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Abstract An ensemble adjustment Kalman filter (EAKF)
is used to assimilate Argo profiles of 2008 in a global
version of the Modular Ocean Model version 4. Four
assimilation experiments are carried out to compare with
the simulation without data assimilation, which serves as
the control experiment. All experiment results are
compared with dataset of Global Temperature–Salinity
Profile Program and satellite sea surface temperature
(SST). The first experiment (Exp 1) is implemented by
perturbing temperature of upper layers in the initial
conditions (ICs) with an amplitude of 1.0°C and no
ensemble inflation. The results from Exp 1 show that the
simulated temperature (salinity) deviation in the upper
400 m (500 m) is reduced through Argo data assimilation;
however, these deviations are increased in deeper layers. The
error reduction in SST is much greater during January to June
than during the rest of the year. Three more experiments are
designed to understand the responses in different layers and
months. Two of them test model sensitivities to ICs by
perturbing them vertically: one over the vertical extent of the
whole water column (Exp 2) and the other employs smaller

perturbation amplitude of 0.1°C (Exp 3). Exp 2 shows
that the simulated temperature and salinity deviations are
systematically improved in the whole water column.
Comparison between Exps 2 and 3 suggests that
perturbation amplitude is important. Exp 4 tests the
influence of the optimal inflation factor of 5%, which is
determined by other set of numerical tests. Exp 4
improves assimilation performance much more than the
other three experiments without inflation. Therefore, we
conclude that the perturbation should be introduced to all
model layers, proper perturbation amplitude is important
for Ocean data assimilation using EAKF, and the
ensemble inflation by an optimal inflation is critical to
improve the skill of the EAKF analysis.
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1 Introduction

Ocean data assimilation (ODA) is often used to reconstruct
historical time series, which can help to improve our
understanding of dynamics behind ocean circulations and
evolutions (e.g., Carton et al. 2000a, b; Chepurin et al.
2005; Zhang et al. 2005). ODA is also used to combine
observations and numerical model to provide more accurate
initial conditions (ICs) for ocean forecast. Among many
ODA methods, ensemble Kalman filters (EnKF, Evensen
1994; Houtekamer and Mitchell 1998) can reveal the
probability distribution of numerical models through
ensemble statistic analysis. As a consequence, ensemble
methods, which are maturing rapidly in recent decades, are
gradually being used by many research groups for ocean
prediction (e.g., Anderson 2003).
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EnKF was originally developed to approximately com-
pute solutions of nonlinear filtering problems by the
Kalman filter (Kalman 1960; Kalman and Bucy 1961;
Courtier et al. 1993). Various methods were then developed
to reduce assimilation errors and/or to decrease computa-
tional cost (Anderson 2001; Bishop et al. 2001; Pham 2001;
Whitaker and Hamill 2002; Tippett et al. 2003). The
ensemble adjustment Kalman filter (EAKF; Anderson
2001, 2003) is one important representation of these
methods. Comparing with the traditional EnKF, not only
the perturbation of the observation is avoided but also the
computational cost is reduced; the EAKF performs well
even with moderate ensemble size (Anderson 2001;
Evensen 2003; Zhang and Anderson 2003). There are
many successful implementations of the EAKF method in
ODA. Zhang et al. (2005) developed a parallelized
ensemble filter system to assimilate the observations of
1980–2002 and compared the results with those from 3D
variational data assimilation. Zhang et al. (2007) then
applied the EAKF to a coupled climate model and analyzed
the meridional overturning circulation from the assimilated
results. Anderson et al. (2009) developed the Data
Assimilation Research Testbed for data assimilation re-
search, education, and development. This method was also
used in other models, such as the El Niño/La Niña–
Southern Oscillation models (Karspeck and Anderson
2007) and regional ocean models (Yin et al. 2010a).

Although the algorithm of the EAKF method is used
more and more in complicated ocean models, there are still
some problems that need to be studied, such as the
sampling of ICs (Evensen 2004) and the inflation of
ensemble samples (Anderson 2007). About the sampling
of ICs, it is necessary to test the perturbation methods
towards the possible states of the real ocean. In this study,
numerical experiments are designed to test sensitivity from
the vertical extent and the perturbation amplitude for ICs.
The ensemble inflation that is performed to increase the
spread of ensemble samples can be used to avoid the
convergence of the ensemble members. If the probability
distribution function of model states is computed using the
converged ensemble members, the followed EAKF analysis
will be inaccurate and unreliable. In order to obtain a proper
spread, there are some attempts in the recent literature.
Hamill et al. (2001) analyzed ensemble mean errors as a
function of the inflation factor and noticed that the optimal
inflation factor was a function of ensemble size; Anderson
(2007) developed an adaptive covariance inflation algo-
rithm using a hierarchical Bayesian approach. Zhang et al.
(2010) developed an adaptively inflated ensemble filter,
which employs a precomputed “climatological” variance to
inflate the covariance where the ensemble would otherwise
have trouble encompassing the true state. In this study, the
optimal inflation factor of 5% is obtained through a series

of numerical tests. In order to maintain the intrinsic
relationship among different variables, the same inflation
factor is applied for all the variables in the whole model
domain.

