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Abstract Weshowhow characteristic classes determine equivariant prequantization bundles
over the space of connections on a principal bundle. These bundles are shown to generalize the
Chern–Simons line bundles to arbitrary dimensions. Our result applies to arbitrary bundles,
and we study the action of both the gauge group and the automorphisms group. The action
of the elements in the connected component of the identity of the group generalizes known
results in the literature. The action of the elements not connected with the identity is shown
to be determined by a characteristic class by using differential characters and equivariant
cohomology. We extend our results to the space of Riemannian metrics and the actions of
diffeomorphisms. In dimension 2, a �M -equivariant prequantization bundle of the Weil–
Petersson symplectic form on the Teichmüller space is obtained, where �M is the mapping
class group of the surface M .
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1 Introduction

In this paper, we study the relationship between characteristic classes and equivariant pre-
quantization line bundles over the space of connections. We recall two classical examples of
this relation (see Sect. 2 for the notation).

In thefirst example, let� be a closed (i.e., compact andwithout boundary) oriented surface,
P = � × SU (2) the trivial principal SU (2)-bundle, and p ∈ I 2

Z
(SU (2)) the polynomial
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associated with the second Chern class. We denote byA and ˜A the spaces of connections and
irreducible connections on P . In [3], Atiyah and Bott show that this polynomial determines a
symplectic structure σ on the space of connectionsAwhich is invariant under the action of the
group G of gauge transformations. Moreover, the curvature map determines a moment map
μ for σ . By symplectic reduction, a symplectic structure σ on the moduli space of irreducible
flat connections ˜F/G is obtained. Furthermore, in [24] it is shown that the action of G admits
a lift to ˜A × U (1) by U (1)-bundle automorphisms, hence defining a G-equivariant U (1)-
bundle over ˜A (or what is equivalent, a G-equivariant Hermitian line bundle). By taking the
quotient, they obtain an Hermitian line bundle L → ˜F/G (which is proved to be isomorphic
to the Quillen determinant line bundle) and a natural connection on L whose curvature is σ .
We remark that all these constructions can be done based only on the polynomial p.

The second example is the classical 3-dimensional Chern–Simons theory. Let M be a
compact 3-dimensional manifold and P = M × SU (2) the trivial principal SU (2)-bundle.
For simplicity, we assume that G is a Lie group that acts freely by gauge transformations on
A and thatA → A/G is a principal G-bundle. If M is closed, then the Chern–Simons action
associated with a polynomial p ∈ I 2

Z
(SU (2)) determines a G-invariant function A → R/Z

and hence a function on the quotient A/G → R/Z. However, when M is a manifold with
boundary ∂M , the Chern–Simons action is not a function onA/G, but it determines a section
of a line bundleL∂M → A/G called the Chern–Simons line bundle (see, e.g., [19]). Again all
the constructions are based on a polynomial p. However, as pointed out in [12], to determine
the Chern–Simons action for non-trivial bundles it is also necessary to choose a universal
characteristic class ϒ ∈ H4(BG).

We generalize these two examples to arbitrary bundles, Lie groups and dimensions in
the following way. We recall (see [15]) that if P → M is a principal G-bundle and A
the space of connections on P , the principal G-bundle P = P × A → M × A admits a
canonical (or tautological) connection A which is invariant under the action of the group
AutP of automorphisms of P . If a group G acts on P → M by gauge transformations, then
for any invariant polynomial p ∈ I r

Z
(G) we can consider the G-equivariant characteristic

forms pAG ∈ �2r
G (M × A) of A. If c is a closed oriented d-dimensional submanifold of

M , by integrating pAG over c, we obtain
∫

c p
A

G ∈ �2r−d
G (A) which is closed for the Cartan

differential D. When d = 2r − 2, �c = ∫

c p
A

G ∈ �2
G(A) is a closed equivariant 2-form, i.e.,

�c = σc + μc where σc is a closed G-invariant 2-form and μc a co-moment map for σc. Our
main result is the following

Theorem 1 Let c be a closed submanifold of dimension 2r − 2 of M, p ∈ I r
Z
(G), ϒ ∈

H2r (BG, Z) a characteristic class compatible with p (i.e., they determine the same real
characteristic class) and A0 a background connection on P. These data determine a lift of
the action of G on A to an action on Uc = A×U (1) → A by U (1)-bundle automorphisms,
and a G-invariant connection form 	c such that the G-equivariant curvature of 	c is �c.

Due to the equivalence between principal U (1)-bundles and Hermitian line bundles, we
also obtain a G-equivariant Hermitian line bundle Lc → A with connection ∇	c . Our result
also generalizes the Chern–Simons line as we prove the following result.

Proposition 2 If c = ∂u for some u ⊂ M, then Su(A) = exp(−2π i ·∫uT p(A, A0)) deter-
mines a G-invariant section of Uc → A, or what it is equivalent, a G-invariant section of
unit norm of Lc → A.

Thus p, ϒ, c and A0 determine a G-equivariant prequantization bundle for (A,�c). If
we change the background connection A0, we obtain a different connection and a different
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Equivariant prequantization bundles on the space of… 1751

action, but we prove that there exists a canonical G-equivariant isomorphisms between them.
Therefore, we can consider that different background connections A0 determine different
global trivializations of the same prequantization bundle, and hence that it only depends on
p, ϒ and c.

We prove that for any X ∈ LieG, its lift XUc ∈ X(Uc) does not depend on ϒ . Hence,
neither does the action of the connected component of the identity G0. Nevertheless, the
action of the elements of G which are not connected with the identity depends on ϒ . For
certain groups, there is a bijection I r

Z
(G) � H2r (BG, Z), and in these cases the action

is determined only by c, p and A0. This happens, for example, in the case G = U (n)

as H•(BU (n), Z) � Z[c1, . . . , cn] where c1, . . . , cn are the Chern classes (e.g., see [23,
Chapter 23.7]). But for a general group G, the cohomology H2r (BG, Z)may contain torsion
elements, and ϒ is not determined by p. In that cases, non-equivalent actions can exist with
the same c, p and A0 if G is not connected.

We study the dependence on c. It can be better understood in terms of the Hermitian line
bundle Lc → A. If −c denotes the submanifold c with the opposed orientation, then we
have L−c = L∗

c , and if c′ is another closed oriented submanifold, then Lc+c′ � Lc ⊗ Lc′ .
In particular, if ∂u = c − c′ by Proposition 2, Su determines a section of unitary norm on
Lc−c′ = Lc ⊗ L∗

c′ � Hom(Lc′ ,Lc) which is an isomorphism.
In Sect. 7.2, the restriction of the prequantization bundle Uc to the space of irreducible

connections ˜Uc = ˜A×U (1) is studied. We have a well-defined quotient manifold ˜A/G, and
for the trivial SU (2)-bundle over a Riemann surface, we have also a well-defined quotient
U (1)-bundle ˜Uc/G → ˜A/G. If p is the second Chern polynomial and c = M, then σc
and μc coincide with the Atiyah–Bott symplectic structure and moment map (see [15]).
The connection 	c does not project onto a connection on ˜Uc/G as ιXUc

	c = −μc(X) for
X ∈ LieG. However, if ˜F is the space of irreducible flat connections, we have ˜F ⊂ μ−1

c (0),
and the restriction of 	c to ˜F × U (1) is G-basic and projects onto a connection 	c on
(˜F × U (1))/G → ˜F/G. Furthermore, the curvature of 	c is the form σ c obtained by
symplectic reduction of (A, σc, μc). Hence, our result generalizes that of [24]. Furthermore,
we also show that for other groups and bundles, the prequantization bundle of ˜A/G is not
determined by the characteristic classes ofG, but by those of the group ˜G = G/Z(G), where
Z(G) is the center of G.

The symmetry group usually considered in physical theories is the group of gauge trans-
formations. However sometimes it is necessary to consider the lift of the action of the
automorphism group AutP to Uc (see, for example, [1,2] and references therein). We show
that Theorem 1 is also valid when G acts on P by automorphisms preserving the orientation
of M in the following cases:

– M is a closed oriented manifold of dimension d = 2r − 2 and c = M .
– M is a compact oriented manifold of dimension d = 2r − 1 with boundary ∂M and

c = ∂M . In this case, Proposition 2 is also valid.

Finally, we apply our results to the space MetM of Riemannian metrics and the action
of the orientation-preserving diffeomorphisms Diff+M . For closed manifolds of dimension
4r − 2, the integer combinations of Pontryagin classes of degree r determine Diff+M-
equivariant prequantization bundles of the presymplectic structures defined in [18]. In
particular, for a surface, the first Pontryagin class is shown to determine a canonical holo-
morphic prequantization bundle for the Teichmüller space endowed with the Weil–Petersson
symplectic form. This bundle is shown to be equivariant with respect of the action of the
mapping class group of the surface. Furthermore, for compact manifolds of dimension 4r−1
with boundary, we obtain Chern–Simons line bundles for Riemannian metrics.
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1752 R. Ferreiro Pérez

Let us explain the way in which Theorem 1 is obtained. For simplicity, we assume that G is
the group of gauge transformations that fixes a point p0 ∈ P . As it is well known,G acts freely
on A, and we have well-defined quotient manifolds. In [4], Chern–Weil theory is applied to
the principal G-bundle (P × A)/G → M × A/G. Moreover, if p ∈ I r

Z
(G), the Chern–

Simons construction can also be applied to this bundle. This is done in [10] by using the
Cheeger–Simons approach of [11] based on differential characters. The space of differential
characters of order k onM is denotedby Ĥ k(M). IfA is a connectionon the principalG-bundle
A → A/G, it determines a connection A on (P ×A)/G → M ×A/G (see [10] for details).
Hence, if ϒ ∈ H2r (BG) is a universal characteristic class compatible with p, there exists
a differential character (the Chern–Simons differential character) χA ∈ Ĥ2r (M × A/G)

whose curvature is p(FA). By integration over a submanifold c, a differential character
∫

c χA ∈ Ĥ2r−d(A/G) is obtained, where d = dimC . In [10], by applying our results of Sect.
3.1, the characters of order 2 are interpreted geometrically as the holonomy of a connection
on a U (1)-bundle Uc → A/G. We generalize this construction to non-free actions, to the
action of automorphisms and also to the space of Riemannian metrics.

