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Abstract
In animals, it is known that age affects the abilities of the brain. In spiders, we showed that aging affects web characteris-
tics due to behavioral alterations during web building. In this study, we investigated the effects of age on the associations 
between morphological changes to the spider brain and changes in web characteristics. The orb web spider Zygiella x-notata 
(Araneae, Araneidae) was used to test these relationships. Experiments were conducted on young (19 ± 2 days after adult 
molt, N = 13) and old (146 ± 32 days, N = 20) virgin females. The brain volume decreased with age (by 10%). Age also 
had an impact on the number of anomalies in the capture area generated during web building. The statistical relationships 
between the volume of the brain and web characteristics showed that there was an effect of age on both. Our results showed 
that in spiders, aging affects the brain volume and correlates with characteristics (anomalies) of the web. As web building is 
the result of complex behavioral processes, we suggest that aging affects spider behavior by causing some brain alterations.

Keywords  Aging · Brain · Morphological parameters · Web construction · Orb web spider

 *	 Alain Pasquet 
	 alain.pasquet@univ‑lorraine.fr

1	 Faculté des Sciences et Techniques, University of Lorraine, 
UR AFPA, USC INRA n° 340, BP 239, Bld des Aiguillettes, 
54506 Vandoeuvre‑Les‑Nancy, France

2	 University of Paris-Est, Ecole nationale vétérinaire d’Alfort, 
UMR 7179 CNRS MNHN, 94704 Maisons‑Alfort, France

3	 CNRS, National Centre for Scientific Research, Paris, France

Introduction

In vertebrates, aging is associated with a decrease in motor 
and cognitive abilities. This can lead to important diseases 
such as schizophrenia, Huntington’s, Parkinson’s, and Alz-
heimer’s (Best and Alderton 2008). It has now been shown 
that these alterations are strongly correlated with specific 
morphological and anatomical features of the brain (Burke 
and Barnes 2006). As a consequence, the deterioration with 
age of some behavioral traits could be used as an indicator 
of the neurobiological degradation of the brain. This link 
is now formally established, but we lack animal models on 
which to test it. A solid model would be useful for eluci-
dating the influence of aging on animal physiological and 
behavioral traits, as it would facilitate studies of the asso-
ciation between brain and behavior. Although a number of 

interesting animal models to study aging have been proposed 
(Keller and Murtha 2004; Ricklefs 2010; Edrey et al. 2011), 
there is not enough diversity to study the effect of aging on 
the link between brain and behavior (Carey et al. 2006).

Aging may affect animal behavior, and losses of behav-
ioral performance could be linked to modifications to the 
central nervous system. A loss of neurons or a reduction in 
synaptic connections may underlie the relationship between 
behavior and the brain (Gallagher 1997; Lacreuse and Hern-
don 2009). In invertebrates, aging may affect the properties 
of neurons, their morphology, and also their connections 
through synapses (Williams et al. 2000). These alterations 
may lead to the loss of neurons or poor functioning (Yeoman 
and Faragher 2001). Neurons are directly associated with 
the secretion of neurohormones or neurotransmitters that 
circulate in the neuronal structures and provide the basis 
for brain regulation; these phenomena could be involved in 
the process of longevity in animals (Suo et al. 2009). Neu-
rohormone regulation is one of the keys to the expression 
of behavior. These substances may regulate the behavior 
of several invertebrates: they modify Drosophila mating 
behavior (Certel et al. 2007), lobster locomotion (Tierney 
et al. 2004), the division of tasks among bees (Schulz and 
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Robinson 2001), and even antipredator behavior in spiders 
(Jones et al. 2011).

Orb webs appear to be a good model in which to study 
the relationships between behavioral and brain changes 
with age. The orb web is the result of coordinated and 
stereotyped behaviors, and anomalies in the structure of 
the web result from behavioral errors during web building 
(Eberhard 2010, 2011; Toscani et al. 2012); these behav-
ioral errors also increase with aging (Anotaux et al. 2012, 
2015). In general, orb web design can vary due to environ-
mental or internal factors (Herberstein 2011; Eberhard and 
Hesselberg 2012). Spiders modify the structure of their 
web when exposed to drugs or pesticides (Witt et al. 1968; 
Hesselberg and Vollrath 2004; Benamú et al. 2013; Pasquet 
et al. 2016). These variations are the result of behavioral 
adaptations. Anomalies in the otherwise perfect design of 
the orb were recently described (Pasquet et al. 2013). Thus, 
it is relevant  to investigate them given that they reflect 
behavioral changes.

