Mathematical Programming (2023) 197:903-966
https://doi.org/10.1007/s10107-021-01757-5

FULL LENGTH PAPER

Series B ")

Check for
updates

Implications, conflicts, and reductions for Steiner trees

Daniel Rehfeldt'® - Thorsten Koch'2

Received: 26 May 2021 / Accepted: 3 December 2021/ Published online: 30 December 2021
© The Author(s) 2021

Abstract

The Steiner tree problem in graphs (SPG) is one of the most studied problems in
combinatorial optimization. In the past 10 years, there have been significant advances
concerning approximation and complexity of the SPG. However, the state of the art
in (practical) exact solution of the SPG has remained largely unchallenged for almost
20 years. While the DIMACS Challenge 2014 and the PACE Challenge 2018 brought
renewed interest into Steiner tree problems, even the best new SPG solvers cannot
match the state of the art on the vast majority of benchmark instances. The following
article seeks to advance exact SPG solution once again. The article is based on a
combination of three concepts: Implications, conflicts, and reductions. As a result,
various new SPG techniques are conceived. Notably, several of the resulting techniques
are (provably) stronger than well-known methods from the literature that are used in
exact SPG algorithms. Finally, by integrating the new methods into a branch-and-cut
framework, we obtain an exact SPG solver that is not only competitive with, but even
outperforms the current state of the art on an extensive collection of benchmark sets.
Furthermore, we can solve several instances for the first time to optimality.

Keywords Steiner tree problem - Optimal solution - Reduction techniques

Mathematics Subject Classification 90C27 - 90C10 - 90C35

1 Introduction

Given an undirected connected graph G = (V, E), edge costs ¢ : E — Q-0 and a set
T C V of terminals, the Steiner tree problem in graphs (SPG) is to find atree S C G

B Daniel Rehfeldt
rehfeldt@zib.de

Thorsten Koch

koch@zib.de

Applied Algorithmic Intelligence Methods Departement, Zuse Institute Berlin, Takustr. 7, 14195
Berlin, Germany

2 Chair of Software and Algorithms for Discrete Optimization, TU Berlin, Str. des 17. Juni 135, 10623
Berlin, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-021-01757-5&domain=pdf
http://orcid.org/0000-0002-2877-074X

904 D. Rehfeldt, T. Koch

with T C V(S) such that ¢(E(S)) is minimized. The SPG is a classic .4 &?-hard
problem [23], and one of the most studied problems in combinatorial optimization.
Part of its theoretical appeal might be attributed to the fact that the SPG generalizes
two other classic combinatorial optimization problems: Shortest paths, and minimum
spanning trees. On the practical side, many applications can be modeled as SPG or
closely related problems, see e.g. [6,27].

The SPG has seen numerous theoretical advances in the last 10 years, bringing
forth significant improvements in complexity and approximability. See e.g. [5,15] for
approximation, and [24,29,47] for complexity results. However, when it comes to
(practical) exact algorithms, the picture is significantly more bleak. After flourishing
in the 1990s and early 2000s, algorithmic advances came to a staggering halt with the
(joint) PhD theses of Polzin and Vahdati Daneshmand almost 20 years ago [31,46].
They introduced a wealth of new results and algorithms for SPG, and combined them
in an exact solver that drastically outperformed all previous results from the literature.
Their work is also published in a series of articles [32-36]. However, their solver is
not publicly available.

The 11th DIMACS Challenge in 2014, dedicated to Steiner tree problems, brought
renewed interest to the field of exact algorithms. In the wake of the challenge, several
new exact SPG solvers were introduced in the literature [13,14,17,30]. Overall, the
11th DIMACS Challenge brought notable progress on the solution of notoriously hard
SPG instances that had been designed to defy known solution techniques, see [26,41].
Several of these instances could be solved for the first time to optimality. However, on
the vast majority of instances from the literature, Polzin and Vahdati Daneshmand [31,
46] (whose solver did not compete at the DIMACS Challenge) stayed out of reach: For
many benchmark instances, their solver is even two orders of magnitude or more faster,
and it can furthermore solve substantially more instances to optimality—including
those introduced at the DIMACS Challenge [37]. In 2018, the 3rd PACE Challenge
[4] took place, dedicated to fixed-parameter tractable algorithms for SPG. Thus, the
PACE Challenge considered mostly instances with a small number of terminals, or
with small tree-width. Solvers that successfully participated in the PACE Challenge
are for example described in [18,21]. Still, even for these special problem types, the
solver by [31,46] remained largely unchallenged, see e.g. [21].

The following article aims to once again advance the state of the art in exact SPG
solution.

1.1 Contribution

This article is based on a combination of three concepts: Implications, conflicts, and
reductions. As a result, various new SPG techniques are conceived. The main contri-
butions are as follows.

— By using a new implication concept, a distance function is conceived that provably
dominates the well-known bottleneck Steiner distance. As a result, several reduc-
tion techniques that are stronger than results from the literature can be designed.

— We show how to derive conflict information between edges from the above meth-
ods. Further, we introduce a new reduction operation whose main purpose is to

@ Springer

Implications, conflicts, and reductions for Steiner trees 905

introduce additional conflicts. Such conflicts can for example be used to generate
cuts for the integer programming (IP) formulation.

— We introduce a more general version of the powerful so-called extended reduction
techniques. We furthermore enhance this framework by using both the previously
introduced new distance concept, and the conflict information.

— Finally, we integrate the components into a branch-and-cut algorithm. Besides pre-
processing, domain propagation, and cuts, also primal heuristics can be improved
(by using the new implication concept). The practical implementation is realized
as an extension of the branch-and-cut solver SCIP- JACK [14].

The resulting exact SPG solver outperforms the current state-of-the-art solver from
[31,46] on many well-established benchmark sets from the literature. Furthermore, it
can solve several instances for the first time to optimality.

1.2 Preliminaries and notation

We write G = (V, E) for an undirected graph, with vertices V and edges E. We set
n = |V]| and m := |E|. We denote the vertices and edges of any subgraph S € G
by V(S) and E(S), respectively. For a walk W we likewise denote the set of vertices
and the set of edges it contains by V(W) and E(W). For any U C V we define the
cut 5(U) :={{u,v} e E|u e U,v € V\U}. We write §G (U) to emphasize that the
cut is defined with respect to graph G. For v € V we write §(v) := §({v}). For any
v € V we define its neighborhood as N (v) := {w € W | {v, w} € §(v)}. Note that
v ¢ N(v).