It is possible to extend the construction of [10] to non-free actions by using equivariant
cohomology. We do not follow this approach because it requires the use of connections and
quotients on principal G-bundles for infinite-dimensional groups. This can be technically
difficult, especially if we want to apply it to groups of automorphisms and diffeomorphisms
that should be considered as Fréchet Lie groups. To avoid this problem, we give a direct
definition of the lift of the action of each element φ ∈ G. We show that it can be done using
only the action of discrete groups and it does not require the use of quotients and auxiliary
connections for infinite-dimensional groups. We also prove that the bundle constructed in
[10] coincides with our bundle.

2 Notations and conventions

In this paper, we consider two Lie groups. The group G is the structure group of a principal
bundle P → M and it is supposed to be finite dimensional and with a finite number of con-
nected components (in order to apply the Chern–Simons construction). The second group G
is a symmetry group (usually infinite dimensional), and G0 denotes the connected component
of the identity on G.

We denote by I r
Z
(G) the set of G-invariant polynomials on its Lie algebra g whose

characteristic classes have integral periods. We denote by EG → BG a universal princi-
pal G-bundle. A polynomial p ∈ I r

Z
(G) and a characteristic class ϒ ∈ H2r (BG, Z) are

said to be compatible if they determine the same real characteristic class. We denote by
Ir
Z

= {(p, ϒ) ∈ I r
Z
(G)× H2r (BG, Z) : p, ϒ are compatible}, and by ϒP the characteristic

class of P → M associated with ϒ .
The Maurer–Cartan form of U (1) is denoted by θ = u−1du, and ∂θ ∈ X(U (1))

is the vector field such that θ(∂θ ) = i . If π : U → N is a principal U (1) bundle
and 	 ∈ �1(U, iR) is a connection, then the curvature form curv(	) ∈ �2(N ) is
defined by the property π∗(curv(	)) = i

2π d	. The log-holonomy log hol	(γ ) ∈ R/Z

of 	 on a closed curve γ : I → N with γ (0) = γ (1) is determined by the relation
γ̄ (1) = γ̄ (0) · exp(2π i log hol	(γ )), where γ̄ : I → U is a 	-horizontal lift of γ . The
(real) first Chern class of U is the cohomology class of curv(	). We denote by I the interval
[0, 1].
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Equivariant prequantization bundles on the space of… 1753

3 Cheeger–Simons differential characters

We recall the definition of differential characters (see [5,11] for details).We denote byCk(N )

and Zk(N ) the smooth chains and cycles on N . A Cheeger–Simons differential character of
order k is a homomorphism χ : Zk−1(N ) → R/Z such that there exist α ∈ �k(N ) which
satisfies χ(∂u) = ∫

uα for every u ∈ Ck(N ). We say that χ is a differential character
with curvature curv(χ) = α, and it can be proved that dcurv(χ) = 0. We recall (e.g., see
[5]) that χ(u) is invariant under reparametrizations, i.e., if U is a manifold of dimension
k and ϕ is an orientation-preserving diffeomorphism of U , then for any u : U → N we
have χ(u ◦ ϕ) = χ(u). We denote the space of differential characters of order k on N by
Ĥ k(N ). We have a map char : Ĥ k(N ) → Hk(N , Z), and the class char(χ) is called the
characteristic class of χ . The maps char and curv are compatible in the sense that we have
r(char(χ)) = [curv(χ)] ∈ Hk(N , R), where r : Hk(N , Z) → Hk(N , R) is the natural
map. If f : N ′ → N is a smooth map, it induces a map f ∗ : Ĥ k(N ) → Ĥ k(N ′) defined by
f ∗χ(u) = χ( f ◦ u). Given β ∈ �k−1(N ) we define a differential character ς(β) ∈ Ĥ k(N )

by settingς(β)(s) = ∫

s β for s ∈ Zk−1(M).Wehave curv(ς(β)) = dβ, and char(ς(β)) = 0.
Note that ς(dα)(s) = ∫

s dα = ∫

∂s α = 0 as ∂s = 0.

3.1 Differential characters of order 2

First we recall that if U → M a principal U (1)-bundle with connection �, and curvature
ω ∈ �2(M), the log-holonomyof� log hol� : Z1(M) → R/Z is a differential characterwith
curvature curv(log hol�) = ω and char(log hol�) = c1(U). Conversely, by a classical result
in differential cohomology, every second-order differential character can be represented as
the holonomy of a connection � on a principal U (1) bundle U → M . The bundle U and the
connection � are determined by χ only modulo isomorphisms. In the next Proposition, we
show that in the following restrictive equivariant case it is possible to give a concrete bundle
and connection

Theorem 3 Let N be a connected manifold with H1(N , Z) = 0 in which G acts in such
a way that π : N → N/G is a principal G-bundle. Let χ ∈ Ĥ2(N/G) be a second-order
differential character on N/G with curvature ω and assume that there exists λ ∈ �1(N )

such that π∗ω = dλ. Then, there exists a unique lift of the action of G to N × U (1) by
U (1)-bundle automorphism such that � = θ − 2π iλ ∈ �1(N × U (1), iR) is projectable
onto a connection� on U = (N ×U (1))/G → N/G and χ = log hol�. The action of φ ∈ G
on N ×U (1) is given by�φ : N ×U (1) → N ×U (1), �φ(x, u) = (φx, exp(2π iαφ(x)) ·u),
where αφ : N → R/Z is defined by αφ(x) = ∫

γ
λ − χ(π ◦ γ ), and γ is any curve on N

joining x and φx.

Theorem 3 is a consequence of the following lemmas. If γ is a curve on N , we denote by
γ = π ◦ γ the projected curve on N/G.

Lemma 4 Let γ and γ ′ be two curves on N joining x and φx. Then
∫

γ
λ − χ(γ ) = ∫

γ ′λ −
χ(γ ′).

Proof As H1(N , Z) = 0, we have γ − γ ′ = ∂D on N . If D = π ◦ D, then γ − γ ′ = ∂D,
and hence χ(γ ) − χ(γ ′) = χ(γ − γ ′) = ∫

D ω = ∫

D dλ = ∫

γ
λ − ∫

γ ′ λ. ��
For every φ ∈ G, we define αφ : N → R/Z by αφ(x) = ∫

γ
λ − χ(γ ), where γ is a curve

on N joining x and φx . (It is well defined by the preceding Lemma.)
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1754 R. Ferreiro Pérez

Lemma 5 (a) We have αφ(x ′) = αφ(x) + ∫

γxx ′
(φ∗λ − λ) for any curve γxx ′ joining x and

x ′.
(b) As a consequence of a), we have dαφ = φ∗λ − λ.

(c) If φt is a 1-parameter group on G with φ̇ = X, then
dαφt (x)

dt

∣

∣

∣

t=0
= λ(XN )(x).

Proof (a) If γ is a curve joining x and φx , γx ′x a curve joining x ′ and x , and γxx ′ the inverse
curve. Then γ ′ = γx ′x ∗ γ ∗ φγxx ′ is a curve joining x ′ and φx ′. Clearly, γ ′ = γ in
Z1(N/G), and hence χ(γ ) = χ(γ ′). We have

αφ(x ′) =
∫

γ ′
λ − χ(γ ′) =

∫

γx ′x
λ +

∫

γ

λ +
∫

φγxx ′
λ − χ(γ )

= αφ(x) +
∫

γxx ′
φ∗λ −

∫

γxx ′
λ = αφ(x) +

∫

γxx ′
(φ∗λ − λ)

(b) If γ is a curve with γ (0) = x and γ ′(0) = X ∈ Tx N , we have αφ(γ (s)) = αφ(x) +
∫ s
0 (φ∗λ − λ)γ (s)(γ

′(s))ds, and hence dαφ(x)(X) = dαφ(xs )
ds

∣

∣

∣

s=0
= (φ∗λ − λ)x (X).

(c) Let X ∈ LieG and φt a 1-parameter group on G with φ0 = 1G and φ̇0 = X , and we
define γ (t) = φt x . We have γ = 0 in Z1(N/G) and γ̇ (0) = XN (x). Then αφt (x) =
∫

γ
λ − χ(γ ) = ∫

γ
λ = ∫ t

0λφs x (γ̇ (s))ds and dαφt (x)
dt

∣

∣

∣

t=0
= λ(XN (x)). ��

The action α satisfies the following cocycle condition

Lemma 6 We have αφ2φ1(x) = αφ1(x) + αφ2(φ1x) for any x ∈ N, φ1, φ2 ∈ G.

Proof Let γ1 be a curve joining x and φ1x and γ2 be a curve joining φ1x and φ2φ1x . Then
γ ′ = γ2 ∗ γ1 is a curve joining x and φ2φ1x . We have γ ′ = γ

2
+ γ

1
in Z1(N/G). Hence

αφ2φ1(x) =
∫

γ ′
λ − χ(γ ′) =

∫

γ2

λ +
∫

γ1

λ − χ(γ
1
) − χ(γ

2
) = αφ1(x) + αφ2(φ1x).

��
We define the action of G on N ×U (1) by�φ(x, u) = (φx, exp(2π iαφ(x)) ·u). It defines

a group action as we have

�φ2(�φ1(x, u)) = �φ2((φ1x, exp(2π iαφ1(x)) · u))

= (φ2φ1x, exp(2π i(αφ1(x) + αφ2(φ1x)) · u)

= (φ2φ1x, exp(2π iαφ2φ1(x)) · u) = (�φ2φ1)(x, u))

We also define � = θ − 2π iλ ∈ �1(N ×U (1), iR), U = (N ×U (1))/G, and we denote
by π : N ×U (1) → U the projection. For every φ ∈ G, we have

�∗� = �∗θ − 2π iφ∗λ = (θ + 2π idαφ) − 2π iφ∗λ = (θ + 2π i(φ∗λ − λ)) − 2π iφ∗λ = �.

