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Abstract We show how characteristic classes determine equivariant prequantization bundles
over the space of connections on a principal bundle. These bundles are shown to generalize the
Chern—Simons line bundles to arbitrary dimensions. Our result applies to arbitrary bundles,
and we study the action of both the gauge group and the automorphisms group. The action
of the elements in the connected component of the identity of the group generalizes known
results in the literature. The action of the elements not connected with the identity is shown
to be determined by a characteristic class by using differential characters and equivariant
cohomology. We extend our results to the space of Riemannian metrics and the actions of
diffeomorphisms. In dimension 2, a I'j;-equivariant prequantization bundle of the Weil—
Petersson symplectic form on the Teichmiiller space is obtained, where I"y is the mapping
class group of the surface M.
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1 Introduction

In this paper, we study the relationship between characteristic classes and equivariant pre-
quantization line bundles over the space of connections. We recall two classical examples of
this relation (see Sect. 2 for the notation).

Inthe firstexample, let ¥ be a closed (i.e., compact and without boundary) oriented surface,
P = ¥ x SU(2) the trivial principal SU(2)-bundle, and p € I%(S U (2)) the polynomial
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associated with the second Chern class. We denote by .A and A the spaces of connections and
irreducible connections on P. In [3], Atiyah and Bott show that this polynomial determines a
symplectic structure o on the space of connections .4 which is invariant under the action of the
group G of gauge transformations. Moreover, the curvature map determines a moment map
w for o. By symplectic reduction, a symplectic structure o on the moduli space of irreducible
flat connections F /G is obtained. Furthermore, in [24] it is shown that the action of G admits
alift to A x U(1) by U (1)-bundle automorphisms, hence defining a G-equivariant U (1)-
bundle over A (or what is equivalent, a G-equivariant Hermitian line bundle). By taking the
quotient, they obtain an Hermitian line bundle £ — F/G (which is proved to be isomorphic
to the Quillen determinant line bundle) and a natural connection on £ whose curvature is o .
We remark that all these constructions can be done based only on the polynomial p.

The second example is the classical 3-dimensional Chern—Simons theory. Let M be a
compact 3-dimensional manifold and P = M x SU(2) the trivial principal SU (2)-bundle.
For simplicity, we assume that G is a Lie group that acts freely by gauge transformations on
A and that A — A/G is a principal G-bundle. If M is closed, then the Chern—Simons action
associated with a polynomial p € 1%(5 U (2)) determines a G-invariant function A — R/Z
and hence a function on the quotient 4/G — R/Z. However, when M is a manifold with
boundary d M, the Chern—Simons action is not a function on .4/G, but it determines a section
of aline bundle £33 — A/G called the Chern—Simons line bundle (see, e.g., [19]). Again all
the constructions are based on a polynomial p. However, as pointed out in [12], to determine
the Chern—Simons action for non-trivial bundles it is also necessary to choose a universal
characteristic class T € H*(BG).

We generalize these two examples to arbitrary bundles, Lie groups and dimensions in
the following way. We recall (see [15]) that if P — M is a principal G-bundle and A
the space of connections on P, the principal G-bundle P = P x A — M x A admits a
canonical (or tautological) connection A which is invariant under the action of the group
Aut P of automorphisms of P. If a group G acts on P — M by gauge transformations, then
for any invariant polynomial p € I;(G) we can consider the G-equivariant characteristic
forms pé € Qé’ (M x A) of A. If ¢ is a closed oriented d-dimensional submanifold of
M, by integrating pé over ¢, we obtain fc pé € Qér_d (A) which is closed for the Cartan
differential D. Whend = 2r — 2, w, = fc pé € Qé (A) is a closed equivariant 2-form, i.e.,
w. = o, + W where o, is a closed G-invariant 2-form and pt. a co-moment map for o.. Our
main result is the following

Theorem 1 Let ¢ be a closed submanifold of dimension 2r — 2 of M, p € 1;(G), T €
H? (BG,7Z) a characteristic class compatible with p (i.e., they determine the same real
characteristic class) and Ay a background connection on P. These data determine a lift of
the action of G on A to an action onU, = A x U(1) — A by U (1)-bundle automorphisms,
and a G-invariant connection form E. such that the G-equivariant curvature of B, is w,.

Due to the equivalence between principal U (1)-bundles and Hermitian line bundles, we
also obtain a G-equivariant Hermitian line bundle £, — A with connection V*=¢. Our result
also generalizes the Chern—Simons line as we prove the following result.

Proposition 2 If ¢ = du for some u C M, then S, (A) =exp(—2mi - [ Tp(A, Ao)) deter-
mines a G-invariant section of U, — A, or what it is equivalent, a G-invariant section of
unit norm of L, — A.

Thus p, Y, ¢ and A determine a G-equivariant prequantization bundle for (A, w.). If
we change the background connection Ag, we obtain a different connection and a different
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action, but we prove that there exists a canonical G-equivariant isomorphisms between them.
Therefore, we can consider that different background connections Ay determine different
global trivializations of the same prequantization bundle, and hence that it only depends on
p, Y and c.

We prove that for any X € Lieg, its lift X3, € X(U.) does not depend on Y. Hence,
neither does the action of the connected component of the identity Gp. Nevertheless, the
action of the elements of G which are not connected with the identity depends on Y. For
certain groups, there is a bijection I;,(G) ~ H 2" (BG, Z), and in these cases the action
is determined only by ¢, p and Ag. This happens, for example, in the case G = U (n)
as H*(BU (n),Z) ~ Zlcy, ..., cy] where ¢y, ..., c, are the Chern classes (e.g., see [23,
Chapter 23.7]). But for a general group G, the cohomology H%" (BG, Z) may contain torsion
elements, and Y is not determined by p. In that cases, non-equivalent actions can exist with
the same ¢, p and Ag if G is not connected.

We study the dependence on c. It can be better understood in terms of the Hermitian line
bundle £, — A. If —c denotes the submanifold ¢ with the opposed orientation, then we
have £_. = L%, and if ¢’ is another closed oriented submanifold, then L. >~ L. ® L.
In particular, if du = ¢ — ¢’ by Proposition 2, S, determines a section of unitary norm on
Lo—o =L ® Ej, ~ Hom(L., L) which is an isomorphism.

In Sect. 7.2, the restriction of the prequantization bundle U to the space of irreducible
connections Z:ic =AxU (1) is studied. We have a well-defined quotient manifold X/ g, and
for the trivial SU(2)-bundle over a Riemann surface, we have also a well-defined quotient
U (1)-bundle 74, /G — ,Z/g. If p is the second Chern polynomial and ¢ = M, then o,
and p. coincide with the Atiyah—Bott symplectic structure and moment map (see [15]).
The connection E. does not project onto a connection on ZZ /G as txy, Be = —pe(X) for
X e LieG. However, if Fis the space of irreducible flat connections, we have Fc Mc’l 0),
and the restriction of E. to FxU (1) is G-basic and projects onto a connection E. on
(f x U1))/G — F /G. Furthermore, the curvature of Z. is the form o . obtained by
symplectic reduction of (A, o., 1.). Hence, our result generalizes that of [24]. Furthermore,
we also show that for other groups and bundles, the prequantization bundle of X/Q is not
determined by the characteristic classes of G, but by those of the group G = G/Z(G), where
Z(G) is the center of G.

The symmetry group usually considered in physical theories is the group of gauge trans-
formations. However sometimes it is necessary to consider the lift of the action of the
automorphism group AutP to U, (see, for example, [1,2] and references therein). We show
that Theorem 1 is also valid when G acts on P by automorphisms preserving the orientation
of M in the following cases:

— M is a closed oriented manifold of dimensiond = 2r —2andc = M.
— M is a compact oriented manifold of dimension d = 2r — 1 with boundary d M and
¢ = dM. In this case, Proposition 2 is also valid.