The paper is organized as follows. Section 2 describes
the data used for assimilation and validation, the global
ocean general circulation model (OGCM), the modular
implementation of the EAKF, the designing of the experi-
ments, and the statistic indexes used for comparison.
Section 3 presents results of these experiments, including
two base experiments and three sensitivity experiments for
analyzing issues related to vertical extent of perturbation,
perturbation amplitude, and the optimal inflation factor.
Finally, summary and discussions are given in Section 4.

2 Methodology

2.1 Argo data for assimilation

The Argo profiles of temperature and salinity provided by
the Coriolis Argo Data Center are employed in this study.
The data are arranged by daily files in NetCDF format,
which makes them easy to be used in data assimilation as
input profiles by serial or parallel programs. This dataset is
provided together with detailed description and quality
control (QC) flags. There are two levels of QC performed
on this dataset: the first level is the real-time QC that
performs a set of agreed automatic checks, and the second
level is the delayed-mode QC. Only those profiles passed
all real-time QC tests with QC flag equal to 1 or passed the
delayed-mode QC are used in our experiments. In order to
deal with these profiles conveniently, two self-defined types
are developed in the EAKF module: one is used to collect
information for Argo temperature/salinity profiles, and the
other for an observation operator to obtain modeled vertical
profiles.

2.2 Data for validation

The dataset of Global Temperature-Salinity Program
(GTSPP) provided by the US National Oceanographic Data
Center is used in this study for validation. Most of the Argo
profiles are contained in the dataset of the GTSPP but they
are removed from the GTSPP before we perform validation
(hereafter, we use GTSPP presents those profiles in GTSPP
dataset eliminated Argo profiles). The modeled results are
interpolated onto the same location as the GTSPP profiles
for a more accurate comparison.

The statistical information for Argo and GTSPP profiles
is given in Fig. 1. It is clear that most regions of the global
ocean could be covered by both Argo profiles and GTSPP
profiles and the observing network of Argo is much better
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than that of GTSPP. However, both the GTSPP daily profile
numbers and the total GTSPP profile numbers counted in
each horizontal 1°×1° grids are much larger than those of
Argo. Each Argo profile contains temperature and salinity
observations together, but some GTSPP profile may only
contain temperature or salinity observations. Compared to
the observations in Argo, the number of GTSPP tempera-
ture observations is larger in the layers upper than 1,000 m,
but it is smaller in the deeper layers. For the observation of
salinity, the numbers in GTSPP are smaller than in Argo at
all depth. Therefore, GTSPP profiles used as an indepen-
dent dataset can provide enough observations to evaluate
the model performance before and after Argo assimilation,
and make it possible to do statistical analysis for the 3D
structure of errors.

The satellite sea surface temperature (SST) used for
comparison is the optimally interpolated microwave (MW)
SST product created from the SSTs of two satellites: the
MW Tropical Rainfall Measuring Mission Microwave
Imager (TMI) and the Advanced Microwave Scanning
Radiometer–Earth Observing System. This dataset is
produced by the Remote Sensing Systems and sponsored
by the National Oceanographic Partnership Program, the
National Aeronautics and Space Administration (NASA)
Earth Science Physical Oceanography Program, and the
NASA Measures Discover Project, which is available at

www.remss.com. It is an improved version of SSTs from
multisensors, and provides daily average globally with a
horizontal resolution of 0.25°×0.25°. Extensive compar-
isons are provided at that website, and the statistics
shows that these SSTs have a standard deviation equal to
0.56°C for collocations within the range of the TMI data
(40°S–40°N), while a higher one equal to 0.65°C for the
global collocations (90°S–90°N). Similar as dealing with
the GTSPP profiles, the model outputs of all experiments
are interpolated onto the same grid as the satellite SST
before comparison.