The spider brain is situated in the cephalic part of the 
cephalothorax. In spiders, as in most other arthropods, 
the central brain is a compact block divided in two parts: 
one situated above the esophagus near the venom glands 
and called the supraesophageal ganglion, and one situated 
below the esophagus in a ventral position and called the 
subesophageal ganglion (Barth 2002; Foelix 2011; Hes-
selberg 2010). The supraesophageal ganglion is connected 
to the sensorial and mechanical appendices of the cepha-
lothorax (eyes, mouth parts, venom glands, and pedipalps) 
and is a nervous centre for cognitive functions (Barth 2002; 
Herberstein 2011). The subesophageal ganglion is con-
nected to the spider’s legs and is more of a motor nerv-
ous centre (Barth 2002; Herberstein 2011). The size of 
the nervous system varies with species and developmen-
tal stage (Eberhard 2010). Some studies have shown that 
smaller spiders have a larger brain relative to their size 
(Quesada et al. 2011), but this was not associated with the 
behavioral abilities of the species. The same phenomenon 
was observed when comparing different stages of a given 
species. For example, in juvenile spiders of the genus Mys-
mena, which have body masses of <0.005 mg, the brain 
occupies 63% of the volume of the cephalothorax, but this 
proportion is only 48% for females (Quesada et al. 2011). 
Thus, in spiders, the brain is concentrated in the cephalic 
part of the body, and is easy to identify and remove.

In the present study, we investigated the relationship 
between aging, the brain, and behavior, using web build-
ing as an indicator of the behavior of the spider Zygiella 
x-notata. Our hypothesis was that morphological changes 
to the brain would be associated with a lack of motor coor-
dination during web construction, leading to the presence 
of structural anomalies in the geometry of the web.

Materials and methods

Spider species

Zygiella x-notata is a medium-sized (5–7 mm for adult 
females) orb web spider that is widespread in northern 
Europe and establishes preferentially in the vicinity of 
human buildings (Roberts 1995). It constructs an orb web, 
which is generally characterized by the presence of a free 
sector in the upper part, and feeds primarily on flying prey 
(generally dipterans). In eastern France, its development 
cycle is annual: the juveniles leave the egg sacs at the begin-
ning of spring; reproduction starts in summer with mating, 
and females lay eggs in September–October (Roberts 1995). 
As adults, the female life span is approximately 4–6 months 
(from August to December), but some individuals may sur-
vive until the following spring.

Web building and web parameters

We compared two sets of spiders: young adult females 
(N = 13) and old females (N = 20). All females were cap-
tured in the field as subadults in August and brought back to 
the rearing room with a temperature of 19 °C and a 12 h/12 h 
daylight cycle (light from 8 a.m. to 8 p.m.). Females molted 
in the lab and they were all virgin. The older females were 
tested from 122 to 237 days after their molt and the young 
ones between 2 and 3 weeks after molting. All the spiders 
were weighed before the experiments, and the total length 
of the first forward leg was measured after the experiment. 
For the building tests, all spiders were put in large wooden 
frames (50 × 50 × 10 cm) enclosed by two windowpanes.

The building test lasted 5 days; after that, spiders that had 
not built a web were placed back in their boxes and removed 
from the study. The presence of a web was checked for every 
day. As soon as a spider completed a web, the frame was 
opened and web parameters were directly measured using 
electronic calipers. Direct measurements were made on the 
photographs following the method of Venner et al. (2001); 
measurements of the vertical and horizontal inner and outer 
radii were taken, and the number of spiral loops in the four 
directions was counted. From these measurements, we esti-
mated the spider’s investment in the web by calculating 
the total length of the capture spiral (capture thread length 
(CTL), following Venner et al. 2001). The webs were pho-
tographed (Lumix FZ18) by placing them in front of a black 
panel using artificial light. Anomalies (as defined in Pasquet 
et al. 2013) in web construction were identified on photos 
and counted. Anomalies can affect the radii or capture spiral. 
For radii, we counted the number of supernumerary, devi-
ated, and “Y” radii (Pasquet et al. 2013). For the capture 
spiral, we took into account the holes, the silk threads of 
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the capture spiral stuck, and the number of nonparallel and 
discontinuous silk threads (Pasquet et al. 2013). For analy-
sis, we used two parameters: the total number of anomalies 
(we added the number of radius anomalies to the number of 
capture spiral anomalies) and the number of capture spiral 
anomalies per cm of spiral length.