Finally, we apply our results to the space MMetM of Riemannian metrics and the action
of the orientation-preserving diffeomorphisms Diff ™ M. For closed manifolds of dimension
4r — 2, the integer combinations of Pontryagin classes of degree r determine Diff ™ M-
equivariant prequantization bundles of the presymplectic structures defined in [18]. In
particular, for a surface, the first Pontryagin class is shown to determine a canonical holo-
morphic prequantization bundle for the Teichmiiller space endowed with the Weil-Petersson
symplectic form. This bundle is shown to be equivariant with respect of the action of the
mapping class group of the surface. Furthermore, for compact manifolds of dimension 4r — 1
with boundary, we obtain Chern—Simons line bundles for Riemannian metrics.
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Let us explain the way in which Theorem 1 is obtained. For simplicity, we assume that G is
the group of gauge transformations that fixes a point py € P. Asitis well known, G acts freely
on A, and we have well-defined quotient manifolds. In [4], Chern—Weil theory is applied to
the principal G-bundle (P x A)/G — M x A/G. Moreover, if p € 1;(G), the Chern—
Simons construction can also be applied to this bundle. This is done in [10] by using the
Cheeger—Simons approach of [11] based on differential characters. The space of differential
characters of order k on M is denoted by H- (M).Ifis a connection on the principal G-bundle
A — A/G, it determines a connection 2 on (P x A)/G — M x A/G (see [10] for details).
Hence, if Y € H? (BG) is a universal characteristic class compatible with p, there exists
a differential character (the Chern—Simons differential character) xg € H* M x A/G)
whose curvature is p(Fg). By integration over a submanifold c, a differential character
fc X € HY—d (A/G) is obtained, where d = dim C. In [10], by applying our results of Sect.
3.1, the characters of order 2 are interpreted geometrically as the holonomy of a connection
on a U(l)-bundle Y. — A/G. We generalize this construction to non-free actions, to the
action of automorphisms and also to the space of Riemannian metrics.

It is possible to extend the construction of [10] to non-free actions by using equivariant
cohomology. We do not follow this approach because it requires the use of connections and
quotients on principal G-bundles for infinite-dimensional groups. This can be technically
difficult, especially if we want to apply it to groups of automorphisms and diffeomorphisms
that should be considered as Fréchet Lie groups. To avoid this problem, we give a direct
definition of the lift of the action of each element ¢ € G. We show that it can be done using
only the action of discrete groups and it does not require the use of quotients and auxiliary
connections for infinite-dimensional groups. We also prove that the bundle constructed in
[10] coincides with our bundle.

2 Notations and conventions

In this paper, we consider two Lie groups. The group G is the structure group of a principal
bundle P — M and it is supposed to be finite dimensional and with a finite number of con-
nected components (in order to apply the Chern—Simons construction). The second group G
is a symmetry group (usually infinite dimensional), and Gp denotes the connected component
of the identity on G.

We denote by 1;(G) the set of G-invariant polynomials on its Lie algebra g whose
characteristic classes have integral periods. We denote by EG — BG a universal princi-
pal G-bundle. A polynomial p € I;,(G) and a characteristic class T € H 2 (BG, Z) are
said to be compatible if they determine the same real characteristic class. We denote by
7, ={(p, ") € I,(G) x H¥BG,Z): p,Y are compatible}, and by Y'p the characteristic
class of P — M associated with Y.

The Maurer—Cartan form of U (1) is denoted by 6 = uldu, and 3 € XU))
is the vector field such that 8(dg) = i. If m: U4 — N 1is a principal U(1) bundle
and E € Q'U,iR) is a connection, then the curvature form curv(Z) € QZ(N) is
defined by the property 7*(curv(8)) = ﬁdE. The log-holonomy logholgz(y) € R/Z
of E on a closed curve y: I — N with y(0) = y(1) is determined by the relation
y(1) = y(0) - exp(2wilogholg(y)), where y: I — U is a E-horizontal lift of y. The
(real) first Chern class of U is the cohomology class of curv(E). We denote by / the interval
[0, 1].
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3 Cheeger-Simons differential characters

We recall the definition of differential characters (see [5, 11] for details). We denote by Ci(N)
and Zy (N) the smooth chains and cycles on N. A Cheeger—Simons differential character of
order k is a homomorphism x : Zy_{(N) — R/Z such that there exist @ € Q*(N) which
satisfies y (du) = fua for every u € Cr(N). We say that yx is a differential character
with curvature curv(y) = «, and it can be proved that dcurv(y) = 0. We recall (e.g., see
[5]) that x () is invariant under reparametrizations, i.e., if U is a manifold of dimension
k and ¢ is an orientation-preserving diffeomorphism of U, then for any u: U — N we
have x (u# o ¢) = x(u). We denote the space of differential characters of order kK on N by
I:Ik(N). We have a map char: I:Ik(N) — H*(N,Z), and the class char(x) is called the
characteristic class of x. The maps char and curv are compatible in the sense that we have
r(char(x)) = [curv(x)] € H¥(N,R), where r: H*(N,Z) — H¥(N,R) is the natural
map. If f: N’ — N is a smooth map, it induces a map f*: HY(N) — H*(N') defined by
f*xw) = x(f ou).Given B € Q*=1(N) we define a differential character s(p) € H* (N)
by setting ¢ (8)(s) = fs Bfors € Zp_1(M).Wehave curv(¢(B8)) = dB,andchar(¢(B)) = 0.
Note that ¢ (da)(s) = [ doa = [, a =0as ds =0.

3.1 Differential characters of order 2

First we recall that if &/ — M a principal U(1)-bundle with connection ®, and curvature
w € Q*(M), the log-holonomy of ® logholg : Z{ (M) — R/Zisadifferential character with
curvature curv(logholg) = w and char(logholg) = ¢ (). Conversely, by a classical result
in differential cohomology, every second-order differential character can be represented as
the holonomy of a connection ® on a principal U (1) bundle &/ — M. The bundle ¢/ and the
connection ® are determined by x only modulo isomorphisms. In the next Proposition, we
show that in the following restrictive equivariant case it is possible to give a concrete bundle
and connection

Theorem 3 Let N be a connected manifold with H (N, Z) = 0 in which G acts in such
a way that m: N — N/G is a principal G-bundle. Let x € I:IZ(N/Q) be a second-order
differential character on N /G with curvature w and assume that there exists A € Q' (N)
such that w*w = dA. Then, there exists a unique lift of the action of G to N x U(1) by
U (1)-bundle automorphism such that ©® = 0 — 2wir € QYN x U(1), iR) is projectable
onto a connection ® onU = (N xU(1))/G — N /G and x = loghole. The action of ¢ € G
on N xU(1)is givenby ®p: N xU(1) - NxU(), @y (x,u) = (¢px, expCmiag(x))-u),
where ag: N — R/Z is defined by ay(x) = fy A — x(woy), and y is any curve on N
Jjoining x and ¢x.

Theorem 3 is a consequence of the following lemmas. If y is a curve on N, we denote by
Yy = & oy the projected curve on N/G.

Lemma 4 Let y and y' be two curves on N joining x and ¢x. Then fyk —x(y)= fy,k -

x).

Proof As Hi(N,Z) =0,wehavey —y'=dDonN.If D =m o D, theny —y' =D,

and hence x () — x(¥) = x(y —y) = wi = [pdi= fyk —fy,x. |
For every ¢ € G, we define ay: N — R/Z by ap(x) = fy A — x(y), where y is a curve

on N joining x and ¢x. (It is well defined by the preceding Lemma.)
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Lemma 5 (a) We have oy (x") = ag(x) + f (@*X — L) for any curve y,, joining x and

x/

(b) As a consequence of a), we have doagy = ¢p*A — A.

(c) If ¢; is a 1-parameter group on G with é = X, then %

= MA@,

Proof (a) If y is a curve joining x and ¢x, ¥,/ a curve joining x” and x, and y, - the inverse
curve. Then y" = yyy * ¥ * ¢y, is a curve joining x” and ¢x'. Clearly, y’ = y in
Z1(N/G), and hence x (y) = x(y'). We have

oc(,,(x’):/)\—x(zl):/ X—i—/k—i—/{b A=x()
v Y v Vix!

x'x

= op(x) + *) — / A=oap(x) + (@*r—A)
yxx’ V

XX/ yXX/
(b) If y is a curve with y(0) = x and y/(0) = X € TN, we have ag(y(s)) = agp(x) +
) d s
J3 @*2. = 1)y (' (s)ds, and hence das (x) (X) = 45| = ("% = 1) (X).
¢) Let X € LieG and ¢, a 1-parameter group on G with ¢9 = and ¢p = X, and we
(¢c) Let X € LieG and ¢; a 1 G with ¢, 1g and ¢ X, and
define y (1) = ¢;x. We have y = 0in Z{(N/G) and y(0) = Xy (x). Then g, (x) =

S = x @) = [3 = firo6ds and L49| = X, .

The action « satisfies the following cocycle condition
Lemma 6 We have ag,¢, (x) = ag, (x) + ag, (¢1x) forany x € N, ¢1, ¢2 € G.

