
International Journal of Information Security (2021) 20:675–693
https://doi.org/10.1007/s10207-020-00524-5

REGULAR CONTRIBUT ION

Password-authenticated searchable encryption

Liqun Chen1 · Kaibin Huang1 ·Mark Manulis1 · Venkkatesh Sekar1

Published online: 22 November 2020
© The Author(s) 2020

Abstract
We introduce Password Authenticated Searchable Encryption (PASE), a novel searchable encryption scheme where a single
human-memorizable password can be used to outsource (encrypted) data with associated keywords to a group of servers
and later retrieve this data through the encrypted keyword search procedure. PASE ensures that only the legitimate user who
knows the initially registered password can perform these operations. In particular, PASE guarantees that no single server can
mount an offline attack on the user’s password or learn any information about the encrypted keywords. The concept behind
PASE protocols extends previous concepts behind searchable encryption by removing the requirement on the client to store
high-entropy keys, thusmaking the protocol device-agnostic on the user side. In this paper, wemodel the functionality of PASE
along with two security requirements (indistinguishability against chosen keyword attacks and authentication) and propose
an efficient direct construction in a two-server setting those security we prove in the standard model under the Decisional
Diffie–Hellman assumption. Our constructions support outsourcing and retrieval procedures based on multiple keywords and
allow users to change their passwords without any need for the re-encryption of the outsourced data. Our theoretical efficiency
comparisons and experimental performance and scalability measurements show that the proposed scheme is practical and
offers high performance in relation to computations and communications on the user side. The practicality of our PASE
scheme is further demonstrated through its implementation within a JavaScript-based web application that can readily be
executed on any (mobile) browser and remains practical for commodity user devices such as laptops and smartphones.

Keywords Searchable encryption · Distributed password authentication

1 Introduction

1.1 Searchable encryption

Using protocols for Searchable Encryption [2,10,20,29]
clients with limited computing and storage resources can
outsource encrypted data to a server or a collection of
servers, perform search over the encrypted data (typically
using encrypted keywords) and eventually retrieve searched
data while preserving its privacy against the servers. Exist-
ing searchable encryption schemes can be broadly split
into those where the keyword search procedure requires
either high-entropy shared keys such as Symmetric Search-
able Encryption (SSE) schemes or a private-public key pair
such as Public Key Encryption with Keyword Search (PEKS)
schemes on the user side.

B Mark Manulis
mark@manulis.eu

1 Surrey Centre for Cyber Security, University of Surrey,
Guildford, United Kingdom

In practice, the requirement tomaintain high-entropy keys
on the user side results in less flexibility when it comes to
the use of multiple, different devices for outsourcing and
retrieval of data. The user is effectively prevented from using
different devices unless the private key is made available to
every such device.

1.1.1 Symmetric searchable encryption

Symmetric searchable encryption enables the user to encrypt
the data, organizing it in an arbitrary way (before encryption)
and includes additional data structures to allow for efficient
access of relevant data. In this setting, the initial work for the
user (i.e., for preprocessing the data) is at least as large as
the data, but subsequent work (i.e., for accessing the data) is
very small relative to the size of the data for both the user and
the server. Ostrovsky demonstrated that symmetric search-
able encryption can be achieved in its full generality and
with optimal security using Oblivious RAM but with huge
overhead [35]. Further works try to make the construction

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-020-00524-5&domain=pdf
http://orcid.org/0000-0002-1512-9670

676 L. Chen et al.

efficient with more rounds and a weaker security model to
reduce the overhead. Song et al. [21] approached SSE using
a new two layered encryption, whose outer layer discloses
whether a particular keyword is stored in an inner encryption
using a trapdoor. Unfortunately, search requires computation
linear in the size of each document and reveals statistical
information about the distribution of the underlying plain-
text. Both of these where limitations were addressed by Goh
[23] through associating secure indexes to each document in a
collection. It also introduced the notion of semantic security
against chosen-keyword attacks (called IND-CKA), which
is the first formal notion of security defined for searchable
encryption.

In the context of complex search queries, the above
schemes are restricted to single-keyword equality queries.
Ballard et al. [5] provided an secure and efficient system
to perform Boolean keyword searches using Shamir’s secret
sharing. Curtmola et al. [20] introduced two variants (adap-
tively secure and non adaptively secure) SSE with the use
of lookup tables. Chase et al. [17] introduced the notion
of structured encryption, where arbitrarily structured data
are encrypted in such a way that it can be queried through
the use of a query specific token that can only be gener-
ated with knowledge of the secret key. The scheme improves
over non-adaptive variant of [20] achieving keyword search
through generating dictionaries of each keyword which con-
tain pointer-output for each document. Kamara et al. [29]
further refine the model to a dynamic searchable encryption
scheme based on the inverted indexes approach of [20].

Other variants of SSE include Message Lock Encryption
by Bellare et al. [8], where the key under which encryption
and decryption are performed is derived from the message
itself and search pattern obfuscation by Orencik at al. [34]
using preprocessed term frequency-inverse document fre-
quency (tf-idf) weights of keyword-document pairs.

1.1.2 Public key encryption with keyword search (PEKS)

The notion of Public Key Encryption with Keyword Search
was introduced by Boneh et al. [10] using bilinear maps and
trapdoor permutations. The mechanism provided an efficient
way to check whether a keyword is associated with a given
document without leaking anything else about the document.
However, due to the computation cost of public key encryp-
tion, the constructions were applicable to searching on a
small number of keywords rather than an entire file. Mov-
ing beyond just equality-based keyword search, Park et al.
[36] and Boneh et al. [10] extended PEKS for conjunctive
[10,36], subset and range [10] queries on encrypted data.

However, the PEKS construction does not allow the recip-
ient to decrypt keywords, i.e., encryption is not invertible.
This was addressed by Fuhr et al. [22], through introduc-
ing decryptable searchable encryption using identity-based

key encapsulation mechanism (ID-KEM). The concept also
paved way for management of encrypted data, since the
decryption key and the trapdoor derivation key are gener-
ated independently from one another and hence data can be
decrypted by an entity and trapdoors be generated by some
other managing party. Abdalla et al. [2] defined the com-
putational and statistical relaxations of the existing notion
of perfect consistency, showing that [10] is computationally
consistent, and providing a new scheme that is statistically
consistent. Third party delegation was further studied by
Ibraimi et al. [25], employing the notion of Public Key
Encryption with Delegated Search (PKEDS) which enables
a third party to search an document for a particular keyword
encrypted by the user.

Other variants of public key encryption in the context of
keyword search include Deterministic Searchable Encryp-
tion [6] and Plaintext-Checkable Encryption [15]. Bellare et
al. [6] achieved deterministic searchable encryption using
RSA-DOAEP, a length preserving deterministic encryption
scheme. A plaintext-checkable encryption scheme is a prob-
abilistic public-key encryption scheme with the additional
functionality that anyone can test whether a ciphertext is
the encryption of a given plaintext message under a pub-
lic encryption key. Canard et al. [15] provided an efficient
construction for plaintext checkable encryption using an
ElGamal-based approach.

1.2 Password-authenticated searchable encryption
(PASE)

The idea of basing searchable encryption solely on pass-
words, proposed in this paper, helps to avoid costly and risky
key management on the user side and enables the whole
process to be device-agnostic. This, however, comes with
challenges considering that both passwords and keywords
typically have low entropy. Amongst the core security prop-
erties of PASE, there is a need to guarantee that only the
legitimate user, who knows the password, can outsource,
search and retrieve data. Hence, basing security of search-
able encryption schemes on passwords introduces the need
for a distributed server environment where trust is spread
across at least two non-colluding servers, as is also the case in
many password-based protocols for authentication and secret
sharing, e.g., [4,12–14,26–28,30,31,40]. The use of two
servers provides themost practical scenario and theminimum
requirement to achieve protection against offline dictionary
attacks, while a more general secret sharing architecture with
t-out-of-n servers would be applicable as well. Chen et al.
[18] further demonstrated the resilience of two server model
against keyword guessing attacks. Thus, the PASE’s two
server model offers best performance to protection trade-
off for (public key-based) PEKS schemes, protecting against
offline dictionary and keyword guessing attacks.

123

Password-authenticated searchable encryption… 677

Wemodel PASE as a searchable encryption schemewhere
users can register their passwords with the servers and then
re-use these passwords for multiple sessions of the out-
source and retrieval protocols. In each outsource session,
the user can outsource encrypted keywords along with some
(encrypted) document to both servers. The retrieval protocol
realizes the search procedure based on the keyword that the
user inputs to the protocol and provides the userwith all docu-
ments associated with that keyword allowing the user to also
verify the integrity of the retrieved documents. We define
security of the PASE scheme using BPR-like models [3,9]
that have been widely used for password-based protocols.
Wedefine privacy of PASEkeywords through indistinguisha-
bility against chosen keyword attacks (IND-CKA) while
considering active adversaries, possibly in control of at most
one server, who can also register own passwords in the sys-
tem.While IND-CKA security protects against the adversary
who does not know the password from successfully retriev-
ing outsourced data, we additionally require authentication
to protect the outsourcing operation itself, thus preventing the
adversary from outsourcing data on behalf of the user; this
requirementmust also hold even if the adversary controls one
of the servers.

Our direct PASE construction follows conceptually the
followingmore general approach that combines ideas behind
Password Authenticated Secret Sharing (PASS) [4,12–14,26,
27,40] and SSE [5,20,34]. In the registration phase, the user
picks a password π and a high-entropy symmetric key K
that will be used to encrypt keywords and secret-shares K
protected with π across both servers. In order to outsource
keywords, the user engages into the PASS reconstruction pro-
tocol to obtain K and then into the SSE outsource protocol
to outsource the keywords. In order to search for keywords
and retrieve data, the user again reconstructs K using PASS
and performs the keyword search using SSE. We stress,
however, that our construction is direct and does not use
PASS and SSE as generic building blocks. A generic con-
struction from these two primitives remains currently out of
reach due to significant differences in the syntax, functional-
ity and security amongst the existing PASS protocols. First,
PASS protocols do not separate registration from secret shar-
ing phase and therefore do not enforce user authentication
upon secret sharing which would be required for the out-
sourcing protocol in PASE. Existing PASS protocols were
proven in different security models, e.g., BPR-like in [4,40]
and UC-based in [12,14,27,28] and do not necessarily fol-
low the same functionality and syntax, which makes it hard
to use PASS as a generic building block in PASE without
revising the syntax and security models of those PASS pro-
tocols. While we could update the syntax of PASS protocols
to allow for a generic usage in PASE such update would
introduce changes to the original PASS protocols and require
new security proofs. Moreover, generic constructions often

lead to less efficient instantiations than directly constructed
schemes. For all the aforementioned reasons, we are not for-
mally proposing a generic PASE construction in this paper
and opt for a direct and efficient scheme (cf. Sect. 3) based
on well-known assumptions in the standard model.

1.3 Paper organization

Section 2 formally models PASE functionality and defines
its main security properties. Section 3 introduces our direct
PASE construction. We recall the underlying cryptographic
building blocks and present a high-level design rationale for
the scheme. This section also compares the efficiency of the
key reconstruction phase of the proposed PASE scheme with
existing PASS protocols and highlights additional support
for multi-keyword operations and password change. Section
4 contains formal security analysis of the proposed scheme.
In Sect. 5, we present our browser-based demonstrator with
complete implementation of the proposed PASE function-
ality. This section also contains experimental results on the
evaluation of performance and scalability of our implemen-
tation on commodity user devices. Section 6 concludes this
paper.

