide variety of organ shape and structure.
Unlike [89] which accommodated multiple sources fused
the output of each modality at the end of encoder path, here
in [87], two down-sampled classifiers were injected to the
network to use the contextual information and segment at
multiple output layers.

The problem of FCN is that the receptive size is fixed
so if the object size changes then FCN struggles to detect
them all. One solution is multi-scale networks [42, 77, 83],
where input images were resized and fed to the network.
Multi-scale techniques can overcome the problem of the
fixed receptive size in the FCN. However, sharing the
parameters of the same network on a resized image is not a
very effective way as the object of different scales requires
different parameters to process. As another solution for a
fixed-size receptive field, for the images with the size bigger
than the field of view, the FCN can be applied in a sliding
window manner across the entire image [32].

The FCN which has been trained on the whole 3D images
has high class imbalance between the foreground and
background, which resulted into inaccurate segmentation of
small organs [64, 94]. One possible solution to alleviate this
issue is applying two-step segmentation in a hierarchical
manner, where the second stage uses the output of the first

stage by focusing more on boundary regions [66]. In some
of the models multi-stream techniques are used for multi-
organ detection (Table 1).

U-Net

2D U-Net

One of the most well-known structures for medical image
segmentation is U-Net, initially proposed by Ronneberger
et al. [62] using the concept of deconvolution introduced
by [85]. This model is built upon the elegant architecture of
FCN. Besides the increased depth of network to 19 layers,
U-Net benefits from a superior design of skip connections
between different stages of the network [15]. It employs
some modifications to overcome the trade-off between
localization and the use of context. This trade-off rises
since the large-sized patches require more pooling layers
and consequently will reduce the localization accuracy.
On the other hand, small-sized patches can only observe
small context of input. The proposed structure consists
of two paths of analysis and synthesis. The analysis path
follows the structure of CNN (see Fig. 4). The synthesis
path, commonly known as expansion phase, consists of
an upsampling layer followed by a deconvolution layer.
The most important property of U-Net is the shortcut
connections between the layers of equal resolution in
analysis path to expansion path. These connections provides
essential high-resolution features to the deconvolution
layers.

This novel structure has attracted a lot of attention in
medical image segmentation and based on which many
variations have been developed [17, 31, 86]. For instance,
Gordienko et al. [31] explored lung segmentation in X-ray
scans with a U-Net structure-based network. The obtained
results have demonstrated that U-Net is capable of fast
and precise image segmentation. In the same study, the
proposed model was tested on single CPU and compared
with multiple CPUs and GPUs to evaluate the effect of
hardware on model performance. The demonstrated results
showed 3 and 9.5 times speedup respectively.

DCAN [11] is another model which applied multi-level
contextual information and benefitted from the auxiliary

Table 1 Comparison of
multi-organ segmentation
approaches

Approaches Input dimension Strategy Liver Pancreas

Gibson et al. [27] 2D − 0.96 0.66

Zhou et al. [91] 2.5D Orthogonal view of volumetric images 0.937 0.553

Hu et al. [37] 3D Full 3D 0.96 −
Roth et al. [66] 3D Hierarchical two-stage FCN 0.954 0.822
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Fig. 4 The structure of the
U-Net [62]

classifier on top of the U-Net. Their design showed 0.8001
of segmentation accuracy on gland segmentation which is
almost 2% higher than the original U-Net [62] in a shorter
time of 1.5 s per testing image. The improved accuracy is
due to the capability DCAN structure to combat the errors
of touching object segmentation.

3D U-Net

In an attempt to empower the U-Net structure with richer
spatial information, Cicek et al. developed a 3D U-Net
model [17]. The suggested model was able to generate
dense volumetric segmentation from some 2D annotated
slices. The network was able to perform both annotations
of new samples from sparse ones and densification of
sparse annotated samples. The entire operation of network
is redesigned to be able to perform the 3D operation.
The average IoU (i.e., Intersection over Union) of 0.863
demonstrated that the network was able to find the whole
3D volume from few annotated slices successfully by using
a weighted softmax loss function.

In [44], 3D U-Net was used for vascular boundary detection.
The original model of this study was named as HED (Holistic
Edge Detection [79]) which was a 2D CNN. Since HED
suffered from poor localization power of the small vascular
objects, the authors modified the network by adding the
expansion path to its structure and successfully overcame
this shortcoming. In each stage of the expansion phase, a
mixing layer and two convolution layers have been used. The
structure of mixing layer is similar to the reduction layer in
GooLeNet [73] but with different usage and initialization.