Proof Let y1 be a curve joining x and ¢1x and y» be a curve joining ¢1x and ¢¢1x. Then
y’ = yy % y1 is a curve joining x and ¢¢;x. We have Z/ =Y, +Zl in Z1(N/G). Hence

a¢2¢1(X)=//k—x(1’)=/ k+fA—x(gl)—x(b)=a¢,(X)+a¢2(¢1X)-
Y Y2 Y1
m}

We define the actionof Gon N x U (1) by &y (x, u) = (¢x, exp(2miay(x)) -u). It defines
a group action as we have
Dy, (P, (x, u)) = Py, ((P1x, exp(2iceg, (x)) - u))
= ($2¢1x, exp(2ri(ag, (x) + oty (P1x)) - u)
= (21X, exp2ricg,p, (x)) - u) = (Pgrg, ) (x, u))
We also define ©® = 0 —27ix € QLN x U(1), iR), U = (N x U(1))/G, and we denote
by 7: N x U(1) — U the projection. For every ¢ € G, we have
Q'O = ©*0 — 2wigp*h = (0 + 2miday) — 2mip*h = (0 + 2mi(p*A — 1)) — 2mig* A = O.
Moreover, for every X € LieG, if ¢, is a curve on G with X = (fb, then we have Xy 1) =
XN +2mi % 0 09 = Xy +2mir(Xn)dg, and hence, ® (X yxp(1)) = 0. We conclude
=

that ® is a G-basic form, i.e., there exists ® € Q!(N/G, iR) such that T*0 = ©. Clearly,
® is a connection form.

Lemma 7 We have logholg = x.

@ Springer



Equivariant prequantization bundles on the space of... 1755

Proof Given a loop y on N/G with y(0) = y(1) = [x] € N/G, we can find a curve
y on N with y(0) = x such that 7 o y = y. We have y(1) = ¢x for some ¢ € G.
The ®-horizontal lift of ¥ to N x U(1) starting at the point (x,0) is given by P(s) =
(y(s), exp(2nif(fky(,)()7 (#))dr)). The curve 7w o'y is a ®-horizontal lift to / of the loop y =
7 oy. Inparticular, we have T oy (1) = (¢x, exp(27tifyk)) ~g (x, exp(2ni(fyk—a¢(x))).

Hence loghole (y) = [, A — ap(x) = x (y). o

The proof of the preceding Proposition also shows that the action we have defined is the
unique which satisfies loghole (y) = x (y). This is equivalent to x (y) = fyA —ag(x), and
hence oy (x) = fyk — x(y), that is our definition of e (x).

For the elements in Gy (the connected component of the identity in G), we have a simpler
result:

Proposition 8 Let ¢ € Gy and ¢ C G be a curve such that 9o = 1g and ¢1 = ¢. Then
op(x) = f(p‘x)\..

Proof The curve y = ¢ - x is a curve joining x and ¢x, and y = 0in Z;(N/G). Hence
a¢(x):fyk—x(z): W)L. ]

Remark 9 The preceding Proposition determines the action of Gy only in terms of A, and
without any reference to x. Hence the differential character yx is necessary only to determine
the action of the elements of G not connected to the identity. We note that Theorem 3 is a
generalization to non-connected groups of results in [8, 14,25] for the space of connections.

3.2 Chern-Simons differential characters

Chern—Simons theory allows us to construct, in a natural way, a differential character with
curvature a characteristic form. Let G be a Lie group with a finite number of connected
components, p € I,(G) and g: P — N a principal G-bundle over a manifold N. If A is a
connectionong: P — N with curvature F, we have p(F) € QF(N).Itcan be seen (see [11])
that if ¥ € H* (BG, Z) is a universal characteristic class compatible with p, there exists
a differential character x4 € A (N) such that curv(xa) = p(F) and char(xs) = Yp.
We call x4 the Chern—Simons character of p, Y and A. The Chern—-Simons character is
characterized as being the unique natural map (P, A) — x4 satisfying curv(xa) = p(F)
and char(x4) = Yp. We recall that natural means that for any principal G-bundle P’ — N’
and any G-bundle map F: P’ — P we have xp+q = f*(xa), where f: N’ — N is the
map induced by F. Furthermore, if A’ is another connection on P, then we have

xar = xa+s(Tp(A', A)). ey
A consequence of the preceding equation is the following (see, e.g., [11, Proposition 2.9])

Lemma 10 If A, is a smooth 1-parametric family of connections on P with Ay =a €
QY(M, adP), then % o XA, () = rfu pla, Fo, "7D, Fy) for every u € Za,_1(N).

Remark 11 The original Chern—Simons and Cheeger—Simons constructions are valid for
finite-dimensional manifolds, but they can be extended to Banach or Fréchet infinite-
dimensional manifolds, and to more general types of spaces (see, for example, [5]). Hence,
they can be applied to the infinite-dimensional spaces of connections and metrics.
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3.3 Fiber integration of differential characters
3.3.1 Integration on a product

If « € QX x §) with C compact and dimC = d, we define fca e Qkd(9) by
(fcoz)s (X1, Xpma) = Jotxe g x5 fors € S, Xp,..., Xy € T,8. Ifk < d
we define [ o = 0. We have [ [ o = [ o, andalso [ a = [, a? =4, where a®*~¢
is the component relative to the bigrading associated with the product structure on C x S.
Furthermore, we have Stokes theorem d [« = [ da — (=1)k—d Jyca.Ifc:C— Misa
map with dim C = d, we define maps [, : Q¥(M x N) — QK=4(N) by [a = [o(exidy)*a
and we have [ o = fcad’k_d.

The integration map can be extended to differential characters in the following way. If
X € ﬁ”(M x N) is a differential character of order n on M x N and ¢c: C — M is a
smooth map with C closed, we define [, x € H"4(N) by (. x)(s) = x(c x s5), and we
have [ x(3t) = x(c x 8t) = [, ,curv(x) = [, [.curv(x). Hence, [, x is a differential
character on N and its curvature is curv( f cX) = f ccurv(x). Moreover, if ¢ = du for some
u:U — M, wehave [, x = c(f,curv(x)) as [, x(s) = x(@u x s) = x@u x 5)) =
Leseurv(x) = [ [ curv(y).

3.3.2 Fiber integration

The integration of differential characters can be extended to fiber integration on a non-trivial
bundle N' — N with fiber M (e.g., see [5,20]). In the product case, we can integrate over any
submanifold of M, but for non-trivial bundles it only makes sense to integrate over the fiber M
and over d M if the fiber has boundary. If ' — N is a fiber bundle with compact and oriented
fiber M without boundary of dimension d, the fiber integration is a map f e H" WN) —
H"~4(N) and satisfies curv(f,, x) = [ycurv(x), and char(f,, x) = [},char(x). If M has
boundary, we have a map [, H"(N) - H"4+1(N) and

/ X = s f curv(x)). @
oM M

Fiber integration satisfies the following naturality property (e.g., see [5]): If f: N’ — N
is a smooth map, f*A" — N’ is the pullback bundle and f: f*A — A is the induced map,
then we have [, frx = f* (f3y x)- If M has boundary, we have [}, frx = f* (fopr %)-

If F: N/ — N is a morphism of bundles with f: N — N being the induced map of the
base, then we have F = f o F for a bundle morphism F: A7 — f*\ covering the identity
map. If F is an isomorphism of bundles that preserves the orientation on the fibers, then we
have [,, F*x = [,, x forany x € H¥(f*N). Hence, we have the following

Proposition 12 Let N' — N’ and N' — N be bundles with fiber M and let G: N" — N
be a morphism covering the map f: N' — N.If F: N — f*N is an isomorphism of
bundles that preserves the orientation on the fibers, then for any x € H"(N) we have
fM F*x = f* (fM X)~ If M has boundary, we have fBM F*y = f* (faM X).

4 Equivariant deRham cohomology in the Cartan model

We recall the definition of equivariant cohomology in the Cartan model (e.g., see [7,22]).
Suppose that we have a left action of a connected Lie group G on a manifold N. The map
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X - Xykx) = % -0 (exp(—tX))(x) induces a Lie algebra homomorphism LieG —
X(N). The space of G-equivariant differential forms is the space of G-invariant polynomials
on Lie G with values in Q°(N), Qg(N) = (S*(LieG") ® Q’(N))g (G acts on Lie G by
the adjoint representation). The gradation on Q2g(N) is defined by setting deg(«) = 2k +
rif a € SK(LieG*) ® Q"(N). Let D: QL(N) — qu+](N) be the Cartan differential,
(Da)(X) = d(a(X)) — txya(X), for X € LieG. On Qé(N), we have D? = 0, and the
G-equivariant cohomology (in the Cartan model) of N is defined as the cohomology of this
complex.

A G-equivariant 2-form @ is given by @ (X) = o + u(X) where o is a G-invariant 2-form
and u: LieG — QO(N) a linear G-equivariant map. The form @ is D-closed if do = 0 and
txyo = u(X) for every X. Hence, 1 is a co-moment map for o.