2 PASEmodel and definitions

In this section, we model the functionality of PASE and pro-
vide definitions of its security requirements.

2.1 PASE functionality

2.1.1 Syntax of algorithms and protocols

In our PASEmodel, any userU can perform an initial registra-
tion procedure with any two servers S0 and S1 in the system
and then use the registered passwordπ (from somedictionary
D) to outsource and retrieve data based on associated key-
words w ∈ W . Each server Sd , d ∈ {0, 1} maintains its own
database where for each user it records the associated secret
information infod obtained during the registration proce-
dure and the outsourced data (C,ix) obtained frommultiple
executions of the outsource protocol;C is used to represent a
ciphertext for the keywords, whereas index ix stands for the
outsourced (and possibly encrypted) document that is associ-
atedwith the encrypted keywords. Similar to other searchable
encryption schemes (e.g., [2]) we do not explicitly model the
encryption of outsourced documents and use indices ix ∈ III
as placeholders for these documents.

– Setup(1κ) is an initialization algorithm that on input a
security parameter κ ∈ N generates public parameters
par of the scheme.

123

678 L. Chen et al.

– Register is a registration protocol executed between
someuserU (running interactive algorithmRegisterU)
and two serversS0 andS1 (running interactive algorithms
RegisterSd , d ∈ {0, 1}) according to the following
specification:

– RegisterU(par, π,S0,S1): on input par and
some password π ← D, this algorithm interacts
with RegisterSd , d ∈ {0, 1} and outputs a flag
s ∈ {succ,fail}. If (s = succ), the user remem-
bers π and forgets all other informations.

– RegisterSd(par,U,S1-d): on input par, this
algorithm interacts with RegisterU (and possibly
RegisterS1-d) and at the end of successful interac-
tion stores some secret informationinfod associated
with U at Sd .

– Outsource is anoutsourcingprotocol executedbetween
someuserU (running interactive algorithmOutsourceU)
and two serversS0 andS1 (running interactive algorithms
OutsourceSd , d ∈ {0, 1}) according to the following
specification:

– OutsourceU(par, π,w,ix,S0,S1): on input π ,
a keyword w, and some index ix this algorithms
interacts with OutsourceSd , d ∈ {0, 1} and out-
puts a flag s ∈ {succ,fail}.

– OutsourceSd(par,U,infod): on input infod ,
this algorithm upon successful interaction with
OutsourceU (andpossiblyOutsourceS1-d) stores
a record (C,ix) in its database CCCd .

– Retrieve is a retrieval protocol executed between
someuserU (running interactive algorithmRetrieveU)
and two serversS0 andS1 (running interactive algorithms
RetrieveSd , d ∈ {0, 1}) according to the following
specification:

– RetrieveU(par, π,w,S0,S1): on input π and a
keyword w, this algorithm upon successful interac-
tion with RetrieveSd , d ∈ {0, 1} outputs set III
containing all ix associated with w.

– RetrieveSd(par,U,infod): on input infod ,
this algorithm interacts with RetrieveU (and pos-
sibly RetrieveS1-d) and outputs a flag s ∈
{succ,fail}.

2.1.2 Correctness

A PASE scheme is correct if for all κ ∈ N,ix ∈ I, w ∈
W, π ∈ D, par ← Setup(1κ) the probability Pr[ix ∈
III] = 1 iff

〈succ,info0,info1〉 ← 〈RegisterU(par, π,S0,S1),

RegisterS0(par,U,S1),RegisterS1(par,U,S0)〉;

〈succ, (C,ix), (C,ix)〉 ← 〈OutsourceU(par, π,w,ix,S0,S1),

OutsourceS0(par,U,info0),OutsourceS1(par,U,info1)〉;
〈III ,succ,succ〉 ← 〈RetrieveU(par, π,w,S0,S1),

RetrieveS0(par,U,info0),RetrieveS1(par,U,info1)〉;

In other words, the user should always be able to retrieve
all indices ix that were previously outsourced under some
keyword w as long as this user is registered and has used
its registered password π in these outsourcing and retrieval
protocol sessions.

2.2 PASE security model

The security of PASE is defined based on two main security
goals: indistinguishability against chosen keyword attacks
(IND-CKA) and authentication. We adopt a BPR-like model-
ing approach [9] for password-based cryptographic protocols
and define security through experiments (cf. Fig. 1) where a
PPT adversary A has full control over the communication
channels and can interact with parties (controlled by a simu-
lator) through the set of oracles defined in the following.

2.2.1 Adversarial model and oracles

For each user U, we allow A to take full control over at
most one of the two servers S0 and S1 that were chosen by
U during the registration phase to capture the required dis-
tributed trust relationship. We mostly use Sd to denote the
uncorrupted server and S1-d to denote the server controlled
by the adversary. The oracles allow A to invoke interactive
algorithms for all protocols of PASE which will be executed
(honestly) by the simulator. A can interact with these algo-
rithms and by this participate in the protocol. In particular,
we allow A to participate in outsourcing and retrieval pro-
tocols on behalf of some corrupted server and also as some
(illegitimate) user who tries to guess the registered password
during the execution of the protocol.

Let τττ be an initially empty array that will be populated
with tuples of the form τττ [j] ← (d, π,infod) at the end of
each successful j-th registration session such that π is the
registered password and infod is the secret data stored at
the server Sd at the end of that session. We also use variables
i∗ ∈ Z, ix∗ ∈ I and a set Set that are maintained by
the experiments. The adversary A can access the following
oracles.

– Challenge oracle Chind(b, ·, ·, ·, ·): on input (i, w0, w1,

ix∗), the oracle aborts if ((i∗ ≥ 0)∨(i ≥ j)∨((i, w0) ∈
Set) ∨ ((i, w1) ∈ Set)). Otherwise, it sets i∗ ← i and
invokes oracle Out(i∗, wb,ix∗). Note that this oracle
will be used to model IND-CKA security of PASE.

123

Password-authenticated searchable encryption… 679

– Registration oracle Reg(·): on input d ∈ {0, 1}, the
experiment first initializes CCCd, j ← ∅ as a database

for session j . Then, it randomly picks fresh (π
$←

D) ∧ ((i, π, ·) /∈ τττ) for all i ∈ [0, j − 1]. The
Register protocol is executed withAwhere the oracle
plays the roles of honest U and Sd executing algorithms
RegisterU(par, π,S0,S1) and RegisterSd(par,

U,S1-d), respectively, and A plays the role of corrupted
S1-d . After interactions, the experiment records τττ [j] ←
(d, π,infod), delivers j to the adversary and increases
j ← j + 1.

– Outsource oracle Out(·, ·, ·): on input (i, w,ix),
the oracle aborts if i ≥ j ; or otherwise, it obtains
(d, π,infod) ← τττ [i]. The Outsource protocol is
then executed withA where the oracle plays the roles of
honest U and Sd executing algorithms
OutsourceU(par, π,w,ix,S0,S1) and
OutsourceSd(par,U,infod), respectively, and A
plays the role ofmaliciousS1-d . InAuth experiment, the
oracle additionally computes Set ← Set∪ (i, w,ix).

– Outsource oracle (server only) OutS(·): on input i ,
the oracle aborts if i ≥ j ; otherwise, it obtains
(d, π,infod) ← τττ [i]. The Outsource protocol is
then executed with A where the oracle plays the role of
honest Sd executing algorithm
OutsourceSd(par,U,infod) and A plays the roles
of (illegitimate) U and corrupted S1-d . Note that this ora-
cle will be used to model authentication of PASE.

– Retrieve oracle Ret(·, ·): on input (i, w), the oracle
aborts if i ≥ j . In the IND-CKA experiment, the
oracle also aborts if ((i = i∗) ∧ (w ∈ {w0, w1})).
Otherwise, it obtains the parameters (d, π,infod) ←
τττ [i]. The Retrieve protocol is then executed with A
where the oracle plays the roles of honest U and Sd
executing algorithms RetrieveU(par, π,w,S0,S1)
andRetrieveSd(par,U,infod), respectively, andA
plays the role of corrupted S1-d . In the IND-CKA exper-
iment, if (i∗ = −1) the oracle additionally computes
Set ← Set ∪ (i, w).

– Retrieve oracle (server only) RetS(·): on input i ,
the oracle aborts if i ≥ j ; otherwise, it obtains
(d, π,infod) ← τττ [i]. The Retrieve protocol is then
executed withAwhere the oracle plays the role of honest
Sd executing algorithm RetrieveSd(par,U,infod)

and A plays the roles of (illegitimate) U and cor-
rupted S1-d . Note that this oracle will be used to model
IND-CKA-security of PASE.

2.2.2 Indistinguishability against chosen keyword attacks
(IND-CKA)

The IND-CKA property for PASE is defined through the
experiment ExpIND-CKA-bPASE,A (κ) (cf. Fig. 1) and is closely
related to [5] except that our setting is based on passwords.
A is given the public parameters par and permitted to adap-
tively access oracles Chind(b, ·, ·, ·, ·), Reg(·), Out(·, ·, ·),
Ret(·, ·) and RetS(·) at most 1, qr , qo, qt and qs times,
respectively. In particular, ourIND-CKA experiment captures
the following ways that A may try to retrieve data: (i) from
interaction with an honest user U and the honest server Sd
playing the role of corrupted S1-d (which is captured through
the oracle Ret(·, ·)), or (ii) from interaction with the honest
server Sd playing the role of illegitimate user, e.g., trying to
guess the registered password, and the corrupted server S1-d
(which is captured through the oracle RetS(·)).

Let AdvIND-CKAPASE,A (κ)
def= Pr[b′ = b : b′ ←

ExpIND-CKA-bPASE,A (κ)] − 1
2 denote the advantage of A in the

IND-CKA security experiment. A PASE scheme is called
IND-CKA-secure if the probability AdvIND-CKAPASE,A (κ) ≤ qs

|D| +
ε(κ) where |D| is the dictionary size and ε(κ) is negligible
in the security parameter κ . Note that probability qs

|D| relates
to the use of oracle RetS(·) that models on-line dictionary
attacks and assumesuniformdistributionof passwordswithin
D, as is also common in BPR-like models.

2.2.3 Authentication (Auth)

The property of authentication for PASE is defined using
experiment ExpAuthPASE,A(κ) in Fig. 1. A is given the pub-
lic parameters par and permitted to access oracles Reg(·),
Out(·, ·, ·),OutS(·) andRet(·, ·)with atmost qr , qo, qs and
qt times, respectively. Our experiment effectively captures
attacks where A tries to outsource some data ix∗ on behalf
of some user U without knowing the registered password
(via OutS(·) oracle), possibly after having interacted with U
and the honest server Sd . In its attack on authentication, A

Fig. 1 PASE security experiments. The oracles are defined in Sect. 2.2

123

680 L. Chen et al.

can play the role of a corrupted server S1-d and also mount
man-in-the-middle attacks on sessions of Outsource and
Retrieve protocols involving user U.