Application of multi-level deep supervision on 3D U-
Net-like structures is explored by Zeng et al. in [86]. They
divided the expansion part of the network into three levels
of low, middle, and up. In the low and middle level, the
deconvolution blocks are added to upscale the image to the
same resolution of the input. Hence, beside the segmented
output of upper level (final layer), the network has two more
same resolution segmentation outputs to enhance the final
segmentation results.

As one of the shortcomings of 3D U-Net [17], the size
of the input image is set to 248 × 244 × 64 and cannot be
extended due to memory limitations. Therefore, the ROI-
sized input does not have sufficient resolution to represent
the anatomical structure in the entire image. This problem
can be addressed by dividing the input volume to multiple
batches and using them for training and testing [92].

V-Net

Probably one of the most famous derivations of U-Nets is
the V-Net proposed by Milletari et al. [53]. They applied
the convolutions in the contracting path of the network,
both for extracting the features and reducing the resolution
by selecting appropriate kernel size and stride (kernel size
is 2 × 2 × 2, and stride is 2). The convolutions serve
as pooling with the advantage of having smaller memory
footprint since unlike pooling layers, switches that map the
output of pooling layer back to the input do not need to be
stored for backpropagation. This is similar to application
deconvolution instead of up-pooling [85]. The expansion
phase will extract features and expand the concatenated
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low-resolution feature map and ultimately produce two-
channel volumetric segmentation at the last convolutional
layer. Then, the output turns to probabilistic segmentation
map and passes to voxel-wise softmax for background and
foreground segmentation. V-Net has been used in [26] with
a larger receptive field (covers 50–100% of the input image)
and multi-scale (four different resolutions) and delivered up
to 12% higher Dice coefficient compared to original V-Net.

Convolutional Residual Networks (CRNs)

Theoretically, it is proven that deeper networks have higher
capability to learn, but deeper networks not only suffer
from gradient vanishing problem but also face the more
pressing issue of degradation [33]. It means with the depth
increasing, the accuracy gets saturated and then rapidly
degrades. To take advantage from deeper network structure,
He et al. [33] introduced the residual networks which were
initially developed for natural image segmentation on 2D
images. In this model, instead of consecutively feeding
the stacked layers with the feature map, a residual map is
fed to every few layers. In other words, the residual maps
are skip connections, allowing the network to redirect the
derivatives through the network by skipping some layers.
This design helped the network to enjoy the accuracy gained
from deeper designs (Fig. 5).

Fig. 5 A residual block of CRN. Residual block may have various
number and combination of layers inside, depending on the network
design

Yu et al. further expanded the basic idea of CRN
and modified it to a fully convolutional residual network
(FCRN) for the accurate task of melanoma recognition
and segmentation [83]. The advantage of the proposed
FCRN over the original CRN is that it is capable of
operating pixel-wise predictions, which is of valuable
significance for many segmentation tasks. To get some more
benefits over other CNN-based systems, authors perfectly
decided to fully utilize both local and global contextual
features [43], coming from deeper and higher layers of
network respectively. It is addressed by enhancing the
model to multi-scale contextual that led to the construction
of a very deep FCRN consisting of 50 layers, to segment
skin lesions with a Dice coefficient of 0.897 compared to
0.794 for the VGG-16.

Although 2D deep residual networks have demonstrated
their capacity in many medical image segmentation
tasks [28], as well as general image processing topics [34,
84], yet insufficient studies applied residual learning on
volumetric data. Among them, VoxResNet, proposed by
Chen et al. [8] is a 3D deep residual network which borrows
the spirit of 2D version. They fully benefitted from the
main merit of residual networks by designing a 25-layer
model to be applied to brain 3D MRI images. The structure
consists of VoxRes modules in which the input feature are
added to transformed features via a skip connection. Small
convolutional kernels are applied since their potential in
computational efficiency and representation power already
has been proven [69]. To gain a larger receptive area and
consequently more contextual information, they employed
three convolutional layers with a stride of two that
ultimately reduced the resolution of input by eight times.
Moreover, they extended the VoxResNet to auto-context
VoxResNet which was able to process multi-modality
images to provide more robust segmentation. Voxresnet
has achieved a segmentation result with Dice coefficients
of 0.8696, 0.8061, and 0.8113 for T1, T1-IR, and T2
respectively and 0.885 for the auto-context version. The
results demonstrate that increasing the depth not only
delivers performance improvement but also provides a
practical solution for the degradation problem.