Ifagroupactson M, N,Candc: C — M is G-equivariant, the integration map is extended
to equivariant differential forms fcz Qg (M x N) — Qéfd(N) by setting (fcoc) X) =
J.(a(X)) for X € Lie G, and we have D [ o = [ Do — (=1)k—d Jyc

4.1 Equivariant characteristic classes in the Cartan model

We recall the definition of equivariant characteristic classes (see [6,9] for details). Let G
be a group that acts (on the left) on a principal G-bundle 7: P — M and let A be a
connection on P invariant under the action of G. It can be proved (see [6,9]) that for every
X € Lieg the g-valued function A(X p) is of adjoint type and defines a section of the adjoint
bundle v4(X) € Q%N, adP). For every p € I"(G) the G-equivariant characteristic form
pé € Qék(N) associated with p and A, is defined by pé(X) = p(Fa — v4(X)) for every
X € LiegG.

A G-equivariant U(1)-bundle is a principal U (1)-bundle &/ — N in which G acts by
U (1)-bundle automorphisms. If E € QY (U, iR) is a G-invariant connection, then ﬁD(E)
projects onto a closed G-equivariant 2-form curvg(E) € QZQ(N ) called the G-equivariant
curvature of E. If X € Lied, then curvg(EXX) = curv(E) — ﬁtxu E.lfwo € Qé(N),
a G-equivariant prequantization bundle for @ is a principal U(1)-bundle &/ — N with a
G-invariant connection E such that curvg(E) = @w.

5 The space of connections

Let P — M be a principal G-bundle, and A the space of principal connections on this bundle.
As A is an affine space modeled on ' (M, ad P), we have canonical isomorphisms T4.A =~
Q!(M, adP) forany A € A. The Lie algebra of Aut P is the space of G-invariant vector fields
on P,autP C X(P),andthe Lie algebra of Gau P is the subspace gau P of vertical G-invariant
vector fields. We have an identification gau P ~ Q°(M, ad P). The group Aut P acts on .4 and
forany X € autP wehave X 4(A) = dA(va(X)).In particular, if X € gauP =~ QY(M, adP)
we have v4(X) >~ X and X 4(A) = dAX. The principal G-bundle P = P x A - M x A
has a tautological connection A € QlP x A, g) defined by A 4)(X,Y) = A (X) for
(x,A) e Px A, X e T P,Y € TyA. We denote by F the curvature of A, and we have
]F(X,A)((l, a’) = 0, ]F(X,A)(a, Y) = a(Y), F(X’A)(Y, Y/) = FA(Y, Y/) for Y, Y/ (S TXM, and
a,d € TAA ~ Q'(M,adP). The group AutP acts on P by automorphisms and A is an
Aut P-invariant connection. As the connection A is AutP-invariant, for any p € I"(G) we
can define the AutP-equivariant characteristic form pﬁm p € Qi’m p(M x A), given by
pﬁmP (X) = p(F—va (X)) for X € autP.If M is a closed oriented manifold of dimension n
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and we consider the action of the group Aut™ P, pﬁm p € Qf{ut+ p

(A). In particular, if n = 2r — 2, we have oy =

(M x A) can be integrated
—n
A ) utt P
fM Pawtp € QAut+ P (A) that can be written @y, = o+, with s aco-moment map for

over M to obtain [}, pﬁuﬁp € Qi

. . A 2r—n—+1
oy . If M has boundary, we can integrate over d M and we obtain f oM Paup € Q utt P (A).

In particular, if n = 2r — 1, we have wyy = [, oM pﬁuﬁ p € QiutJr p(A) that can be written
DWam = Oam + Mam, With sy a co-moment map for oyyy.

If we consider the action of the Gauge group, we have the Gau P-equivariant characteristic
form péauP € Qé’aup(M x A), given by péauP(X) = p(F —X) for X € gauP.If C is
a closed and oriented manifold of dimension d, for any map ¢: C — M we can integrate
(c x ida) php € QE.p(C x A) over C to obtain [, p& p € Q% (A). Again if
d =2r — 2, we have w, = fc péaup € Qéaup (A) that can be written @, = o, + iL¢, With
e @ co-moment map for o,.

The explicit expression of these forms is the following (see [15]). For A € A, a,b €
TyA =~ Q'(M,adP) and X € autP, we have (op)a(a,b) =
r(r—1) [y, pa,b, Fa, "2, Fy) and (up)a(X) = —r [}, p(a(X), Fa, ""D, F4), and
similar expressions for dM and c.

As commented in Introduction, our objective in this paper is to obtain equivariant pre-

quantization bundles of (A, wy), (A, @ay) and (A, @).

6 Equivariant prequantization bundle

In this section, we define the equivariant prequantization bundle. In Sect. 6.1, we define
the equivariant prequantization bundle for the action of a discrete group. We show in Sect.
6.2 that the definition for an arbitrary group can be reduced to the discrete case. In place
of working with the space of connections A, we consider a general connected and simply
connected manifold N. It includes as particular cases the space of connections for N = A,
and also the case of the space of Riemannian metrics.

We assume that G is a Lie group that acts (on the left) on the following spaces

(a) on a principal G-bundle P — M by G-bundle automorphisms,

(b) on a connected and simply connected manifold N and A is a G-invariant connection on
the product bundle P =P x N - M x N.

(c) on aclosed oriented manifold C of dimension d = 2r — 2 and we have a G-equivariant
map c: C — M and G preserves the orientation of C. We are interested in the following
cases

(c1) The action of G on M and C is trivial (i.e., G acts on P by gauge transformations). In
this case, we can consider any map c: C — M.

(c2) M is compact, dM = (J and G preserves the orientation on M. In this case, we can take
C =M andc=idy.

(c3) M is an oriented manifold with compact boundary d M and G preserves the orientation
on M. In this case, we take C = dM and c the inclusion c: 0M — M.

The following definitions are generalizations of the results in [15] for connections and
[18] for Riemannian metrics.

As the connection A is G-invariant, for any polynomial p € I"(G) we can define the
G-equivariant characteristic class pé € ng’ (M x N), given by pé (X) = p(F — va (X)) for
X € LieG. As ¢c: C — M is G-invariant, we can integrate (¢ x idM)*pé € ng’(C x N)
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over C to obtain @, = [, pé € QZQ(N). We have w. = o, + e, With o, = [ p(F) and i,

a co-moment map for o, given by pc(X) = —r [, p(va(X),F," 7D F) for X € LieG.

As it is commented in Introduction, the equivariant prequantization bundles are given
in terms of a background connection. Let Ag be a connection on P — M (we call Ag a
background connection). If pr;: P x N — P denotes the projection, then A and Ay =
prTAo are connections on the same bundle P x N — M x N, and hence we can define
Tp(A, Ag) € Q¥ (M x N). The product structure on M x N induces a bigrading on
QXM x N) = @F_, Q*¥(M x N). We have p(F) = dTp(A, Ag) + pr’p(Fp), with
prip(Fp) € Q2"O(M x N). Hence forany u: U — M withd = dimU < 2r — 1 we have

/ p(F)= / dTp(A, Ao)=d / Tp(A, Fg)— (—1)* /3 Tp(A, Ao, 3)

where we have used that fu prip(Fo) = 0asprip(Fp) € Q¥0(M x N). In particular, if we
define p. = [ Tp(A, Ag) € QI(N), then by using Eq. (3) and that ¢ = 0 we obtain

Oc = /P(F) = dp,. 4
6.1 Discrete group

Assume that G is a discrete group. Let £ be a manifold in which G acts and such that the
following condition is satisfied:

(*) E is connected and simply connected and 7: N x E — (N x E)/G is a principal
G-bundle.