A PASE scheme provides authentication if for all PPT A
the probability AdvAuthPASE,A(κ) = Pr[1 ← ExpAuthPASE,A(κ)] ≤
qs
|D| +ε(κ). As in theIND-CKA case,we again need to account
for the possibility of online guessing attacks via the oracle
OutS(·).

3 Our direct PASE construction

In this section, we propose a direct and efficient construc-
tion of PASE. It follows our general idea of combining
suitable password-authenticated secret sharingwith symmet-
ric searchable encryption techniques. In the introduction,
we explained the difficulties behind an attempt to construct
PASE generically using PASS and SSE schemes and moti-
vated our choice for a direct construction.

3.1 Cryptographic building blocks

In our PASE construction, we rely on a number of well-
known cryptographic primitives that we briefly introduce in
the following.

3.1.1 Pedersen commitments [37]

Let g, h be two generators in a multiplicative cyclic groupG
with order q, and the discrete logarithm between h and g is
unknown. For a messagem ∈ Z

∗
q , the Pedersen commitment

is computed as c ← grhm where r
$← Z

∗
q and is opened by

providing (r ,m). We recall that Pedersen commitments offer
computational binding based the discrete logarithm problem,
i.e., assuming AdvDLA (κ) is negligible and provide perfect
hiding.

3.1.2 Pseudorandom function (PRF) [24,33]

Let k ∈ KPRF be a high min-entropy key in the PRF key
space. A pseudorandom function PRF is called (t, q, ε(κ))-
secure if for any PPT algorithm A running in time t with at
most q oracle queries the probability AdvPRFA (κ) ≤ ε(κ) for
distinguishing the outputs ofPRF(k,m) from the outputs of a
truly random function f of the same length, assuming thatA
has oracle access toOPRF(·) which contains either PRF(k, ·)
or f (·) and which cannot be queried on m.

3.1.3 Key derivation function (KDF) [32]

Let Σ be a source of key material. A key derivation function
KDF is called (t, q, ε(κ))-secure with respect to Σ if for any

PPT algorithm A running in time t with at most q oracle
queries the probability AdvKDFA (κ) ≤ ε(κ) for distinguish-
ing the output of KDF(k, c) from uniformly drawn random
strings of the same length, assuming that (k, α) ← Σ where
k is the secret key material and α is some side information.
It is assumed that A knows α, has control over the context
information c and has oracle access to KDF(k, ·) which can-
not be queried on c.

3.1.4 Message authentication code [7]

Amessage authentication code (KGen,Tag,Vrfy) is com-
prised of the algorithms

– KGen(κ): on input security parameter κ output key
mk ← {0, 1}κ .

– Tag(mk,m): on input a key mk and a messagem, output
tag μ ← Tag(mk,m).

– Vrfy(mk,m, μ): on input a key mk, a message m and a
tag μ outputs 1 if μ is valid or 0 otherwise.

A MAC is secure if any PPT algorithmA without knowledge
of mk has only negligible probability AdvMACA (κ) to forge a
tag μ∗ for some message m∗. A has access to the tag oracle
OTag(·) which returns μ ← Tag(mk,m) on input m. The
only restriction is that m∗ is never queried to OTag(·).

3.2 High-level design rationale

Our PASE protocol is inspired by the techniques used in the
recent password-authenticated secret sharing protocol from
[40] which we modified to address the functionality and
requirements of PASE and extended with a suitable mech-
anism for symmetric searchable encryption of keywords. In
particular, we define a new registration protocol Register
upon which the user registers its password π encrypted in
Cπ with both servers and also picks a symmetric key K for
which it computes appropriate shares K0 and K1 which are
then sent to the corresponding servers. The reconstruction
of K is protected by π , and MAC codes μd are used to
ensure the validity of K upon its reconstruction. The pro-
tocols Outsource and Retrieve proceed according to
the similar pattern. First, the user reconstructs K using its
password π after communication with both servers. Then, in
Outsource protocol U uses K in combination with its key-
word w to derive a trapdoor t ← KDF2(K , w) and a fresh
randomness e to derive verifier v ← PRF(t, e). The pair
(e, v) becomes part of the outsourced ciphertext C which is
bound to some data ix. During the Retrieve protocol,
the user can recompute the trapdoor t for a given keyword
w and then send it to the servers who can the find all out-
sourced ciphertexts C for which v ← PRF(t, e) holds and
hence identify which data ix needs to be returned. In order

123

Password-authenticated searchable encryption… 681

to prevent servers from creating their own pairs (e, v) for
a given t the outsourced ciphertext C additionally includes
a MAC tag μc which authenticates (e, v) and also ix and
which can only be computed and verified using K . During
the Retrieve protocol, the user will ensure that it final
search result contains only data that pass this integrity and
authenticity check. In addition, both protocols make use of
MACs to ensure authenticity of messages, where the MAC
keys are derived from K on the user side. We emphasize that
our PASE construction is in the password-only setting where
servers are not required to possess any public keys for the
security of the PASE scheme. However, if the registration
protocol Register is performed remotely over a public
network, then this protocol needs to be executed over server-
authenticated secure-channels (e.g., TLS). In order to enable
reconstruction of K by the user and to protect this phase with
the password both servers communicate with each other as
part of the Outsource and Retrieve protocols. While
in practice this communication between the two servers will
likely be protected using a secure channel (e.g., TLS), we
stress that in our protocols this communication can take place
over an insecure channel.

3.3 Detailed description

In the following, we provide a detailed description of
all algorithms and protocols underlying our direct PASE
scheme, along with Figs. 2 and 3 that illustrate the proto-
cols Outsource and Retrieve, respectively.

3.3.1 Initialization procedure Setup(1�)

The algorithm generates public parameters par contain-
ing {G, q, g, h,KDF1,KDF2,PRF,MAC}, where (G, q, g, h)

represents a multiplicative cyclic groupGwith a prime order

q andgenerators g, h
$← G such that the discrete logarithmof

h with respect to base g remains unknown. H : G×G → Z
∗
q

is a collision-resistant hash function. KDF1 : {0, 1}∗ →
KMAC and KDF2 : G × W → KPRF are two key derivation
functions. PRF : KPRF × {0, 1}κ → {0, 1}κ is a pseudo-
random function. MAC = (KGen,Tag,Vrfy) is a message
authentication code with Tag : KMAC × {0, 1}∗ → {0, 1}κ
and Vrfy : KMAC × {0, 1}∗ × {0, 1}κ → {0, 1} where KPRF

and KMAC are PRF and MAC key spaces, respectively. We
assume that passwords from D are represented as elements
of Z∗

q .

3.3.2 Registration protocol Register

In order to register, a user U picks r1, r2, x0, x1
$← Z

∗
q

and K , K0
$← G; computes X ← gx0+x1 , K1 ←

Xr1K (K0)
-1 and Cπ ← Xr2hπ . Then, for d ∈ {0, 1}, the

user computes mkd ← KDF1(K ,Sd , ‘1’), sets infod ←
(xd , gr1 , gr2 ,Cπ , Kd ,mkd) and sends infod to each server
Sd , d ∈ {0, 1} over a server-authenticated secure channel.
Finally, U memorizes π .

3.3.3 Outsourcing protocol Outsource

The Outsource protocol between the user U and each
server Sd , d ∈ {0, 1} is illustrated in Fig. 2, and its
steps are detailed in the following. Note that as part of the
Outsource protocol both S0 and S1 communicate with
each other, possibly over an insecure channel.

1. User U randomly selects a
$← Z

∗
q , e

$← {0, 1}κ and sends
A ← gahπ to both servers.

2. On input A, server Sd executes following steps:

(a) Pick sd , yd
$← Z

∗
q , compute Yd ← gyd , Rd ←

(gr2)yd .
(b) Send Pedersen commitment cd ← gsd hH(Yd ,Rd) to

server S1-d and wait for its response c1-d .
(c) Send the opening (Yd , Rd , sd) to server S1-d and

wait for its response (Y1-d , R1-d , s1-d). If c1-d �=
gs1-d hH(Y1-d ,R1-d), then abort.

(d) Send (Y , Zd , μd) to U where Y ← Y0Y1, R ←
R0R1, μd ← Tag(mkd , (A,Y , Zd)) and Zd ←
Kd(Cπ A-1)yd (gr1R)-xd .

3. Upon receiving (Y , Z0, μ0) and (Y , Z1, μ1) from both
servers, user U executes following steps:

(a) If Vrfy(mkd , (A,Y , Zd), μd) = 0 for any d ∈
{0, 1}, then abort, else compute K ← Z0Z1Ya .

(b) Compute t ← KDF2(K , w), v ← PRF(t, e),mku ←
KDF1(K ,U, ‘0’), μc ← Tag(mku, (e, v,ix)) and
C ← (e, v, μc).

(c) Send ((C,ix), μskd) to server Sd , d ∈ {0, 1}
where μskd ← Tag(skd , (C,ix)) using skd ←
KDF1(mkd , A,Y , ‘2’).

4. On input ((C,ix), μskd), server Sd stores (C,ix) in
its database CCCd if Vrfy(skd , (C,ix), μskd) = 1 for
skd ← KDF1(mkd , A,Y , ‘2’), else Sd aborts.

3.3.4 Retrieval protocol Retrieve

The Retrieve protocol between the user U and each server
Sd , d ∈ {0, 1} is illustrated in Fig. 3, and its steps are detailed
in the following. Note that as part of theRetrieve protocol
both S0 and S1 communicate with each other, possibly over
an insecure channel.

1. User U randomly selects a
$← Z

∗
q and sends A ← gahπ

to both servers.

123

682 L. Chen et al.

Fig. 2 The Outsource
protocol between user U and
server Sd . The server-side
algorithm includes
communication between servers
Sd and S1-d

2. On input A, server Sd executes following steps:

(a) Pick sd , yd
$← Z

∗
q , compute Yd ← gyd , Rd ←

(gr2)yd .
(b) Send Pedersen commitment cd ← gsd hH(Yd ,Rd) to

server S1-d and wait for its response c1-d .
(c) Send opening (Yd , Rd , sd) to server S1-d and waits

for its response (Y1-d , R1-d , s1-d). If c1-d �=
gs1-d hH(Y1-d ,R1-d), then abort.

(d) Send (Y , Zd , μd) to U where Y ← Y0Y1, R ←
R0R1, μd ← Tag(mkd , (A,Y , Zd)) and Zd ←
Kd(Cπ A-1)yd (gr1R)-xd .

3. Upon receiving (Y , Z0, μ0) and (Y , Z1, μ1) from both
servers, U executes following steps:

(a) If Vrfy(mkd , (A,Y , Zd), μd) = 0 for any d ∈
{0, 1}, then abort, else compute K ← Z0Z1Ya .

(b) Compute t ← KDF2(K , w) andμskd ← Tag(skd , t)
using skd ← KDF1(mkd , A,Y , ‘2’). Send (t, μskd)

to Sd , d ∈ {0, 1}.
4. On input (t, μskd), server Sd executes following steps:

(a) IfVrfy(skd , t, μskd) = 0, then abort, else compute
skd ← KDF1(mkd , A,Y , ‘2’).

(b) Initialize set AAAd ← ∅. For all (C,ix) ∈ CCCd ,
parse (e, v, μc) ← C and add (C,ix) to AAAd if
v = PRF(t, e). Finally, send AAAd to U.