2.3 A global OGCM based on MOM4

The Modular Ocean Model version 4 (MOM4; Griffies et
al. 2007) is used to setup a global coupled ice-ocean model.
The surface wave-induced vertical mixing is included into
the model based on Qiao’s parameterization (Qiao et al.
2004). The model domain is 81.5°S–89.5°N around the
globe, and the horizontal resolution is 1°×1° everywhere
except for the tropical ocean (30°S–30°N) where the
resolution is (1/3)° in the meridional direction. There are
50 vertical levels, with 10-m resolution for the top 220 m
and reduced resolutions below. The model topography is
interpolated from a gridded bathymetric dataset of 5′×5′
resolution (ETOP5 1986) with the maximum depth set to

Fig. 1 The statistical information of GTSPP and Argo profiles in
2008. a The distributions of Argo profiles with the color presents the
logarithm of the profile number at the 1°×1° boxes; b same as panel a
but for GTSPP; c the daily profile numbers for Argo and GTSPP; d

the observation (temperature and salinity) numbers of Argo and
GTSPP at each 100 m-layers. Here, GTSPP presents those profiles in
GTSPP dataset eliminated Argo profiles
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5,500 m. As a component of MOM4, Sea Ice Simulator is a
dynamics/thermodynamic sea ice model that employs a
three-layer scheme for the thermodynamics and full
dynamics with internal ice forces calculated using elastic-
viscous-plastic rheology (Winton 2000).

The model uses the annual mean temperature and
salinity from Levitus and Boyer (1994) as its ICs, and is
driven by climatological atmosphere forcing from the
Ocean Model Intercomparison Project (OMIP; WOCE/
CLIVAR 2002). The model state after 11 years of spin-up
is taken as the ICs for the year of 2000 for simulation with
surface forcing from the National Centers for Environmen-
tal Prediction reanalysis data (Kalnay et al. 1996) provided
by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA,
including wind, atmosphere temperature and sea level
pressure. The rest of the forcing is from the climatological
dataset of OMIP. More details, including validation of this
model, can be found in Shu et al. (2011).

2.4 An EAKF module for Argo profiles

The assimilation system used here is composed of two main
parts: the ensemble members and the EAKF module. The
ensemble members, which are the integrations of the same
model from different perturbed ICs, are running separately.
At beginning, the EAKF module will be started first to
collect the information of observations (include the ob-
served time, location, and values), then send message to
each ensemble members about the observing time, and
waiting for the predicted ensemble states. All the ensemble
members will start the model integration together to predict
the ensemble states of the ocean. Once the predicted
ensemble states at observing time are available, the EAKF
module will receive these data and start the EAKF analysis
to update the ensemble states by EAKF. The updated results
will be sent back to each ensemble members and the
ensemble integration will be continued for the next
observing time.

The parallelization strategy of each ensemble member is
based on its original design and arranged as an ensemble
(Fig. 2a). A module is designed for the EAKF analysis by
parallel. In this module, the computing domain is divided
into several blocks with a region called “halo” for overload
computing as shown in Fig. 2b. The “halo” region should
be big enough to ensure the results from parallel computing
are identical to those from serial computing. In this study,
three times of the horizontal scale for covariance localiza-
tion is used as the “halo” size. In Fig. 1b, myis (myie) and
myjs (myje) are the start (end) grid indexes of this block,
and the related longitude and latitude are islon (ielon) and
jslat (jelat), respectively. The region for a spatial block is
myim by myjm and the efficient computational region is
ielon-islon by jelat-jslat or myie-myis by myje-myjs.

The whole system including ensemble members and
EAKF module can be arranged by UNIX shell scripts or
parallel languages such as MPI, OpenMP, etc. If the
assimilation frequency is not too high, say once every
day, it is more efficient to arrange the system by scripts
with required information exchanged through input/output
files. Consequently, it will be more portable for the EAKF
module to other ocean models from the MOM4 used here;
what is all needed is to write some general procedures to
deal with variables from different models. If the assimila-
tion frequency is very high, it is necessary to combine the
EAKF process with the ensemble members in order to
exchange information faster. In most cases, the observation
frequency is not so high. Therefore, arranging the system
by scripts is an efficient choice.

The EAKF module specified here is for assimilating the
Argo temperature and salinity profiles. During the process
of the Argo profiles being assimilated into the ocean model,
the EAKF is performed for multivariables. In other words,
once the Argo temperature profiles are used to adjust model
temperature, the model salinity is also adjusted by the
covariance between salinity and temperature. On the other
hand, a similar procedure is performed for the Argo salinity
profiles. The standard deviations of errors for observed
temperature and salinity in this study are chosen to be 1°C
and 0.2 psu, respectively. The localization of covariance is
performed by a polynomial function, same as in Zhang et
al. (2005), and the Euclidean spatial distance in this
function is selected as 2° horizontally, 100 m vertically
and 5 days in time.