Recurrent Neural Networks (RNNs)

The RNN is empowered with recurrent connections which
enables the network to memorize the patterns form last
inputs. The fact that the ROI in medical images usually
distributed over multiple adjacent slices (e.g., in CT or
MRI), results in having correlations in successive slices.
Accordingly, RNNs are able to extract inter-slice contexts
from the input slices as a form of sequential data. The
RNN structure consists of two major sections of intra-slice

588 J Digit Imaging (2019) 32:582–596



information extraction which can be done by any type CNN
models, and the RNN, in charge of inter-slice information
extraction.

LSTM

LSTM [35] is considered as the most famous type of
RNN. In a standard LSTM network, the inputs should be
vectorized inputs which is a disadvantage for medical image
segmentation as the spatial information will be lost. Hence,
a good suggestion could be the application of convolutional
LSTM (CLSTM) [71, 81] in which vector multiplication has
been replaced with the convolutional operation.

Contextual LSTM (CLSTM)

In [7], CLSTM applied to the output layer of deep
CNN to achieve sharper segmentation by capturing the
contextual information across the adjacent slices. Their
method achieved significant improvement in DSC of 0.8247
compared to 0.7976 for the famous U-Net structure [62].

Chen et al. in [12] added a bidirectional CLSTM (BDC-
LSTM) to a modified U-Net structure CNN. BDC-LSTM
is able to capture the sequential data in two directions of
z+ and z− rather than single direction. The results have
outperformed the pyramid LSTM [72] in which information
captured in six directions (x+, x−, y+, y−, z+, and z−),
by almost 1%. Although pyramid LSTM moves in six
directions, the summation of the six generated outputs
from each direction caused spatial information losses. Thus,
BDC-LSTM by just moving in z-direction perform slightly
better.

Gated Recurrent Unit (GRU)

GRU is a variation of LSTM in which the memory cells
are removed and the structure getting simpler without
degradation in performance [13]. Poudel et al. [59] applied
a GRU to FCN system and built recurrent FCN (RFCN).
Their model was trained end-to-end on segmentation of
left ventricular (LV). The RFCN has the advantages of
performing both detection and segmentation in a single
structure and one pass training for both FCN and GRU.

Clockwork RNN (CW-RNN)

The CW-RNN proposed in [45] demonstrated the potential
in modeling the long-term dependency with less parameters
than a pure RNN. This structure has been applied to
muscle perimysium segmentation [80]. Since just a portion
of CW-RNN is active at a time, it is more efficient
compared to other approaches (100 times less running time
than modified CNN [18]), and also the comparison of

CW-RNN and U-Net shows a 5% improvement in mean
accuracy. It should be noted that the parallelizing the
RNN on GPU is a challenging task especially in case of
volumetric data [72]. Moreover, having decoupled training
for individual modules of RNN has made the training
process more complicated and time-consuming. Clearly,
RNN approaches have better performance when dealing
with bigger organs that have more inter-slice information
rather than small lesion segmentation that entire ROI may
capture in one slice.

Network Training Techniques

Deeply Supervised

The core idea of deep supervision is to provide the direct
supervision of the hidden layers and propagate it to lower
layers, instead of just doing it at the output layer. This idea
has been implemented in [47] for non-medical purposes by
adding the companion objective function to hidden layers.
Also in GoogLeNet, the supervision was done for two
hidden layers of a 22 layers network [73].

Dou et al. in [22] applied deeply supervised approaches
to segment the 3D liver CT volumes. This was achieved
through upsampling the lower and middle-level features by
using deconvolution layers and applying the softmax layer
to densify the classification output. Their presented results
not only show a better convergence but also lower training
and validation error.

In a similar approach [10], three classifiers were injected
to classify the mid-level output features from the contracting
part of a U-Net-like structure. The classified outputs were
used as a regulator at the training phase. The multi-level
contextual information in the network helped to improve
the localization and discrimination abilities. Moreover, the
auxiliary classifiers boosted the back propagation flow of
the gradient in the training phase.