Moreover, for every X ∈ LieG, if φt is a curve on G with X = φ̇, then we have XN×U (1) =
XN +2π i dαφt (x)

dt

∣

∣

∣

t=0
∂θ = XN +2π iλ(XN )∂θ , and hence,�(XN×U (1)) = 0. We conclude

that � is a G-basic form, i.e., there exists � ∈ �1(N/G, iR) such that π∗� = �. Clearly,
� is a connection form.

Lemma 7 We have log hol� = χ .
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Proof Given a loop γ on N/G with γ (0) = γ (1) = [x] ∈ N/G, we can find a curve
γ on N with γ (0) = x such that π ◦ γ = γ . We have γ (1) = φx for some φ ∈ G.
The �-horizontal lift of γ to N × U (1) starting at the point (x, 0) is given by γ (s) =
(γ (s), exp(2π i

∫ s
0 λγ (t)(γ̇ (t))dt)). The curve π ◦γ is a�-horizontal lift to U of the loop γ =

π ◦γ . In particular, we have π ◦γ (1) = (φx, exp(2π i
∫

γ
λ)) ∼G (x, exp(2π i(

∫

γ
λ−αφ(x))).

Hence log hol�(γ ) = ∫

γ
λ − αφ(x) = χ(γ ). ��

The proof of the preceding Proposition also shows that the action we have defined is the
unique which satisfies log hol�(γ ) = χ(γ ). This is equivalent to χ(γ ) = ∫

γ
λ − αφ(x), and

hence αφ(x) = ∫

γ
λ − χ(γ ), that is our definition of αφ(x).

For the elements in G0 (the connected component of the identity in G), we have a simpler
result:

Proposition 8 Let φ ∈ G0 and ϕ ⊂ G be a curve such that ϕ0 = 1G and ϕ1 = φ. Then
αφ(x) = ∫

ϕ·x λ.

Proof The curve γ = ϕ · x is a curve joining x and φx , and γ = 0 in Z1(N/G). Hence
αφ(x) = ∫

γ
λ − χ(γ ) = ∫

ϕx λ. ��

Remark 9 The preceding Proposition determines the action of G0 only in terms of λ, and
without any reference to χ . Hence the differential character χ is necessary only to determine
the action of the elements of G not connected to the identity. We note that Theorem 3 is a
generalization to non-connected groups of results in [8,14,25] for the space of connections.

3.2 Chern–Simons differential characters

Chern–Simons theory allows us to construct, in a natural way, a differential character with
curvature a characteristic form. Let G be a Lie group with a finite number of connected
components, p ∈ I r

Z
(G) and q : P → N a principal G-bundle over a manifold N . If A is a

connection on q : P → N with curvature F , we have p(F) ∈ �k(N ). It can be seen (see [11])
that if ϒ ∈ H2r (BG, Z) is a universal characteristic class compatible with p, there exists
a differential character χA ∈ Ĥ2r (N ) such that curv(χA) = p(F) and char(χA) = ϒP .
We call χA the Chern–Simons character of p, ϒ and A. The Chern–Simons character is
characterized as being the unique natural map (P, A) �→ χA satisfying curv(χA) = p(F)

and char(χA) = ϒP . We recall that natural means that for any principal G-bundle P ′ → N ′
and any G-bundle map F : P ′ → P we have χF∗A = f ∗(χA), where f : N ′ → N is the
map induced by F . Furthermore, if A′ is another connection on P , then we have

χA′ = χA + ς(T p(A′, A)). (1)

A consequence of the preceding equation is the following (see, e.g., [11, Proposition 2.9])

Lemma 10 If At is a smooth 1-parametric family of connections on P with Ȧ0 = a ∈
�1(M, adP), then d

dt

∣

∣

∣

t=0
χAt (u) = r

∫

u p(a, F0, (r−1). . . , F0) for every u ∈ Z2r−1(N ).

Remark 11 The original Chern–Simons and Cheeger–Simons constructions are valid for
finite-dimensional manifolds, but they can be extended to Banach or Fréchet infinite-
dimensional manifolds, and to more general types of spaces (see, for example, [5]). Hence,
they can be applied to the infinite-dimensional spaces of connections and metrics.
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3.3 Fiber integration of differential characters

3.3.1 Integration on a product

If α ∈ �k(C × S) with C compact and dimC = d , we define
∫

C α ∈ �k−d(S) by
(∫

C α
)

s (X1, . . . , Xk−d) = ∫

C ιXk−d · · · ιX1αs for s ∈ S, X1, . . . , Xd ∈ Ts S. If k < d

we define
∫

C α = 0. We have
∫

S

∫

C α = ∫

C×S α, and also
∫

C α = ∫

C αd,k−d , where αd,k−d

is the component relative to the bigrading associated with the product structure on C × S.
Furthermore, we have Stokes theorem d

∫

C α = ∫

C dα − (−1)k−d
∫

∂C α. If c : C → M is a
mapwith dimC = d , we definemaps

∫

c : �k(M×N ) → �k−d(N ) by
∫

cα = ∫

C (c×idN )∗α
and we have

∫

cα = ∫

cα
d,k−d .

The integration map can be extended to differential characters in the following way. If
χ ∈ Ĥn(M × N ) is a differential character of order n on M × N and c : C → M is a
smooth map with C closed, we define

∫

c χ ∈ Ĥn−d(N ) by (
∫

c χ)(s) = χ(c × s), and we
have

∫

c χ(∂t) = χ(c × ∂t) = ∫

c×tcurv(χ) = ∫

t

∫

ccurv(χ). Hence,
∫

c χ is a differential
character on N and its curvature is curv(

∫

c χ) = ∫

ccurv(χ). Moreover, if c = ∂u for some
u : U → M , we have

∫

∂uχ = ς(
∫

ucurv(χ)) as
∫

∂uχ(s) = χ(∂u × s) = χ(∂(u × s)) =
∫

u×scurv(χ) = ∫

s

∫

ucurv(χ).

3.3.2 Fiber integration

The integration of differential characters can be extended to fiber integration on a non-trivial
bundleN → N with fiber M (e.g., see [5,20]). In the product case, we can integrate over any
submanifold ofM , but for non-trivial bundles it onlymakes sense to integrate over the fiberM
and over ∂M if the fiber has boundary. IfN → N is a fiber bundle with compact and oriented
fiber M without boundary of dimension d , the fiber integration is a map

∫

M : Ĥn(N ) →
Ĥn−d(N ) and satisfies curv(

∫

Mχ) = ∫

Mcurv(χ), and char(
∫

Mχ) = ∫

Mchar(χ). If M has

boundary, we have a map
∫

∂M : Ĥn(N ) → Ĥn−d+1(N ) and
∫

∂M
χ = ς(

∫

M
curv(χ)). (2)

Fiber integration satisfies the following naturality property (e.g., see [5]): If f : N ′ → N
is a smooth map, f ∗N → N ′ is the pullback bundle and f̂ : f ∗N → N is the induced map,
then we have

∫

M f̂ ∗χ = f ∗ (∫

M χ
)

. If M has boundary, we have
∫

∂M f̂ ∗χ = f ∗ (∫

∂M χ
)

.
If F : N ′ → N is a morphism of bundles with f : N ′ → N being the induced map of the

base, then we have F = f̂ ◦ F̃ for a bundle morphism F̃ : N ′ → f ∗N covering the identity
map. If F̃ is an isomorphism of bundles that preserves the orientation on the fibers, then we
have

∫

M F̃∗χ = ∫

M χ for any χ ∈ Ĥ k( f ∗N ). Hence, we have the following

Proposition 12 Let N ′ → N ′ and N → N be bundles with fiber M and let G : N ′ → N
be a morphism covering the map f : N ′ → N. If F̃ : N ′ → f ∗N is an isomorphism of
bundles that preserves the orientation on the fibers, then for any χ ∈ Ĥn(N ) we have
∫

M F∗χ = f ∗ (∫

M χ
)

. If M has boundary, we have
∫

∂M F∗χ = f ∗ (∫

∂M χ
)

.

4 Equivariant deRham cohomology in the Cartan model

We recall the definition of equivariant cohomology in the Cartan model (e.g., see [7,22]).
Suppose that we have a left action of a connected Lie group G on a manifold N . The map
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X �→ XN (x) = d
dt

∣

∣

∣

t=0
(exp(−t X))(x) induces a Lie algebra homomorphism Lie G →

X(N ). The space of G-equivariant differential forms is the space of G-invariant polynomials
on Lie G with values in �•(N ), �G(N ) = (S•(Lie G∗) ⊗ �•(N ))G (G acts on Lie G by
the adjoint representation). The gradation on �G(N ) is defined by setting deg(α) = 2k +
r if α ∈ Sk(Lie G∗) ⊗ �r (N ). Let D : �

q
G(N ) → �

q+1
G (N ) be the Cartan differential,

(Dα)(X) = d(α(X)) − ιXN α(X), for X ∈ Lie G. On �•
G(N ), we have D2 = 0, and the

G-equivariant cohomology (in the Cartan model) of N is defined as the cohomology of this
complex.

A G-equivariant 2-form� is given by�(X) = σ +μ(X)where σ is a G-invariant 2-form
and μ : LieG → �0(N ) a linear G-equivariant map. The form � is D-closed if dσ = 0 and
ιXN σ = μ(X) for every X . Hence, μ is a co-moment map for σ .