2.5 Experiment design

2.5.1 Base experiments (CTL and Exp 1)

The year of 2008 is the focus period of this study and the
model simulation without the ODA is referred as the
control run (CTL). The ICs of the ensemble members are
prepared from CTL. The method for generating random
fields given by Evensen (1994) is used here to perturb the
surface fields and then the surface perturbations are
smoothly projected to subsurface layers. The random fields
are smooth spatially, and their spatial correlation decreases
with increasing distance. Therefore, this kind of perturba-
tion will not break the smoothness of the integration itself.

Based on the previous studies (Mellor and Ezer 1991;
Ezer and Mellor 1994, 1997; Yin et al. 2010b), the
information at surface can be projected into the deep ocean.
Inspired by these works, new methods are designed using a
simple way instead of statistically computing the correla-
tion factors. The new vertical projection carried out in this
study is to project the surface perturbation into subsurface
layers. Since the upper ocean is often much more variable
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than the deeper ocean, the projection used in the first
assimilation experiment (Exp 1) is mainly performed for the
upper mixed layer with few additional layers below for
relaxing the perturbation to 0 in the deeper part of the
ocean. The detailed projection method can be described as
follows.

Tp
i;j;k;n ¼

Ti;j;k þ CPi;j;n 1� Ti;j;1�Ti;j;k
ΔT

��� ���� �
;

Ti;j;k þ CPi;j;n 1� Ti;j;1�Ti;j;k
1

ΔT

��� ���� �
1� k�k1

kk

� �
;

Ti;j;k 0

8>><
>>:

k � k1
k1 < k � k1 þ kk
k > k1 þ kk

ð1Þ
where P is the generated random fields; Tk is the
temperature before perturbation; subscripts i and j are grid
indexes on horizontal space; subscript k is for model layer
index; subscript n ¼ 1; � � � ;N is the ensemble index where
N is ensemble size and equal to 8 in this study; superscript
p means perturbed value; ΔT, which represents temperature
difference between surface and the bottom of the mixed
layer, is set to 1°C in this study; k1 is the layer index for the
bottom of the mixed layer and defined as the first layer
whose temperature has 1°C difference from the surface; kk
is the number of relaxing layers; and C is a parameter used
to control perturbation amplitude. The absolute operator in
Eq. 1 ensures that the perturbation below the surface will
never be greater than the perturbation at surface.

In Eq. 1, the vertical layers are divided into three parts: the
first part is for the upper mixed layer with the perturbations
of CP at surface and 0 at the bottom of the upper mixed
layer; the second part includes layers whose perturbations are
smoothly reduced to 0 from the perturbation in the layer of
k1, in case the bottom of the upper mixed layer is not exactly
located at vertical model grids; and the third part is for the
remaining layers that are kept unperturbed. The second part
is chosen to be five layers or less, which could include the
bottom layer if the third part has zero layer.

In order to simplify the perturbation of ICs, only the
temperature field is perturbed for the ensemble members.
The perturbations are normalized by C to ensure the root
mean square (RMS) of surface perturbation equals to a
specific value defined as the perturbation amplitude. For
Exp 1, the perturbation amplitude is 1°C. Accordingly, the
perturbed layers in Exp 1 are limited to the upper layers of
the ocean, and in general they are only few hundred meters
below the sea surface.

2.5.2 Sensitivity experiments (Exps 2–4)

In addition to the base experiments, we carry out three
sensitivity experiments to understand the roles of perturbed
layers (Exp 2), perturbation amplitude (Exp 3), and the
ensemble inflation (Exp 4). These assimilation experiments
and their settings are listed in Table 1.

As will be discussed in the following sections, only
perturbing the upper layers of the ocean is not enough to
obtain a reliable spread of ensemble members. So another
projection method is designed by considering of perturbing
the whole water column. In this new method, despite the
new perturbation is performed for the whole water column,
we change the reference layers to those with maximum
temperature difference from the surface. Then the projected
perturbations for all layers are linearly changed according

Table 1 List of assimilation experiments

Experiment
name

Perturbing
layers

Perturbation
amplitude

Inflation factor
(%)

Exp 1 Upper 1.0 0

Exp 2 All 1.0 0

Exp 3 All 0.1 0

Exp 4 All 1.0 5
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Fig. 2 System design of the EAKF module: a structure of assimilation system, and b parallel design for the EAKF module
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to the maximum temperature difference. This perturbation
method can be described by Eq. 2 and is being used in Exps
2–4.

Tp
i;j;k ¼ Ti;j;k þ CPi;j;n 1� Ti;j;1 � Ti;j;k

ΔTi;j

����
����

� �
; ð2Þ

where, ΔTi,j is the maximum temperature difference of the
whole water column from its surface, and the other symbols
are the same as those in Eq. 1.

