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Abstract
There is recent popularity in applying machine learning to medical imaging, notably deep learning, which has achieved state-of-
the-art performance in image analysis and processing. The rapid adoption of deep learning may be attributed to the availability of
machine learning frameworks and libraries to simplify their use. In this tutorial, we provide a high-level overview of how to build
a deep neural network for medical image classification, and provide code that can help those new to the field begin their
informatics projects.
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Introduction

Machine learning has sparked tremendous interest over the
past few years, particularly deep learning, a branch of machine
learning that employs multi-layered neural networks. Deep
learning has done remarkably well in image classification
and processing tasks, mainly owing to convolutional neural
networks (CNN) [1]. Their use became popularized after Drs.
Krizhevsky and Hinton used a deep CNN called AlexNet [2]
to win the 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC), an international competition for object
detection and classification, consisting of 1.2million everyday
color images [3].

The goal of this paper is to provide a high-level introduc-
tion into practical machine learning for purposes of medical

image classification. A variety of tutorials exist explaining
steps to use CNNs, but the medical literature currently lacks
a step-by-step source for those practitioners new to the field in
need of instructions and code to build and test a network.
There are many different libraries and machine learning
frameworks available, including Caffe, MXNet, Tensorflow,
Theano, Torch and PyTorch, which have facilitated machine
learning research and application development [4]. In this tu-
torial, we chose to use the Tensorflow framework [5]
(Tensorflow 1.4, Google LLC, Mountain View, CA) as it is
currently the most actively used [6] and the Keras library
(Keras v 2.12, https://keras.io/), which a high-level application
programming interface that simplifies working with
Tensorflow, although one could use other frameworks as well.
Currently, Keras also supports Theano, Microsoft Cognitive
Toolkit (CNTK), and soon MXNet.

We hope that this tutorial will spark interest and provide a
basic starting point for those interested in machine learning in
regard to medical imaging. This tutorial assumes basic under-
standing of CNNs, some Python programming language
(Python 3.6, Python Software Foundation, Wilmington DE),
and is more of a practical introduction to using the libraries
and frameworks. The tutorial will also highlight some impor-
tant concepts but due to space constraints not cover everything
in full detail.

Hardware Considerations

For larger datasets, you will want a computer that con-
tains a graphics processing unit (GPU) that supports the

Paul Nagy and George Shih are co-senior authors.

* Paras Lakhani
paras.lakhani@jefferson.edu

1 Department of Radiology, Sidney Kimmel Jefferson Medical
College, Thomas Jefferson University Hospital,
Philadelphia, PA 19107, USA

2 Sidney Kimmel Jefferson Medical College, Philadelphia, PA, USA
3 Department of Radiology, Johns Hopkins University School of

Medicine, Baltimore, MD, USA
4 Division of Health Science Informatics, Johns Hopkins University

School of Public Health, Baltimore, MD, USA
5 Department of Radiology, Weill Cornell Medical College, New

York, NY, USA

Journal of Digital Imaging (2018) 31:283–289
https://doi.org/10.1007/s10278-018-0079-6

The Author(s) 2018

http://crossmark.crossref.org/dialog/?doi=10.1007/s10278-018-0079-6&domain=pdf
http://orcid.org/0000-0003-3373-9226
https://keras.io/
mailto:paras.lakhani@jefferson.edu


CUDA® Deep Neural Network library (cuDNN) designed
for Nvidia GPUs (Nvidia Corp., Santa Clara, CA). This
will tremendously speed up training (up to 75 times faster
than a CPU) depending on the model of the GPU [7].
However, for smaller datasets, training on a standard cen-
tral processing unit (CPU) is fine.

This tutorial is performed on a computer containing an
Nvidia 1080ti GPU, dual-xeon E5-2670 Intel CPUs, and
64 gb RAM. However, you could perform this experiment
on a typical laptop using the CPU only.

Dataset Preparation

A common machine learning classification problem is to
differentiate between two categories (e.g., abdominal and
chest radiographs). Typically, one would use a larger sam-
ple of cases for a machine learning task, but for this tuto-
rial, our dataset consists of 75 images, split roughly in
half, with 37 of the abdomen and 38 of the chest. The
data is derived from OpenI, a searchable online repository
of medical images from published PubMed Central arti-
cles, hosted by the National Institutes of Health (https://
openi.nlm.nih.gov). For your convenience, we hosted the
images on the following SIIM Github repository: https://
github.com/ImagingInformatics/machine-learning. These
images are in PNG (Portable Network Graphics) format
and ready to be utilized by any machine learning framework.
For handling Digital Imaging and Communications in
Medicine (DICOM) images, a Python library such as
PyDicom (http://pydicom.readthedocs.io/en/stable/index.
html) may be used to import the images and convert them
into a numpy array for use within the Tensorflow
framework. With other frameworks such as Caffe, it
may be easier to convert the DICOM files to either
PNG or Joint Photographic Experts Group (JPEG) format
prior to use.