Weakly Supervised

Existing supervised approaches for automated medical
image segmentation require the pixel-level (voxel-level in
case of 3D) annotation which is not always available in
various cases. Also doing such annotation will be very
tedious and expensive [39]. In general image processing,
this problem eased by using outsource labeling services
like Amazon MTurk which obviously cannot be applied to
medical images. Alternatively, the use of image-labeled data
for instance with a binary label that shows the presence or
absence of pattern is a novel approach to address this issue.

This idea was implemented in [2] by employing the
“point labels” which are essentially a single pixel location
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indicating the presence of a nodule to reduce the system
dependency to fully annotated images. They took the
position of that pixel and extracted the surrounding volume
and used it as the positive sample for training by using
the statistical information about the nodules. For instance,
typically the nodules will be presented in 3–7 consecutive
slices and will vary from 3 to 28 pixels in wide. The method
achieved a reasonable sensitivity of 80% with weakly
labeled samples.

Feng et al. [25] used a CNN for fully automated
segmentation of lung nodules in weakly labeled data. Their
method is based on the finding of [90] which demonstrated
the capability of CNN in identifying discriminative regions.
Accordingly, they employed a classification CNN to detect
the slices containing nodules, and at the same time,
they used the discriminative region features to extract
the discriminative regions from the slice, called nodule
activation map (NAM). Moreover, a multi-GAP CNN was
introduced to take advantages of NAMs from shallower
layers with higher spatial resolution same as the idea
of [50]. The presented result of 0.55 Dice score was
close but less accurate compared to fully supervised
approaches. The superiority of deeply supervised methods
was expected as they use pixel-level annotation and this
provides critical information to deal with various intensity
patterns, especially at the edges. However, the proposed
method helps to extract the nodule containing areas more
automatically compare to [2] which was more established
on hard assumptions derived from the statistical information
about the nodule size and shape.

Transfer Learning

Transfer learning is defined as the capability of a system to
recognize and employ the knowledge learned in a previous
source domain to a novel task [68].

Transfer learning can be done with two approaches,
i.e., as fine-tuning the network pre-trained on general
images [36] and fine-tuning a network pre-trained on
medical images for a different target organ or task. Transfer
learning has been proven to have better performance when
the tasks of source and target network are more similar, and
yet even transferring the weights of far distant tasks has been
proven to be better than random initialization [82]. In [78],
the weights are taken from a general network (VGG16)
and then fine-tuned on prenatal image segmentation in
ultrasound. Similarly, in [74], the original weights were
taken from a distant application and applied on polyp
detection. Therefore, authors had to fine-tune the entire
layers. They observed a 25% increment in sensitivity by
fine-tuning all layers compared to just the last layer.
However, there were some experiments that trained from

scratch which also delivered better results compared to
fine-tuning a pre-trained network [75].

Transfer learning can be done in three major levels: (1)
full network adaption, which is to initialize the weights by
a pre-trained network (rather than a random initialization)
but update them all during the training [9, 77]. (2)
Partial network adaption, which is to initialize the network
parameter from a pre-trained network but freeze the weights
for first few layers and update the last layers during the
training [11, 29, 86]. (3) Zero adaption, which is to initialize
the weights for entire network from a pre-trained model and
do not change any at all. Generally, zero adaption approach
from another medical network is not recommended due
to the huge variation in organ’s (target) appearance. It is
especially not advised if the sources have been trained
on general images. Furthermore, the objects in biomedical
images may have very different appearance and size so
transfer learning from the models with huge variations in
organ appearance may not reduce the segmentation result.

Network Structure

However, selection of the approach depends on the network
structure as well. For shallower networks, the full adaption
yields better performance, yet in deeper structures partially
adaptive approaches will reduce the convergence time and
computational load [74].

Organ andModality

Another critical element in transfer learning is the target
organ and its imaging modality. For instance, in [87],
they applied full weight transfer for T1 MRI and partial
transfer for T2 modality. The results in [61] show that
the fully adaption approach has a better average Dice
score (ADS) [38] compared to zero and partial adaption in
ultrasound kidney segmentation, since the modality has lots
of noises and also organ has huge appearance variation.