Given edge costs ¢ : E +— Qxo, the triplet (V, E, ¢) is referred to as network.
By d(v, w) we denote the cost of a shortest path (with respect to c¢) between vertices
v, w € V. For any (distance) function d: (‘2/) = Qx>0, and any U C V we define the

d-distance network on U as the network
~ U N
Dg(U,d) := (U, 5 ,€), (D

with ¢({v, w}) = J(v, w) forallv,w € U. If d is the standard distance (.e. d= d),
we write D¢ (U) instead of Dg (U, d). Note that we write usually d (v, w) instead of
J({v, w}). For an SPG instance on a graph G = (V, E) with terminal set 7 € V and
edge costs ¢ we write (G, T,c)or (V, E, T,c).

2 From implications to reductions

Reduction techniques have been a key ingredient in exact SPG solvers, see e.g. [9,25,
33,45]. Among these techniques, the bottleneck Steiner distance introduced in [11] is
arguably the most important one, being the backbone of several powerful reduction
methods. This section introduces a (provably) stronger distance concept, and discusses
several applications for improved reduction methods.

@ Springer

906 D. Rehfeldt, T. Koch

2.1 The bottleneck Steiner distance
Let P be a simple path with at least one edge. The bottleneck length [11] of P is

bl(P) := max c(e).

ecE(P)

Let v, w € V. Let Z(v, w) be the set of all simple paths between v and w. The
bottleneck distance [11] between v and w is defined as

b(v, w) :=inf{bl(P) | P € P (v, w)},

with the common convention that inf § = oo. It holds that (v, w) = oo if and only
if v and w are unconnected!. Note that b(v, w) is equal to the bottleneck length of the
path between v and w on any minimum spanning tree (MST) of (G, ¢), as observed
in [8].

Now consider the distance network D := Dg (T U{v, w}). Let bp be the bottleneck
distance in D. Define the bottleneck Steiner distance or special distance [11] between
v and w as

s(v, w) :=bp(v, w).

The arguably best known bottleneck Steiner distance reduction method is based on
the following criterion, which allows for edge deletion [11].

Theorem 1 Let ¢ = {v, w} € E. If s(v, w) < c(e), then no minimum Steiner tree
contains e.

Note the analogy between bottleneck distance applied to the MST problem, and
bottleneck Steiner distance applied to the SPG: Any edge e = {v, w} that satisfies
b(v, w) < c(e) cannot be part of an MST. Otherwise, e could be replaced by an edge
of cost at most b(v, w) to obtain a spanning tree of smaller cost. Any edge e = {v, w}
that satisfies s (v, w) < c(e) cannot be part of a minimum Steiner tree. Otherwise, e
could be replaced by a path in G corresponding to an edge in D = Dg(T U {v, w})
with cost at most bp (v, w). In this case, one would obtain a Steiner tree of smaller cost.
We also point out that bottleneck Steiner distances can be computed in polynomial
time, but in practice (heuristic) approximations are used. See [33] for a state-of-the-art
algorithm.

2.2 A stronger bottleneck concept

In the following, we describe a generalization of the bottleneck Steiner distance.
Initially, for an edge e = {v, w} define the restricted bottleneck distance b(e) [33] as
the bottleneck distance between v and w on (V, E\{e}, ¢).

1 While we always assume the graph underlying an SPG instance to be connected, we will use auxiliary
graphs that can be unconnected in the following.

@ Springer

Implications, conflicts, and reductions for Steiner trees 907

The basis of the new bottleneck Steiner concept is formed by a node-weight function
that we introduce in the following. For any v € V\T and F C §(v) define

pT (v, F) := max {0, sup{b(e) —c(e) | e € F,eNT # 0}}. ()

We call p* (v, F) the F-implied profit of v. The following observation motivates the
subsequent usage of the implied profit. Assume that p™ (v, {¢}) > 0 for an edge
e € 8(v). If a Steiner tree S contains v, but not e, then there is a Steiner tree S’ with
e € E(S') such that c(E(S")) + pT (v, {e}) < c(E(S)).

Let v, w € V. Consider a finite walk W = (vy, ey, v2, €2, ..., e,_1, v;) With v =
v and v, = w. We say that W is a (v, w)-walk. Forany k,/ e Nwith1 <k <[<r
define the subwalk W(k,[) := (vk, €k, Vk+1, €k+1,---»>€1—1, V7). W will be called

Steiner walk it V(W) N T < {v, w} and v, w are contained exactly once in W (the
latter condition could be omitted, but has been added for ease of presentation). The
set of all Steiner walks from v to w will be denoted by #7 (v, w). With a slight abuse
of notation we define dw (u) := §(u) N E(W) for any walk W and any u € V. First,
for a Steiner walk W € #7 (v, w) define

={u e VW) | p* (u,8@\éww)) > 0} U {v, w}.

Define the implied Steiner cost of W as

W)= Y cl@— Y, pts@\sww).

ecE(W) ueP%\{v‘w}
Define the implied Steiner length of W as
LY (W) :=max{cy (W, v) | 1 <k <€ <7, v, v € Py} 3

To understand the usage of the implied Steiner length, consider the SPG instance
segment shown in Fig. 1. Assume that edge {v1, v4} is part of Steiner tree S. Removing
this edge from S results in two trees S” and §” with vy € V(§”), v4 € V(S”). Consider
the Steiner walk W := (v, {v1, v2}, v2, {v2, v3}, v3, {v2, 3}, V2, {V2, v4}, v4). Note
that p* (v3, §(v3)\8w (v3)) = 3, and thus l;(W) = 4. We claim that S’ and S” can

be reconnected to a Steiner tree S that is of smaller weight than S by using only edges
from W. First, assume v3 is contained in either S’ or S”. In this case, we can use the
edges {vy, va}, {v2, v3} (if v3 € V(8”)) or the edges {vy, v3}, {v2, v4} (if v3 € V(S))
to reconnect S’ and S”. Second, assume that vs is neither contained in S’ nor in S”.
In this case, also the edge {vs3, 71} cannot be contained in S" or S”: Because S is a
Steiner tree, we have 11 € V(S”). Indeed, also {t1, v4} € E(S”) holds. Reconnect S’
and S” by adding all edges of W that are neither in S’ nor in §”. This procedure results
in a Steiner tree S. Next, add edge {v3, t1} and remove edge {t1, v4} from S. This
exchange reduces the weight of S by p* (v3, 8(v3)\8w (v3)). Thus, the final Steiner
tree S satisfies c(E(S)) < c(E(S)) — 1.