5. Upon receiving AAA0 and AAA1, user U initializes an empty
set III ← ∅. Then, for all (C,ix) ∈ (AAA0 ∪ AAA1), parses
(e, v, μc) ← C and adds ix to III if v = PRF(t, e) and
Vrfy(mku, (e, v,ix), μc) = 1. This step guarantees
that only outsourced data for which the integrity check
was performed successfully will be added to the output
set III .

3.3.5 Correctness of our PASE scheme

In the following, we illustrate that if the initially regis-
tered password π is used by the user in the executions of
the Outsource and Retrieve protocols then comput-
ing Z0Z1Ya in the key reconstruction phase results in the
original key K :

Z0Z1Y
a =K0(Cπ A

-1)y0(gr1R)-x0 ·

123

Password-authenticated searchable encryption… 683

Fig. 3 The Retrieve protocol
between U and Sd . The
server-side algorithm includes
communication between servers
Sd and S1-d

K1(Cπ A
-1)y1(gr1R)-x1 · ga(y0+y1)

=Xr1K (Xr2g-a)y0+y1(gr1R)-(x0+x1)ga(y0+y1)

=Xr1K Xr2(y0+y1)X -(r1)X -r2(y0+y1) = K

3.4 Efficiency analysis and improvements

3.4.1 Efficiency comparison with existing PASS protocols

Given that our direct PASE construction follows the general
idea of building PASE protocols based on the techniques
used for password-authenticated secret sharing, we compare
performance with existing PASS protocols. Since our PASE
scheme assumes password-only setting (except for the reg-
istration), we restrict our comparison with password-only
PASS schemes [4,26–28,40] and compare only the costs that
arise from the sharing and retrieval of the symmetric key
K—note that in our PASE scheme sharing of K is performed
as part of the Register protocol, whereas retrieval of K
is part of both Outsource and Retrieve protocols and
is accomplished in step 3a) of these protocols. Since our

PASE scheme adopts a two-server architecture, but the afore-
mentioned PASS schemes were designed for a more general
t-out-of-n threshold setting we consider their costs for the
special case of t = n = 2 to ease the comparison. The
results of the comparison are presented in Table 1.

We compare computation costs through the number of
modular exponentiations for the user and each of the servers
during the sharing and retrieval phases of the symmetric key
K . We also compare communication costs in the number of
bits communicated in both phases, while considering user–
server and server–server communications. For the lengths of
elements in G and Z

∗
q , we use |G| = q and |q| = κ bits,

respectively. We also compare the number of rounds needed
for the sharing and retrieval of K .

We observe that in terms of computation and communi-
cation costs key sharing and reconstruction phases in our
PASE scheme compare fairly well with those of existing
PASS protocols. In particular, only [27,28] which are the
most computationally efficient PASS protocol today offers
better overall computation and communication performance.
We stress, however, that for PASE protocols the efficiency

123

684 L. Chen et al.

Table 1 Efficiency comparison of our PASE key reconstruction phase with password-only PASS schemes

Computation (exp) Communication (bits) Rounds

Sharing Retrieval Sharing Retrieval Sharing Retrieval

u s u s u-s u-s s-s

BJSL11 [4] 6 0 33 16 24q + 4κ 22q + 2κ 0 1 2

JKK14 [26] 4 1 11 4 8q + 4κ 8q + 4κ 0 1 1

YCHL15 [40] 1 0 7 12 6κ 10q 8q 1 1

JKKX16 [27] 4 1 4 1 8q + 4κ 8q + 4κ 0 2 1

JKKX17 [28] 2 1 2 1 2q + 2κ 4q + 2κ 0 2 1

In our PASE 6 0 3 8 8q + 2κ 6q 6q + 2κ 1 1

The computation costs are measured in modular exponentiations; the communications costs are measured in bits. Both of these costs are provided
separately for the user (u) and each server (s)

of the retrieval phase is of greater importance than of the
sharing phase. This is because in PASE sharing of K is per-
formed only once as part of the registration procedure, but
retrieval of K occurs each time the user wants to outsource
data or search for keywords. Furthermore, due to the simpli-
fied keymanagement (i.e., reliance on passwords only) PASE
offers device-agnostic use of the functionality to the user and
can possibly be executed on different client devices (ranging
from desktops over to smartphones). In this case, it becomes
important to keep the costs associated with computations on
the user side and the user-server communication low. Con-
sidering this, we observe that in comparison with [27,28] our
PASE scheme achieves similar and even partly better perfor-
mance for computations and communication involving the
user device.

As a result of our comparison, we conclude that our PASE
scheme is sufficiently practical since the additional costs aris-
ing from the encrypted keyword search functionality within
our PASE protocols are negligible (due to the nature of com-
putations involved) in comparisonwith the costly key sharing
and retrieval steps.

3.4.2 PASE with sublinear search complexities

Our PASE construction supports all CRUD operations
required for a database, but its search complexity is O(D)

for a database DB of size D whilst state-of-the-art schemes
achieve a better bound of O(log D). The search complexity
of our PASE can be decreased using the techniques from
[16,19,38], yet at the cost of some security and/or func-
tionality limitations. For instance, using the techniques from
[16,19] would require limiting PASE functionality to static
databases loosing dynamic updates. The latter can be pre-
served with an ORAM but at a higher cost of O(D log D)

for periodic oblivious sorting [38].
The state-of-the-art approach in [19] uses dynamicdatabases

with limited updates. We adopt it here because of the best
trade-off between efficiency and functionality. Currently,

within each Outsource round we outsource one key-
word w associated with some document ix. Using [19],
within each Outsource round we can outsource a batch
of documents by treating them as a static database DB.
The optimization is achieved by constructing a look-up table
T in the setup phase which holds pointers to locations of
the documents in DB such that the table inputs depend on
the document keyword w. This restricts the functionality to
dynamic databases that allow only addition of documents but
not their removal as the latter would require an update of the
look-up table resulting in worse than linear complexity.

In order to extend the Outsource protocol (cf. Fig. 2)
to outsource a database DB = {(wi ,ixi)|1 ≤ i ≤ N },
for all unique keywords wi in DB, we compose a list
Li = {(wi ,ind(ixi j),ixi j)|(wi ,ixi j) ∈ DB, 1 ≤ j ≤
ni } where ind(ixi j) is the index of the file in DB and
|Li | = ni . The protocol is then executed for each tuple
(wi ,ind(ixi j),ixi j) followed by the computation of an
additional key oi j ← KDF2(ti , j) and the look-up table
entry T [oi j] := ind(ixi j). Once these values are calcu-
lated for all entries in DB, the entire encrypted databaseCCCd

is sent along with the look-up table T to each server. Notice
that CCCd preserves the same order of elements from DB,
and ind(·) should give the same location for both CCCd and
DB. The Retrieve protocol is performed in the same way
(cf. Fig. 3), except each server receives (t, μskd , {oi j }nij=1)

for |Li | = ni . Servers use keys {oi j }nij=1 to identify entries
{Ci ,ixi j)}nij=1

in CCCd based on ind(ixi j) from the look-
up table T . To stop adversaries from trivially differentiating
based on the list size, [19] extends DB to DB∗ with dummy
documents, such that all lists have the same size |Li | = n, for
n = maxi {ni }. The resulting version of PASEwould achieve
the lower search bound of O(log D) but have the aforemen-
tioned limitation on the removal of documents. It intuitively
satisfies the same security guarantees as the original version
based on the fact that each outsource operation can be seen
as an outsource of a new independent static database.

123

Password-authenticated searchable encryption… 685

3.5 Extensions withmultiple keywords

In the given specification of our PASE construction, users can
use only one keyword w in each execution of Outsource
and Retrieve protocols at a time. Often, users may want
to be able to outsource or search for documents associ-
ated with multiple keywords. Our PASE scheme can be
extended to provide efficient support for multiple keywords.
Let www = (w1, . . . , wn) be a set of outsourced keywords
for some document ix and let www′ = (w′

1, . . . , w
′
m) be a

set of searched keywords. In the following, we show how
to support (i) outsourcing of ix with www through a single
session of the Outsource protocol and (ii) search for all
suitable documents ix using www′ through a single session of
the Retrieve protocol, based on three different types of
search queries [11]: conjunctive queries (www = www′), disjunc-
tive queries (|www∩www′| > 0), and those for a subset of keywords
(www′ ⊆ www).

3.5.1 Outsourcing documents with multiple keywords

In order to outsource some document ix associated with
multiple keywords www = (w1, . . . , wn), user U can compute
vvv = (v1, . . . , vn), ti ← KDF2(K , wi) and vi ← PRF(ti , e)
for i = 1, · · · , n, and μc ← Tag(mku, (e,vvv)) as part of the
same Outsource execution and outsource C ← (e,vvv, μc)

as the resulting ciphertext to both servers.

3.5.2 Search queries with multiple keywords

In order to search for documents using multiple keywords,
i.e., w′

1, . . . , w
′
m , m ≤ n, within a single execution of the

Retrieve protocol, user U can send a set of authenticated
trapdoors ti = KDF2(K , wi) for all searched keywords w′

i ,
i = 1, · · · ,m to both servers. Then, for all (C,ix) =
(e,vvv, μc,ix) stored in the database CCCd , server Sd can ini-
tialize an empty output set AAAd , compute vvv′ = (v′

1, · · · , v′
m)

where v′
i = PRF(ti , e), i = 1, . . . ,m, and update the output

set AAAd ← AAAd ∪ (C,ix) according to the following condi-
tions, depending on the type of search search query, i.e.,

– for conjunctive queries w′
1 ∧ . . . ∧ w′

m : if vvv = vvv′
– for disjunctive queries w′

1 ∨ . . . ∨ w′
m : if |vvv ∩ vvv′| > 0

– for subset queries (w′
1, . . . , w

′
m) ⊆ www: if vvv′ ⊆ vvv.

3.6 Password change

Our PASE scheme allows users to change their passwords
without changing the encryption keys K . The latter require-
ment is crucial since otherwise all outsourced keywords
would need to be re-encrypted. In the following, we describe
how a user can change current password π to a new pass-

word π∗ depending on whether the user still knows π or has
forgotten it.

3.6.1 Changing known passwords

A new password π∗ can be registered with the knowledge of
the current π as follows:

1. User U sends A ← gahπ to both servers (as in
Outsource and Retrieve). Each server Sd , d ∈
{0, 1}uses itsinfod to respondwith (Y , Zd , gr2 ,Cπ , μd)

where μd ← Tag(mkd , (Y , Zd , gr2 ,Cπ)).
2. Upon reconstructing mkd as in Outsource and

Retrieve protocols and verifying μd , the user picks

random r∗ $← Z
∗
q , computes Cπ∗ ← (Cπh-π)r

∗
hπ∗

and

μ∗
d ← Tag(mkd , (gr2)r

∗
,Cπ∗), and sends (gr2r

∗
,Cπ∗ ,

μ∗
d) to both servers.

3. If Vrfy(mkd , (gr2r
∗
,Cπ∗), μ∗

d) = 1, then each Sd
replaces (gr2 ,Cπ) in its infod with (gr2r

∗
,Cπ∗).

Note that the current π is used implicitly to authenticate the
user toward both servers.