For example, we can take £ = EG or another simpler manifold. We define N' = N x E
and we denote by g: M x N' — M x N and ¢: P’ = P x E — P the projections, which
are G-equivariant maps. Hence g™ A is a G-invariant connection on P’ — M x N’, and it
projects onto a connection A on the quotient principal G-bundle P'/G — (M x N’)/G.
We denote by F the curvature of A. Given (p, T) € I7,(G), we have the Chern—Simons
character x € I-AIZ’((M x N)/G). Asc: C — M is a G-equivariant map, it induces a map
¢ xidy: (C x N')/G — (M x N')/G. The character (¢ x idy/)*xa € H> ((C x N)/G)
can be integrated over the fiber of (C x N')/G — N’/G, and we obtain a differential character
£ = [.xa = [o(cxidy)*xa € H*(N'/G). We have curv(é.) = [, curv(xa) = [, p(E)
and char(é.) = [, char(xs) = [, Yp/g-

If Ag is a background connection, by Eq. (4) we have n*(fcp(E)) = fcp(q*]F) =
q* [. p(F) = d(q*pc). By applying Proposition 3 with A = ¢*p., we obtain a cocycle
Ac: Gx N x E— R/Z. Precisely, if ¢ € G, y is acurve on N joining x and ¢x and y’ is a
curve on E joining e and ¢e we have

ap(x,e) =/ g pe—Ec(mo(y xy)) = / pe —Ec(mo(y x y").
yxy’ 4
Remark 13 Note that by Lemma 5 &g is differentiable and day = ¢*q¢*p. — q*p. =
q*(@* pe — pe).-
Lemma 14 We have

(a) ag(x, e) doesnotdependone € E, and hence a = q*o for a cocyclea: Gx N — R/Z.
Furthermore, a satisfies ag,¢, (x) = o, (X) + g, (P1x) and dag = ¢*pc — pc for ¢,
é1, ¢ €6
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(b) «ac does not depend on the chosen manifold E.

Proof (a) By Lemma 5, if ¢’ is another point on E and y,, a curve on E joining e and ¢’
(it exists as E is connected) we have oy (x, ¢') = g (x, ) + f{x}xy (D q*pc — g™ pe).

But -[{x}xj/[,[,/ (@*q*pc — q*pc) = f{x}xya)r q*(9*pc — pc) = 0, and hence, oy (x, e) =
ap(x,e).

(b) Let Eq, E; be two manifolds satisfying condition (*). Then E3 = E| x Ej also satisfies
(*). We define Q;: (P x N x E3)/G — (P x N x E;)/G,and g;: (N x E)/G —
(N x Ej)/G,i =1,2. We have Q7q7A=0%g5A = g3A, and by using Proposition 12
we obtain qi“écl =q§“$§ = 53.

If ¢ € G, y isacurve on N joining x and ¢x, and y; is a curve on E; joining ¢; and ¢e;,
we have £2 (130 (y x y1 X 12)) = EL(giomzo(y x y1 X y2)) = &l (i o (y x yi)) fori = 1,2,
and by the definition of &; and a) we have (a)g(x) = (a1)g(x, e1) = (@3)p(x, €1, €2) =
(02)¢ (x, €2) = (02) g (x). o

The cocycle @: G x N — R/Z defines an action of G on U, = N x U(1) by U(1)-
bundle automorphisms &4 (x, u) = (¢x, exp(2mwicy(x)) - u) and the connection form B, =
0 — 2mip, is G-invariant.

Hence, for any action of a discrete group G on N we have the following

Proposition 15 Let Ag be a background connection on P — M. Then there exists a lift of
the action of G on N to an action on U, = N x U(1) by U (1)-bundle automorphisms such
that 2, = 0 — 2wip. € QYN x U(1), iR) is G-invariant.

We recall that a G-equivariant section of ¢, — N is determined by amap S: N — U(1)
S(x) =exp(2mi -s(x)) where s: N — R/Z satisfies ay (x) = s(¢x) — s(x). The following
result shows that our bundle generalizes the Chern—Simons line

Proposition 16 If ¢ = du for a G-equivariant map u: U — M and we define s, =
—fu Tp(A, Ag) € QUN), then agy(x) = su(px) — s,(x). Hence S, = exp(2ri - s,) deter-
mines a G-equivariant section of U — N.

Furthermore, we have V¢S, = —2mic, - S,, where o, = fu p().

Proof If we define o, = [, p(F) then doy, = [, d(p(F)) + [,, p(F) = o.. Moreover by
Egs. (3) and (4) we have o, = [, p(F) = d [, Tp(A, Ao) + [,, Tp(A, Ag) = —dsy + pe.

For a curve y joining x and ¢x, and y” a curve on E joining ¢ and ¢e, using the preceding
equations and Eq. (2) we have

Ol¢(x) = /pc - (/ XA) (o (y x 7//)) = /(Ju +dsy) _f q*/p(F)
y ou 1% yxy’ u
:/(O'u +dsu)_/au :/dsu :/ Su = $u(Px) — 5 (x).
Y Y Y y

Finally we have VEeS, =dS, — 2wipe - Sy = 2mids, - Sy — 2wipe - Sy = —2mwioy - Sy.
O

Remark 17 We can also consider exp(2mi - fu Tp(A, Ap)) as a section of the inverse bundle

Z/IC_1 as it is done in [14].

Let H be another discrete group and let 2: H — G be a group homomorphism. Then 4
induces actions of the group 7 on N and P that satisfies conditions a), b) and ¢). If ¢ € H
we denote by oc;1 and QD;" the cocycle and action determined by the group H
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Proposition 18 We have (ij‘ = ahg( ) and <I>3f = d),?( ® forany ¢ € H.

Proof Wedefine Ny = N x EG, N, = N x EG x E'H, and the projections g, : P x N| —
P xN,q,: Px Ny — P x N.Thenh induces actions of /{ on P, N and EG. We denote by
Ag € Ql((P x N1)/G,g)and A, € Ql((P x N2)/'H, g) the projections of the connections
giA and g3A, and by £/t = [ xu, € H*(Ny/H) and £7 = [ xa, € H*(N1/9) the
integrated Chern—Simons characters.

We define amap Z: (P x N2)/H — (P x N1)/G by Z([y, x, e1, e2lr) = [y, x, e1lg,
and we have A, = 7*(Ag). In a similar way, we define the maps Z: (M x N2)/H —
(M x N1)/G and z: Np/H — N1/G. Thus, Z determines a morphism of bundles with fiber
M satisfying the conditions of Proposition 12, and we conclude that SCH = z*i—‘cg .

Let y be a curve on N joining x and ¢ - x = h(¢) - x, y1a curve on EG joining e; and
h(¢) - eq and y; a curve on EH joining e; and ¢ - ez, and let | =y X y1. 2 = ¥ X Y1 X V2.
By Lemma 14, we have a;{(x) = fy Pe— EL?{(TL’H 0%») and oz,?(@ (x) = fy Pe— Ecg (Tgoy1),
where rg: Ni — N1/G,and 7wy : Ny — Ny /H are the projections. We have SZ‘{ (T oY) =
68 (0 72) = §8 (2 om0 12) = 68 (g o 71), and hence aff (x) = ey (x). o

6.2 General group

In this section, we give a definition of the prequantization bundle valid for arbitrary Lie groups.
The definition for discrete groups cannot be generalized directly to Lie groups because the
connection g™ A is not necessarily projectable to the quotient (P x N x E)/G. As commented
in Introduction, it is possible to obtain a connection on the quotient space by using an auxiliary
connection 2 on the principal G-bundle N x E — (N x E)/G. As this could be problematic
for Fréchet Lie groups, we define the lift of the action of any element ¢ € G by using the
results for discrete groups.

Given ¢ € G, the homomorphism Z — G n +— ¢" determines actions of the group
Z on P and N. We apply the results of Sect. 6.1 to the discrete group Z, and we obtain a
cocycle ag: N — R/Z and a lifted action ®4: N x U(1) — N x U(1) by U(1)-bundle
automorphisms that leaves invariant the connection . = 6 — 2mwip.. Let us compute o
explicitly. We consider the universal Z-bundle EZ = R — Z, and the products g: P X
NxR—>PxN,q: M xN xR —>M x N. The connection g*A is Z-invariant and hence
projects onto a connection A(b on the principal G-bundle (P x N xR)/Z — (M x N xR)/Z.
Given (p, Y) € Z7(G), we have the Chern—Simons differential character x Ay € H* (M x
N x R)/Z), and by integrating over ¢ we obtain the integrated Chern—Simons character
Ef = /[ Xb, € H2((N x R)/Z). If y is any curve on N joining x and ¢x, we define
y: 1 — N xR, 7(s) = (y(s), s) and we have

%(x)=ﬁq*pc—s:.”(nqsoﬁ):/pc—sj’(nqsof),
Y Y

where 74 N x R — (N x R)/Z denotes the projection.

Note that (N x R)/Z can be identified with (N x I)/~4 where the equivalence relation is
defined by (x, 0)~4(¢x, 1). With this identification, we have 7y o () = [y (@), 5]y, which
is a closed curve as we have (y (1), 1) = (¢x, 1)~4(x, 0) = (y(0), 0).