Dataset Size

The size of target dataset is also a role-playing parameter
to decide about the level of transfer learning. If the target
dataset is small and the number of parameters is large
(deeper networks), full adaption may result in overfitting.
Thus, partial adaption is a better choice. On the other hand,
if the size of target dataset is relatively bigger, the issue
of overfitting will not happen and full adaption can work
fine. Tajbakhsh et al. in [74] evaluated the effect of dataset
size on a full adaption approach. The results show 10%
improvement in sensitivity (from 62 to 72%) by increasing
the dataset from a quarter to full size of the training dataset.
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Challenges and State-of-the-Art Solutions

Limited Annotated Data

Deep learning techniques have greatly improved segmenta-
tion accuracy thanks to their capability to handle complex
conditions. To gain this capability, the networks typically
require a large number of annotated samples to perform
the training task. Collecting such huge dataset of annotated
cases in medical image processing is often a very tough task
and performing the annotation on new images will also be very
tedious and expensive. Several approaches have been widely
used for addressing this problem. Table 2 summarizes some
of the widely used datasets various organ segmentation.

Data Augmentation

The most commonly adopted method to increase the size
of the training dataset is data augmentation which is the
application of a set of affine transformation, e.g., flip,
rotate, mirror, to the samples [52] as well as augmenting
color (gray) values [30]. In a non-medical experiment, the
effectiveness of data augmentation is evaluated and the

results show that the traditional augmentation techniques are
able to boost the performance up to seven percent [58].

Transfer Learning

Transfer learning from the successful models implemented
in the same area (or even other areas) is another solution
to address this issue. Compared with data augmentation,
transfer learning is a more specific solution which depends
on many parameters as explained in “Transfer Learning.”

Patch-Wise Training

In this strategy, the image is broken down into multiple
patches which can be either overlapping or random patches.
Random patching may result in higher variance among the
patches and better convergence especially in 3D cases where
N random view of a volume of interest (VOI) is taken as
the training sample[65] (if N = 3 it is a 2.5D approach) [2].
Yet, random patching has the class imbalance issue and
lower accuracy compared to overlapping patches. Hence, it
is not advised for small-organ segmentation. Overlapping
patches have shown higher accuracy but computationally

Table 2 Summary of widely used datasets for various organ segmentation

Organ Dataset name Dataset size Dimension Modality Used in

Abdominal NIH-CT-82 82 samples 3D CT [7, 63, 64]

UFL-MRI-79 79 samples − − [64]

Brain MRI C34 − − MRI [54]

Brain MR Brains − − MRI [8]

Find the dataset from Zhang MRI [57, 89]

ADNI 339 samples 3D PET [12]

Breast Breast MRI -34 − − T1-MRI [54]

INbreast 116 samples 2D Mammography [21, 55]

DDSM-BCRP 158 samples − − [21]

Cardiac Cardiac CTA − − CT [54]

Heart ACDC 150 patients 2D MRI [5]

Left ventricular PRETERM dataset 234 cases 2D MRI [48, 59]

Liver SLiver07 30 samples 3D CT [23, 37]

3DIRCADb 20 samples 3D CT [16]

Lung Lung Nodule Analysis 2016 (LUNA16) 880 patients 2D CT [1]

Kaggles Data Science Bowl (DSB) 1397 patients 2D CT [1]

Japanese Society of Radiological Technology (JSRT) 247 images 2D CT [31]

Lung Image Database Consortium (LIDC) 1024 patients 2D CT [3, 14]

Prostate Promise 2012 − 2D − [53]

Skin ISBI 2016 1250 image 2D − [19, 83]

Multiple organ Computational anatomy 640 samples 3D CT [92]
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intensive [23]. The performance relatively depends on the
overlapping of the patches and the size of mini-patches [52].

Weakly Supervised Learning

As illustrated in “Weakly Supervised,” weakly supervised
learning approaches such as [2, 25, 39] are useful to address
the issue of insufficient or noisy labeled data. Unsupervised
learning methods have also been used to extract more reliable
data from a weakly labeled data and then use the extracted
annotated data to train the network, which is considered as
a hybrid approach for addressing this issue [2].

Sparse Annotation

Since fully annotating data is not always possible especially
in 3D cases, often we have to use sparsely annotated data.
Application of weighted loss functions where the weights
for unlabeled data are set to zero is the key to only learn
from the labeled pixels in sparsely annotated volume [17].