Brain extraction and morphology

After web building, to study brain morphology, we first 
placed the spiders into a freezer (− 80 °C) for 10 min and 
then into alcohol (70%) for 4 days. The brain was extracted 
from the cephalothorax, which was secured in a Petri dish 
on paraffin with staples in a 70% alcohol solution (Fig. 1a). 
This was positioned under a binocular microscope fitted with 
a camera (Optika binocular microscope, Sony camera). Pho-
tos were taken during the extraction. First we separated the 
abdomen and the cephalothorax, and then the dorsal part 
of the cephalothorax was removed so that the organs (the 
venom glands, the esophagus, and the brain) were visible. 
The brain is connected to the other structures by apodemes. 
These were cut and the total brain was extracted from the 
cephalothorax (Fig. 1c–e). The brain was measured in two 
positions; the total surface of the brain was measured view-
ing from the dorsal side (Fig. 2a; Archimed software), and 
then it was rotated 90° to obtain a lateral view. On this side, 
we divided the brain into eight equal parts along its length 
to give seven internal width measures, and we calculated the 

average to obtain the mean brain height (Hbrain) (Fig. 2b). 
These two measurements—the surface (Sbrain) and the mean 
brain height (Hbrain)—were multiplied to obtain the brain 
volume using the formula

Data analysis

We first examined the normality of the data with a Sha-
piro test and the homogeneity of variance with a Levene 
test. When the requisite conditions were fulfilled, we used 
parametric tests; nonparametric tests were used when one 
condition was not fulfilled.

We used a Student’s t test or a Mann–Whitney test (U) to 
compare brain morphological parameters and web charac-
teristics between the two groups of young and old spiders 
(Table 1).

A series of general linear models were used for the analyses 
(R: lmer, package ‘lme4’): first with age as a fixed effect, spi-
der weight as a random effect, and brain volume as the depend-
ent variable (model = lmer(brain volume ~ (age + weight))); 
second with age as a fixed effect, spider weight as a random 
effect, and number of anomalies of the capture spiral as 
the dependent variable (model = lmer(number of anoma-
lies ~ (age + weight))). In each analysis, residuals were tested 
for homogeneity to validate the model. When the model was 

V
brain

= S
brain

× H
brain

.

Fig. 1   Dissection of the brain of an adult female of Zygiella x-notata 
(a young 21-day-old female): a immobilization of the cephalothorax; 
b the dorsal part of the cephalothorax cuticle was removed; c the 

brain (view of the lateral face) was completely extracted by removing 
all the fatty mass and the apodemes; d view of the dorsal side and e 
of the central region (pictures: M. Anotaux)
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validated, a correlation table for various statistical models 
was generated in order to calculate F tests (R: Anova, pack-
age ‘car’), followed by a simultaneous test for general linear 
hypotheses as a post hoc test with Bonferroni correction (R: 
glht, package ‘multcomp’). As we demonstrated in a previous 
study that the length of the spiral thread (CTL) can be affected 
by age (Anotaux et al. 2012), all other web characteristics were 
statistically corrected for the CTL by using it as covariable in 
a linear regression model. Statistical analyses were carried out 
with the R package (version 2.15.0). p < 0.05 was considered 
to indicate statistical significance.