3.6.2 Changing forgotten passwords

The above procedure cannot be executed if the user has for-
gotten her current password π . In this case, the user can
no longer implicitly authenticate itself during the password
change procedure. Since our PASE construction relies only
on passwords, we naturally need to assume some alternative
fall-back authentication mechanism (e.g., similar to those
used on the web) that would be able to distinguish legitimate
users from potential impersonators. We assume that a fall-
back authentication mechanisms is in place which allows the
user to independently set up secure channels with each of
the two servers Sd , d ∈ {0, 1}. The establishment of such
channels still leaves us with a challenge to register a new
password π∗ for that user without changing the previously
registered encryption key K . We observe that upon the ini-
tial registration the encryption key K satisfies the following
equation K0K1 = Xr1K where X = gx0+x1 and (Kd , xd)
is known only to the corresponding Sd . Moreover, the cur-
rent password π is encrypted in the ElGamal ciphertext
(gr2 ,Cπ = Xr2hπ) stored on both servers. In the follow-
ing password change protocol, this ElGamal ciphertext is
replaced with (gr

∗
2 ,Cπ∗ = Xr∗

2 hπ∗
) for the new password

π∗ such that the underlying base X remains unchanged:

1. Each server Sd , d ∈ {0, 1}, computes Xd ← gxd using
xd from infod and sends Xd to U over the previously
established secure channel.

123

686 L. Chen et al.

2. User U picks random r∗
2

$← Z
∗
q , computes Cπ∗ ←

(gx0gx1)r
∗
2 hπ∗

and responds with (gr
∗
2 ,Cπ∗) to Sd .

3. Each server Sd replaces (gr2 ,Cπ) with (gr
∗
2 ,Cπ∗) in its

infod .

This password change protocol can be seen as a compressed
version of the registration protocol. Jumping ahead of Sect.
4, we observe that the newly registered password π∗ remains
protected against an adversary who can compromise at most
one of the two servers under the same assumptions as the old
password π .

4 Security analysis

In the following, we prove the security of our direct PASE
scheme using our definitions from Sect. 2.2. In the proofs,
we adopt the standard game-hopping technique. Let succn

denote the event that the adversary wins in the experiment n.

4.1 IND-CKA-security of our PASE scheme

Theorem 1 Our direct PASE construction is IND-CKA-
secure assuming the hardness of the DDH problem and
security of KDF1, KDF2, PRF and MAC.

Proof Experiment ExpIND0 . The simulator initializes
τττ , i∗, j,Set andpar ← {G, q, g, h, H ,KDF1,KDF2,PRF,

MAC} as defined in the real security experiment
ExpIND-CKA-bPASE,A (κ). The oracles Chind(b, ·, ·, ·, ·), Reg(·),
Out(·, ·, ·), Ret(·, ·) and RetS(·) are implemented as fol-
lows.

– Chind(b, ·, ·, ·, ·): on input (i, w0, w1,ix∗), the oracle
aborts if ((i∗ ≥ 0) ∨ (i ≥ j) ∨ ((i, w0) ∈ Set) ∨
((i, w1) ∈ Set)); otherwise, it sets i∗ ← i and invokes
oracle Out(i∗, wb,ix∗).

– Reg(·): on input d ∈ {0, 1}, the simulator randomly

selects fresh π
$← D and K

$← G and initializes an
empty database CCCd, j . The simulator and A complete
the Register protocol, where the simulator plays the
roles of U and Sd , and A plays the role of S1-d . The
oracle sends j to A as a session identifier. Finally, it
records τττ [j] ← (d, π,infod , r2, x1-d), infod ←
(S1-d , xd , gr1, gr2 ,Cπ , Kd ,mkd), increments j ← j +
1, and stores r2 and x1-d for later use in the proof.

– Out(·, ·, ·): on input (i, w,ix), the simulator aborts if
(i ≥ j); otherwise, it obtains (d, π,infod , r2, x1-d) ←
τττ [i]. Then, the simulator plays the roles of U and Sd
and interacts with A who plays the role of S1-d in the
Outsource protocol.

– Ret(·, ·): on input (i, w), the simulator aborts if (i ≥
j)∨((i = i∗)∧(w ∈ {w0, w1})); or otherwise, it obtains

(d, π,infod , r2, x1-d) ← τττ [i]. Then, it plays the roles
of U and Sd and interacts with A who plays the role
of S1-d party in the Retrieve protocol. Finally, the
simulator computes Set ← Set ∪ (i, w) if (i∗ = −1).

– RetS(·): on input i , the simulator aborts if (i ≥ j); oth-
erwise, it obtains parameters (d, π,infod , r2, x1-d) ←
τττ [i] and executes RetrieveSd(par,U,infod).

��
Lemma 1 AdvIND-CKAPASE,A (κ) = Pr[succIND0] − 1/2

Experiment ExpIND1 . This experiment is similar to
ExpIND1 except that the simulator aborts if some value for
yd used on behalf of honest server Sd appears in two differ-
ent protocol sessions through oracles Out(·, ·, ·), Ret(·, ·)
and RetS(·).
Lemma 2 Pr[succIND1] = Pr[succIND1]

Experiment ExpIND2 . This experiment is similar to
ExpIND2 except that the simulator aborts if some value for Y
appears in two different protocol sessions executed through
oracles Out(·, ·, ·), Ret(·, ·) and RetS(·).

1. By the perfect hiding property of Pedersen commitments,
value Y1-d is guaranteed to be independent from Yd
because the adversary acquires nothing from cd .

2. Due to the binding property of Pedersen commitments,
which is based on the hardness of the DL problem, it is
hard to open c1-d to a different Y ′

1-d �= Y1-d .

Since Y1-d is guaranteed to be independent from Yd ; and Yd
is fresh, we can follow that Y is fresh based on the hardness
of the DL problem.

Lemma 3 |Pr[succIND2] − Pr[succIND2]| ≤ AdvDLA (κ)

Experiment ExpIND3 . This experiment is similar to ExpIND3
except that in oracles Out(·, ·, ·), Ret(·, ·) and RetS(·),
the message (Zd , μd) from the honest server Sd to the

user is replaced with (E, μ′
d) where E

$← G and μ′
d ←

Tag(mkd , A,Y , E). We discuss the following two cases:

1. For theoraclesOut(·, ·, ·) andRet(·, ·), let (g, gα, gβ, Q)

be an instance of the DDH problem, the simulator aims to
output 1 if Q = gαβ ; or 0 otherwise. The simulator sets
A ← gαhπ , Yd ← gβ , Rd ← (gβ)r2 and

Zd ← Kd(g
β)r2(x0+x1)Q-1(gr1 · (gβ)r2 · R1-d)

-xd

If Q = gαβ , this experiment is identical to ExpIND3 ;
otherwise, to ExpIND3 . The hardness of theDDHproblem
implies the indistinguishability of ExpIND3 from ExpIND3 .

123

Password-authenticated searchable encryption… 687

2. For oracleRetS(·), assumeπ ′ is the password tried byA,
the key K (in ExpIND3) is equal to Z0Z1Yah(π−π ′)(y0+y1);
under the DDH assumption, the adversary cannot distin-
guish h(π−π ′)(y0+y1) (in ExpIND3) from a random number
in G (in ExpIND3) unless π ′ = π which denotes a
successful on-line dictionary attack. By the uniform dis-
tribution of passwords, its probability is estimated as
qs · AdvDDHA (κ) + qs

|D| .

Lemma 4 |Pr[succIND3]−Pr[succIND3]| ≤ (qs+1)AdvDDHA (κ)+
qs
|D|

Experiment ExpIND4 . This experiment is similar to ExpIND4
except that in each session i , valuesmku ← KDF1(K ,U, ‘0’),
mkd ← KDF1(K ,Sd , ‘1’), mk1-d ← KDF1(K ,S1-d , ‘1’)
are replacedwithmku ← F1(i,U, ‘0’),mkd ← F1(i,Sd , ‘1’)
and mk1-d ← F1(i,S1-d , ‘1’), respectively. A table T1 is
initialized to be empty in the beginning of ExpIND4 . The
deterministic function F1 : {0, 1}∗ → KMAC is defined as
follows: if ∃(i, id, k,mk) ∈ T1, then F1(i, id, k) returns mk;

otherwise, the simulator randomly picks a freshmk
$← KMAC,

stores (i, id, k,mk) in T1 and returns mk where fresh means
that no record of the form (·, ·, ·,mk) ∈ T1 exists so far. Since
A only acquires mk1-d , by the uniform distribution of K and
the security of KDF1, we obtain

Lemma 5 |Pr[succIND4]−Pr[succIND
4]| ≤ qr ·AdvKDFA (κ)

Experiment ExpIND5 . This experiment is similar to
ExpIND5 except that in each session i of oracles Out(·, ·, ·)
and Ret(·, ·), value t ← KDF2(K , w) is replaced with
t ← F2(i, w). T2 is initialized as an empty table in the begin-
ning of ExpIND5 . F2 returns t if ∃(i, w, t) ∈ T2; otherwise,

F2 picks a fresh t
$← KPRF, stores (i, w, t) in T2 and returns

t where fresh means that no record of the form (·, ·, t) exists
in T2. By the uniform distribution of K and the security of
KDF2, we have

Lemma 6 |Pr[succIND5]−Pr[succIND5]| ≤ (qo+qt)AdvKDFA (κ)

Experiment ExpIND6 . This experiment is similar to
ExpIND6 except for one of the following cases:

1. For the oracle Out(·, ·, ·), the adversary successfully
forges ((C,ix), μskd)which satisfiesVrfy(skd , (C,ix),

μskd) = 1.
2. For the oracles Ret(·, ·) or RetS(·), the adversary suc-

cessfully forges (t, μskd) which satisfies Vrfy(skd , t,
μskd) = 1.

By the unforgeability of MAC, we have

Lemma 7 |Pr[succIND6] − Pr[succIND
6]| ≤ (qo + qt +

qs)AdvMACA (κ)

Experiment ExpIND7 . This experiment is similar to
ExpIND7 except that in oracles Out(·, ·, ·) and Ret(·, ·), the
value v is set in a different way. Let OPRF(·) be the oracle
from the security experiment of the pseudorandom func-
tion PRF; and let Tv be initialized as an empty table in the
beginning of ExpIND7 . When the simulator needs to compute
v ← PRF(t, e) in session i , it obtains v using table Tv . If
∃(i, t, e, rv, v) ∈ Tv , the simulator uses v from Tv; otherwise,

it randomly picks rv
$← {0, 1}κ , stores (i, t, e, rv,OPRF(rv))

in Tv and obtains v ← OPRF(rv). Assuming the pseudoran-
domness of PRF, we have

Lemma 8 Pr[succIND7] ≤ 1/2 + (qo + qt)AdvPRFA (κ)

As a consequence, based on Lemmas 1 to 8 we can
conclude that our proposed PASE construction is IND-CKA-
secure assuming the intractability of the DDH problem and
security of KDF1, KDF2, PRF and MAC.

4.2 Authentication property of our PASE scheme

Theorem 2 OurproposedPASEconstructionprovides authen-
tication based on the hardness of the DDH problem and
security of KDF1, KDF2 and MAC.

Proof Experiment ExpAuth0 . The simulator initializes
τττ , j,Set and par ← {G, q, g, h, H ,KDF1,KDF2,PRF,

MAC} as defined in the real security experiment ExpAuthPASE,A(κ).
The oracles Reg(·), Out(·, ·, ·), OutS(·) and Ret(·, ·) are
executed by the simulator as follows.