@ Springer

908 D. Rehfeldt, T. Koch

Fig.1 Segment of an SPG
instance. Terminals are drawn as

squares
t n I t I P
n—1 n—1 n—1
Vo Vi V2 R Vn-1 Vn
O Y O

AN N

Fig.2 SPG instance with sWo.vn) - _ 1y Terminals are drawn as squares
Sp (vo,vn)

With the above discussion in mind, define the implied Steiner distance between v
and w as

df (v, w) == min{l,7 (W) | W € #7 (v, w)}.
Note that d;(v, w) = d;(w, v). At last, consider the distance network Dt :=
Dg(T U {v, w}, d). Let bp+ be the bottleneck distance in D Define the implied
bottleneck Steiner distance between v and w as

sp(v, w) :=bp+(v, w).

Note that s,(v,w) < s(v,w) and that the inequality can be strict. Indeed,
s(v,w)

can become arbitrarily large, as Fig. 2 shows: It holds that s(vg, v,) =

sp(v,w)
n, but s,(vo,v,) = 1. To see the latter, consider the Steiner walk W =
(vo, {vo, v1}, v1, ..., {vn—1, vy}, vy). Each vertex vy, ..., v,—1 has an implied profit

of 1in W. Thus, l;(W) = 1. Because 1 is the minimum edge cost on any (v, v,)-walk
and s, (vo, vp) < I (W) by definition, we also have sp(vo, vp) = 1.

The above discussion implies that the following result provides a strictly stronger
reduction criterion than Theorem 1.

Theorem2 Lete = {v,w} € E. If s,(v, w) < c(e), then no minimum Steiner tree
contains e.

Proof Assume s, (v, w) < c(e) and let S be a Steiner tree with e € E(S). We will
show the existence of a Steiner tree S” with e ¢ E(S’) such that c(E(S")) < c(E(S)),
which concludes the proof. First, remove e from S to obtain a new subgraph S, which

@ Springer

Implications, conflicts, and reductions for Steiner trees 909

consists of exactly two connected components. Assume that each connected compo-
nent contains at least one terminal (otherwise the proof is already finished). In the
following, we will use a Steiner walk to reconnect S. First, we show the existence
of such a reconnecting Steiner walk that has an implied Steiner length (3) smaller
than c(e). Second, we add the edges of this walk to S , obtaining a Steiner tree. Third,
we follow the same underlying idea as in the discussion for Fig. 1 and apply edge-
exchange operations for each vertex of positive implied profit on the Steiner walk. In
this way, the weight of § is reduced.

Consider a (v, w)-path P in D such that blp+(P) = bp+ (v, w). Let {t, u} be an
edge on P such that ¢ and u are in different connected components of S (where 7 and
u are considered in the original SPG). Let 8 and S* be the connected components of
S such that ¢ € V(S) and u € V(8%). By the definition of the bottleneck length it
holds that

dy(t,u) < sp(v, w). ©)
Let W € #7(t, u) such that
+ _ gt
Iy (W) =d;(t,u). 5)
Assume that W i§ given as W = (vi,ep,...,e—1, V). Def‘lne b := min{k €
{1,....r} v € V(§")}and a := max{k € {1, ..., b} | vx € V(S§")}. Further, define

x:=max{k € {l,...,a} | v € P;j}and y := min{k € {b,...,r} | vx € P }. By
definition, x < a < b < y and furthermore:

Y - > PT (v, 8)\Swiy) < cf (W(x, y). (6)

ecE(W(a,b)) veV(W(a,b)\{vy,vy}
Reconnect S' and S“ by W(a, b), which yields a connected subgraph S(’) with

T C V(S(’)). Assume that S(’) is a tree (otherwise remove any redundant edges).2 It
holds that

Yooy Y e+ Y cle)—clv, w). @)

ecE(S)) ecE(S) ecE(W(a,b))
Let va, v;r e vj be the vertices in PVJ; “ b)\{va, vp}, so all vertices with positive
implied profit in the interior of the walk W (a, b). Choose foreachi = 1,...,z an

edge e € 8(v;)\w(x,y)(v;") such thate;” N T # ¥ and
bef) —clef) = pt (v, 80)\ Swix.) ®)

Note that all el* are pairwise disjoint (just as the vi‘Ir).

2 Because we assume all edges to be of positive cost, S(/) will in fact always be a tree.

@ Springer

910 D. Rehfeldt, T. Koch

We will construct Steiner trees Slf fori € {1, ..., z} that satisfy
i
Do)y Y cle) =Y ptf, 8\Swy), ©)
ecE(S)) ecE(S) k=1
as well as
Z
U teftnEs) =0 (10)
k=i+1
and
V(S) = V(). (11)
One readily verifies that S() satisfies (9)—(11). Leti € {1, ..., z} and assume that (9)—

(11) hold for S!_,. Thus, el.+ ¢ E(S/_). Let P; be the (unique) path in S/_, between
v;" and the terminal #; with {#;} = ;" NT. Choose any &; € E(P;) withc(é;) = bI(P;).
Define the tree S/ by V (S}) := V/(S/_,) and E(S)) := (E(S]_)\{é;})Ufe;"}. Weclaim
that Slf satisfies (9)—(11). Equality (10) follows from the fact that all el.+ are disjoint.
And (11) follows from the construction of Slf . For (9), observe that by definition of the
bottleneck distance it holds that c(e;) > B(e:r) and therefore

bejh) —c(ef) < c(@) — cle).
Thus, Eq. (8) implies that Slf satisfies (9).

Finally, set §" := S_. Because of (11) it holds that 7 C V(S"). Furthermore, one
obtains:

©) -
Y@= Y el =Y prf sWH\Swey) (12)
ecE(S") ecE(S)) k=1
@)
< Y @+ Y cle)—c(v,wh
ecE(S) ecE(W(a,b))
= > Pt sWO\Sw) (13)
k=1
) n
< c(e) = c({v, w)) + ¢ (W(x, y)) (14)
ecE(S)
®) .
< c(e) = c({v, w)) + L5 (W) (15)
ecE(S)
)
< c(e) = c({v, w}) + 5, (v,) (16)
ecE(S)

@ Springer

Implications, conflicts, and reductions for Steiner trees 911

Fig.3 Segment of a Steiner tree
instance. Terminals are drawn as
squares. The dashed edge can be 1

deleted by employing Theorem 2

/
TR

< > clo. (17)
ecE(S)
where the last inequality follows from the initial assumptions. O

Furthermore, we define the restricted implied bottleneck Steiner distance Sp(v, w)
between any v, w € V as the implied bottleneck Steiner distance between v and w in
the SPG (V, E\ {{v, w}}, ¢). One obtains the following corollary.