The map ®y: N x U(1) = N x U(1), ®y(x,u) = (¢x, expLmwicy(x)) - u) defines a
group action of G on N x U (1) as we have the following

Proposition 19 For any ¢1, ¢2 € G, we have ag,¢, (x) = ag, (x) + ag, (p1x), and hence
Do) = Pg, 0 Py,

@ Springer



1762 R. Ferreiro Pérez

Proof Given ¢, ¢» € G we consider the free group F>[x1, x»] generated by two elements
X1, x2. The assignment x| — @1, x2 > ¢; defines and action of the discrete group Fa[x1, x3]
on P x N. We have two homomorphisms 4; : Z — F>[x1, x2] determined by setting /; (n) =
x!'. By applying Lemma 14 and Proposition 18, we obtain ag,gs, (x) = o, (x) + g, ($1x)
forany x € N. o

Lemma 20 If¢, € G, t € (—¢, €) isalocal 1-parametric subgroup of G with¢, = X € LieG,

then we have dgj” ‘t_o = pe(Xn) + pe(X).

Proof Given x € N, we define y(s) = ¢gx and for 1 € (—¢,¢), y'(s) = y(ts) and
Y'(s) = (¥'(s),5). We have y"(0) = (¢ox,0) = (x,0) and y'(1) = (¢rx, 1) ~y, (x,0).
By definition, we have o, (x) = fy, Oc — éf’ (g, 0 V7).

The derivative of the first term is easy to compute, as we have fy, Pe = fol pe(P(s))ds =

Jo pe@usNids = [y pe(?()dz and hence & [, pe| _ = pe(Xn ().

Next we compute the derivative of the second term. We denote by N, the manifold N x R
with the action of Z determined by n - (x, s) = ((¢;)"x, s + n). The maps w;: No — N;,
we(x,s) = (Prsx,8), We: P X Ng — P X Ni, We(y, x,8) = (Prsy, Prsx,s)fory € P,x €
N and s € R are Z-equivariant. We denote by w, : No/Z — N;/Zand W,: (P x No)/Z —
(P x N;)/Z the induced maps. We define the connections A; = W;¢*A, and we have

Ag = ¢*A and Ag = %‘ 0 (Wrg*A) = Lyq*A, where Y = % 0= sXpxn-Asg*A
1= =

is G-invariant, we have Ag = Lyg*A = SG*(Lxp yA) +q*(txp, yA)ds = (gFva(X))ds.

We denote by A, the projection of A; on (P x Ng)/Z and we define ¢! = fc XA, €
ﬁz(No/Z). In each of the cases c), ¢2) and c3) by using Proposition 12, we obtain ¢! =
wiED).

If o : I — Ny is the curve o, (s) = (x, ), then we have 74, o Y’ = w, o g, 0 0x and

hence £ (rg, 0 y') = Eép’ (w, 07y 0 0x) = £l (g, 0 0x). By using Lemma 10, we conclude
that

L ety 079,y = & ¢ty 0 00|,y =7 / f p(do. g*F. €D, ¢*F)
Ox JC

= (rfp(vA(X),IF, (’.T?),F)> (/ ds) = —pe(X)x,
¢ X Ox

and the result follows. O
As a consequence of the preceding Lemma, we have the following
Proposition 21 For X € LieG, we have Xy, = Xy + 2mi(pe(Xn) + pe(X))0g.

We have curvE, = dp, = o, and Xy, Be = 2mipc(X). Hence curvg (Ec) = o¢ + pe =
w.. We conclude that (U,, E.) is a G-equivariant prequantization bundle of (N, @,). Hence,
we have proved the following

Theorem 22 Let (p, Y) € 17,(G), Ao be a background connection on P and c: C — M

a G-invariant map. These data determine an action of G on U = N x U(1) — N by

U (1)-bundle automorphisms ®y(x, u) = (¢x, exp(mwicy(x))- u) such that the connection

E. =0 —2mip. is G-invariant, and the G-equivariant curvature of E. is curvg(E.) = @,.
For every X € LieG, we have Xy, = Xn + 2mi(pe(Xn) + e (X))0g.
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If ¢ = du for a G-equivariant map u: U — M and s, = —fqu(A, Ao), then ag(x) =
Su(px) — s, (x). Hence S, = exp(2mi - s,) determines a G-equivariant section of U, — N.
Moreover, we have VE¢S, = —2wio, - S,, where o, = fu p([F) e QI(N).

Remark 23 In place of the principal U(1)-bundle ., we can consider the G-equivariant
Hermitian line bundle £, = N xC — N with the action @4 (x, z) = (¢x, expmiag(x))-2)
and &, determines a Hermitian connection V &¢ on this bundle with V& f = df —2mip. - f
for f: N - C.

Let Nj be another connected and simply connected manifold on which G acts. If g: N —
N is a G-equivariant map, then A = (idp x g)*A is a G-invariant connection on P x N| —
M x Nj and conditions a) b) and c) are satisfied. If A is a background connection, then we
have a cocycle «;. The following Proposition can be easily proved.

Proposition 24 We have (a1)y(x) = ap(g(x)), (P1)g(x, u) = Oy(g(x), u) and (81) =
(gxidya))*Ecfore € G, x € N andu € U(1). In particular, the map g xidy1y: U1)e —
U, is G-equivariant.

6.3 Change of background connection

The prequantization bundle ¢/, and the connection E. are defined using a background connec-
tion Ag. If A6 is another background connection, then we have Tp(4A, ZZ)) =Tp(A, Ag) +
Tp(Ao, Ag) + dTp(A, Ay, Ay), with Tp(Ag, Ag) = priTp(Ag, Ay) € Q¥ 1O0(M x N),
and hence

/ Tp(A, Ag) = f Tp(A, Ag) + f Tp(Ag. Ay) + / dTp(A, Ao, Ay)

u u u u

= / Tp(A, Ag) + / Tp(Ag, Ay) +d / Tp(A\,Xo,ZgH(—l)d/ Tp(A, Ao, Ay).
u u u u

Ifd =dimU < 2r — 1, we have fMTp(ZO,Zé)) =0as Tp(Xo,ZE))Ger_I’O(M x N) and
hence

/ Tp(A, Ay = / Tp(h Ao) +d / Tp(A, Ao, Al + (=1)¢ / T, Ao, ). (5)

u u u u

Moreover, if dim U = 2r — 1 then fu Tp(A, Ay, Z/O) = 0 and we have

/ Tp(h, Ay) = f Tp(A, Ag) + f Tp(Ao, Ap) — / Tp(A, Ay, Ay). (6)

u u u du

The next Proposition shows that the action changes under a change of Ao, but the corre-
sponding prequantization bundles are isomorphic.

Proposition 25 Let A{, be another background connection and denote by U, E.. and «,. the
bundle, connection and action determined by Ay. If we define f. = fc Tp(A, Ay, Zé)) S
QU(N), then B, = E. —2midB, andoz(’b =dp+¢*B—B.Themap V: U, — U, V(x,u) =

-

(x, exp(2miBe(x) - u) is a G-equivariant isomorphism of U (1)-bundles and W*(E.) = E.

Proof Tt follows easily from the definitions and the equality p. = p. + df, which is a
consequence of Eq. (5). O
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Remark 26 We interpret this result in the following way. The pair (p, T) € I;(G) and
c¢: C — M determine a G-equivariant prequantization bundle (U, E.) for (N, @.), and a
background connection Ag determines a global trivialization of this bundle. In this sense, the
prequantization bundle does not depend on Ayp.

The situation is different for the section associated with the Chern—Simons action, as using
Eq. (6) we obtain the following

Proposition 27 If ¢ = du for a G-equivariant map u: U — M and S,,, S, are the sections
associated with Ay and A}, then V o S, = S, - exp(2mi fu Tp(Ap, Ap)).

Hence, the section S, is not intrinsically éetermined by (p, Y) € 7;,(G) and u. To explain
this, note that if S is a section satisfying V=S = —2mio, - S, any other section satisfying
this condition is given by exp(ia)S for a € R constant. The background connection Ao
determines a constant a, and another connection Ab determines a different constant ¢’ and
hence a different section.

6.4 Change of polynomial and submanifold

The action of G on A x U(1) is defined by a map @, (x,u) = (¢px, expQmiay(x)) - u)
where a: G x N — R/Z satisfies the cocycle condition ag,s, (x) = ag, (x) + ag, (P1x).
If « and o' satisfy the cocycle condition, then it is also satisfied by —« and @ + «’, and
d_, = d>;1 and @,y = Dy - Py . In terms of line bundles, if £* is the G-equivariant line
bundle associated with a cocycle «, then ®_, corresponds to the dual bundle £7% = (£%)*
and @ o corresponds to the tensor product Lot = o g o'

We denote by «f the action determined by p = (p, Y) € 77(G), c: C — N and by

(ﬁf , VC‘; ) the G-equivariant line bundle and connection determined by them. If c: C — N,

¢': C’ — N are two smooth maps we define —c: — C — N, where —C is Ehe manifqld
C with the 0pp051te orlentatlon and ¢ +c:Cu C ! - N. Then we have otp = —al,
afﬂ of —I—a and also ,0 ¢ = pc pL+L = ol + ,0 . We conclude that (LZ%, fc.) =

(P, vPy)* and (£¢+C,, chC) =l vhHe (E”,,VP)
In a similar way ifp=(p 1), p =, T) € 77,(G) then we have . L —
ol = ol vl and p” = ol oI = pl + ol Hence (.7, V) = (£l V)
and (L2 VI = (cf VP @ (e, D).
If du = ¢—c’, by Theorem 22 S, _exp( 2mi - f Tp(A Ap)) determines a G- -equivariant

section of unit norm of Lp e [lp ® (£p)* o~ Hom(L llp) and hence Lp and Ep are
isomorphic as G- equwanant hne bundles.