If a group acts onM , N ,C and c : C → M isG-equivariant, the integrationmap is extended
to equivariant differential forms

∫

c : �k
G(M × N ) → �k−d

G (N ) by setting
(∫

cα
)

(X) =
∫

c(α(X)) for X ∈ Lie G, and we have D
∫

C α = ∫

C Dα − (−1)k−d
∫

∂C α.

4.1 Equivariant characteristic classes in the Cartan model

We recall the definition of equivariant characteristic classes (see [6,9] for details). Let G
be a group that acts (on the left) on a principal G-bundle π : P → M and let A be a
connection on P invariant under the action of G. It can be proved (see [6,9]) that for every
X ∈ LieG the g-valued function A(XP ) is of adjoint type and defines a section of the adjoint
bundle vA(X) ∈ �0(N , adP). For every p ∈ I r (G) the G-equivariant characteristic form
pA
G ∈ �2k

G (N ) associated with p and A, is defined by pA
G (X) = p(FA − vA(X)) for every

X ∈ LieG.
A G-equivariant U (1)-bundle is a principal U (1)-bundle U → N in which G acts by

U (1)-bundle automorphisms. If 	 ∈ �1(U, iR) is a G-invariant connection, then i
2π D(	)

projects onto a closed G-equivariant 2-form curvG(	) ∈ �2
G(N ) called the G-equivariant

curvature of 	. If X ∈ LieG, then curvG(	)(X) = curv(	) − i
2π ιXU 	. If � ∈ �2

G(N ),
a G-equivariant prequantization bundle for � is a principal U (1)-bundle U → N with a
G-invariant connection 	 such that curvG(	) = � .

5 The space of connections

Let P → M be a principalG-bundle, andA the space of principal connections on this bundle.
As A is an affine space modeled on �1(M, adP), we have canonical isomorphisms TAA �
�1(M, adP) for any A ∈ A. The Lie algebra of AutP is the space ofG-invariant vector fields
on P , autP ⊂ X(P), and theLie algebra ofGauP is the subspace gauP of verticalG-invariant
vector fields.We have an identification gauP � �0(M, adP). The groupAutP acts onA and
for any X ∈ autP we have XA(A) = d A(vA(X)). In particular, if X ∈ gauP � �0(M, adP)

we have vA(X) � X and XA(A) = d AX . The principal G-bundle P = P × A → M × A
has a tautological connection A ∈ �1(P × A, g) defined by A(x,A)(X, Y ) = Ax (X) for
(x, A) ∈ P × A, X ∈ Tx P , Y ∈ TAA. We denote by F the curvature of A, and we have
F(x,A)(a, a′) = 0, F(x,A)(a, Y ) = a(Y ), F(x,A)(Y, Y ′) = FA(Y, Y ′) for Y, Y ′ ∈ TxM , and
a, a′ ∈ TAA � �1(M, adP). The group AutP acts on P by automorphisms and A is an
AutP-invariant connection. As the connection A is AutP-invariant, for any p ∈ I r (G) we
can define the AutP-equivariant characteristic form pAAutP ∈ �2r

AutP (M × A), given by
pAAutP (X) = p(F−vA(X)) for X ∈ autP . If M is a closed oriented manifold of dimension n

123



1758 R. Ferreiro Pérez

and we consider the action of the group Aut+P , pA
Aut+P

∈ �2r
Aut+P

(M×A) can be integrated

over M to obtain
∫

M pA
Aut+P

∈ �2r−n
Aut+P

(A). In particular, if n = 2r − 2, we have �M =
∫

M pA
Aut+P

∈ �2
Aut+P

(A) that can bewritten�M = σM+μM , withμM a co-momentmap for

σM . IfM has boundary, we can integrate over ∂M andwe obtain
∫

∂M pA
Aut+P

∈ �2r−n+1
Aut+P

(A).

In particular, if n = 2r − 1, we have �∂M = ∫

∂M pA
Aut+P

∈ �2
Aut+P

(A) that can be written
�∂M = σ∂M + μ∂M , with μ∂M a co-moment map for σ∂M .

If we consider the action of the Gauge group, we have the GauP-equivariant characteristic
form pAGauP ∈ �2r

GauP (M × A), given by pAGauP (X) = p(F − X) for X ∈ gauP . If C is
a closed and oriented manifold of dimension d , for any map c : C → M we can integrate
(c × idA)∗ pAGauP ∈ �2r

GauP (C × A) over C to obtain
∫

c p
A

GauP ∈ �2r−d
GauP (A). Again if

d = 2r − 2, we have �c = ∫

c p
A

GauP ∈ �2
GauP (A) that can be written �c = σc + μc, with

μc a co-moment map for σc.
The explicit expression of these forms is the following (see [15]). For A ∈ A, a, b ∈

TAA � �1(M, adP) and X ∈ autP , we have (σM )A(a, b) =
r(r − 1)

∫

M p(a, b, FA, (r−2). . . , FA) and (μM )A(X) = −r
∫

M p(vA(X), FA, (r−1). . . , FA), and
similar expressions for ∂M and c.

As commented in Introduction, our objective in this paper is to obtain equivariant pre-
quantization bundles of (A,�M ), (A,�∂M ) and (A,�c).

6 Equivariant prequantization bundle

In this section, we define the equivariant prequantization bundle. In Sect. 6.1, we define
the equivariant prequantization bundle for the action of a discrete group. We show in Sect.
6.2 that the definition for an arbitrary group can be reduced to the discrete case. In place
of working with the space of connections A, we consider a general connected and simply
connected manifold N . It includes as particular cases the space of connections for N = A,
and also the case of the space of Riemannian metrics.

We assume that G is a Lie group that acts (on the left) on the following spaces

(a) on a principal G-bundle P → M by G-bundle automorphisms,
(b) on a connected and simply connected manifold N and A is a G-invariant connection on

the product bundle P = P × N → M × N .
(c) on a closed oriented manifold C of dimension d = 2r − 2 and we have a G-equivariant

map c : C → M and G preserves the orientation ofC . We are interested in the following
cases

(c1) The action of G on M and C is trivial (i.e., G acts on P by gauge transformations). In
this case, we can consider any map c : C → M .

(c2) M is compact, ∂M = ∅ and G preserves the orientation on M . In this case, we can take
C = M and c = idM .

(c3) M is an oriented manifold with compact boundary ∂M and G preserves the orientation
on M . In this case, we take C = ∂M and c the inclusion c : ∂M ↪→ M .

The following definitions are generalizations of the results in [15] for connections and
[18] for Riemannian metrics.

As the connection A is G-invariant, for any polynomial p ∈ I r (G) we can define the
G-equivariant characteristic class pAG ∈ �2r

G (M × N ), given by pAG (X) = p(F − vA(X)) for
X ∈ LieG. As c : C → M is G-invariant, we can integrate (c × idM )∗ pAG ∈ �2r

G (C × N )
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over C to obtain �c = ∫

c p
A

G ∈ �2
G(N ). We have �c = σc + μc, with σc = ∫

c p(F) and μc

a co-moment map for σc given by μc(X) = −r
∫

c p(vA(X), F,(r−1). . . ,F) for X ∈ LieG.
As it is commented in Introduction, the equivariant prequantization bundles are given

in terms of a background connection. Let A0 be a connection on P → M (we call A0 a
background connection). If pr1 : P × N → P denotes the projection, then A and A0 =
pr∗1A0 are connections on the same bundle P × N → M × N , and hence we can define
T p(A, A0) ∈ �2r−1(M × N ). The product structure on M × N induces a bigrading on
�k(M × N ) � ⊕k

i=0 �i,k−i (M × N ). We have p(F) = dT p(A, A0) + pr∗1 p(F0), with
pr∗1 p(F0) ∈ �2r,0(M × N ). Hence for any u : U → M with d = dimU < 2r − 1 we have

∫

u
p(F)=

∫

u
dT p(A, A0)=d

∫

u
T p(A, A0)−(−1)d

∫

∂u
T p(A, A0), (3)

where we have used that
∫

u pr
∗
1 p(F0) = 0 as pr∗1 p(F0) ∈ �2r,0(M × N ). In particular, if we

define ρc = ∫

c T p(A, A0) ∈ �1(N ), then by using Eq. (3) and that ∂c = 0 we obtain

σc =
∫

c
p(F) = dρc. (4)

6.1 Discrete group

Assume that G is a discrete group. Let E be a manifold in which G acts and such that the
following condition is satisfied:

(*) E is connected and simply connected and π : N × E → (N × E)/G is a principal
G-bundle.

For example, we can take E = EG or another simpler manifold. We define N ′ = N × E
and we denote by q : M × N ′ → M × N and q : P

′ = P × E → P the projections, which
are G-equivariant maps. Hence q∗

A is a G-invariant connection on P
′ → M × N ′, and it

projects onto a connection A on the quotient principal G-bundle P
′/G → (M × N ′)/G.

We denote by F the curvature of A. Given (p, ϒ) ∈ Ir
Z
(G), we have the Chern–Simons

character χA ∈ Ĥ2r ((M × N ′)/G). As c : C → M is a G-equivariant map, it induces a map
c × idN : (C × N ′)/G → (M × N ′)/G. The character (c × idN ′)∗χA ∈ Ĥ2r ((C × N ′)/G)

can be integrated over the fiber of (C×N ′)/G → N ′/G, andwe obtain a differential character
ξc = ∫

c χA = ∫

C (c × idN )∗χA ∈ Ĥ2(N ′/G). We have curv(ξc) = ∫

c curv(χA) = ∫

c p(F)

and char(ξc) = ∫

c char(χA) = ∫

c ϒP′/G .
If A0 is a background connection, by Eq. (4) we have π∗(

∫

c p(F)) = ∫

c p(q
∗
F) =

q∗ ∫

c p(F) = d(q∗ρc). By applying Proposition 3 with λ = q∗ρc, we obtain a cocycle
ᾱc : G × N × E → R/Z. Precisely, if φ ∈ G, γ is a curve on N joining x and φx and γ ′ is a
curve on E joining e and φe we have

ᾱφ(x, e) =
∫

γ×γ ′
q∗ρc − ξc(π ◦ (γ × γ ′)) =

∫

γ

ρc − ξc(π ◦ (γ × γ ′)).