Corollary 1 Let e = {v,w} € E. If 5,(v,w) < c(e), then at least one minimum
Steiner tree does not contain e.

Figure 3 shows a segment of an SPG instance for which Theorem 2 allows for the
deletion of an edge, but Theorem 1 does not. The implied bottleneck Steiner distance
between the endpoints of the dashed edge is 1—corresponding to a walk along the
four non-terminal vertices. The edge can thus be deleted. In contrast, the (standard)
bottleneck Steiner distance between the endpoints is 1.5 (corresponding to the edge
itself).

Unfortunately, already computing the implied Steiner distance is hard, as the fol-
lowing proposition shows.

Proposition 1 Computing the implied Steiner distance is AN Z-hard.

The proposition can for example be proved by a reduction from the Hamiltonian
path problem, similar to a reduction for the prize-collecting Steiner distance concept
in [44]. We note that it would also be possible to use the implied Steiner distance
concept introduced in this article to generalize the Steiner distance concept used for
the prize-collecting Steiner tree problem; see [39] for a definition that dominates the
original one from [44]. However, formulating and proving this generalization is quite
technical, and the computational benefit seems limited.

Finally, despite this .4 2?-hardness, one can devise heuristics that provide useful
upper bounds on s,. We will discuss one such heuristic in the next section.

2.3 Approximating the implied bottleneck Steiner distance
This section describes one of the heuristics we use to delete edges by using an approx-

imation of s,. Starting from a vertex vg, the heuristic tries to delete several edges
of §(vp) at once. Initially, define a distance array d and a predecessor array pred as

@ Springer

912 D. Rehfeldt, T. Koch

follows. For all u € V\ ({vo} U N(vp)): dlu] := oo and pred[u] := null. For all
u € N(vy): c?[u] = c({vo, u}) and pred[u] := vg. Moreover, set c?[vo] := 0 and
pred[vg] := vg. Finally, set Q := N (vp).

While Q # @ letv := argminueQ J[u]. For all {v, w} € 6(v) proceed as follows.
First, set pyy :=max {pT (v, {e}) | e € §(v) : w, pred[v] ¢ e}. If

d[v] + c({v, w}) — min {c({v, wh), Pow, ci[v]} <d[w], (18)

then set d~[w] to the left hand side of (18) and add w to Q. Further, set pred[w] := v.
If (18) holds and w € N (vgp), then we can delete edge {v, w}.

Note that on the left hand side of (18) a possibly smaller value than p,,, is subtracted
to prevent the algorithm from circling. Furthermore, note that a terminal might be used
more than once for a profit calculation p,,, on one walk. However, since we subtract
only a bounded part of the profit from the distance value in (18), the algorithm still
works correctly. Note that one can extend the algorithm to cover the case of equality
for edge deletion. In this case, one also needs to check whether (18) is satisfied with
equality if w € N (vp). In practice, one should bound the maximum number of visited
edges (in the implementation for this article we simply use a fixed bound). Additionally,
one can abort the algorithm if min, ¢ ci[u] > MaXees(yg) C(€).

The above algorithm is also useful for finding a simple path between endpoints
of an edge that is not longer than the edge itself. Other authors, e.g. [19,33], suggest
to run a shortest path algorithm from both endpoints of each edge of the given SPG
for this purpose. However, running the above algorithm from each vertex is usually
considerably faster in practice.

2.4 Bottleneck Steiner reductions beyond edge deletion

This section discusses applications of the implied bottleneck Steiner distance that
allow for additional reduction operations: Edge contraction and node replacement.
We start with the former. For an edge e and vertices v, w define b, (v, w) as the
bottleneck distance between v and w on (V, E\{e}, c). With this definition, we define
a generalization of the classic NSV reduction test from [12].

Proposition2 Let {v, w} € E and t;,t; € T, t; # t; such that: If
sp(v, ;) + c({v, w}) + sp(w, 1) < byw) (i, 1), (19)

then there is a minimum Steiner tree S with {v, w} € E(S).

Proof sketch Unfortunately, the use of the implied bottleneck Steiner distance makes
the proof of the proposition far more difficult than that of the original result from [12].
To avoid an abundance of technicalities, we therefore only provide a proof sketch. For
a detailed proof see the technical report [38].

Assume there is an optimal solution S such that {v, w} ¢ E(S). Remove from E (S)
an edge on the (unique) path between #; and ¢; in § of maximum cost. This operation

@ Springer

Implications, conflicts, and reductions for Steiner trees 913

results in two disjoint trees: S; with #; € §; and S; with #; € §;. By definition of
biy,w) (i, tj) it holds that

c(E(Si) + c(E(S))) + b,uy (i, 1)) = c(E(S)). (20)

Now the sketchy part starts: Similar to the proof of Theorem 2, condition (19)
allows us to connect S; to v such that the resulting tree S; satisfies

c(E(5)) < c(E(5)) +sp(v.17). @
Equivalently, we can connect S; to w with the result satisfying
c(E(S)) = e(E(S)) +sp(w, 1)), (22)

However, the above is only true, because the two Steiner walks that correspond to
sp(v,t;) and s,(w, t;) in (21) and (22), respectively, have no vertex in common. If
they had a vertex in common, one could build a new Steiner walk Wy with l;,"(Wo) <
sp(v, t;) +sp(w, t;) out of the two above Steiner walks, such that Wy connects S; and
S ;. This walk Wy could then be used to reconnect S; and S to a Steiner tree of weight
smaller than by, (1, ;).

Finally, we define S as the union of S’,-, S j»and {v, w}. This connected subgraph is
not necessarily a tree, but can be made one without increasing c¢(E () by deleting an
edge from each cycle. From (20), (21), and (22) it follows that

c(E(S)) < c(E(S)),

which concludes the proof. O

If criterion (19) is satisfied, one can contract edge {v, w} and make the resulting vertex
aterminal. The original criterion from [12] uses the standard distance in (19) instead of
the implied bottleneck Steiner distance. We note that using the (standard) bottleneck
Steiner distance in (19) does not improve the original test. However, using the implied
bottleneck Steiner distance leads to a strictly stronger criterion, as the example in
Fig. 4 shows. Note that by, (71, 13) = 2 and s, (v1, 13) = 1. Thus, (19) is satisfied
for edge {f1, v1} and terminals 7y, 3.