Effective Negative Set

Another challenge to overcome is to collect a suitable set
of negative samples. To enhance the discrimination power
of the network on false positive cases, the negative set must
contain cases which are nodule-like but not positive. For
instance, the authors in [2] picked random samples from
inside the lung area with Hounsfield scale between 400 and
500. This HU range contains the nodule-like samples which
are negative. Forty percent of collected samples with this
approach are used as positive samples and the rest are used
for negative set.

Class Imbalance

It is very common in medical image processing that the
anatomy of interest only occupies a very small portion of
the image. Hence, most of the extracted patches belong to
the background area, while these small organs (anomalies)
are of greater importance. Training a network with such data
often leads to the trained network being biased toward the
background and got trapped in local minima [51, 53].

A popular solution for this issue is sample re-weighting,
where a higher weight is applied to the foreground patches
during training [16]. Automatic modification of sample re-
weighting has been developed by using Dice loss layer and
Dice coefficient [44, 62, 95]. Yet, the effectiveness is limited
in dealing with extreme class imbalance [93]. Patch-wise
training combined with patch selection can help to address
the issue of class imbalance [18]. Fundamentally, during the
creation of the training set, a control mechanism can be set

to have a balanced number of patches from the background
and foreground [52].

Another approach to deal with this issue is sampled loss
in which the loss will not be calculated for the entire image
and just some random pixels (areas) will be selected for loss
calculation [56]. The randomness of candidate selection for
loss evaluation is the main drawback of this method which
may affect the accuracy of loss calculation.

Challenges with Training DeepModels

Overfitting

Overfitting happens when a model can capture the patterns
and regularities in the training set with reasonably higher
accuracy compared with unprocessed instances of the
problem [30]. Generally, the main reason for overfitting is
the small size of the training dataset. Therefore, any solution
which can increase the size of data (“Limited Annotated
Data”) may help to combat the overfitting problem as
well [67].

For instance, creating multiple views of a patch (augmen-
tation) rather than having a single view is proven to have
a positive effect in overfitting [25]. Another technique to
handle overfitting is applying “dropout” during the training
process to discard the output of a random set of the neu-
rons in each iteration from the fully connected layers [70].
Similarly, the drop connect which a newer modification of
dropout has been proven to help the overfitting issue [65].

Training Time

Reducing the training time and having faster convergence
is a core topic of many studies. One of the earlier solutions
for this issue is to apply pooling layers which can reduce
the dimensionality of the parameters [23]. Recent pooling-
based solutions use convolution with stride [69] that has
the same effect and but lightens the network. Batch
normalization, refers to centering the pixel values around 0
by subtracting them by the mean image[40], is also known
as an effective key for faster convergence[5, 17, 43]. Batch
normalization is a more preferred approach to improve
the network convergence as is not reported to have any
negative effects on the performance, while the pooling and
down-sampling techniques have led in loosing beneficial
information.

Gradient Vanishing

Deeper networks are proven to have better performance yet
they are struggling with the issue of exploding or completely
vanishing of propagated signal (gradient) [42], in other words,
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the final loss cannot be effectively back propagated to
shallow layers. This issue is more severe in the 3D models.

A general solution for gradient vanishing is to have deeply
supervised approaches in which the intermediate hidden
layers’ output will be up-scaled using deconvolution and
passed to a softmax to get the prediction from them. The auxil-
iary losses together with the original loss of the hidden layer
are combined to strengthening the gradient [23, 86, 87].

In approaches with from-scratch-training, careful weight
initialization also has improving effect in gradient vanishing
as demonstrated in [42], where kernels’ weight were
initialized by sampling from the normal distribution.

Organ Appearance

The heterogeneous appearance of the target organ is one
of the big challenges in medical image segmentation. The
target organ or lesion may vary hugely in size, shape, and
location from patient to patient [42]. Increasing the depth of
network is reported as an effective solution [83].

The ambiguous boundary with a limited contrast between
targeting organs and the neighboring tissues is a known
inherent imaging challenge. This is usually caused by
attenuation coefficient in CT and relaxation time in
MRI [23, 46]. Multi-modality-based approaches can address
this problem [57, 76, 87, 89]. Moreover, superpixel’s
information is known to be helpful for segmenting
overlapping or organs at the boundary [2]. Applying
weighted loss function with a larger weight allocated to
the separating background labels between touching organs
is another successful approach for touching objects of the
same class [12, 62].