Remark 28 1t is important to recall that in the preceding formulas we are using the same
background connection Ag (i.e., the same trivialization (see Remark 26)) for all the bundles.

If we use different connections Ag and A, for ¢ and —c, we do not have ll?o = (z:f‘;)*, but
we have a pairing £ g (Eéo)* — N x C.
7 Application to the space of connections

In this section, the constructions of Sect. 6.2 are applied to the space of connections on a
principal G-bundle P — M. First we give the explicit expressions of the forms that appear
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in the prequantization bundle. A background connection is simply an element Ag € .A. The
1-form p. = f ITp(A, Ag) € Q!(A) that determines the connection &, is given by

1
(pc)ala) =r(r — 1)// pla, A— Ag, F,, "=, Fudr,
cJO

with A, = tA + (1 — t)Ag and F; the curvature of A;.

The form g, = f - Tp(A, Ao, Z;)) that appears in the change of background connection is
simply given by B.(A) = [, . Tp(A, Ao, AB) (this follows from the tautological definition of
A). Finally, if u: U — M is a G-invariant map such that ¢ = du then s, = —fu Tp(A, Ap)
is given by s, (A) = — [, Tp(A, Ag). Also we have (6,)a(a) = r [ p(a, F, ? =D, F) for
a € TyA~ QY M, adP).

7.1 Action by gauge transformations

Now we consider the action of the group G = GauP of gauge transformations on P — M.
In this case, as G does not act on M, we can consider any smooth map ¢: C — M with
dim C = 2r — 2. We summarize the results in the following

Theorem 29 Let P — M principal G-bundle, (p, ) € I;,(G), Ag be a background
connection on P and c: C — M be a smooth map with C closed, oriented and dim C =
2r — 2. If G acts on P by elements of GauP, these data determine an action of G on U, =
A x U(1) - A by U(1)-bundle automorphisms such that the connection E. = 0 — 2mwip,
is G-invariant and the equivariant curvature of B, is we.

Furthermore, if c = du and s,(A) = —fqu(A, Ap), then ay(x) = su(Ppx) — 5,(x).
Hence S, = exp(2mi - s,) determines G-equivariant section of U. — A, and we have
VEeS, = —2mioy - Sy

Remark 30 In the classical case of Chern—Simons theory considered in Introduction, any
SU(2)-bundle P over a 3-manifold is trivial. Hence, we can take A( the connection
corresponding to a global section u: M — P. Then for p(X) = gn%tr(Xz) we have
sm(A) = — [, Tp(A, Ag) = —# [y tr(AAdA+ 3 AN AN A), which coincides with the
classical Chern—Simons action.

Remark 31 In [24] the equation ag(A) = s,(pA) — su(A) = —fu Tp(pA, Ay) +
f L IT'P(A, Ap) is used to define the action arg. To do this, it is necessary to express the manifold
¢ as the boundary of another manifold # and to extend the connections on c¢ to u. This can
be done in dimension two, but this procedure cannot be generalized to higher dimensions.

In [10], a different construction of the bundle provided by theorem 3 is given. If G is
the subgroup of gauge transformations fixing a point of P, then G acts freely on A and
A — A/G is a principal G-bundle (see [13]). If  is a connection on A — A/G, we define
AR € QU(P x A, g) by AQ)(Y) = A(CA((pry)«msY))pxa) for Y € T(P x A). Then
the connection A — A(2() is projectable onto a connection 2 on (P x A)/G — M x A/G.
If we set Ac = pc + ie(2), then we have (see [10]) di. = 7*(f, p(Fa0) = curv(/[, x2)-
Hence, we can apply Theorem 3 to the character |, X € H? (A/G), and we obtain a cocycle
af A=/ L (o + pe () — ( /. x2) (7 o y) that in theory determines another bundle. But
this bundle coincides with ours, as we have the following

Proposition 32 We have ai‘ =gy forany ¢ € G.
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Proof We define the projectionsg: P x A x R — P x A. The homomorphism 4: Z —G
h(n) = ¢" determines an action of Z on P and A.

Letng: Px A — (PxA/Gandy: P x A xR — (P x A x R)/Z denote the
projections. If ¢ € G, x € N, y is a curve on N joining A and ¢ A and y (s) = (y(s), 5) by

definition we have
ag(x) Z/ypc—/c)(q*A (7Tp o y),

9w = [ pot [ ey - (/Xg) (g 0 7).
Y Y ¢

The connections g*A and q*ngg are Z-invariant and project onto connections g*A and
Ay = ﬁ*nég on (P x AxR)/Z — (M x A x R)/Z and by Eq. (1) we have
Jexga(mgoy) = [ xa, (o) + [ [ Tp@ A g n520). But [5 [ Tp(@ A, q* n52) =
fy J.Tp(A, 732 = fy [.Tp(A, né%)zr—z’l, where the bigradation is the one induced by
the product structure on M x A. We have T p(A, ngg)zf—zvl =rf01 p(AQRD, Fy, ..., F;) with

=IF—|—tdAA(Ql)—IL22 [ARL), ARD]. As 2 comes from a connection on A — A/G, we have
th,O = F29 and hence fy fc Tp(A, nég) =r fy fc p(AQD,F,....F) = — fy e (D). We
conclude that we have oy (x) = fy e + fy pe@) — [ xa, (g 0 7).

Hence we should prove that fc X4, (g oY) = fc x2(rg o y). This result follows in a
similar way as in the proof of Proposition 18. If Z: (P x A x R)/Z — (P x A)/G and
7: (AxR)/Z — A/G are the natural maps, then we have A = Z*gandfc X4, =2 [ xa.
Hence (f, x4,) (g 0 ¥) = (f, xa)(z 0 7y 0 ¥) = ([, x2) (G 0 ). o

In particular, the action af does not depend on the connection 2 chosen on A — A/G.

7.2 Restriction to the moduli space of irreducible flat connections

We denote by A the space of irreducible connections. Although GauP does not act freely
on A, the isotropy group is the same Z(G) (the center of G) forall A € .A and A/ GauP
is a differential manifold. If we define the group G = GauP/Z(G), then G acts freely on A
and A > A/Gisa principal G-bundle (see, for example, [13] for details). In the preceding
section, we have constructed a Gau P-equivariant prequantization bundle ¢, — A. If we
restrlct ittolf, = AxU 1) — A, we hope that it w111 define a prequantization bundle over
A/ g but there is a problem: the action of Z(G) on L{C does not need to be trivial and G does
not act on 4. Or, in an equivalent way, U./GauP — A/GauP isnota U /(1)-bundle. If the
action of Z(G) on U, is trivial, then G acts on U,, and restricting Ato Z/{C / G — .A/ G we
obtain a bundle over the moduli space of irreducible connections. This is the case for the trivial
SU (2)-bundle over a surface, as it 1s shown in [24]. If the action of Z(G) on I/{C is not trivial,
we can define G = G/Z(G) and P = P/Z(G) — M, which is a principal G-bundle. We
alsosetP = (P/Z (G)) x A Wthh is also a principal G-bundle. The connectlon A e Q(P, 1))
induces a connection A on PP which is invariant under the action of G (see [10] for detalls)
The results of Sect. 6.2 can be gpphed to the bundle P = P /Z(G) - M, N = A and
the G-invariant connection A on PP, and we obtain a result analogous to Theorem 29, but we
should take polynomials and characteristic classes of G in placeof G.If (p, Y1) € I%(G) and
c: C — M withdim C = 2r—2,weobtainw, € Qé(;{) anda g-equivariant prequantization

bundle (EC ZZ-) of (.Z, @,), and taking the quotient a U (1)-bundle U, / G — .Z/ G.
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We consider only one example. If G = SU(2), then G = SO (3). Both groups have the
same Lie algebra su(2) >~ s0(3). As they are connected, they have the same Weil polynomials
I1(SU@®2)) = I1(50(3)), but I7(SO@3)) & Iz(SU(2)). For example, the second Chern
polynomial ¢; ¢ I7(SO(3)), but the first Pontryagin polynomial p; = 4c; € Iz(SO(3))
(see [12, Formula 4.11]). If ¢: C — M is a map with C a closed surface, the presymplectic
structure ¢ . on the moduli space of irreducible flat connections determined by ¢ and the
second Chern class may not be prequantizable. But 4 - ¢ . is always prequantizable by the
bundle associated with the first Pontryagin class.