The following proposition allows one to identify edges that are candidates for edge
contraction. Afterwards, the bottleneck distances can be computed for all these edges
in O (m + nlogn) amortized time [9].

Proposition 3 Let {v,w} € E and t;,t; € T,t; # t;. If (19) holds, then there is a
minimum spanning tree Syst on (V, E, ¢) such that {v, w} € E(Sysr)-

Proof Assume there is a spanning tree S such that {v, w} ¢ S. Remove from E(S) an
edge on the (unique) path between #; and ¢; in S of maximum cost. By definition of
biy,wy(ti, t;) it holds that

c(E(Si)) + c(E(S))) + bp,uw)(ti, tj) < c(E(S)). (23)

@ Springer

914 D. Rehfeldt, T. Koch

Fig.4 Segment of a Steiner tree
instance. Terminals are drawn as
squares. The dashed edge can be

. 2 = 2
contracted by employing E} t
Proposition 2

1
1

V3
|
|
|
|
|
|
1
Vi /VZ“\ {T/

This operation results in two disjoint trees: S; with #; € S; and §; with ¢; € §;. If
v and w are in different trees, one can add {v, w} to connect S; and §; and obtain
a spanning tree of no higher cost than §. Otherwise, assume that v, w € V(S;). Let
W; be a Steiner walk from v to #; with l;‘,‘(W,-) = 5,(v, t;). There is at least one edge
{p.q} € E(W;) such that p € V(S;) and g € V(S;). By definition it holds that
c({p,q})) < l;r(Wi). Thus, one can add both {p, ¢} and {v, w} to S;, S; to obtain a
connected spanning subgraph S’. Because of condition (19) and (23) it holds that

c(E(S") < c(E(S)).

Delete any edge other than {v, w} on the cycle in E(S’) that includes {v, w}. In this
way one obtains a spanning tree S” of no higher cost than S. O

This section closes with a reduction criterion based on the standard bottleneck
Steiner distance. Besides being a new technique, this result also serves to highlight
the complications that arise if one attempts to formulate similar conditions based on
the implied bottleneck Steiner distance.

Proposition4 Let D := Dg(T,d). Let Y be a minimum spanning tree in D. Write
its edges {e{, eg, R e|YT|_1} = E(Y) in non-ascending order with respect to their
weight in D.

Letv € V\T. If for all A C §(v) with |A| > 3 it holds that:

A1

Y de]) =) cle), (24)

i=1 ecA
then there is at least one minimum Steiner tree S such that |5s(v)| < 2.

The proposition follows from Corollary 3, which we will introduce in Sect. 4.2. If the
conditions (24) are satisfied for a vertex v € V\T, one can pseudo-eliminate [12] or
replace [31] vertex v, i.e., delete v and connect any two vertices u, w € N(v) by a
new edge {u, w} of weight c({v, u}) + c({v, w}).

The SPG depicted in Fig. 5 exemplifies why Proposition 4 cannot be formulated by
using the implied Steiner distance. The weight of the minimum spanning tree Y for

@ Springer

Implications, conflicts, and reductions for Steiner trees 915

Fig.5 SPG instance. Terminals
are drawn as squares

o—! N

C

Dg (T, d) is 4, but the weight of a minimum spanning tree with respect to the implied
bottleneck Steiner distance is 2. Similarly also the B D,, reduction technique from
[12] cannot be directly formulated by using the implied bottleneck distance. Still, it
is possible to formulate a similar criterion that makes use of the implied bottleneck
distance. Unfortunately, both the result and the corresponding proof are more involved
than those of their edge elimination counterparts (see Theorem 2). Thus, we omit the
details here. The important point is to make sure that the selected Steiner walks do not
overlap at vertices with a positive implied profit. However, these techniques have not
been implemented yet.

3 From reductions to conflicts

This section shows an additional advantage of the just introduced node replacement
reduction: The creation of conflicts between the newly inserted edges. Furthermore,
anew replacement operation is introduced. We say that a set E/ C E with |[E’| > 21is
in conflict if no minimum Steiner tree contains more than one edge of E’.

3.1 Node replacement

Recall that we have seen three types of reductions so far: Edge deletion, edge contrac-
tion, and node replacement. For simplicity, we assume in the following that a reduction
is only performed if it retains al/l optimal solutions. For example, we only delete an edge
if we can show that there is no minimum Steiner tree that contains this edge. We say
that such a reduction is valid. We start with an SPG instance I = (G, T, c¢), and con-
sider a series of subsequent, valid reductions (of one of the three above types) that are
applied to I. In each reduction step i > 0, the current instance /) = (G®, 7@)
is transformed to instance 7UtD = (GUHD 7@+ G+Dy We set 1@ = 1. We
define ancestor information for each i = 0,1, ...,k by [T® : EO — 2(E) and
I7 g; x € E. Initially, we set

— [IO) :={e} foralle € E,

0)
- gy =0
Consider a reduced instance /). If we contract an edge e € E(), we set IT g;;) =
) U M9 (e). For any other operation we set I7\73) := I1) . If we replace a

vertex v € V® then

— for each newly inserted edge {u,w} C N(v) we set: I (u, w)) =
a9 v, u}) U9 (v, w)), ' '
— for all other remaining edges e we set: [T+ (e) := [T7 (e).

@ Springer

916 D. Rehfeldt, T. Koch

Overall, one observes the following.

Observation 1 Let I be an SPG and let I® be the SPG obtained from performing a
series of k valid reductions on I. For any Steiner tree S® for I®)| the tree S with

k
E® = |J n®eum),
ecE®

is a Steiner tree for 1, and it holds that
c(E®) =W (ED D) +¢ (m)y).

Furthermore, if S® is optimal for I®, then S is optimal for I.

[34] observed that two edges that originate from a common edge by a series of
replacements cannot both be contained in a minimum Steiner tree. Using the above
notation, we can formulate the condition as follows: If e;, e; € E® satisfy IT ® (e DN
IT%® (e5) # @, then there is no minimum Steiner tree that contains both e; and e>. As
we will see in Sect. 4, such conflict information can be used for further reductions.