Remark 13 Note that by Lemma 5 ᾱφ is differentiable and dᾱφ = φ∗q∗ρc − q∗ρc =
q∗(φ∗ρc − ρc).

Lemma 14 We have

(a) ᾱφ(x, e) does not depend on e ∈ E, and hence ᾱ = q∗α for a cocycle α : G×N → R/Z.
Furthermore, α satisfies αφ2φ1(x) = αφ1(x) + αφ2(φ1x) and dαφ = φ∗ρc − ρc for φ,
φ1, φ2 ∈ G.
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(b) αc does not depend on the chosen manifold E.

Proof (a) By Lemma 5, if e′ is another point on E and γee′ a curve on E joining e and e′
(it exists as E is connected) we have αφ(x, e′) = αφ(x, e) + ∫

{x}×γee′
(φ∗q∗ρc − q∗ρc).

But
∫

{x}×γee′
(φ∗q∗ρc − q∗ρc) = ∫

{x}×γee′
q∗(φ∗ρc − ρc) = 0, and hence, αφ(x, e′) =

αφ(x, e).
(b) Let E1, E2 be two manifolds satisfying condition (*). Then E3 = E1 × E2 also satisfies

(*). We define Qi : (P × N × E3)/G → (P × N × Ei )/G, and qi : (N × E)/G →
(N × Ei )/G, i = 1, 2. We have Q∗

1q
∗
1A=Q∗

2q
∗
2A = q∗

3A, and by using Proposition 12

we obtain q∗
1 ξ1c =q∗

2 ξ2c = ξ3c .
If φ ∈ G, γ is a curve on N joining x and φx , and γi is a curve on Ei joining ei and φei ,

we have ξ3c (π3 ◦(γ ×γ1×γ2)) = ξ ic(qi ◦π3 ◦(γ ×γ1×γ2)) = ξ ic(πi ◦(γ ×γi )) for i = 1, 2,
and by the definition of αi and a) we have (α1)φ(x) = (α1)φ(x, e1) = (α3)φ(x, e1, e2) =
(α2)φ(x, e2) = (α2)φ(x). ��

The cocycle α : G × N → R/Z defines an action of G on Uc = N × U (1) by U (1)-
bundle automorphisms �φ(x, u) = (φx, exp(2π iαφ(x)) · u) and the connection form 	c =
θ − 2π iρc is G-invariant.

Hence, for any action of a discrete group G on N we have the following

Proposition 15 Let A0 be a background connection on P → M. Then there exists a lift of
the action of G on N to an action on Uc = N × U (1) by U (1)-bundle automorphisms such
that 	c = θ − 2π iρc ∈ �1(N ×U (1), iR) is G-invariant.

We recall that a G-equivariant section of Uc → N is determined by a map S : N → U (1)
S(x) = exp(2π i · s(x)) where s : N → R/Z satisfies αφ(x) = s(φx) − s(x). The following
result shows that our bundle generalizes the Chern–Simons line

Proposition 16 If c = ∂u for a G-equivariant map u : U → M and we define su =
−∫

uT p(A, A0) ∈ �0(N ), then αφ(x) = su(φx) − su(x). Hence Su = exp(2π i · su) deter-
mines a G-equivariant section of Uc → N.

Furthermore, we have ∇	c Su = −2π iσu · Su, where σu = ∫

u p(F).

Proof If we define σu = ∫

u p(F) then dσu = ∫

u d(p(F)) + ∫

∂u p(F) = σc. Moreover by
Eqs. (3) and (4) we have σu = ∫

u p(F) = d
∫

u T p(A, A0) + ∫

∂u T p(A, A0) = −dsu + ρc.

For a curve γ joining x and φx , and γ ′ a curve on E joining e and φe, using the preceding
equations and Eq. (2) we have

αφ(x) =
∫

γ

ρc −
(∫

∂u
χA

)

(π ◦ (γ × γ ′)) =
∫

γ

(σu + dsu) −
∫

γ×γ ′
q∗

∫

u
p(F)

=
∫

γ

(σu + dsu) −
∫

γ

σu =
∫

γ

dsu =
∫

∂γ

su = su(φx) − su(x).

Finally we have ∇	c Su = dSu − 2π iρc · Su = 2π idsu · Su − 2π iρc · Su = −2π iσu · Su .
��

Remark 17 We can also consider exp(2π i · ∫uT p(A, A0)) as a section of the inverse bundle
U−1
c as it is done in [14].

Let H be another discrete group and let h : H → G be a group homomorphism. Then h
induces actions of the group H on N and P that satisfies conditions a), b) and c). If φ ∈ H
we denote by αH

φ and �H
φ the cocycle and action determined by the group H
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Proposition 18 We have αH
φ = αG

h(φ) and �H
φ = �G

h(φ) for any φ ∈ H.

Proof We define N1 = N × EG, N2 = N × EG × EH, and the projections q1 : P × N1 →
P × N , q2 : P × N2 → P × N . Then h induces actions ofH on P , N and EG. We denote by
AG ∈ �1((P × N1)/G, g) and AH ∈ �1((P × N2)/H, g) the projections of the connections

q∗
1A and q∗

2A, and by ξHc = ∫

c χAH ∈ Ĥ2(N2/H) and ξGc = ∫

c χAG ∈ Ĥ2(N1/G) the
integrated Chern–Simons characters.

We define a map Z : (P × N2)/H → (P × N1)/G by Z([y, x, e1, e2]H) = [y, x, e1]G ,
and we have AH = Z

∗
(AG). In a similar way, we define the maps Z : (M × N2)/H →

(M × N1)/G and z : N2/H → N1/G. Thus, Z determines a morphism of bundles with fiber
M satisfying the conditions of Proposition 12, and we conclude that ξHc = z∗ξGc .

Let γ be a curve on N joining x and φ · x = h(φ) · x , γ1a curve on EG joining e1 and
h(φ) · e1 and γ2 a curve on EH joining e2 and φ · e2, and let �γ1 = γ × γ1. �γ2 = γ × γ1 × γ2.
By Lemma 14, we have αH

φ (x) = ∫

γ
ρc −ξHc (πH ◦ �γ2) and αG

h(φ)(x) = ∫

γ
ρc −ξGc (πG ◦ �γ1),

whereπG : N1 → N1/G, andπH : N2 → N2/H are the projections.We have ξHc (πH◦ �γ2) =
z∗ξGc (πH ◦ �γ2) = ξGc (z ◦ πH ◦ �γ2) = ξGc (πG ◦ �γ1), and hence αH

φ (x) = αG
h(φ)(x). ��

6.2 General group

In this section,wegive a definition of the prequantization bundle valid for arbitraryLie groups.
The definition for discrete groups cannot be generalized directly to Lie groups because the
connection q∗

A is not necessarily projectable to the quotient (P×N ×E)/G. As commented
in Introduction, it is possible to obtain a connection on the quotient space by using an auxiliary
connectionA on the principal G-bundle N × E → (N × E)/G. As this could be problematic
for Fréchet Lie groups, we define the lift of the action of any element φ ∈ G by using the
results for discrete groups.

Given φ ∈ G, the homomorphism Z → G n �→ φn determines actions of the group
Z on P and N . We apply the results of Sect. 6.1 to the discrete group Z, and we obtain a
cocycle αφ : N → R/Z and a lifted action �φ : N × U (1) → N × U (1) by U (1)-bundle
automorphisms that leaves invariant the connection 	c = θ − 2π iρc. Let us compute αφ

explicitly. We consider the universal Z-bundle EZ = R → Z, and the products q : P ×
N × R →P × N , q : M × N × R →M × N . The connection q∗

A is Z-invariant and hence
projects onto a connectionAφ on the principalG-bundle (P×N×R)/Z → (M×N×R)/Z.

Given (p, ϒ) ∈ IZ(G), we have the Chern–Simons differential character χAφ
∈ Ĥ2r ((M ×

N × R)/Z), and by integrating over c we obtain the integrated Chern–Simons character
ξ

φ
c = ∫

c χAφ
∈ Ĥ2((N × R)/Z). If γ is any curve on N joining x and φx , we define

�γ : I → N × R, �γ (s) = (γ (s), s) and we have

αφ(x) =
∫

�γ
q∗ρc − ξφ

c (πφ ◦ �γ ) =
∫

γ

ρc − ξφ
c (πφ ◦ �γ ),

where πφ : N × R → (N × R)/Z denotes the projection.
Note that (N ×R)/Z can be identified with (N × I )/∼φ where the equivalence relation is

defined by (x, 0)∼φ(φx, 1). With this identification, we have πφ ◦ �γ (s) = [γ (s), s]φ , which
is a closed curve as we have (γ (1), 1) = (φx, 1)∼φ(x, 0) = (γ (0), 0).

The map �φ : N × U (1) → N × U (1), �φ(x, u) = (φx, exp(2π iαφ(x)) · u) defines a
group action of G on N ×U (1) as we have the following

Proposition 19 For any φ1, φ2 ∈ G, we have αφ2φ1(x) = αφ1(x) + αφ2(φ1x), and hence
�φ2φ1 = �φ2 ◦ �φ1 .
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1762 R. Ferreiro Pérez

Proof Given φ1, φ2 ∈ G we consider the free group F2[x1, x2] generated by two elements
x1, x2. The assignment x1 �→ φ1, x2 �→ φ2 defines and action of the discrete group F2[x1, x2]
on P×N . We have two homomorphisms hi : Z → F2[x1, x2] determined by setting hi (n) =
xni . By applying Lemma 14 and Proposition 18, we obtain αφ2φ1(x) = αφ1(x) + αφ2(φ1x)
for any x ∈ N . ��
Lemma 20 Ifφt ∈ G, t ∈ (−ε, ε) is a local1-parametric subgroup ofG with φ̇t = X ∈ LieG,
then we have

dαφt

dt

∣

∣

∣

t=0
= ρc(XN ) + μc(X).