First, randomly divide your images into training and vali-
dation. In this example, we put 65 cases into training and 10
into validation.More information regarding principles of split-
ting and evaluating your model, including more robust meth-
odologies such as cross-validation, are referenced here [8, 9].

Then, place the images into the directory structure as
shown in Fig. 1.

Setting Up Your Environment

For this example, we will assume you are running this on your
laptop or workstation. You will need a computer running
Tensorflow, Keras, and Jupyter Notebook (http://jupyter.
org/), an open-source web application that permits creation
and sharing of documents with text and live code [10]. To

make things easier, there is a convenient SIIM docker that
has Tensorflow, Keras, and Jupyterlab already installed avail-
able at https://github.com/ImagingInformatics/machine-
learning/tree/master/docker-keras-tensorflow-python3-
jupyter.

First, launch a Jupyter Notebook, text editor or Python-
supported development environment of your choosing.
With Jupyter, the notebooks are organized into cells,
whereby each cell may be run independently. In the note-
book, load requirements from the Keras library (Fig. 2).
Then, specify information regarding the images. Last, de-
fine the number of epochs (number of passes through the
training data), and the batch size (number of images proc-
essed at the same time).

Build the Model

Then, build the pretrained Inception V3 network [11], a
popular CNN that achieved a top 5 accuracy of greater
than 94% on the ILSVRC. In Keras, the network can be
built in one line of code (Fig. 3). Since there are two
possible categories (abdominal or chest radiograph), we
compile the model using binary cross-entropy loss
(Fig. 4), and measure of model performance with a prob-
ability between 0 and 1. For classification tasks with
greater than 2 classes (e.g., ImageNet has 1000 classes),
categorical cross-entropy is typically used as the loss
function; for tasks with 2 classes, binary cross-entropy
is used.

data/
train/

abd/
abd001.png
abd002.png
...

chst/
chst001.png
chst002.png
…

val/
abd/

abd_val_001.png
abd_val_002.png
...

chst/
chst_val_001.png
chst_val_002.png
…

Fig. 1 Directory structure for the data
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There are many available gradient descent optimization
algorithms, which minimize a particular objective function
[12]. In the example, we use the Adam [13] optimizer with
commonly used settings (Fig. 4).

More About Transfer Learning

In machine learning, transfer learning refers to application of a
process suited for one specific task to a different problem [14].
For example, a machine learning algorithm trained to recog-
nize every day color images, such as animals, could be used to
classify radiographs. The idea is that all images share similar

features such as edges and blobs, which aids transfer learning.
In addition, deep neural networks often require large datasets
(in the millions) to properly train. As such, starting with
weights from pretrained networks will often perform better
than random initialization if using small datasets [14–16]. In
medical imaging classification tasks, this is often the case, as it
may be difficult to annotate a large dataset to train from
scratch.

There are many strategies for transfer learning, which
include freezing layers and training on later layers, and
using a low learning rate. Some of this optimization is
frequently done by trial and error, so you may have to
experiment with different options. For this tutorial, we

# build the Inception V3 network, use pretrained weights from ImageNet 
# remove top fully connected layers by include_top=False 

base_model = applications.InceptionV3(weights='imagenet', include_top=False, 
input_shape=(img_width, img_height, 3))

Fig. 3 Start with the original Inception V3 model. Then, remove top or fully connected layers from the original network. Use pretrained weights from
ImageNet

# build a classifier model to put on top of the convolutional model 
# This consists of a global average pooling layer and a fully connected layer with 256 nodes  
# Then apply dropout and sigmoid activation 

model_top = Sequential() 
model_top.add(GlobalAveragePooling2D(input_shape=base_model.output_shape[1:], 
data_format=None)),
model_top.add(Dense(256, activation='relu')) 
model_top.add(Dropout(0.5)) 
model_top.add(Dense(1, activation='sigmoid'))  
model = Model(inputs=base_model.input, outputs=model_top(base_model.output)) 

# Compile model using Adam optimizer with common values and binary cross entropy loss 
# Use low learning rate (lr) for transfer learning
model.compile(optimizer=Adam(lr=0.0001, beta_1=0.9, beta_2=0.999, epsilon=1e-
08,decay=0.0), loss='binary_crossentropy', metrics=['accuracy'])