In this way, if the temperature in a special layer has the
maximum difference with the surface temperature, its
perturbation will be zero. For most cases, the bottom of
the whole water column has the maximum temperature
difference with the surface, and then the perturbation in the
bottom layer will be zero. In general, the deeper part of the
ocean has smaller perturbation.

This perturbation method is used to perturb the initial
temperature fields for the sensitivity experiments. The
sensitivity of perturbation amplitude is also tested by
setting the perturbation amplitude equal to 1.0°C and
0.1°C in Exps 2 and 3, respectively.

The last experiment (Exp 4) is employed to test the
ensemble inflation, which can avoid the convergence of
ensemble samples. The inflation used here can be expressed
by the following equation.

Xn ¼ X þ 1þ b
100

� �
Xn � Xð Þ; ð3Þ

where, Xn is the nth ensemble member, the overbar means
the ensemble mean, and β is the inflation factor that
indicates how many percent the ensemble samples are
inflated.

The inflation factor used here is the same for all the
model variables and kept constant spatially. In this way, the
relationship between different variables, or between differ-
ent locations for the same variable, is not changed by the
ensemble inflation. The adjustment of multivariables can be
performed correctly with a better representation from a
broad ensemble spread. However, the inflation factor needs
to be determined beforehand. Here, a series of numerical
tests are carried out to determine the optimal inflation
factor. Different from the method used by Hamill et al.
(2001), the inflation in this study is only performed when
the amplitude of the ensemble spread at surface becomes
smaller than the initial value, say 1°C in temperature.
The inflation factor is changed from 0% to 10% by 1%
and the RMS errors in temperature are compared in
Fig. 3 for different layers covering 0–1,000, 1,000–2,000,
and 0–2,000 m. The result shows a minimum value where
the inflation factor is around 4–6%. So 5% is chosen as
the optimum inflation factor for Exp 4. The difficulties in
determining the optimal inflation factor are computation
and storage costs.

2.6 Statistic indexes for comparison

RMS error is employed to measure the difference between
observations and the results from our numerical experi-
ments. In order to compare daily mean satellite SST and
GTSPP profiles exactly, the model output is saved as daily
average. For the GTSPP profiles, RMS errors in tempera-
ture and salinity are computed in different layers with the
layer thickness set to be 100 m. The RMS errors for the
whole year of 2008 are computed first, and then the RMS
errors on each day are computed. For satellite SST, two
kinds of RMS error are computed in this study: one is
temporal RMS error obtained over the spatial SST array at
the same time, and the other is spatial RMS error that is
computed from the time series at the same grid point.

An assimilation index (AI) is used to analyze the
assimilation performance relative to CTL.

AI ¼ RMSE CTLð Þ � RMSE EAKFð Þ
RMSE CTLð Þ � 100; ð4Þ

where, RMSE(CTL) is the RMS error in CTL and RMSE
(EAKF) is the RMS error after Argo data assimilation. The
RMS error is the measurement of the distance between
simulated results (CTL or after Argo assimilation using
EAKF) and the observations. The meaning of AI is the
percentage error reduction, which can provide a clear view

Fig. 3 Monthly mean RMS temperature errors as a function of
inflation factor. The right y-axis is for the temperature error at the
depth 1,000–2,000 m. A set of numerical tests, which assimilated
Argo profiles for the first month in 2008 with different inflation
factors, are carried out to determine the optimal inflation factor.
The inflation factor changed from 0% to 10% by 1% and the RMS
error of temperature showed a minimal value where the inflation
factor is 4–6% (shaded)
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focused on the difference due to the ODA. And the more AI
achieved the more confident in the ODA.

3 Analysis of assimilation results

3.1 Comparison with the GTSPP profiles

The RSM errors in temperature and salinity for all experi-
ments are shown in Fig. 4, which are obtained over the
study period of 2008 at each depth. As the reference for
assimilation experiments, the results of CTL are first
compared with the GTSPP temperature and salinity
profiles. For temperature errors, the maximum value is
located at the depth near 150 m, and the error decreases
quickly between 150 and 1,000 m. The simulated temper-
ature error below 1,000 m is quite small. Since the vertical
gradient of temperature around the depth of the upper ocean
mixed layer is quite large, the error of this depth will be
enlarged in the comparison of temperature. The maximum
errors in temperature occurred at subsurface indicates that
there should be some errors in the depth of upper ocean
mixed layer in CTL. The salinity error shows similar
distribution except that the maximum error is located at
surface. The maximum salinity error at surface is caused by
the use of climatological evaporation and precipitation.