– Reg(·): on input d ∈ {0, 1}, the simulator randomly

selects a fresh π
$← D and K

$← G and initializes
an empty database CCCd, j . Then, the simulator and A
execute the Register protocol, where the simulator
plays the role of U,Sd and A plays the role of S1-d .
The simulator then sends j to A as a session identifier.
Finally, the simulator records τττ [j] ← (d, π,infod ,

r2, x1-d), infod ← (S1-d , xd , gr1, gr2 ,Cπ , Kd ,mkd),
increments j ← j + 1, and stores r2 and x1-d for later
use in the proof.

– Out(·, ·, ·): on input (i, w,ix), the simulator aborts if
(i ≥ j); otherwise, it obtains (d, π,infod , r2, x1-d) ←
τττ [i]. Then, it sets Set ← Set ∪ (i, w,ix). Finally, it
plays the roles of U and Sd and interacts with A who
plays the role of S1-d party in the Outsource protocol.

– OutS(·): on input i , the simulator aborts if (i ≥ j); oth-
erwise, it obtains parameters (d, π,infod , r2, x1-d) ←
τττ [i] and executes OutsourceSd(par,U,infod).

– Ret(·, ·): on input (i, w), the simulator aborts if (i ≥
j); otherwise, it obtains parameters (d, π,infod , r2,
x1-d) ← τττ [i]. Then, it plays the roles of U and Sd
and interacts with A who plays the role of S1-d in the
Retrieve protocol. ��

123

688 L. Chen et al.

Lemma 9 AdvAuthPASE,A(κ) = Pr[succAuth0]

Experiment ExpAuth1 . This experiment is similar to
ExpAuth0 except that the value yd is ensured to be fresh in
every session executed by the simulator through the oracles
Out(·, ·, ·), OutS(·) and Ret(·, ·).
Lemma 10 Pr[succAuth

0] = Pr[succAuth
1]

Experiment ExpAuth2 . This experiment is similar to
ExpAuth1 except that the simulator aborts if a value for Y
repeats in two different sessions of the protocol executed
by the simulator through oracles Out(·, ·, ·), OutS(·), and
Ret(·, ·).

1. By the perfect hiding of Pedersen commitments, values
ofY1-d are guaranteed to be independent fromYd because
the adversary acquires nothing from cd .

2. Because of the binding property of Pedersen commit-
ments, which is based on the hardness of theDL problem,
it is hard to open c1-d to a different value Y ′

1-d �= Y1-d .

Since Y1-d is guaranteed to be independent from Yd and Yd
is fresh, the freshness of Y is implied by the hardness of the
DL problem.

Lemma 11 |Pr[succAuth1] − Pr[succAuth
2]| ≤ AdvDLA (κ)

Experiment ExpAuth3 . This experiment is similar to
ExpAuth2 except that in oracles Out(·, ·, ·), Ret(·, ·) and
OutS(·), the message (Zd , μd) from the honest server Sd

to the user is replaced with (E, μ′
d) where E

$← G and
μ′
d ← Tag(mkd , A,Y , E). We consider the following two

case:

1. For oracles Out(·, ·, ·) and Ret(·, ·), let (g, gα, gβ, Q)

be an instance of the DDH problem, the simulator aims to
output 1 if Q = gαβ ; or 0 otherwise. The simulator sets
A ← gαhπ , Yd ← gβ , Rd ← (gβ)r2 and

Zd ← Kd(g
β)r2(x0+x1)Q-1(gr1 · (gβ)r2 · R1-d)

-xd

If Q = gαβ , then this experiment is identical to ExpAuth2 ;
otherwise, it is identical to ExpAuth3 . The hardness of the
DDH problem directly implies the indistinguishability of
ExpAuth2 from ExpAuth3 .

2. For the oracle OutS(·), assume π ′ is a password
used by the adversary, the key K (in ExpAuth2) is
equal to Z0Z1Yah(π−π ′)(y0+y1); under the DDH assump-
tion, the adversary cannot distinguish h(π−π ′)(y0+y1) (in
ExpAuth2) from a random number in G (in ExpAuth3)
unless π ′ = π which denotes a successful on-line dic-
tionary attack. By the uniform distribution of passwords,
its probability is estimated as qs · AdvDDHA (κ) + qs

|D| .

Lemma 12 |Pr[succAuth
2] − Pr[succAuth

3]| ≤ (qs +
1)AdvDDHA (κ) + qs

|D|

Experiment ExpAuth4 . This experiment is similar to
ExpAuth3 except that in each session i , values for mku ←
KDF1(K ,U, ‘0’), mkd ← KDF1(K ,Sd , ‘1’), mk1-d ←
KDF1(K ,S1-d , ‘1’) are replaced with mku ← F1(i,U, ‘0’),
mkd ← F1(i,Sd , ‘1’) and mk1-d ← F1(i,S1-d , ‘1’),
respectively. A table T1 is initialized to be empty in the
beginning of ExpAuth4 . A deterministic function F1 :
{0, 1}∗ → KMAC is defined as follows: if∃(i, id, k,mk) ∈ T1,
F1(i, id, k) then return mk; otherwise, the simulator ran-

domly picks a fresh mk
$← KMAC, stores (i, id, k,mk) on

T1 and returns mk ← F1(i, id, k) where fresh means that no
record of the form (·, ·, ·,mk) ∈ T1 exists so far. Since the
adversary only acquires mk1-d , by the uniform distribution
of K as well as the security of KDF1, we obtain

Lemma 13 |Pr[succAuth3]−Pr[succAuth4]| ≤ qr · AdvKDFA (κ)

Experiment ExpAuth5 . This experiment is similar to
ExpAuth4 except that in each session i for the oracles
Out(·, ·, ·) and Ret(·, ·), the value t ← KDF2(K , w) is
replaced with t ← F2(i, w). T2 is initialized as an empty
table in the beginning of ExpAuth5 . Function F2 returns t if
∃(i, w, t) ∈ T2; otherwise, the simulator randomly picks a

fresh t
$← KPRF, stores (i, w, t) on table T2 and returns t

where fresh means that no record of the form (·, ·, t) exists
so far in T2 . By the uniform distribution of K and the security
of KDF2, we obtain

Lemma 14 |Pr[succAuth
4] − Pr[succAuth

5]| ≤ (qo +
qt)AdvKDFA (κ)

We observe that ExpAuth5 is simulated independent the key
K . The only probability of winning ExpAuth5 comes from
the adversary successfully forging μc for (e, v,ix) such
that Vrfy(mku, (e, v,ix), μc) = 1. Assuming that MAC
is unforgeable, we obtain

Lemma 15 Pr[succAuth
5] = AdvMACA (κ)

To sum, by Lemmas 9 to 15, we can conclude that our direct
PASE scheme provides authentication based on the hardness
of the DDH problem and security of KDF1, KDF2 and MAC.

5 PASE in practice: browser-based
implementation and performance
evaluation

In order to demonstrate the functionality of our PASE
scheme, we implemented a stateful web application that can
be accessed from any web or mobile browser. Our PASE
demonstrator implements the client and server sides of the

123

Password-authenticated searchable encryption… 689

protocol and comes with a single portal (cf. Fig. 4) through
which users can register, outsource/retrieve files based on
multiple keywords and change their passwords. The source
code is available from https://github.com/Spockuto/surrey-
paks.

The entire PASE implementation is written in Javascript
with the client side backed by browser’s V8 engine1 and
the server side backed by NodeJS server2. By choosing
JavaScript, we could use Stanford JavaScript Crypto library3

in the implementation of both sides (client and server)
whereby reusing someparts of the code.An alternativewould
be to use libsodium4 or OpenSSL with a wrapper based on
PHP. Since modern applications heavily adopt JavaScript,
our implementation can in turn be used as a library to provide
support for other applications that wish to use the function-
ality of PASE.

In the following, we provide a more detailed description
of our PASE demonstrator and evaluate performance of its
functionality.

5.1 Cryptographic implementation choices

The following choices of cryptographic parameters and algo-
rithms have beenmade for our implementation. For the cyclic
group G of prime order q and its generator g, we use the
parameters of the NISTP384 elliptic curve group5. The addi-
tional generator h is chosen at random. For the hash function
H , we adopt SHA256 (256 bits). Both key derivation func-
tions KDF1 and KDF2 are implemented as PBKDF2 (256
bits)6. Although PBKDF2 might not be the most efficient on
mobile devices, better alternatives such as ARGON27 have
not been adopted yet in major cryptographic libraries. Our
pseudorandom function PRF uses AES256 in GCM mode
with the output truncated to 256 bits8. For the message
authentication code MAC, we adopt the standard HMAC9

construction.

5.2 PASE client and servers

The JavaScript code running on the client includes the
main.js file (about 800 LoCs) to manage the requests and

1 https://developers.google.com/v8/.
2 https://nodejs.org/.
3 https://crypto.stanford.edu/sjcl/.
4 https://github.com/jedisct1/libsodium.
5 http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.
pdf.
6 https://www.ietf.org/rfc/rfc2898.txt.
7 https://password-hashing.net/argon2-specs.pdf.
8 https://csrc.nist.gov/publications/detail/sp/800-38d/final.
9 https://tools.ietf.org/rfc/rfc2104.txt.

formatting and the crypto.js file (300 LoCs) to execute
the protocols on the client side. The code running on each
server is split into multiple files with the protocol.js
(400 LoC) occupying the major part of the implementation.
The demonstrator requires NodeJS environment to run and
can be deployed instantly.

In our implementation, one server acts as a primary
server in that it serves the PASE website and is also used
to store all outsourced files. It is helped by the secondary
server during the registration, outsourcing and retrieval pro-
tocols. The database adopted in our PASE implementation
is MongoDB10, which is particularly suited for storing and
retrieving files. The MongoDB is also used to store all user
related information from the registration process. Each server
runs its own instance of the database.

Our browser-based demonstrator offers a registration
interface where a user can provide its username (e.g., email
address) and a chosen password to execute the registration
protocol with both servers. Once registered, the user can
outsource files and associate them with multiple keywords.
Similarly, the user can retrieve outsourced files based on the
keywords entered into the corresponding form. Note that for
outsourcing and retrieval, the login formmust contain the reg-
istered username and password. Our demonstrator supports
outsourcing and retrieval usingmultiple keywords,which can
be entered into the corresponding box separated by commas.
If multiple keywords are used in the retrieval protocol, then
the output produced currently will be based on the logic used
to define subset queries (cf. Sect. 3.5).

5.2.1 Communication

In our PASE protocols, there are two types of communica-
tion which are implemented using different techniques as
discussed in the following:

– The client-server communication which is present in the
registration, outsourcing and retrieval protocols is real-
ized in our implementationusingAJAXquerieswhich are
executed asynchronously to provide better functionality.
This is only possible if the server accepts Cross Origin
Resourse Sharing which can be easily setup through the
NodeJS core library.

– The server-server communication in the outsourcing and
retrieval protocols requires both serves to maintain a
shortlived state information for the two communication
rounds of the protocol session (cf. Fig. 2). This is realized
in our implementation using NodeCache11 functionality
which provides a simple and fast internal caching for
NodeJS servers.