In the following, we will introduce an edge conflict criterion that is strictly stronger
than the one from [34]. Initially, we define additional ancestor information for each
i =0,1,..., k. Namely, sets of replacement ancestors AV : E® — 2 (N), and
A%X e Z(N). We set AO(e) := ¢Jforalle € E, and Ai?}x := (). Further, we
define (9 := 0. Consider a reduced instance I®). If we contract an edge ¢ € E),
we set Agj}l{) = A%X U AD(e). If we replace a vertex v € VO, we set AGHD .=
A 4 1. Further, we define the replacement ancestors for each newly inserted edge
{u, w} C N(v), as follows:

AT, w)) = AD (v, up) U AD (fv, wh U (2D},

If no node replacement is performed, we set A(+1D := 1@,

Proposition 5 Let I be an SPG and let I®) be the SPG obtained from performing a
series of k valid reductions on I. Further, let e, e> € E®. IfA(k) (e NA® (e3) #= 0,
then no minimum Steiner tree S® for I &) contains both ey and e.

Proof Suppose that there is a minimum Steiner tree S® with e, eo € E®(S®)). Let
x € AP e) N AW (7). Let i be the first reduction iteration with 1) = x. We may
assume that i = 1. Otherwise, we can define additional ancestor information IT and
A starting from 7@~ and perform the reductions from iteration i to iteration k. Let
v be the vertex that is replaced in iteration i = 1. Note that x = A()) = 1. From
Observation 1 we know that the tree S defined by E(S) = U,cpw 1T ®e)u Hl(pkl) x
is a minimum Steiner tree for /. However, because of A(D € A® (¢)) N AK® (e2), we
have that | (IT%)(e;) U IT® (e2)) N 85(v)| > 3. This implies however, that replacing
v is not valid—a contradiction. O

@ Springer

Implications, conflicts, and reductions for Steiner trees 917

Corollary 2 Let I, I® as in Proposition 5, and let e € E® . If A® () N Ag}x # 0,
then no minimum Steiner tree S© for 1®) contains e.

Note that any edge e as in Corollary 2 can be deleted.

3.2 Edge replacement

This subsection introduces a new replacement operation, whose primary benefit lies
in the conflicts it creates. We start with a condition that allows us to perform this
operation.

Proposition 6 Let ¢ = {v, w} € E withe N T = (. Define
7 ={Ac) Usw) \{e} | ANs(v) #V, ANs(w) # ¥}
Forany A € D let
Up={ueV|{uvie Aviu, w}e A}.

If for all A € 2 with |A| = 3 the weight of a minimum spanning tree on Dg (U, s)
is smaller than c(A), then each minimum Steiner tree S satisfies |5s(v)| < 2 and
[8s(w)| < 2.

The proposition can be proven by using Corollary 3, which will be introduced in Sect. 4.
If the condition of Proposition 6 is successful, we can perform what we will call a path
replacement of e: We delete e and add for each pair p,q € V with p € N(v)\{w},
g € N(w))\{v}, p # g anedge {p, g} with weight c({p, v}) + c({v, w}) +c({g, w}).
At first glance, the apparent increase in the number of edges by this operation seems
highly disadvantageous. However, due to the increased weight, the new edges can
often be deleted by using the criterion from Theorem 2. Furthermore, an edge does
not need to be inserted if any two of the three edges it originates from have a common
replacement ancestor. Indeed, we only perform a path replacement if at most one of the
new edges needs to be inserted. The case that all new edges can be deleted is in principle
also covered by the extended reduction technique introduced in the next section (albeit
being potentially far more expensive). If exactly one new edge remains, we create new
replacement ancestors as follows: Let ¢ = {p, ¢} be the newly inserted edge. Initially,
set AUTD .= 1@ and ACHD (&) := AD({p, v})) U AD({v, w}) U AD({v, ¢}). Next,
for each ¢ € (8(v) U8(w)) \{e} increment A¢+V and add A0+D to ACTD (&) and
AUFD ("), One can show that Proposition 5 remains valid if path replacement is added
to the list of valid reduction operations.

Figure 6 illustrates an application of Proposition 6. In this example, all but one
replacement edges can be deleted by using a simple alternative path argument. While
the number of edges remains unchanged, six new conflicts are created.

@ Springer

918 D. Rehfeldt, T. Koch

O O O O

(a) SPG instance segment (b) Segment after edge replacement

Fig. 6 Segment of a Steiner tree instance (showing only non-terminals). All edges except for the dashed
ones have unit weight. The dashed edge in (a) has been replaced in (b). All edges that are in conflict with
the replacement edge in (b) are drawn in bold

4 From Steiner distances and conflicts to extended reduction
techniques

At the end of the last section we have seen a reduction method that inspects a number
of trees (of depth 3) that extend an edge considered for replacement. This section
continues along this path, based on the reduction concepts introduced so far.

Given a tree Y (e.g. a single edge), extended reduction techniques use an enumer-
ation of trees that contain Y to show that there is an optimal Steiner tree that does
not contain Y. The trees are built by iteratively enlarging or extending Y. During this
process, reduction, conflict, and implication techniques are employed to rule out these
extensions of Y. In this way, extended reduction techniques are loosely related to
the concepts of probing and conflict (graph) analysis for mixed-integer programming
(MIP), see e.g. [1,42].

The idea of extension was first introduced in [48] for the rectilinear Steiner tree
problem. Later the idea was adopted by [45] for the SPG. The next advancement came
in [10], where backtracking was used, together with a number of new reduction criteria
for the enumerated trees. Finally, [34] introduced the up-to-now strongest extended
reduction techniques, which improved and complemented the previous results. The
authors showed that their sophisticated algorithm could drastically reduce the size
of many benchmark SPG instances, and even allowed for the solution of previously
intractable instances.

In the following, we introduce new extended reduction algorithms that (provably)
dominate those by [34].

4.1 The framework

For a tree Y in G, let L(Y) € V(Y) be the set of its leafs. We start with several
definitions from [34]. Let Y’ be a tree with Y’ C Y. The linking set between Y and
Y’ is the set of all vertices v € V(Y’) such that there is a path Q C Y from v to a
leaf of Y with V(Q) N V(Y’) = {v}. Note that Q can consist of a single vertex. Y’
is peripherally contained in Y if the linking set between Y and Y’ is L(Y’). Figure 7
exemplifies this concept. To motivate those definitions, consider a path Q without
inner terminals between vertices v and w. For Q to not be peripherally contained in
a minimum Steiner tree it is sufficient that s(v, w) is smaller than the weight of Q.