In Exp 1, the RMS error in temperature (salinity) after
Argo data assimilation is reduced in the layers shallower
than 400 m (500 m). However, both temperature and
salinity errors in Exp 1 are increased in the deeper part of
the ocean. This indicates that only perturbing upper layers
of the ocean may lead to an inaccurate EAKF analysis in
the deeper part of the ocean.

To understand and solve the problem seen in Exp 1, we
carried two sensitivity experiments to check if the ODA

performance could be improved by perturbing the ICs with
different vertical extent or amplitude. In Exp 2, the
temperature of ICs is perturbed in all layers of the water
column. As a consequence, the RMS errors in temperature
and salinity compared with the GTSPP profiles are
systemically reduced in all layers. Comparing the results
from Exps 2 and 3, when the perturbation amplitude
changes from 1.0°C to 0.1°C, we find that smaller
perturbation amplitude will degrade the ODA performance.

Recall that there is 5% ensemble inflation applied in Exp
4 to increase the ensemble spread, the vertical RMS errors
of temperature and salinity from Exp 4 show that it has the
best results among all the experiments. In the layers
shallower than 700 m, the temperature error in Exp 4 is
comparable to that in Exp 2, whereas the simulated salinity
error is much reduced after including the ensemble
inflation. In the layers deeper than 700 m, the simulated
temperature error is reduced more in Exp 4 than in Exp 2.
For salinity, the errors for Exps 2 and 4 are quite similar in
the layers deeper than 1,000 m where the salinity errors are
already quite small.

Detailed vertical and temporal distributions of RMS
error in temperature are given in Fig. 5. The distribution
from CTL shows that there clearly exists a subsurface
region where the temperature errors are even larger than
1.2°C. For the layers deeper than 1,500 m, the temperature
errors are less than 0.4°C most of the time. Regions with
temperature RMS errors between 0.4 and 0.8°C (shaded)
cover more than half of the water column in the top
2,000 m. The result of Exp 1 (Fig. 5b) shows that the RMS
error is reduced in the upper layer where the temperature
errors are greater in CTL. However, the shaded region
between 0.4 and 0.8°C becomes larger and extends deeper
in Exp 1, which means the temperature error increases in
the deeper layer of the ocean. The distribution from Exp 2

Fig. 4 RMS error in a temper-
ature and b salinity at different
depth. In Exp 1, the RMS errors
in temperature and salinity are
reduced in the layers shallower
than 500 m, while those errors
in the deeper part of the ocean
are increased. Once the whole
column of the ocean is perturbed
in Exps 2–4, the temperature
errors are reduced systemically.
For changing due to different
perturbation amplitude, the
RMS error is smaller in Exp 2
than in Exp 3. The ensemble
inflation further enhances the
error reduction in temperature
and salinity
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(Fig. 5c) shows that the temperature errors for all layers in
the upper 2,000 m decrease after the perturbation of ICs
performed for the whole water column. The comparison
between Exps 1 and 2 shows that the error reduction at
surface is greater in Exp 2 than in Exp 1. This difference
indicates that perturbing all layers can improve the ODA
performance in the whole water column. For sensitivity to
perturbation amplitude (Exps 2 and 3), although the
difference at surface is greater at the beginning of the Argo
data assimilation, it is not quite obvious for the rest
integration time. The result from Exp 4 (Fig. 5e) shows
the smallest errors among all the experiments. The shaded
region in Exp 4 becomes much smaller than that in Exp 2,
and the bottom of this region moves upward. This indicates
that the RMS error in temperature is much reduced after
including an optimal inflation factor of 5%.

Similar results are obtained from the vertical and
temporal distributions of salinity RMS error. The detailed
error structure in salinity from CTL (Fig. 6a) shows that the
maximum salinity error (up to 0.7 psu) appears near 250 m
during February–April 2008. For the layers deeper than
1,000 m, the salinity errors are generally less than 0.1 psu
though values between 0.1 and 0.2 psu exist. The result of
Exp 1 (Fig. 6b) shows an improvement at surface, but the
salinity error increases in the subsurface region of the ocean
and the shaded region in Exp 1 becomes larger and extends
deeper than that in CTL. After the perturbation is applied to
the whole water column in Exp 2, the salinity RMS errors
are systemically reduced after the ODA (Fig. 6c). Compar-
ison of Fig. 5c–d shows that the salinity RMS error in Exp
2 is reduced a little more than that in Exp 3 (Fig. 6d).
Compared with Exp 3, the salinity error in Exp 4 (Fig. 6e)
is systemically smaller than that in Exp 2. Especially in the
layers deeper than 800 m, the salinity error in Exp 4 is
significantly reduced by introducing the optimal ensemble
inflation.