Results

Spider characteristics and relationships with web 
characteristics

Spider mass differed between young and old spiders 
(U = 77, df = 31, p = 0.05, Table 1), but the length of 
the first forward leg did not differ between those groups 
(t test, t = 0.36, df = 31, p > 0.10, Table 1). There were 

relationships between spider body characteristics and web 
characteristics: the number of anomalies per cm of the spi-
ral thread tended to increase with spider mass (SE (stand-
ard error) = 6.8×10−4, t = 1.72, df = 31, p = 0.08) and 
length of the first leg (SE = 6.6×10−3, t = 1.95, df = 31, 
p = 0.06). The length of the capture spiral thread and the 
capture area did not vary with spider body mass (length of 
capture spiral thread: SE = 3.9, t = 0.33, df = 31, p = 0.74; 
capture area: SE = 1.1, t = 0.23, df = 30, p = 0.82), but 
they increased with the length of the first leg (length 
of capture spiral thread: SE = 39.1, t = 2.03, df = 31, 
p = 0.05; capture area: SE = 10.4, t = 2.83, df = 30, 
p = 0.008).

Brain volume and web characteristics

Brain volume did not differ between the two groups (t test, 
t = 1.35, df = 30, p = 0.19, Table 1). Adjusted for body 
mass, brain volume decreased with age (SE = 6.00×10−4, 
t = 2.62, df = 31, p = 0.03, Fig. 3a). Some web character-
istics did not change with age; the length of the capture 

Fig. 2   The measurements taken 
of each brain in two different 
planes: we measured the surface 
of the brain in the ventral plane 
(a),and we measured seven 
distances in the lateral plane (b) 
(see “Materials and methods”). 
We used the mean of these 
distances to calculate the brain 
volume (pictures: M. Anotaux) 1.13 mm²

(a) (b)
1.80 mm

1.33 mm

1.31 mm

1.20 mm

1.11 mm

0.97 mm

0.84 mm

0.54 mm

Ventral view Lateral view

Table 1   Mean (± standard 
error) values of the parameters 
for the spiders and the web 
characteristics

Different statistical tests were used depending on the normality of the data (t test  =  Student’s test and 
U = Mann–Whitney test)

Old spiders (N = 20) Young spiders (N = 13) Statistical test p value

Age (days) 146 ± 32 19 ± 2 – –
Spider weight (mg) 39 ± 32 29 ± 12 U = 77 0.05
Leg length (mm) 10.95 ± 1.24 10.76 ± 1.73 t test = 0.36 NS
Brain volume (mm3) 1.18 ± 0.26 1.31 ± 0.28 t test = 1.35 NS
Length of spiral thread (cm) 587 ± 284 570 ± 197 t test = 0.26 NS
Capture area (cm2) 177 ± 80 168 ± 75 t test = 0.33 NS
Total anomalies 63 ± 26 46 ± 17 t test = 2.14 0.04
Anomalies/cm CTL 0.10 ± 0.05 0.07 ± 0.03 t test = 3.06 0.005
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spiral (CTL) (t test, t = 0.26, df = 31, p > 0.10, Table 1) 
and the capture area (t test, t = 0.33, df = 31, p > 0.10, 
Table 1) were not significantly different for webs built by 
young or old spiders. The total number of anomalies in 
the web was higher for old spiders than for young ones (t 
test, t = 2.14, df = 31, p = 0.04, Table 1). The number of 
anomalies in the capture area per cm was more pronounced 
in the webs built by old spiders than in those built by 
young ones (t test, t = 3.06, df = 31, p = 0.005, Table 1).

Relationship between brain volume and web 
characteristics

When we adjusted the brain and web characteristics for 
spider mass, the number of anomalies per cm of the cap-
ture area decreased with brain volume (SE = 0.03, t = 2.12, 
df = 31, p = 0.04, Fig. 3b). On the other hand, the length 
of the capture spiral, the capture area, and the number of 
radius anomalies did not change with brain volume (length 

of the spiral thread: SE = 202.2, t = 0.67, df = 31, p = 0.50; 
capture area: SE = 56.8, t = 1.34, df = 31, p = 0.19).

Discussion

Our results showed that the volume of the brain decreased 
with age. The brain is an association of different cell types 
(Barth 2002) which play different roles in its functioning, 
and the reduced volume with age may be interpreted as 
losses of these different types of cells. The first interpreta-
tion is that there were fewer cells in the older spider brains 
compared to the younger brains. The second interpretation 
is a methodological one: all brains were extracted under 
water, and some tissues could have been damaged during 
the dissection. Thus, there was a possible loss of biological 
material during the brain dissection, but there is no reason 
that this should impact young spiders differently from old 
spiders.