Proof Given x ∈ N , we define γ (s) = φs x and for t ∈ (−ε, ε), γ t (s) = γ (ts) and
�γ t (s) = (γ t (s), s). We have �γ t (0) = (φ0x, 0) = (x, 0) and �γ t (1) = (φt x, 1) ∼φt (x, 0).

By definition, we have αφt (x) = ∫

γ t ρc − ξ
φt
c (πφt ◦ �γ t ).

The derivative of the first term is easy to compute, as we have
∫

γ t ρc = ∫ 1
0 ρc(γ̇

t (s))ds =
∫ 1
0 ρc(γ̇ (ts))tds =

z=ts

∫ t
0 ρc(γ̇ (z))dz and hence d

dt
∫

γ t ρc

∣

∣

∣

t=0
= ρc(XN (x)).

Next we compute the derivative of the second term. We denote by Nt the manifold N ×R

with the action of Z determined by n · (x, s) = ((φt )
nx, s + n). The maps wt : N0 → Nt ,

wt (x, s) = (φts x, s), Wt : P × N0 → P × Nt , Wt (y, x, s) = (φts y, φts x, s) for y ∈ P, x ∈
N and s ∈ R are Z-equivariant. We denote by wt : N0/Z → Nt/Z andWt : (P × N0)/Z →
(P × Nt )/Z the induced maps. We define the connections At = W ∗

t q
∗
A, and we have

A0 = q∗
A and Ȧ0 = d

dt

∣

∣

∣

t=0
(W ∗

t q
∗
A) = LY q∗

A, where Y = dWt
dt

∣

∣

∣

t=0
= sXP×N . As q∗

A

is G-invariant, we have Ȧ0 = LY q∗
A = sq∗(LXP×N A) + q∗(ιXP×N A)ds = (q∗vA(X))ds.

We denote by At the projection of At on (P × N0)/Z and we define ζ t
c = ∫

c χAt
∈

Ĥ2(N0/Z). In each of the cases c1), c2) and c3) by using Proposition 12, we obtain ζ t
c =

w∗
t (ξ

φt
c ).

If �x : I → N0 is the curve �x (s) = (x, s), then we have πφt ◦ �γ t = wt ◦ πφ0 ◦ �x and

hence ξ
φt
c (πφt ◦ �γ t ) = ξ

φt
c (wt ◦πφ0 ◦�x ) = ζ t

c (πφ0 ◦�x ). By using Lemma 10, we conclude
that

d
dt ξφt

c (πφt ◦ �γ t )
∣

∣

t=0 = d
dt ζ t

c (πφ0 ◦ �x )
∣

∣

t=0 = r
∫

�x

∫

c
p( Ȧ0, q

∗
F, (r−1). . . , q∗

F)

=
(

r
∫

c
p(vA(X), F, (r−1). . . , F)

)

x

(∫

�x

ds

)

= −μc(X)x ,

and the result follows. ��
As a consequence of the preceding Lemma, we have the following

Proposition 21 For X ∈ LieG, we have XUc = XN + 2π i(ρc(XN ) + μc(X))∂θ .

We have curv	c = dρc = σc and ιXUc
	c = 2π iμc(X). Hence curvG(	c) = σc + μc =

�c. We conclude that (Uc, 	c) is a G-equivariant prequantization bundle of (N ,�c). Hence,
we have proved the following

Theorem 22 Let (p, ϒ) ∈ Ir
Z
(G), A0 be a background connection on P and c : C → M

a G-invariant map. These data determine an action of G on Uc = N × U (1) → N by
U (1)-bundle automorphisms �φ(x, u) = (φx, exp(2π iαφ(x))· u) such that the connection
	c = θ − 2π iρc is G-invariant, and the G-equivariant curvature of 	c is curvG(	c) = �c.

For every X ∈ LieG, we have XUc = XN + 2π i(ρc(XN ) + μc(X))∂θ .
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If c = ∂u for a G-equivariant map u : U → M and su = −∫

uT p(A, A0), then αφ(x) =
su(φx) − su(x). Hence Su = exp(2π i · su) determines a G-equivariant section of Uc → N.
Moreover, we have ∇	c Su = −2π iσu · Su, where σu = ∫

u p(F) ∈ �1(N ).

Remark 23 In place of the principal U (1)-bundle Uc, we can consider the G-equivariant
Hermitian line bundleLc = N×C → N with the action�φ(x, z) = (φx, exp(2π iαφ(x))·z)
and 	c determines a Hermitian connection ∇	c on this bundle with ∇	c f = d f −2π iρc · f
for f : N → C.

Let N1 be another connected and simply connected manifold on which G acts. If g : N1 →
N is a G-equivariant map, then A1 = (idP × g)∗A is a G-invariant connection on P × N1 →
M × N1 and conditions a) b) and c) are satisfied. If A0 is a background connection, then we
have a cocycle α1. The following Proposition can be easily proved.

Proposition 24 We have (α1)φ(x) = αφ(g(x)), (�1)φ(x, u) = �φ(g(x), u) and (	1)c =
(g×idU (1))

∗	c for φ ∈ G, x ∈ N ′ and u ∈ U (1). In particular, the map g×idU (1) : (U1)c →
Uc is G-equivariant.

6.3 Change of background connection

The prequantization bundleUc and the connection	c are defined using a background connec-
tion A0. If A′

0 is another background connection, then we have T p(A, A
′
0) = T p(A, A0) +

T p(A0, A
′
0) + dT p(A, A0, A

′
0), with T p(A0, A

′
0) = pr∗1T p(A0, A

′
0) ∈ �2r−1,0(M × N ),

and hence
∫

u
T p(A, A

′
0) =

∫

u
T p(A, A0) +

∫

u
T p(A0, A

′
0) +

∫

u
dT p(A, A0, A

′
0)

=
∫

u
T p(A, A0) +

∫

u
T p(A0, A

′
0) + d

∫

u
T p(A, A0, A

′
0) + (−1)d

∫

∂u
T p(A, A0, A

′
0).

If d =dimU < 2r − 1, we have
∫

uT p(A0, A
′
0) = 0 as T p(A0, A

′
0)∈�2r−1,0(M × N ) and

hence
∫

u
T p(A, A

′
0) =

∫

u
T p(A, A0) + d

∫

u
T p(A, A0, A

′
0) + (−1)d

∫

∂u
T p(A, A0, A

′
0). (5)

Moreover, if dimU = 2r − 1 then
∫

uT p(A, A0, A
′
0) = 0 and we have

∫

u
T p(A, A

′
0) =

∫

u
T p(A, A0) +

∫

u
T p(A0, A

′
0) −

∫

∂u
T p(A, A0, A

′
0). (6)

The next Proposition shows that the action changes under a change of A0, but the corre-
sponding prequantization bundles are isomorphic.

Proposition 25 Let A′
0 be another background connection and denote by U ′

c, 	
′
c and α′

c the

bundle, connection and action determined by A′
0. If we define βc = ∫

c T p(A, A0, A
′
0) ∈

�0(N ), then	′
c = 	c −2π idβc and α′

φ = αφ +φ∗β −β. The map� : Uc → U ′
c �(x, u) =

(x, exp(2π iβc(x) · u) is a G-equivariant isomorphism of U (1)-bundles and �∗(	′
c) = 	c.

Proof It follows easily from the definitions and the equality ρ′
c = ρc + dβc, which is a

consequence of Eq. (5). ��
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1764 R. Ferreiro Pérez

Remark 26 We interpret this result in the following way. The pair (p, ϒ) ∈ I r
Z
(G) and

c : C → M determine a G-equivariant prequantization bundle (Uc, 	c) for (N ,�c), and a
background connection A0 determines a global trivialization of this bundle. In this sense, the
prequantization bundle does not depend on A0.

The situation is different for the section associated with the Chern–Simons action, as using
Eq. (6) we obtain the following

Proposition 27 If c = ∂u for a G-equivariant map u : U → M and Su, S′
u are the sections

associated with A0 and A′
0, then � ◦ Su = S′

u · exp(2π i ∫u T p(A0, A′
0)).

Hence, the section Su is not intrinsically determined by (p, ϒ) ∈ Ir
Z
(G) and u. To explain

this, note that if S is a section satisfying ∇	c S = −2π iσu · S, any other section satisfying
this condition is given by exp(ia)S for a ∈ R constant. The background connection A0

determines a constant a, and another connection A′
0 determines a different constant a′ and

hence a different section.

6.4 Change of polynomial and submanifold

The action of G on A × U (1) is defined by a map �α(x, u) = (φx, exp(2π iαφ(x)) · u)

where α : G × N → R/Z satisfies the cocycle condition αφ2φ1(x) = αφ1(x) + αφ2(φ1x).
If α and α′ satisfy the cocycle condition, then it is also satisfied by −α and α + α′, and
�−α = �−1

α and �α+α′ = �α · �α′ . In terms of line bundles, if Lα is the G-equivariant line
bundle associated with a cocycle α, then �−α corresponds to the dual bundle L−α = (Lα)∗
and �α+α′ corresponds to the tensor product Lα+α′ = Lα ⊗ Lα′

.

We denote by α
�p
c the action determined by �p = (p, ϒ) ∈ Ir

Z
(G), c : C → N and by

(L �p
c ,∇ �p

c ) the G-equivariant line bundle and connection determined by them. If c : C → N ,
c′ : C ′ → N are two smooth maps we define −c : − C → N , where −C is the manifold
C with the opposite orientation and c + c′ : C � C ′ → N . Then we have α

�p
−c = −α

�p
c ,

α
�p
c+c′ = α

�p
c + α

�p
c′ and also ρ

�p
−c = −ρ

�p
c , ρ

�p
c+c′ = ρ

�p
c + ρ

�p
c′ . We conclude that (L �p

−c,∇ �p
−c) =

((L �p
c ,∇ �p

c ))∗ and (L �p
c+c′ ,∇ �p

c+c′) = (L �p
c ,∇ �p

c ) ⊗ (L �p
c′ ,∇ �p

c′).