@ Springer

Implications, conflicts, and reductions for Steiner trees 919

hahd

(a) Peripherally contained tree (b) Not peripherally contained tree

Fig. 7 Tllustration of peripherally inclusion. The bold subtree is peripherally contained in the entire tree in
(a), but not in (b)

Yy

(a) Pruning set (b) Strict pruning set

Fig.8 Illustration of pruning and strict pruning sets. The filled vertices in a form a (non-strict) pruning set,
whereas the filled vertices in b constitute a strict pruning set

However, this condition is not sufficient to show that Q is not contained in a minimum
Steiner tree. However, if Q is indeed contained in a minimum Steiner tree, at least one
of its inner vertices needs to be of degree greater 2 in this tree. Thus, we can exploit
this observation to enumerate extensions of Q from those inner vertices and attempt
to rule those extensions out. Such kind of deductions are used in extended reduction
techniques.

Forany P C V(Y) with |P| > 1 let Yp be the union of the (unique) paths between
any v, w € P in Y. Note that Yp is a tree, and that Yp C Y holds. P is called pruning
set if it contains the linking set between Yp and Y. Additionally, we will use the
following new definition: P is called strict pruning set if it is equal to the linking set
between Yp and Y. Figure 8 provides an example of pruning and strict pruning sets.
One readily verifies the following property of pruning sets.

Observation 2 Let Y be a tree, and let Y' C Y be a tree that is peripherally contained
inY. Further, let P C V(Y'). If P is a pruning set for Y, then P is also a pruning
set for Y. If P is a strict pruning set for Y', then P is also a strict pruning set for Y .

Additionally, we define a stronger, and new, inclusion concept. Consider a tree
Y C G, and a subtree Y'. Let P be a pruning set for Y’'. We say that Y’ is P-
peripherally contained in Y if P is a pruning set for Y. Now let P be a strict pruning
set for Y’. We say that Y’ is strictly P-peripherally contained in Y if P is a strict
pruning set for Y. From Observation 2 one obtains the following important property.

@ Springer

920 D. Rehfeldt, T. Koch

Observation3 LetY C G beatree, letY' C Y beasubtree, and let P be a pruning set
for Y'. If Y' is peripherally contained in Y, then Y' is also P-peripherally contained
inY.

In fact, we will use the contraposition of the observation: If Y’ is not P-peripherally
contained in Y, then Y’ is not peripherally contained in Y. Note that an equivalent
property holds for strict pruning sets.

Givenatree Y and aset E' C E, we write with a slight abuse of notation Y + E’ for
the subgraph with the edge set E(Y) U E’. Algorithm 1 shows a high level description
of the extended reduction framework used in this article. The framework is similar to
the one introduced in [34], but more general.? Note that the algorithm is recursive.

A possible input for Algorithm 1 is an SPG instance together with a single edge. If
the algorithm returns true, the edge can be deleted. Besides EXTENSIONSETS, which
is described in Algorithm 2, the extended reduction framework contains the following
subroutines:

— RULEDOUT(/, Y, P)is givenan SPG I = (G, T, c),atree Y C G, and a pruning
set P for Y suchthat V(Yp)NT C L(Yp). The routine returns frue if Y is shown
to not be P-peripherally contained in any minimum Steiner tree. Otherwise, the
routine returns false.

— RULEDOUTSTRICT(/, Y, P)is given an SPG I = (G, T,c),atree Y € G, and a
strict pruning set P for Y such that V(Yp) NT <€ L(Yp). The routine returns true
if Y is shown to not be strictly P-peripherally contained in any minimum Steiner
tree. Otherwise, the routine returns false.

— STRICTPRUNINGSETS(/, Y) is given an SPG I = (G,T,c),atree Y € G. It
returns a subset of all strict pruning sets for Y. A typical strict pruning setis L(Y).

— TRUNCATE(/, Y) is given an SPG I = (G, T, c), and atree Y € G. The routine
returns true if no further extensions of Y should be performed; otherwise the
routine returns false.

— PROMISING(/, Y, v) is given an SPG I = (G, T,c),atree Y C G, and a vertex
v € L(Y). The routine returns frue if further extensions of Y from v should be
performed; otherwise the routine returns false.

The usage of P-peripheral inclusion in RULEDOUT might appear somewhat awk-
ward, but is necessary for ruling-out not only trees (as in line 2 of Algorithm 1), but
also all possible extension via a single edge (as in line 4 of Algorithm 2). We explain
the extended reduction framework via an example at the end of Sect. 4.2.

In Lines 1-3 of Algorithm 1, we try to peripherally rule-out tree Y. If that is not
possible, we try to recursively extend Y in Lines 5-14. Since (given positive edge
weights) no minimum Steiner tree has a non-terminal leaf, we can extend from any of
the non-terminal leaves of Y. Note that ruling-out all extensions along one single leaf
is sufficient to rule-out Y. The correctness of EXTENDED- RULEDOUT can be proven
by induction (under the assumption that the subroutines are correct). We also remark
that it is under certain conditions possible to replace the condition not peripherally
contained in any minimum Steiner tree by the condition not peripherally contained in
at least one minimum Steiner tree. See also the discussion following Theorem 3.

3 We note, however, that the framework presented in [34] is (slightly) erroneous.

@ Springer

Implications, conflicts, and reductions for Steiner trees 921

Algorithm 1: EXTENDED- RULEDOUT
Data: SPG instance I = (G, T,c),tree Y with Y NT € L(Y)
Result: rrue if Y is shown to not be peripherally contained in any minimum Steiner tree; false
otherwise
1 foreach P € STRICTPRUNINGSETS(/, Y) do
2 if RULEDOUTSTRICT(/, Y, P) then return frue
3 end
4 if TRUNCATE(/, Y) then return false
s foreach v € L(Y) do

6 if v € T or not PROMISING(/, Y, v) then continue success := true
7 foreach E’ € EXTENSIONSETS(/, Y, v) do

8 if not EXTENDED- RULEDOUT(/, Y + E’) then

9 success = false

10 break

11 end

12 end

13 if success then return true

14 end

15 return false

Algorithm 2: EXTENSIONSETS

Data: SPG instance I = (G, T, ¢), tree Y, vertex v € V(Y)
Result: Set I € Z(8(v)) such that for all non-empty y € Z2(8(v))\I', the tree Y + p is not
peripherally contained in any minimum Steiner tree.
Q=0
R:=0
foreach ¢ := {v, w} € §(v)\E(Y) do
if RULEDOUT(Z, Y + {e}, L(Y) U {w}) then
‘ continue
end
if RULEDOUTSTRICT(/, Y + {e}, L(Y) U {w}) then
R :=RUl{e}
continue
end

0:=0U{e}

R N I T R SaY

—
5

=

end
3 return (Z(Q)\¥) UR

[
N

Although the extended reduction framework shown in Algorithm 1 looks simple,
an efficient realization is highly intricate. Not least, because the interaction of many
different algorithmic components needs to be taken into account. Also, the re-use of
intermediate results obtained during the tree extension (such as bottleneck Steiner
distances) is non-trivial.