When orb web spiders build their webs, different anoma-
lies can occur in the structure of the web, and these anoma-
lies are associated with different behavioral steps during 
construction. Some substances (chemical products, drugs, 
medicine) can affect many elements of the web (spiral loops, 
radii), but in most cases the final structure looks like an orb 
web (Witt et al. 1968; Reed et al. 1965; Hesselberg and Voll-
rath 2004; Benamú et al. 2010). In this study, the majority 
of the anomalies were structural faults that did not signifi-
cantly affect the overall design of the orb web. Anomalies 
in web structure are often seen for orb web spiders (Pasquet 
et al. 2014): they can affect the capture spiral as well as the 
radii. Some (i.e., spiral turns that are stuck together and a 
discontinuity between two elements of the capture spiral) are 
the consequence of behavioral errors (Toscani et al. 2012), 
but we also previously showed that these anomalies could 
be due to spider age (Anotaux et al. 2012, 2015). Here, the 
older spiders made more anomalies during web construction 
than the younger ones. We previously suggested that this 
difference could be due to age-related modifications to the 
nervous central system. Age may decrease brain function, 
leading to errors during web construction. The influence of 
age on neuronal structures is known in invertebrates (Yeo-
man and Faragher 2001), but few studies have examined its 
effects on behavior.

The size limitation hypothesis predicts that small ani-
mals with smaller brains (and fewer neurons) are limited in 
their behavioral abilities. However, in spiders, various stud-
ies focusing on brain size and the complexity of behaviors 
involved in constructing an orb web do not agree with this 
hypothesis. Smaller spiders with smaller brains were able to 
build the same web without any structural differences (Eber-
hard 2007; Hesselberg 2010; Eberhard and Wcislo 2011). 
Furthermore, there was no difference between the orb webs 

Fig. 3   Relationships of brain volume with a spider age 
(y = 1.34 − 0.001x, r2 = 0.07) and b the number of anomalies per cm 
of the final spiral thread (CTL) (y = 15.6 − 4.9x, r2 = 0.10)
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built by juveniles and those built by adults of the orb-weav-
ing spiders Eustala illicita and Nephila clavipes (Hesselberg 
2013). The relationship between spider brain size and body 
size is not linear; the size of the brain increases less than 
the size of the body during development, and the size of the 
spider brain is relatively large for a small animal (Beutel and 
Haas 1998; Seid et al. 2011; Striedter 2005; Wehner et al. 
2007). Some other factors may also influence the web char-
acteristics during construction, such as spider mass (Venner 
et al. 2003), which increases with age.

The loss of physical abilities with age is a well-known 
phenomenon in long-lived animals such as mammals or 
birds, but it also occurs in short-lived species such as most 
invertebrates (Ridgel et al. 2003; Grotewiel et al. 2005; 
Murakami and Murakami 2005; Ridgel and Ritzmann 
2005; Lliadi and Boulianne 2010), including spiders (Moya-
Laraño 2002; Anotaux et al. 2014). This reduced physical 
ability may not be directly linked to a loss of neuronal per-
formance. Here we did not test the abilities of the spiders 
to capture and eat prey, but some of the web characteristics 
that were modified could influence prey interception and 
retention. The link with the brain is complex because it is 
known that the different structures of the central nervous 
system play different roles. The spider brain consists of two 
functional parts: the supraesophageal ganglion, which is 
considered a nervous centre for cognitive functions, and the 
subesophageal ganglion, which is considered to be more of a 
motor nervous centre (Barth 2002; Herberstein 2011). Both 
ganglia are involved in web construction, because this activ-
ity requires cognitive performance, sensitive connections, 
and motor coordination (Eberhard and Wcislo 2011). Thus, 
a decrease in any brain structure could have a significant 
effect on the overall building behavior of orb web spiders.

Conclusion

Our study clearly established that age has an impact on spi-
der brain structures and behavior. These results show that 
age affects the brain and behavior of spiders in the same way, 
and that brain volume and behavioral performance decreases 
with age. This is a well-known phenomenon, even in inver-
tebrates, but (to our knowledge) this is the first time that it 
has been observed in spiders.
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