Let (pLT) € Ii(a). If # ¢ Ais the space of irrEducible flat connections, for r > 2
we have F C [Lc_l (0). In particular, the restriction to F x U (1) of the form E. is G-basic.
Z. projects onto a connection on F /é xU(l) - F /5, and we obtain a prequantization
bundle of (.% / g, o), where ¢ . is obtained from @, by presymplectic reduction. For r = 2
and C = M aclosed oriented surface, we obtain (o) 4 (a, b) = 2 fM pla,b), (up)a(X) =
=2 [y P(X, F)and (pp)a(a) = [,, p(A—Ag, a),for A € A,a,b e TyA~ Q' (M, adP)
and X € LieG. If p: g x g — R is a non-degenerate bilinear form, then o, is a symplectic
form and the moment map can be identified with the curvature map A — F. Hence, they
coincide with the symplectic structure and moment map defined in [3]. As commented in
Remark 31 in this case, our bundle also coincides with that of [24], and the connection E
projects onto a connection on the quotient bundle (F x U(1)) / G—>F / G.If Jisa complex
structure on M, it induces a complex structure on A and oy is of type (1, 1). As VE¥ is
a unitary connection, we conclude (see [13]) that it determines a holomorphic structure on
Ly — F /(3. We have similar results when dim M > 2 and ¢: C — M is a map with
dimC = 2. If ¢ = du, the restriction of S, to Fisa E.-parallel section as it satisfies
VEeS, =0 because (0,)a(a) =2 [, pla, F) =0if A € F.

If r > 3 we have o.|F = 0, and in this case Z. is a flat connection, and hence, its
holonomy defines a cohomology class in H l(f / G, R/Z) (see [10] for a generalization of
this result to arbitrary dimensions).

7.3 The action of automorphisms

Let Aut™ P be the group of automorphisms preserving the orientation on M, and assume that
G is a group acting on P by elements of Aut™ P. In this case, we cannot choose ¢c: C — M
an arbitrary map because it should be G invariant. We only consider the cases C = M (if
oM =0)and C = oM.

7.3.1 Base manifold closed

When M is a closed manifold of dimension 2r — 2, we can take C = M and ¢ = idj;, which
clearly is G-invariant. As a consequence of Theorem 22, we obtain the following

Theorem 33 Let P — M principal G-bundle with M closed, oriented and dim M = 2r —2,
(p. ) € I;,(G), Ag a background connection on P and a group G acting on P by elements
of Aut™ P. These data determine an action of G on Uy = A x U(1) — A by U(1)-bundle
automorphisms such that the connection Ey; = 0 —2mwipy is G-invariant and the equivariant
curvature of By is wyy.

Theorem 33 extends to arbitrary bundles the results of [1,2] for trivial bundles over a
surface.
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7.3.2 Base manifold with boundary

Now we assume that M is a compact oriented manifold of dimension 2r — 1 with boundary
oM. We chose C = dM and ¢ = idy,. By applying Theorem 22, we obtain the following

Theorem 34 Let P — M principal G-bundle with M compact and oriented with boundary
OM and dim M = 2r — 1. If a group G acts on P by elements of Autt P, (p, Y) € 75(G)
and Ay is a background connection on P, these data determine an action of G on Uypy =
AxU() — AbyU (1)-bundle automorphisms such that the connection Eyp = 0 —2mwipym
is G-invariant and the equivariant curvature of Egpy is wyp.

Furthermore, Sy = exp(—2mi - fMTp(A, Ao)) determines G-equivariant section of
Uypm — A, and we have V=M Sy = —2mioy - Sy.

8 Riemannian metrics and diffeomorphisms

In this section, we apply our results to the space of Riemannian metrics and the action
of diffeomorphisms. One possible approach to do this is to apply the results of Sect. 6 to
the structures on the space of metrics defined in [16—18]. However, we follow a different
approach: we obtain the prequantization bundle by pulling back the bundles on the space of
connections using the Levi—Civita map.

If M is an oriented manifold and we take P = FM, the group G = Diff*M of
orientation-preserving diffeomorphisms acts on F'M by automorphisms. The Levi—Civita
map LC: MetM — A which assigns to a Riemannian metric g its Levi—Civita connection
LC(g) = ¥ is G-equivariant. If we denote by pi € I2(GL(n,R)) the k-th Pontryagin
polynomial and by Yy € H*(BGL(n, R)) ~ H*(BO (n)) the k-th Pontryagin class, then
pk and Y are compatible. We fix a polynomial p € Z[py, ..., pnj2]l C 1;(GL(n, R)) of
degree 2r and the corresponding characteristic class T € H *BGLn,R)).

8.1 Closed manifolds

Let M be a compact closed manifold of dimension 4r — 2. If we fix a background con-
nection Ag on FM, we can apply the results of Sect. 7.3.1, and we obtain a G-equivariant
prequantization bundle (U, Ep) of the equivariant form wy = oy + Uy € Qé (A).
Using the Levi-Civita map, we obtain U/, = LC*Uy, &), = LC* 8y, and (U),, E),) is a
G-equivariant prequantization bundle of =, = LC*my € Qé (MtetM). It can be seen that
@}, = o}, + i), coincide with the presymplectic structure and moment map defined in [18].
We study in detail the simplest case.

8.1.1 Dimension 2

Let M be a closed surface and p;(X) = — Sn%tr(X 2) is the first Pontryagin polynomial. The
presymplectic reduction of (MtetM, @) is studied in [18], and the result is that (/L/M)’1 0) =
Met* M is the space of metrics of constant curvature.

If M has genus y > 1 and Met_| M is the space of metrics of constant curvature —1, we
have Met_ 1M C /L_l (0). The connected component with the identity Diffo M acts freely on
Met_; M and the Teichmiiller space of M is defined by 7 (M) = 9et_; M /DiffoM, which,
as it is well known (e.g., see [26]), is a manifold of real dimension 6y — 6. It is proved in
[18] that the form obtained from 011,1 by symplectic reduction is g/M = Flzawp, where owp

@ Springer



Equivariant prequantization bundles on the space of... 1769

is the symplectic form of the Weil-Petersson metric on 7 (M ). We define the quotient bundle
Wy = et M x U(1))/DiffoM — T (M). As Met_ M C (MQ,I)_I(O), the connection
&), is projectable onto a connection ) on Wpy. Moreover, as ¢, is of type (1, 1) and
¥ 1s a unitary connection, we conclude (e.g., see [13]) that V7 determines a holomorphic
structure on the line bundle £3; — 7 (M) associated with Wp,.

Furthermore, the first Pontryagin class determines the action on £y of the elements of
Diff ™ M not connected with the identity and hence an action of I'y; = Diff* M /DiffqM (the
mapping class group of M) on £y which preserves V¥ . We conclude that (£, V?¥) is a
I"pr-equivariant holomorphic Hermitian prequantization bundle for (7 (M), #owp).

Similar prequantization bundles are constructed, for example, in [21] and in [27] by
different techniques. We note that our construction is not specific of two dimensions and can
be applied to any manifold of dimension 4r — 2.

8.2 Manifolds with boundary

If M is a compact manifold of dimension 4r — 1 with boundary, we can apply the results
of Sect. 7.3.2 and we obtain a G-equivariant prequantization bundle (Usyr, Egpr) of wapy =
oM + oM € Qé (A). By using the Levi—Civita map, we obtain L{Ci,M = LC*Uypy, E%M =
LC*Ejyy and (U},,, EY,,) is a G-equivariant prequantization bundle of @) ,, = LC*mapy €
ng (MMetM). Furthermore, we have the following

Theorem 35 If M is a compact oriented manifold with boundary oM then S(g) =
exp(—2mi - fM Tp(w8, Ag)) determines G-invariant section ofugM — MNetM.

Hence, we have found a Chern—Simons line for Riemannian metrics.

We note that the prequantization bundle on 7 (M) is defined in [21] by using a similar
Chern—Simons line in dimension 3. They express the surface as the boundary of a 3-manifold,
and they use a definition of the bundle similar to that in [24] for connections. As in the case
of connections, this procedure cannot be extended to higher dimensions.
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