Fig. 4 Add new layers on top of
the original model. There are
many possibilities, but here, we
add a global average pooling
layer, a fully connected layer with
256 nodes, dropout, and sigmoid
activation. We also define an
optimizer; in this case, it is the
Adam optimizer with default
settings

# load requirements from the Keras library
from keras import applications 
from keras.preprocessing.image import ImageDataGenerator 
from keras import optimizers 
from keras.models import Sequential 
from keras.layers import Dropout, Flatten, Dense, GlobalAveragePooling2D 
from keras.models import Model 
from keras.optimizers import Adam

# dimensions of our images
img_width, img_height = 299, 299

# directory and image information 
train_data_dir = '../data/train'
validation_data_dir = '../data/val'

# epochs = number of passes of through training data 
# batch_size = number images processed at same time 
train_samples = 65
validation_samples = 10
epochs = 20
batch_size = 5

Fig. 2 Jupyter Notebook showing
initial steps
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Original Translation Rotation Horizontal Flip Shear

Fig. 6 Augmentation examples using the Keras generator

# Directory, image size, batch size already specified above 
# Class mode is set to 'binary' for a 2-class problem 
# Generator randomly shuffles and presents images in batches to the network 

 train_generator = train_datagen.flow_from_directory( 
    train_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='binary') 

validation_generator = train_datagen.flow_from_directory( 
    validation_data_dir, 
    target_size=(img_height, img_width), 
    batch_size=batch_size, 
    class_mode='binary')

# Fine-tune the pretrained Inception V3 model using the data generator 
# Specify steps per epoch (number of samples/batch_size) 

history = model.fit_generator( 
            train_generator, 
            steps_per_epoch=train_samples // batch_size, 
            epochs=epochs, 
            validation_data=validation_generator, 
            validation_steps=validation_samples // batch_size)

Fig. 7 Defining the training and
validation generator and fitting
the model

# Some on-the-fly augmentation options 
 train_datagen = ImageDataGenerator( 
        rescale= 1./255,    # Rescale pixel values to 0-1 to aid CNN processing
        shear_range=0.2,    # 0-1 range for shearing
        zoom_range=0.2,    # 0-1 range for zoom
        rotation_range=20,    # 0-180 range, degrees of rotation 
        width_shift_range=0.2,   # 0-1 range horizontal translation
        height_shift_range=0.2,   # 0-1 range vertical translation
        horizontal_flip=True)    # set True or False

val_datagen = ImageDataGenerator( 
         rescale=1./255)    # Rescale pixel values to 0-1 to aid CNN processing

Fig. 5 Rescale images and
specify augmentation methods

Epoch 1/20 
13/13 [=================] - 2s - loss: 0.5701 - acc: 0.7231 - val_loss: 0.7761 - val_acc: 0.6000 
Epoch 2/20 
13/13 [=================] - 2s - loss: 0.1420 - acc: 0.9692 - val_loss: 0.4471 - val_acc: 0.8000 
Epoch 3/20 
13/13 [=================] - 2s - loss: 0.1645 - acc: 0.9385 - val_loss: 0.2711 - val_acc: 0.9000 
Epoch 4/20 
13/13 [=================] - 2s - loss: 0.0807 - acc: 0.9692 - val_loss: 0.2032 - val_acc: 0.9000 
Epoch 5/20 
13/13 [=================] - 2s - loss: 0.2372 - acc: 0.9538 - val_loss: 0.4368 - val_acc: 0.8000 
Epoch 6/20 
13/13 [=================] - 2s - loss: 0.0766 - acc: 0.9692 - val_loss: 0.0848 - val_acc: 1.0000

Fig. 8 Training metrics. Loss, training loss; acc, training accuracy; val_loss, validation loss; val_acc, validation accuracy. 13 refers to the number of
batches (13 batches × 5 images per batch = 65 training images). 20 refers to number of epochs
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remove the final (top) fully connected layers of the
pretrained Inception V3 model that was intended for a
1000-class problem in ImageNet, and insert a few

additional layers with random initialization (Fig. 4), so
they can learn from the new medical data provided. We
then fine-tune the entire model using a very low

# import matplotlib library, and plot training cuve 
import matplotlib.pyplot as plt
print(history.history.keys()) 

plt.figure() 
plt.plot(history.history['acc'], 'orange', label='Training accuracy') 
plt.plot(history.history['val_acc'], 'blue', label='Validation accuracy') 
plt.plot(history.history['loss'], 'red', label='Training loss') 
plt.plot(history.history['val_loss'], 'green', label='Validation loss') 
plt.legend() 
plt.show()