In a similar way if �p = (p, ϒ), �p′ = (p′, ϒ ′) ∈ Ir
Z
(G) then we have α

− �p
c = −α

�p
c ,

α
�p+ �p′
c = α

�p
c +α

�p′
c and ρ

− �p
c = −ρ

�p
c , ρ

�p+ �p′
c = ρ

�p
c +ρ

�p′
c . Hence (L− �p

c ,∇− �p
c ) = ((L �p

c ,∇ �p
c ))∗

and (L �p+ �p′
c ,∇ �p+ �p′

c ) = (L �p
c ,∇ �p

c ) ⊗ (L �p′
c ,∇ �p′

c ).
If ∂u = c−c′, by Theorem 22 Su = exp(−2π i ·∫uT p(A, A0)) determines a G-equivariant

section of unit norm of L �p
c−c′ � L �p

c ⊗ (L �p
c′)∗ � Hom(L �p

c′ ,L �p
c ) and hence L �p

c′ and L �p
c are

isomorphic as G-equivariant line bundles.

Remark 28 It is important to recall that in the preceding formulas we are using the same
background connection A0 (i.e., the same trivialization (see Remark 26)) for all the bundles.

If we use different connections A0 and A′
0 for c and −c, we do not have LA0

c = (LA′
0−c)

∗, but
we have a pairing LA0

c ⊗ (LA′
0−c)

∗ → N × C.

7 Application to the space of connections

In this section, the constructions of Sect. 6.2 are applied to the space of connections on a
principal G-bundle P → M . First we give the explicit expressions of the forms that appear
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Equivariant prequantization bundles on the space of… 1765

in the prequantization bundle. A background connection is simply an element A0 ∈ A. The
1-form ρc = ∫

c T p(A, A0) ∈ �1(A) that determines the connection 	c is given by

(ρc)A(a) = r(r − 1)
∫

c

∫ 1

0
p(a, A − A0, Ft , (r−2). . . , Ft )tdt,

with At = t A + (1 − t)A0 and Ft the curvature of At .

The form βc = ∫

c T p(A, A0, A
′
0) that appears in the change of background connection is

simply given by βc(A) = ∫

c T p(A, A0, A
′
0) (this follows from the tautological definition of

A). Finally, if u : U → M is a G-invariant map such that c = ∂u then su = −∫

uT p(A, A0)

is given by su(A) = −∫

uT p(A, A0). Also we have (σu)A(a) = r
∫

u p(a, F, (2r−1). . . , F) for
a ∈ TAA � �1(M, adP).

7.1 Action by gauge transformations

Now we consider the action of the group G = GauP of gauge transformations on P → M .
In this case, as G does not act on M , we can consider any smooth map c : C → M with
dimC = 2r − 2. We summarize the results in the following

Theorem 29 Let P → M principal G-bundle, (p, ϒ) ∈ Ir
Z
(G), A0 be a background

connection on P and c : C → M be a smooth map with C closed, oriented and dimC =
2r − 2. If G acts on P by elements of GauP, these data determine an action of G on Uc =
A × U (1) → A by U (1)-bundle automorphisms such that the connection 	c = θ − 2π iρc
is G-invariant and the equivariant curvature of 	c is �c.

Furthermore, if c = ∂u and su(A) = −∫

uT p(A, A0), then αφ(x) = su(φx) − su(x).
Hence Su = exp(2π i · su) determines G-equivariant section of Uc → A, and we have
∇	c Su = −2π iσu · Su.
Remark 30 In the classical case of Chern–Simons theory considered in Introduction, any
SU (2)-bundle P over a 3-manifold is trivial. Hence, we can take A0 the connection
corresponding to a global section u : M → P . Then for p(X) = 1

8π2 tr(X
2) we have

sM (A) = −∫

MT p(A, A0) = − 1
8π2

∫

M tr(A∧ d A+ 2
3 A∧ A∧ A), which coincides with the

classical Chern–Simons action.

Remark 31 In [24] the equation αφ(A) = su(φA) − su(A) = −∫

uT p(φA, A0) +
∫

uT p(A, A0) is used to define the action αφ . To do this, it is necessary to express themanifold
c as the boundary of another manifold u and to extend the connections on c to u. This can
be done in dimension two, but this procedure cannot be generalized to higher dimensions.

In [10], a different construction of the bundle provided by theorem 3 is given. If G is
the subgroup of gauge transformations fixing a point of P , then G acts freely on A and
A → A/G is a principal G-bundle (see [13]). If A is a connection on A → A/G, we define
A(A) ∈ �1(P × A, g) by A(A)(Y ) = A((A((pr2)∗π∗Y ))P×A) for Y ∈ T (P × A). Then
the connection A − A(A) is projectable onto a connection A on (P × A)/G → M × A/G.
If we set λc = ρc + μc(A), then we have (see [10]) dλc = π∗(

∫

c p(FA)) = curv(
∫

c χA).

Hence, we can apply Theorem 3 to the character
∫

c χA ∈ Ĥ2(A/G), and we obtain a cocycle
aAφ (A) = ∫

γ
(ρc + μc(A)) − (

∫

c χA)(π ◦ γ ) that in theory determines another bundle. But
this bundle coincides with ours, as we have the following

Proposition 32 We have aAφ = αφ for any φ ∈ G.
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Proof We define the projections q : P × A × R → P × A. The homomorphism h : Z →G
h(n) = φn determines an action of Z on P and A.

Let πG : P × A → (P × A)/G and πφ : P × A × R → (P × A × R)/Z denote the
projections. If φ ∈ G, x ∈ N , γ is a curve on N joining A and φA and �γ (s) = (γ (s), s) by
definition we have

αφ(x) =
∫

γ

ρc −
∫

c
χq∗

A
φ
(πφ ◦ �γ ),

aA,G
φ (x) =

∫

γ

ρc +
∫

γ

μc(A)) −
(∫

c
χA

)

(πG ◦ γ ).

The connections q∗
A and q∗π∗

GA are Z-invariant and project onto connections q∗
A and

A2 = q∗π∗
GA on (P × A × R)/Z → (M × A × R)/Z and by Eq. (1) we have

∫

c χq∗
A(πφ ◦ �γ ) = ∫

c χA2(πφ ◦ �γ )+∫

�γ
∫

c T p(q
∗
A, q∗π∗

GA). But
∫

�γ
∫

c T p(q
∗
A, q∗π∗

GA) =
∫

γ

∫

c T p(A, π∗
GA) = ∫

γ

∫

c T p(A, π∗
GA)2r−2,1, where the bigradation is the one induced by

the product structure onM×A.We have T p(A, π∗
GA)2r−2,1=r

∫ 1
0 p(A(A), Ft , . . . , Ft )with

Ft =F+tdAA(A)+t2
2 [A(A), A(A)]. As A comes from a connection on A → A/G, we have

F2,0
t = F

2,0 and hence
∫

γ

∫

c T p(A, π∗
GA) = r

∫

γ

∫

c p(A(A), F, . . . , F) = − ∫

γ
μc(A). We

conclude that we have αφ(x) = ∫

γ
ρc + ∫

γ
μc(A) − ∫

c χA2(πφ ◦ �γ ).

Hence we should prove that
∫

c χA2(πφ ◦ �γ ) = ∫

c χA(πG ◦ γ ). This result follows in a
similar way as in the proof of Proposition 18. If Z : (P × A × R)/Z → (P × A)/G and
z : (A×R)/Z → A/G are the natural maps, then we have A2 = Z

∗
A and

∫

c χA2 = z∗
∫

c χA.
Hence (

∫

c χA2)(πφ ◦ �γ ) = (
∫

c χA)(z ◦ πφ ◦ �γ ) = (
∫

c χA)(πG ◦ γ ). ��

In particular, the action aAφ does not depend on the connection A chosen on A → A/G.

7.2 Restriction to the moduli space of irreducible flat connections

We denote by ˜A the space of irreducible connections. Although GauP does not act freely
on ˜A, the isotropy group is the same Z(G) (the center of G) for all A ∈ ˜A, and ˜A/GauP
is a differential manifold. If we define the group ˜G = GauP/Z(G), then ˜G acts freely on ˜A
and ˜A → ˜A/˜G is a principal ˜G-bundle (see, for example, [13] for details). In the preceding
section, we have constructed a GauP-equivariant prequantization bundle Uc → A. If we
restrict it to ˜Uc = ˜A×U (1) → ˜A, we hope that it will define a prequantization bundle over
˜A/˜G, but there is a problem: the action of Z(G) on ˜Uc does not need to be trivial and ˜G does
not act on ˜Uc. Or, in an equivalent way, ˜Uc/GauP → ˜A/GauP is not a U (1)-bundle. If the
action of Z(G) on Uc is trivial, then ˜G acts on Uc, and restricting ˜A to ˜Uc/˜G → ˜A/˜G we
obtain a bundle over themoduli space of irreducible connections. This is the case for the trivial
SU (2)-bundle over a surface, as it is shown in [24]. If the action of Z(G) on Uc is not trivial,
we can define ˜G = G/Z(G) and ˜P = P/Z(G) → M , which is a principal ˜G-bundle. We
also set˜P = (P/Z(G))× ˜Awhich is also a principal ˜G-bundle. The connectionA ∈ �1(P, g)

induces a connection ˜A on ˜P which is invariant under the action of ˜G (see [10] for details).
The results of Sect. 6.2 can be applied to the bundle ˜P = P/Z(G) → M, N = ˜A and
the ˜G-invariant connection ˜A on˜P, and we obtain a result analogous to Theorem 29, but we
should take polynomials and characteristic classes of ˜G in place ofG. If (p, ϒ) ∈ Ir

Z
(G̃) and

c : C → M with dimC = 2r−2,weobtain�c ∈ �2
˜G( ˜A) and a˜G-equivariant prequantization

bundle (˜	c ˜Uc) of ( ˜A,�c), and taking the quotient a U (1)-bundle ˜Uc/˜G → ˜A/˜G.
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We consider only one example. If G = SU (2), then ˜G = SO(3). Both groups have the
same Lie algebra su(2) � so(3). As they are connected, they have the sameWeil polynomials
I (SU (2)) = I (SO(3)), but IZ(SO(3)) � IZ(SU (2)). For example, the second Chern
polynomial c2 /∈ IZ(SO(3)), but the first Pontryagin polynomial p1 = 4c2 ∈ IZ(SO(3))
(see [12, Formula 4.11]). If c : C → M is a map with C a closed surface, the presymplectic
structure σ c on the moduli space of irreducible flat connections determined by c and the
second Chern class may not be prequantizable. But 4 · σ c is always prequantizable by the
bundle associated with the first Pontryagin class.