3D Challenges

All the abovementioned challenges in training can be
much more severe in dealing with volumetric data due
to low-voice variance between the target and neighboring
voxels, the larger amount of parameters and also the
limited volumetric training data. Having computationally
expensive inference is known as an issue discouraging the
use of 3D approaches. Applying dense inference proves to
significantly decrease the inference time to approximately a
minute for a single brain scan [76]. Performing a rule out
strategy to eliminate the areas which are unlikely containing
the target organ can effectively reduce the search space and
lead to faster inference [2].

Conclusion

In this paper, we first summarized the most popular network
structures applied for medical image segmentation and

highlighted their advantages over the ancestors. Then,
we gave an overview of the main training techniques
for medical image segmentation, their advantages, and
drawbacks. In the end, we focused on the main challenges
related to deep learning-based solution for medical image
segmentation. We have addressed the effective solutions for
handling various challenges. We believe this article may
help researches to choose proper network structure for their
problem and also be aware of the possible challenges and
the solutions. All signs show that deep learning approaches
will play a significant role in medical image segmentation.
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qualitative and a quantitative analysis of an auto-segmentation
module for prostate cancer. Acta Radiol Oncol 90(3):337–345,
2009

39. Hwang S, Kim HE: Self-transfer learning for weakly supervised
lesion localization. In: International Conference on Medical Image
Computing and Computer-Assisted Intervention. Springer, 2016,
pp 239–246

594 J Digit Imaging (2019) 32:582–596

http://arXiv.org/abs/1702.05970
https://doi.org/10.1109/TMI.2018.2806309


40. Ioffe S, Szegedy C (2015) Batch normalization: accelerating
deep network training by reducing internal covariate shift.
arXiv:1502.03167

41. Kamnitsas K, Chen L, Ledig C, Rueckert D, Glocker B: Multi-
scale 3D convolutional neural networks for lesion segmentation in
brain mri. Ischemic Stroke Lesion Segmentation 13:46, 2015

42. Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD,
Menon DK, Rueckert D, Glocker B: Efficient multi-scale 3D CNN
with fully connected CRF for accurate brain lesion segmentation.
Med Image Anal 36:61–78, 2017

43. Kawahara J, BenTaieb A, Hamarneh G: Deep features to classify
skin lesions. In: 2016 IEEE 13th International Symposium on
Biomedical Imaging (ISBI). IEEE, 2016, pp 1397–1400

44. Kleesiek J, Urban G, Hubert A, Schwarz D, Maier-Hein K, Bend-
szus M, Biller A: Deep MRI brain extraction: a 3D convolutional neu-
ral network for skull stripping. NeuroImage 129:460–469, 2016

45. Koutnik J, Greff K, Gomez F, Schmidhuber J (2014) A clockwork
rnn. arXiv:1402.3511

46. Kronman A, Joskowicz L: A geometric method for the detection
and correction of segmentation leaks of anatomical structures
in volumetric medical images. Int J Comput Assist Radiol Surg
11(3):369–380, 2016

47. Lee CY, Xie S, Gallagher P, Zhang Z, Tu Z: Deeply-supervised
nets. In: Artificial Intelligence and Statistics, 2015, pp 562–570

48. Lewandowski AJ, Augustine D, Lamata P, Davis EF, Lazdam M,
Francis J, McCormick K, Wilkinson AR, Singhal A, Lucas A, et
al: Preterm heart in adult life: cardiovascular magnetic resonance
reveals distinct differences in left ventricular mass, geometry, and
function. Circulation 127(2):197–206, 2013

49. Litjens G, Kooi T, Bejnordi BE, Setio A, Ciompi F, Ghafoorian M,
Van Der Laak JA, Van Ginneken B, Sánchez CI: A survey on deep
learning in medical image analysis. Med Image Anal 42:60–88,
2017

50. Long J, Shelhamer E, Darrell T: Fully convolutional networks for
semantic segmentation. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2015, pp 3431–3440

51. Merkow J, Marsden A, Kriegman D, Tu Z: Dense volume-to-
volume vascular boundary detection. In: International Conference
on Medical Image Computing and Computer-Assisted Interven-
tion. Springer, 2016, pp 371–379

52. Milletari F, Ahmadi SA, Kroll C, Plate A, Rozanski V, Maiostre J,
Levin J, Dietrich O, Ertl-Wagner B, Bötzel K, et al: Hough-CNN:
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