10 https://www.mongodb.com/.
11 https://www.npmjs.com/package/node-cache.

123

https://github.com/Spockuto/surrey-paks
https://github.com/Spockuto/surrey-paks
https://developers.google.com/v8/
https://nodejs.org/
https://crypto.stanford.edu/sjcl/
https://github.com/jedisct1/libsodium
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
http://csrc.nist.gov/publications/fips/archive/fips186-2/fips186-2.pdf
https://www.ietf.org/rfc/rfc2898.txt
https://password-hashing.net/argon2-specs.pdf
https://csrc.nist.gov/publications/detail/sp/800-38d/final
https://tools.ietf.org/rfc/rfc2104.txt
https://www.mongodb.com/
https://www.npmjs.com/package/node-cache

690 L. Chen et al.

Fig. 4 PASE portal including Outsource and Retrieve forms

5.3 Encryption of outsourced files

In our demonstrator, we expand the implemented PASE
functionality with the encryption of outsourced files, in addi-
tion to encrypted keywords. For this purpose, the client
could use the secret-shared key K which it reconstructs
on the client side during the execution of the outsourc-
ing and retrieval protocols. More precisely, the client could
use K to derive another key and use it with some stan-
dard symmetric encryption scheme, e.g., AES, to encrypt
outsourced files and decrypt them upon retrieval. In addi-
tion, to minimize information leakage and distribute the
encrypted data among the two servers,weXOR the encrypted
data ENC with a random stream of data RND generated to
the length of the encrypted data using Fortuna12 PRNG.
The resulting files F0 ← ENC ⊕ RND and F1 ← RND
are sent to the respective servers S0 and S1. The data ix
(cf. Fig. 2), in this case, would be a concatenation of the
encrypted file name with the random IV generated for sym-
mertic encryption(i x ← Enc(Name)||IV). The encrypted
file name acts as the encrypted file identifier in the server
for querying. During Retrieve, from ix, the file name
is decrypted using the reconstructed key K and IV. The
encrypted file name is used to retrieve files F0 and F1 from
servers S0 and S1, respectively. The file is recovered by
Dec(F0 ⊕ F1) and made available to the user.

5.4 Evaluation of performance and scalability

5.4.1 Performance of PASE

Our performance evaluation focuses on the computational
overheads of the PASE scheme and does not consider the
varying network latency. All experiments were performed on
a MacBook Pro laptop with 2.2GHz Intel Core i7 and 16GB

12 https://www.schneier.com/academic/fortuna/.

RAM (server and client instances) and OnePlus 5 smart-
phone with Qualcomm Snapdragon 835 octa-core 2.45GHz
and 8GB RAM (client instance).

The results of our measurements are summarized in Table
2with separate timings provided for the client and server side
computations. For the client side, the table contains measure-
ments performed on both the laptop and smartphone. The
registration procedure includes all steps of the Register
protocol. In the table, the time needed to reconstruct the
symmetric key K , which is accomplished in step 3a of our
PASE Outsource and Retrieve protocols (cf. Sect. 3),
is measured separately from the time needed to outsource
keywords (steps 3b and 3c of Outsource) and retrieve
files (steps 3b and 5 of Retrieve). We observe that key
reconstruction time on the client side is more than twice
as fast as on the server side (when measured on the same
device). Note that the key reconstruction procedure is iden-
tical in both protocols and its time is independent of the
used keywords. In constrast, the measurements provided for
outsourcing and retrieval procedures in Table 2 cover only
keyword-dependent steps. Table 2 provides average timings
based on one keyword, which are computed from multiple
executions of the protocol involving a set of 100 randomly
generated keywords, with each keyword being between 5 and
10 characters long. For each execution, a random keyword
was chosen from the set and the resulting average was com-
puted over 1000 executions.

Based on the measurements, we can highlight that our
PASE registration procedure remains well under 1s on both
the laptop and the smartphone. The time for outsourc-
ing and retrieval is clearly dominated by the time needed
to reconstruct K , which also remains well under 1s. The
keyword-dependent computations in both protocols are very
efficient, taking less than 100ms per keyword. On the client
side, the outsourcing procedure is slightlymore efficient than

123

https://www.schneier.com/academic/fortuna/

Password-authenticated searchable encryption… 691

Table 2 Performance evaluation
of our PASE implementation

Procedure Client Each server

MacBook Pro OnePlus 5 MacBook Pro
2.2GHz Intel Core i7 Snapdragon 835 2.45GHz 2.2GHz Intel Core i7

Registration 180ms 360ms 15ms

Reconstruction of K 100ms 195ms 229ms

Outsourcing 23ms 68ms 22ms

Retrieval 26ms 73ms 28ms

the retrieval procedure due to the additional integrity checks
performed in step 5 of the Retrieve protocol.

5.4.2 Performance of file encryption

We evaluated the performance of our file encryption scheme
by using test files of size 100KB, 1MB and 10MB on our
client instances (MacBook Pro and OnePlus 5). We limited
the upper bound of file size to 10MB because of JavaScript’s
bottleneck on the encryption size. Each encryption round
includes the time taken to encrypt thefile usingAES, generate
the random stream of data and perform the XOR opera-
tion (cf. Sect. 5.3). On laptop, the encryption scheme during
Outsource averaged at 15ms for 100KB, 64ms for 1MB
and 476ms for 10MB files. During the execution, the ran-
dom stream generation accounted for 8ms for 100KB, 52ms
for 1MB and 380ms for 10MB files. Decrypting the file
in Retrieve took 15ms for 100KB, 45ms for 1MB and
270ms for 10MB files. On mobile, the encryption scheme
during Outsource averaged at 25ms for 100KB, 105ms
for 1MB and 540ms for 10MB files. During the execu-
tion, the random stream generation accounted for 16ms for
100KB, 65ms for 1MBand 310ms for 10MBfiles.Decrypt-
ing the file in Retrieve took 90ms for 100KB, 300ms for
1MB and 3s for 10MB files.

Based on our measurements, we can highlight that an
encryption scheme (e.g., AES) can be practically adapted
into our protocol with less computation overhead. The total
time taken for encryption and decryption, at large file sizes,
is clearly dominated by random stream generation. Hence,
we propose a configuration setting where the random stream
generation is available as an optional security enhancement
for the user to choose. With this configuration, users can
leverage their computational flexibility to securely encrypt
and distribute files of their choice.

5.4.3 Scalability of PASE

In addition to the measurements involving one keyword per
execution, we are interested in the scalability of our PASE
implementation. For this purpose, we have extended our
measurements to calculate an average time for keyword-

Fig. 5 Scalability of keyword-dependent outsourcing and retrieval
operations on the client side using MacBook Pro laptop and OnePlus 5
smartphone

dependent outsourcing and retrieval computations with up
to 30 keywords (which is for example, the maximum num-
ber of hashtags allowed per image on Instagram13). In our
experiments, for each executionmultiple keywordswere ran-
domly chosen from the same set of 100 keywords that were
used in the experiments behind Table 2. A linear regression
model was then applied to the average discrete timings to
derive a linear approximation.

Our experimental results for client-side keyword-dependent
computations are plotted in Fig. 5. These timings suggest
that our implementation remains scalable on commodity
user devices such as laptops and smartphones. For exam-
ple, client-side processing of 10 keywords in the outsourcing
phase requires about 256ms (laptop) and 455ms (smart-
phone), whereas computations associatedwith a subset query
of 10 keywords during the retrieval phase require about
289ms (laptop) and 523ms (smartphone). If we add constant
key reconstruction costs from Table 2, then the overall time
for client-side processing of 10 keywords would be about
356ms (laptop) and 879ms (smartphone) in outsourcing and
about 389ms (laptop) and 947ms (smartphone) in retrieval
phases.

13 https://blog.hootsuite.com/instagram-hashtags.

123

https://blog.hootsuite.com/instagram-hashtags

692 L. Chen et al.

5.4.4 Strengthening password-based authentication

The PASE protocol is proven sound by rigorous mathemat-
ical analysis, but the usage of password for authentication
indirectly inherits several issues associated with passwords
and acts as a single point of failure for the entire architecture.
Moving beyond brute force and online attacks, passwords
are vulnerable to re-usage, leakage and social engineering
attacks. A study [39] on password usage states 38% reused
the same password for two different online services, and
21% of them slightly modified an old one to sign up for
a new service. Have I been pwned (HIBP)14, a popular web-
site which reports data breaches provides records over 500
million actual unique passwords leaked from various data
breaches through a variety of attacks including credential
stuffing and phishing. The study also shows that users with
more passwords are more likely to reuse them, or use varia-
tions. The 2020 Verizon Data Breach Investigations Report
(DBIR) [1] reports over 80% of breaches within hacking
involve brute force or the use of lost or stolen credentials. To
protect against such password weakness, the PASE protocol
can be extendedmodularlywith 2FA, a secondary authentica-
tion mechanism which provides a one-time password (OTP)
or code generated or received by an authenticator (e.g., a
security token or smartphone) that only the user possesses to
complement the primary password used for authentication.
ThePASE scheme allows inclusion of additional complimen-
tary authentication scheme without comprising the integrity
of the internal PASE protocol which relies on high entropy
keys generated from the primary password.

6 Conclusion

Password-AuthenticatedSearchableEncryption (PASE) intro-
duced in this paper is a newconcept for searchable encryption
where the search over encrypted keywords can be performed
solely with the help of a human-memorizable password. The
main advantage over previous concepts is a simplified key
management which removes the need for storing and man-
aging high-entropy keys on the user side andmakes thewhole
process device-agnostic. Basing searchable encryption on
passwords introduces major design challenges; in particu-
lar, creating the need for a distributed server architecture to
achieve security against offline dictionary attacks.

We modeled the functionality and security properties
of PASE, incl. IND-CKA-security for keyword privacy and
authentication for outsourcing for the search procedure and
proposed a direct PASE construction those security and pri-
vacy has been proven under standard assumptions. Our direct
PASE construction is an optimized version of a more general

14 https://haveibeenpwned.com/Passwords.

concept for building PASE protocols based on techniques
underlying password-authenticated secret sharing and sym-
metric searchable encryption.

We evaluated the practicality of our PASE scheme through
implementation of a JavaScript-based web application that
can readily be executed on any (mobile) browser. The
conducted performance and scalability evaluation of our
implementation shows that the proposed PASE approach
remains practical on commodity user devices such as lap-
tops and smartphones.

Compliance with ethical standards

Conflict of interest All authors declare that they have no conflict of
interest.