Let (p, ϒ) ∈ Ir
Z
(˜G). If ˜F ⊂ ˜A is the space of irreducible flat connections, for r ≥ 2

we have ˜F ⊂ μ−1
c (0). In particular, the restriction to ˜F × U (1) of the form 	c is G-basic.

	c projects onto a connection on ˜F/˜G × U (1) → ˜F/˜G, and we obtain a prequantization
bundle of (˜F/˜G, σ c), where σ c is obtained from �c by presymplectic reduction. For r = 2
and C = M a closed oriented surface, we obtain (σM )A(a, b) = 2

∫

M p(a, b), (μM )A(X) =
−2

∫

M p(X, F) and (ρM )A(a) = ∫

M p(A− A0, a), for A ∈ A, a, b ∈ TAA � �1(M, adP)

and X ∈ LieG. If p : g × g → R is a non-degenerate bilinear form, then σM is a symplectic
form and the moment map can be identified with the curvature map A �→ F . Hence, they
coincide with the symplectic structure and moment map defined in [3]. As commented in
Remark 31 in this case, our bundle also coincides with that of [24], and the connection 	M

projects onto a connection on the quotient bundle (˜F ×U (1))/˜G → ˜F/˜G. If J is a complex
structure on M , it induces a complex structure on A and σM is of type (1, 1). As ∇	M is
a unitary connection, we conclude (see [13]) that it determines a holomorphic structure on
LM → ˜F/˜G. We have similar results when dim M > 2 and c : C → M is a map with
dimC = 2. If c = ∂u, the restriction of Su to ˜F is a 	c-parallel section as it satisfies
∇	c Su = 0 because (σu)A(a) = 2

∫

u p(a, F) = 0 if A ∈ F .
If r ≥ 3 we have σc|F = 0, and in this case 	c is a flat connection, and hence, its

holonomy defines a cohomology class in H1(˜F/˜G, R/Z) (see [10] for a generalization of
this result to arbitrary dimensions).

7.3 The action of automorphisms

Let Aut+P be the group of automorphisms preserving the orientation on M , and assume that
G is a group acting on P by elements of Aut+P . In this case, we cannot choose c : C → M
an arbitrary map because it should be G invariant. We only consider the cases C = M (if
∂M = 0) and C = ∂M .

7.3.1 Base manifold closed

When M is a closed manifold of dimension 2r − 2, we can take C = M and c = idM , which
clearly is G-invariant. As a consequence of Theorem 22, we obtain the following

Theorem 33 Let P → M principal G-bundle with M closed, oriented and dim M = 2r−2,
(p, ϒ) ∈ Ir

Z
(G), A0 a background connection on P and a group G acting on P by elements

of Aut+P. These data determine an action of G on UM = A × U (1) → A by U (1)-bundle
automorphisms such that the connection	M = θ−2π iρM isG-invariant and the equivariant
curvature of 	M is �M.

Theorem 33 extends to arbitrary bundles the results of [1,2] for trivial bundles over a
surface.
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7.3.2 Base manifold with boundary

Now we assume that M is a compact oriented manifold of dimension 2r − 1 with boundary
∂M . We chose C = ∂M and c = idM . By applying Theorem 22, we obtain the following

Theorem 34 Let P → M principal G-bundle with M compact and oriented with boundary
∂M and dim M = 2r − 1. If a group G acts on P by elements of Aut+P, (p, ϒ) ∈ Ir

Z
(G)

and A0 is a background connection on P, these data determine an action of G on U∂M =
A×U (1) → A byU (1)-bundle automorphisms such that the connection	∂M = θ−2π iρ∂M

is G-invariant and the equivariant curvature of 	∂M is �∂M.
Furthermore, SM = exp(−2π i · ∫

MT p(A, A0)) determines G-equivariant section of
U∂M → A, and we have ∇	∂M SM = −2π iσM · SM.

8 Riemannian metrics and diffeomorphisms

In this section, we apply our results to the space of Riemannian metrics and the action
of diffeomorphisms. One possible approach to do this is to apply the results of Sect. 6 to
the structures on the space of metrics defined in [16–18]. However, we follow a different
approach: we obtain the prequantization bundle by pulling back the bundles on the space of
connections using the Levi–Civita map.

If M is an oriented manifold and we take P = FM , the group G = Diff+M of
orientation-preserving diffeomorphisms acts on FM by automorphisms. The Levi–Civita
map LC : MetM → A which assigns to a Riemannian metric g its Levi–Civita connection
LC(g) = ωg is G-equivariant. If we denote by pk ∈ I 2k

Z
(GL(n, R)) the k-th Pontryagin

polynomial and by ϒk ∈ H4k(BGL(n, R)) � H4k(BO(n)) the k-th Pontryagin class, then
pk and ϒk are compatible. We fix a polynomial p ∈ Z[p1, . . . , pn/2] ⊂ I •

Z
(GL(n, R)) of

degree 2r and the corresponding characteristic class ϒ ∈ H4k(BGL(n, R)).

8.1 Closed manifolds

Let M be a compact closed manifold of dimension 4r − 2. If we fix a background con-
nection A0 on FM , we can apply the results of Sect. 7.3.1, and we obtain a G-equivariant
prequantization bundle (UM , 	M ) of the equivariant form �M = σM + μM ∈ �2

G(A).
Using the Levi–Civita map, we obtain U ′

M = LC∗UM , 	′
M = LC∗	M , and (U ′

M , 	′
M ) is a

G-equivariant prequantization bundle of � ′
M = LC∗�M ∈ �2

G(MetM). It can be seen that
� ′

M = σ ′
M +μ′

M coincide with the presymplectic structure and moment map defined in [18].
We study in detail the simplest case.

8.1.1 Dimension 2

Let M be a closed surface and p1(X) = − 1
8π2 tr(X

2) is the first Pontryagin polynomial. The

presymplectic reduction of (MetM,�) is studied in [18], and the result is that (μ′
M )−1(0) =

Met∗M is the space of metrics of constant curvature.
If M has genus γ > 1 andMet−1M is the space of metrics of constant curvature −1, we

haveMet−1M ⊂ μ−1(0). The connected component with the identity Diff0M acts freely on
Met−1M and the Teichmüller space of M is defined by T (M) = Met−1M/Diff0M , which,
as it is well known (e.g., see [26]), is a manifold of real dimension 6γ − 6. It is proved in
[18] that the form obtained from σ

′
M by symplectic reduction is σ

′
M = 1

2π2 σWP, where σWP
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is the symplectic form of theWeil–Petersson metric on T (M). We define the quotient bundle
WM = (Met−1M ×U (1))/Diff0M → T (M). AsMet−1M ⊂ (μ′

M )−1(0), the connection
	′

M is projectable onto a connection ϑM on WM . Moreover, as σ ′
M is of type (1, 1) and

ϑM is a unitary connection, we conclude (e.g., see [13]) that ∇ϑM determines a holomorphic
structure on the line bundle LM → T (M) associated with WM .

Furthermore, the first Pontryagin class determines the action on LM of the elements of
Diff+M not connected with the identity and hence an action of �M = Diff+M/Diff0M (the
mapping class group of M) on LM which preserves ∇ϑM . We conclude that (LM ,∇ϑM ) is a
�M -equivariant holomorphic Hermitian prequantization bundle for (T (M), 1

2π2 σWP).
Similar prequantization bundles are constructed, for example, in [21] and in [27] by

different techniques. We note that our construction is not specific of two dimensions and can
be applied to any manifold of dimension 4r − 2.

8.2 Manifolds with boundary

If M is a compact manifold of dimension 4r − 1 with boundary, we can apply the results
of Sect. 7.3.2 and we obtain a G-equivariant prequantization bundle (U∂M , 	∂M ) of �∂M =
σ∂M + μ∂M ∈ �2

G(A). By using the Levi–Civita map, we obtain U ′
∂M = LC∗U∂M , 	′

∂M =
LC∗	∂M and (U ′

∂M , 	′
∂M ) is a G-equivariant prequantization bundle of � ′

∂M = LC∗�∂M ∈
�2

G(MetM). Furthermore, we have the following

Theorem 35 If M is a compact oriented manifold with boundary ∂M then S(g) =
exp(−2π i · ∫

MT p(ωg, A0)) determines G-invariant section of U ′
∂M → MetM.

Hence, we have found a Chern–Simons line for Riemannian metrics.
We note that the prequantization bundle on T (M) is defined in [21] by using a similar

Chern–Simons line in dimension 3. They express the surface as the boundary of a 3-manifold,
and they use a definition of the bundle similar to that in [24] for connections. As in the case
of connections, this procedure cannot be extended to higher dimensions.
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