Ac
cu

ra
cy

Epochs 

Fig. 9 Sample Python code to
plot training data. Accuracy
increases and loss decreases over
time for the training and
validation data

# import numpy and keras preprocessing libraries 
import numpy as np
from keras.preprocessing import image 

# load, resize, and display test images 
img_path='../data/test/chest_test_001.png'
img_path2='../data/test/abd_test_001.png'
img = image.load_img(img_path, target_size=(img_width, img_height)) 
img2 = image.load_img(img_path2, target_size=(img_width, img_height)) 
plt.imshow(img) 
plt.show() 

# convert image to numpy array, so Keras can render a prediction 
img = image.img_to_array(img) 

# expand array from 3 dimensions (height, width, channels) to 4 dimensions (batch size, 
height, width, channels) 
# rescale pixel values to 0-1 
x = np.expand_dims(img, axis=0) * 1./255 

# get prediction on test image
score = model.predict(x) 
print('Predicted:', score, 'Chest X-ray' if score < 0.5 else 'Abd X-ray') 

# display and render a prediction for the 2nd image
plt.imshow(img2) 
plt.show() 
img2 = image.img_to_array(img2) 
x = np.expand_dims(img2, axis=0) * 1./255
score2 = model.predict(x) 
print('Predicted:', score2, 'Chest X-ray' if score2 < 0.5 else 'Abd X-ray')

Fig. 10 Steps for performing
inference on test cases, including
displaying of image and
generating a prediction score
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learning rate (0.0001), as not to rapidly perturb the
weights that are already relatively well optimized.

Image Preprocessing and Augmentation

We then preprocess and specify augmentation options (Fig. 5),
which include transformations and other variations to the im-
age, which can help preempt overfitting or Bmemorization^ of
training data, and have shown to increase accuracy and gen-
eralization of CNNs [17]. While augmentation can be done in
advance, Keras has an image data generator, which can per-
form Bon-the-fly^ augmentation, such as rotations, translation,
zoom, shearing, and flipping, just before they are fed to the
network.

Some examples of transformed images are presented on
Fig. 6.

Then, more instructions are provided to the generator, such
as training directory containing the files, size of images, and
batch size (Fig. 7). Then, we fit the model into the generator,
which is the last set of code to run the model (Fig. 7).

Training the Model

After executing the code in Fig. 7, the model begins to train
(Fig. 8). In only five epochs, the training accuracy equals 89%
and validation accuracy 100%. The validation accuracy is
usually lower than the training accuracy, but in this case, it is
higher likely because there are only 10 validation cases. The
training and validation loss both decrease, which indicates that
the model is Blearning.^

The loss and accuracy values are stored in arrays,
which can be plotted using Matplotlib (Fig. 9), which is
a Python plotting library that produces figures in a variety
of formats.

Evaluating the Trained Model

In addition to inspecting training and validation data, it is
common to evaluate the performance of the trained model
on additional held-out test cases for a better sense of general-
ization. In Keras, one could use the data generator on a batch
of test cases, use a for-loop on an entire directory of cases, or
evaluate one case at a time. In this example, we simply do
inference on two cases and return their predictions (Figs. 10
and 11). The outputs from such could also be used to generate
a receiver operating characteristic (ROC) curve using Scikit
learn, a popular machine learning library in Python, or sepa-
rate statistical program.

Conclusion

With only 65 training cases, the power of transfer learning and
deep neural networks, we built an accurate classifier that can
differentiate chest vs. abdominal radiographs with a small
amount of code. The availability of frameworks and high-
level libraries has made machine learning more accessible in
medical imaging. We hope that this tutorial provides a foun-
dation for those interested in starting with machine learning
informatics projects in medical imaging.

Data Availability The Jupyter Ipython Notebook containing
the code to run this tutorial is available on the public SIIM
Github repositiory: https://github.com/ImagingInformatics/

Predicted: [[0.00007]] Chest X-ray

       Predicted: [[0.99823]] Abd X-ray 

Fig. 11 Inference on two test cases. The numbers within the brackets
represent the probability of a chest vs. abdominal radiograph (range
0–1). A score close to 0 indicates a high confidence of a chest
radiograph, and a score close to 1 indicates a high confidence of an
abdominal radiograph
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machine-learning, under BHelloWorldDeepLearning.^ A live
interactive demo to the model is available at https://public.md.
ai/hub/models/public.

Open Access This article is distributed under the terms of the Creative
Commons At t r ibut ion 4 .0 In te rna t ional License (h t tp : / /
creativecommons.org/licenses/by/4.0/), which permits unrestricted use,
distribution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.
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