Ethical approval This article does not contain any studies with human
participants performed by any of the authors.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. 2020 data breach investigations report, https://enterprise.verizon.
com/en-gb/resources/reports/dbir/. Accessed 31 Aug 2020

2. Abdalla, M., Bellare, M., Catalano, D., Kiltz, E., Kohno, T., Lange,
T., Malone-Lee, J., Neven, G., Paillier, P., Shi, H.: Searchable
encryption revisited: consistency properties, relation to anonymous
IBE, and Extensions. J. Cryptol. 21(3), 350–391 (2008)

3. Abdalla,M., Fouque, P., Pointcheval, D.: Password-based authenti-
cated key exchange in the three-party setting. In: Vaudenay, S. (ed.)
PKC’05. LNCS, vol. 3386, pp. 65–84. Springer, Berlin (2005)

4. Bagherzandi, A., Jarecki, S., Saxena, N., Lu, Y.: Password-
protected secret sharing. In: CCS’11. ACM, pp. 433–444 (2011)

5. Ballard, L., Kamara, S., Monrose, F.: Achieving efficient conjunc-
tive keyword searches over encrypted data. In: ICICS’05. LNCS,
vol. 3783, Springer, pp. 414–426 (2005)

6. Bellare, M., Boldyreva, A., O’Neill, A.: Deterministic and effi-
ciently searchable encryption. In: Menezes, A. (ed.) Advances
in Cryptology—CRYPTO 2007, In: 27th Annual International
Cryptology Conference, Santa Barbara, CA, USA, August 19-
23, 2007, Proceedings. LNCS, vol. 4622, pp. 535–552. Springer
(2007).https://doi.org/10.1007/978-3-540-74143-5_30

7. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions
for message authentication. In: CRYPTO’96. LNCS, vol. 1109,
Springer, pp. 1–15 (1996)

123

https://haveibeenpwned.com/Passwords
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://enterprise.verizon.com/en-gb/resources/reports/dbir/
https://enterprise.verizon.com/en-gb/resources/reports/dbir/
https://doi.org/10.1007/978-3-540-74143-5_30

Password-authenticated searchable encryption… 693

8. Bellare, M., Keelveedhi, S., Ristenpart, T.: Message-locked
encryption and secure deduplication. In: Advances in Cryptology
– EUROCRYPT 2013, pp. 296–312. Springer, Berlin, Heidelberg
(2013), https://doi.org/10.1007/978-3-642-38348-9_18

9. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key
exchange secure against dictionary attacks. In: EUROCRYPT’00.
LNCS, vol. 1807, Springer, pp. 139–155 (2000)

10. Boneh, D., Crescenzo, G.D., Ostrovsky, R., Persiano, G.: Public
Key Encryption with Keyword Search. In: EUROCRYPT’04. pp.
506–522 (2004)

11. Boneh, D., Waters, B.: Conjunctive, subset, and range queries on
encrypted data. In: TCC’07. LNCS, vol. 4392, Springer, pp. 535–
554 (2007)

12. Camenisch, J., Enderlein, R.R., Neven, G.: Two-server password-
authenticated secret sharing uc-secure against transient corrup-
tions. In: PKC’15. LNCS, vol. 9020, Springer, pp. 283–307 (2015)

13. Camenisch, J., Lehmann, A., Lysyanskaya, A., Neven, G.:
Memento: How to reconstruct your secrets from a single pass-
word in a hostile environment. In: CRYPTO’14. LNCS, vol. 8617,
Springer, pp. 256–275 (2014)

14. Camenisch, J., Lysyanskaya, A., Neven, G.: Practical yet uni-
versally composable two-server password-authenticated secret
sharing. In: CCS’12. pp. 525–536 (ACM, 2012)

15. Canard, S., Fuchsbauer, G., Gouget, A., Laguillaumie, F.:
Plaintext-checkable encryption. In: Dunkelman, O. (ed.) Topics
in Cryptology—CT-RSA 2012—The Cryptographers’ Track at
the RSA Conference 2012, San Francisco, CA, USA, February
27—March 2, 2012. Proceedings. LNCS, vol. 7178, pp. 332–348.
Springer (2012), https://doi.org/10.1007/978-3-642-27954-6-21

16. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Roşu, M.C., Steiner,
M.: Highly-scalable searchable symmetric encryptionwith support
for boolean queries. In: Annual Cryptology Conference. Springer,
pp. 353–373 (2013)

17. Chase, M., Kamara, S.: Structured encryption and controlled dis-
closure. In: Advances in Cryptology —ASIACRYPT 2010, pp.
577–594. Springer, Berlin, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-17373-8_33

18. Chen, R., Mu, Y., Yang, G., Guo, F., Wang, X.: Dual-server public-
key encryptionwith keyword search for secure cloud storage. IEEE
Trans. Inf. For. Sec. 11(4), 789–798 (2016)

19. Curtmola,R.,Garay, J.,Kamara, S.,Ostrovsky,R.: Searchable sym-
metric encryption: improveddefinitions and efficient constructions.
J. Comput. Secur. 19(5), 895–934 (2011)

20. Curtmola, R., Garay, J.A., Kamara, S., Ostrovsky, R.: Searchable
symmetric encryption: improved definitions and efficient construc-
tions. J. Comp. Secur. 19(5), 895–934 (2011)

21. Dawn Xiaoding Song, Wagner, D., Perrig, A.: Practical techniques
for searches on encrypted data. In: Proceeding 2000 IEEE Sympo-
sium on Security and Privacy. S P 2000. pp. 44–55 (2000)

22. Fuhr, T., Paillier, P.: Decryptable searchable encryption. In: Prov-
able Security, pp. 228–236. Springer, Berlin, Heidelberg, https://
doi.org/10.1007/978-3-540-75670-5_17

23. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report
2003/216 (2003), http://eprint.iacr.org/2003/216/. Accessed 31
Aug 2020

24. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudoran-
domgenerator fromanyone-way function. SIAMJ.Comput.28(4),
1364–1396 (1999)

25. Ibraimi,L.,Nikova, S.,Hartel, P., Jonker,W.: Public-key encryption
with delegated search. In: International Conference on Applied
Cryptography andNetwork Security. Springer, pp. 532–549 (2011)

26. Jarecki, S., Kiayias, A., Krawczyk, H.: Round-optimal password-
protected secret sharing and T-PAKE in the password-only model.
In: ASIACRYPT’14. LNCS, vol. 8874, Springer, pp. 233–253
(2014)

27. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: Highly-efficient and
composable password-protected secret sharing (or: How to protect
your bitcoin wallet online). In: EuroS&P’16. pp. 276–291. IEEE
(2016)

28. Jarecki, S., Kiayias, A., Krawczyk, H., Xu, J.: TOPPSS: cost-
minimal password-protected secret sharing based on threshold
OPRF. IACR Cryptology ePrint Archive 2017, 363 (2017), http://
eprint.iacr.org/2017/363. Accessed 31 Aug 2020

29. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable
symmetric encryption. In: CCS’12. pp. 965–976 (ACM, 2012)

30. Kiefer, F., Manulis, M.: Blind Password Registration for Two-
Server Password Authenticated Key Exchange and Secret Sharing
Protocols. In: ISC’16. LNCS, vol. 9866, Springer, pp. 95–114
(2016)

31. Kiefer, F., Manulis, M.: Universally Composable Two-Server
PAKE. In: ISC’16. LNCS, vol. 9866, Springer, pp. 147–166 (2016)

32. Krawczyk, H.: Cryptographic extraction and key derivation: The
HKDF scheme. In: CRYPTO’10. LNCS, vol. 6223, Springer, pp.
631–648 (2010)

33. Luby, M., Rackoff, C.: How to construct pseudorandom permu-
tations from pseudorandom functions. SIAM J. Comput. 17(2),
373–386 (1988)

34. Örencik, C., Selcuk, A., Savas, E., Kantarcioglu, M.: Multi-
keyword search over encrypted datawith scoring and search pattern
obfuscation. Int. J. Inf. Sec. 15(3), 251–269 (2016)

35. Ostrovsky, R.: Software protection and simulation on oblivious
RAMs. Ph.D. thesis, Massachusetts Institute of Technology (1992)

36. Park, D.J., Kim, K., Lee, P.J.: Public key encryption with conjunc-
tive field keyword search. In:WISA’04. LNCS, vol. 3325, Springer,
pp. 73–86 (2004)

37. Pedersen, T.P.: Non-interactive and information-theoretic secure
verifiable secret sharing. In: CRYPTO’91. LNCS, vol. 576,
Springer, pp. 129–140 (1991)

38. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic
searchable encryption with small leakage. IACR Cryptology
ePrint Archive 2013, 832 (2013), http://eprint.iacr.org/2013/832.
Accessed 31 Aug 2020

39. Wang,C., Jan, S.T.,Hu,H., Bossart, D.,Wang,G.: The next domino
to fall: Empirical analysis of user passwords across online ser-
vices. In: Proceedings of the Eighth ACM Conference on Data
and Application Security and Privacy. p. 196-203. CODASPY
’18, Association for Computing Machinery, New York, NY, USA
(2018), https://doi.org/10.1145/3176258.3176332

40. Yi, X., Hao, F., Chen, L., Liu, J.K.: Practical threshold password-
authenticated secret sharingprotocol. In:ESORICS’15.LNCS, vol.
9326, Springer, pp. 347–365 (2015)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1007/978-3-642-38348-9_18
https://doi.org/10.1007/978-3-642-27954-6-21
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-642-17373-8_33
https://doi.org/10.1007/978-3-540-75670-5_17
https://doi.org/10.1007/978-3-540-75670-5_17
http://eprint.iacr.org/2003/216/
http://eprint.iacr.org/2017/363
http://eprint.iacr.org/2017/363
http://eprint.iacr.org/2013/832
https://doi.org/10.1145/3176258.3176332

	Password-authenticated searchable encryption
	Abstract
	1 Introduction
	1.1 Searchable encryption
	1.1.1 Symmetric searchable encryption
	1.1.2 Public key encryption with keyword search (PEKS)

	1.2 Password-authenticated searchable encryption (PASE)
	1.3 Paper organization

	2 PASE model and definitions
	2.1 PASE functionality
	2.1.1 Syntax of algorithms and protocols
	2.1.2 Correctness

	2.2 PASE security model
	2.2.1 Adversarial model and oracles
	2.2.2 Indistinguishability against chosen keyword attacks (IND -CKA)
	2.2.3 Authentication (Auth)

	3 Our direct PASE construction
	3.1 Cryptographic building blocks
	3.1.1 Pedersen commitments Pedersen91
	3.1.2 Pseudorandom function (PRF) LubyR88,HastadILL99
	3.1.3 Key derivation function (KDF) Krawczyk10
	3.1.4 Message authentication code BellareCK96

	3.2 High-level design rationale
	3.3 Detailed description
	3.3.1 Initialization procedure Setup(1κ)
	3.3.2 Registration protocol Register
	3.3.3 Outsourcing protocol Outsource
	3.3.4 Retrieval protocol Retrieve
	3.3.5 Correctness of our PASE scheme

	3.4 Efficiency analysis and improvements
	3.4.1 Efficiency comparison with existing PASS protocols
	3.4.2 PASE with sublinear search complexities

	3.5 Extensions with multiple keywords
	3.5.1 Outsourcing documents with multiple keywords
	3.5.2 Search queries with multiple keywords

	3.6 Password change
	3.6.1 Changing known passwords
	3.6.2 Changing forgotten passwords

	4 Security analysis
	4.1 IND -CKA-security of our PASE scheme
	4.2 Authentication property of our PASE scheme

	5 PASE in practice: browser-based implementation and performance evaluation
	5.1 Cryptographic implementation choices
	5.2 PASE client and servers
	5.2.1 Communication

	5.3 Encryption of outsourced files
	5.4 Evaluation of performance and scalability
	5.4.1 Performance of PASE
	5.4.2 Performance of file encryption
	5.4.3 Scalability of PASE
	5.4.4 Strengthening password-based authentication

	6 Conclusion
	References