Since only the temperature fields were perturbed in ICs,
the ensemble spread of salinity is generated because of the
model integration itself. The variance of salinity is
relatively smaller which caused the ensemble spread of
salinity is not large enough to provide an accurate filtering.
On the other hand, the variance of temperature in deep
layers is smaller than upper layers. This also caused the
smaller ensemble spread in deep layers. As a result, the
ensemble inflation works well on salinity in upper layers
and on temperature in deeper layers. It is indicated that the
inflation benefits to those part where the ensemble spread is
small.

Overall, the assimilation results are improved because of
the perturbation in all layers and the perturbation amplitude
is important for the error reduction at the beginning period
of the ODA. Ensemble inflation is critical to improve the
skill of the EAKF analysis.

3.2 Comparison with satellite SST

Since satellite SST data has a good spatial and temporal
coverage of the world ocean, the comparison between
modeled and satellite SSTs can provide some insight to the
spatial and temporal evolution of simulation error.

The temporal SST error in CTL (the thin line in Fig. 7a)
is smaller in the period during April–May 2008 and the
maximum error is around the end of August. In Fig. 6a, the
red thick line is for ensemble mean and the green shaded
region means the range of RMS errors for all the ensemble
members. It shows that the RMS errors are well reduced
during January–June 2008; however, the reduction is not
obvious in the second half of 2008 and the shaded region is
reduced in time. These results indicate that the spread of the
ensemble models is convergent along the model integration
of Exp 1.

The AI is shown in Fig. 7b, which represents the
percentage reduction of RMS error by ODA. The compar-
ison between Exps 2 and 3 shows that the perturbation
amplitude is important for the beginning period of ODA,
but not so for the later period. Once the model state is
perturbed, the model will adjust according to model physics
to reach a new balanced state during the beginning period.
If the perturbation is very small, this period of adjustment
will be very short. This is the reason why the AI increases
gradually in Exp 3 while it jumps quickly to a high level at
the beginning of Exps 1 and 2. The perturbations in the
deep layers of the model ocean will remain for a long time
because the variance in the deep layers is not intensive.
Although the perturbation at the beginning is relatively
small in Exp 3, the growing mode of model errors would
increase the ensemble spread at the later period of
integration (Yin and Oey 2007) and thus improve the
performance of Exp 3 in the last few months. After the
ensemble inflation is applied in Exp 4, the AI is increased
and kept the highest value during all the ODA period.

The spatial SST RMS error for CTL is given in
Fig. 8a, with the regions shaded by colors to show where
the SST error is greater than 1°C. The most shaded regions
in CTL include the northwestern Pacific Ocean, the
northwestern Atlantic Ocean, and the southern parts of
the Indian Ocean, the Pacific Ocean and the Atlantic
Ocean. The SST errors for the rest part of the world ocean
are mostly less than 1.0°C. In Exp 1 (Fig. 8b), the shaded
regions become smaller and the high errors in SST are
reduced after the ODA. In the coastal regions, the error

Fig. 5 Temporal and vertical distributions of the RMS error in
temperature: a CTL, b Exp 1, c Exp 2, d Exp 3, and e Exp 4. The
contour interval is 0.2°C and the regions where the temperature error
is between 0.4 and 0.8°C are shaded to clearly show the differences
among these experiments
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reductions are small because of the lack of Argo profiles
for ODA. The big errors in CTL are also occurred at the
regions of the Extensions of Kuroshio and Gulf Streams
because the activity of eddies in these regions is quite
sensitive which are hard to be solved by the grid system of
this model. That is why the errors in these regions are still
big after ODA.

In order to clearly show the improvement of the ODA,
the percentage error reduction in SST is given in Fig. 8c for
Exp 1. Since AI presents a relative error reduction, the
similar AI at different regions means different absolute

error reduction. This distribution shows that SST error is
reduced in most regions with a positive AI. However, the
SST error in some regions is not reduced (AI equals to zero)
or increased (negative AI), such as the equatorial region of
the Atlantic Ocean.

Figure 9 shows the percentage reductions of SST error
for Exps 2–4. The AI of Exp 2 (Fig. 9a) is increased in
most regions, meaning that the SST error is reduced after
the perturbation performed for all layers of the ocean. The
result in Exp 3 with smaller perturbation amplitude
becomes worse, and the AI in Fig. 9b even becomes
negative in the equatorial region and some regions of the
Southern Ocean. In addition, there also exist some regions
in Exp 3 where the AI is increased, such as the
northwestern Pacific Ocean. Further studies should be
carried out to test whether the perturbation amplitude
should have a non-uniform spatial structure. As shown in
Fig. 9c, the improvement due to the ensemble inflation
occurs in most regions of the model domain.

These comparisons with satellite SST suggest that the
perturbation should be introduced to all model layers, proper
perturbation amplitude is important for ODA using EAKF,
and the ensemble inflation by an optimal inflation factor can
improve the performance of Argo data assimilation.

4 Summary and discussions

An EAKF module is designed for parallel computing by
splitting the model domain into several blocks with
overload computing regions. The associated EAKF system
is arranged for separate computing with information
exchanged through input/output files. The EAKF module
is used in a global OGCM based on MOM4 to assimilate
Argo profiles (both temperature and salinity) in 2008. Five
experiments are carried out, which include the CTL that has
no ODA, Exp 1 in which the perturbation of ICs is only
performed for the ocean upper layers, Exps 2 and 3 by
which the number of layers and the amplitude are tested for
the perturbation of ICs, and Exp 4 that examines the
ensemble inflation with an optimal inflation factor.

The comparisons of model results and GTSPP profiles
(Figs. 4, 5, and 6) show that the temperature and salinity
RMS errors are reduced in the layers shallower than 500 m
after Argo data assimilation. In the layers deeper than
500 m, however, the results in Exp 1 become worse than
CTL. This indicates that only perturbing upper layers of the
ocean is not enough. Once all layers of the water column
are perturbed in Exps 2–4, the temperature and salinity
errors are systemically reduced comparing with CTL. The
comparisons in vertical and temporal show that perturbation
of all layers can improve the results not only in the deeper
part but also in the upper part of the ocean. The

Fig. 7 Temporal a SST RMS errors and b the AI for assimilation
experiments. The thin line is for CTL, thick line is for the ensemble
mean in Exp 1, and the shaded regions are for the range of the RMS
errors of ensemble samples in Exp 1. AI is defined as the percentage
error reduction relative to CTL and used to show the improvement
after the ODA. The reduction of SST RMS error in Exp 1 during
January–June 2008 is larger than in the rest of the year. The shaded
region indicated the ensemble samples become convergence along
model integration

Fig. 6 Temporal and vertical distributions of the RMS error in
salinity: a CTL, b Exp 1, c Exp 2, d Exp 3, and e Exp 4. The contour
interval is 0.05 psu and the regions where the salinity error is between
0.1 and 0.2 psu are shaded to clearly show the differences among
these experiments
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Fig. 8 Spatial distribution of RMS errors in SST for the two base experiments. The contour interval for the RMS error is 0.5°C, and for AI, 5%.
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Fig. 9 Spatial distribution of AI for sensitivity experiments. The contour interval is 5%, and the colored regions are for the positive AI
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perturbation amplitude (Exps 2 and 3) only causes a great
difference in the beginning period of the ODA. The optimal
ensemble inflation of 5% improves the performance of
Argo data assimilation and gives the best result among all
the experiments carried out in this study.

Further comparison with satellite SST is carried out to
confirm the results from the comparison with the GTSPP
profiles. The performance of Exp 1 in the second half of 2008
is, however, not as good as in the first half of the year. The
experiments of different perturbation layers and amplitudes
(Exps 1–3) indicate that perturbing all layers of the ocean is
much better than only perturbing the upper ocean and that the
perturbation amplitude is important for the beginning period
of ODA. The results of Exp 4 with an optimal inflation factor
of 5% can indeed improve the assimilation performance.

Only the sea temperature in OGCM is perturbed in the
whole water column according to its variance; and then a finite
temperature ensemble spread will be generated directly.
Because of the existence of the relationship among model
variables, the ensemble spreads of the unperturbed variables
are also generated by the adjustment of the model itself
through numerical integration. This perturbation method is
easy to implement and the induced ensemble spread can keep
well the dynamical balance inside the model. But comparing
to the model uncertainties, the induced ensemble spread may
be smaller in sometime. As the result, the EAKF analysis
process becomes inaccurate and the ensemble inflation is
necessary for a better assimilation performance. More efforts
on improving the perturbation method should be attempted on
the view of dynamics in the future.

Since high costs of computation time and storage are
needed to determine the optimal inflation factor in this study, a
more efficient way should be sought in the future. In addition,
other methods for ensemble inflation, such as the adaptive
covariance inflation error correction algorithm, should be
tested further. We plan to include in this EAKF module many
other kinds of observations, including satellite SST, sea-
surface height from satellite altimeter, and other in situ
temperature/salinity profiles, for more realistic applications.
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