We just note here that we have only implemented extensions in a depth-first-search
manner: We extend only from leaves that are farthest away from the initial tree Y. A
stronger, but potentially more expensive, alternative is to employ full backtracking, as
partially done in [34]. In the following, we concentrate on mathematical descriptions
of the subroutines for ruling-out enumerated trees.

@ Springer

922 D. Rehfeldt, T. Koch

4.2 Reduction criteria

In this section we introduce several elimination criteria used within RULEDOUT and
RULEDOUTSTRICT. In fact, both of these routines consist of several subalgorithms
that check different criteria for eliminating the given tree. Note that any criterion
that is valid for RULEDOUT is also valid for RULEDOUTSTRICT. We also note that
several of the criteria in this section are similar to results from [31,34], but are all
stronger. Throughout this section we consider a graph G = (V, E) and an SPG
instance I = (G, T, ¢).

Consider a tree Y C G, and a pruning set P for Y such that V(Yp) N T € L(Yp).
Foreach p € P let 71, C Y suchthat V(Yp) is exactly the set of vertices v € V (Y) that
satisfy the following: For any ¢ € P\{p} the (unique) path in ¥ from v to ¢ contains
p. Note that when removing E(Yp) from Y, each non-trivial connected component
equals one?,,.Further, note that p € V(Yp) forall p € P.LetGy p = (Vy.p, Ey.p)
be the graph obtained from G = (V, E) by contracting for each p € P the subtree 7p
into p. For any parallel edges, we keep only one of minimum weight. We identify the
contracted vertices V (Y p) with the original vertex p. Overall, we thus have Vy p C V.
Let cy, p be the edge weights on Gy_p derived from c. Let

Ty p = (Tﬂ VY,P) Uf{peP| TN V(Yp) # 0}.

Finally, let sy_p be the bottleneck Steiner distance on (Gy_ p, Ty p, cy, p). With these
definitions at hand, we are able to formulate a reduction criterion that generalizes a
number of results from the literature. See [19,31] for similar, but weaker, conditions.

Theorem 3 LetY C G beatree, andlet P be apruning setforY suchthat V(Yp)NT C
L(Yp). Let Iy p be the SPG on the distance network Dgy p (Vy, P, Sy, p) with terminal
set P. If the weight of a minimum Steiner tree for Iy p is smaller than c(E(Yp)), then
Y is not P-peripherally contained in any minimum Steiner tree for I.

Proof Let S be a (not necessarily minimum) Steiner tree for / such that Y is P-
peripherally contained in S. Let Sy p be a minimum Steiner tree for Iy p. The
underlying idea of the proof is as follows: First, we remove Yp from S. Next, we
interconnect all vertices in P. Because of the assumptions of the theorem, this proce-
dure also reconnects S. To obtain a tree that is of smaller weight than S, we use only
edges for the reconnection that correspond to edges of Sy p.

Let S C G be the forest defined as follows:

V(8) == (V(H\V(Yp) U V(Sy,p), (25)
E(S) := E(S)\E(Yp). (26)

Let ¢ be the set of connected components of S. Further, let f:V - % U {@} such
that f(v) = CifveV(C)foraC e %, and f(v) = 0 otherwise. Note that each
C € ¢ contains at least one vertex of P, and thus also at least one vertex of Sy, p. Also,
f() # @ forall v e V(Sy,p). Further, note that for each of the contracted subtrees

@ Springer

Implications, conflicts, and reductions for Steiner trees 923

Y, thereisa C %€ with Y, C C. In the following, we will iteratively connect all
the components in %.

While |¢’| > 1 proceed as follows. Choose a (v, w) € E(Sy,p) with f(v) # f(w)
such that sy _p(v, w) is minimized. Let W be a (v, w)-walk in Gy, p corresponding to
sy, p(v, w).Because of f(v) # f(w),thereis atleast one subwalk Q = W(q, r) of W
such that f(q), f(r) #9, f(g) # f(r),and f(u) = W forallu € V(Q)\{q, r}. Note
that c(E(Q)) < sy.p(v, w), because f(t) # ¥ forall t € T. As long as such a path
Q exists, proceed as follows. Add Q to S, and remove from E (Sy,p) an (arbitrary)
edge of the path between f(g) and f(r) in Sy p. Also, update % and f- Note that the
weight of the removed edge (with respect to sy p) is at most sy _p(q,).

Once |£| = 1, one notes that the summed up weight of all newly inserted paths
(with respect to ¢) does not exceed the weight of Sy _p (with respect to sy_p). Because
the weight of Sy, p is smaller than c(E(Yp)), we obtain from the construction of S
that

c(E(S)) < c(E(S)),

which concludes the proof. O

In practice, one does not need to explicitly form Gy, p. Instead, one can use the
(original) bottleneck Steiner distances between the connected components of the graph
induced by E(Y)\E(Yp). Note that one can also extend Theorem 3 to the case of
equality if at least one vertex of Yp is not contained in any of the paths corresponding
to the s values used for edges of Sy p. However, in the context of extended reduction
techniques one needs to be careful to not discard all of several equivalent extensions.
We omit the quite technical details, but merely note that allowing for equality (and
adding suitable checks) can have a significant impact for some instances.

In practice, computing a minimum Steiner tree (or even an approximation) on
D¢y » (Vy, P, SY, p) is often too expensive. In such cases, the following corollary pro-
vides a strong alternative.

Corollary3 Let Y, P as in Theorem 3. Let (P', P") be a partition of P. Let F’
be an MST on DGY’P(P/,SY,P), and let 7' be the weight of F'. Let F" be an

MST on DGY,P(TY,p, SY,p). Write {ef”, 65”, RPN e‘l;; P\—l} := Ey p(F") such that

F// F// . .
sy.p(e;) = syplej) fori < j. Define

|P”|

4
7= ZSY,P(elF)
i=1

If7 + 7" < c(E(Yp)), then Y is not P-peripherally contained in any minimum
Steiner tree for I.

Proof First, note that if P” = @, then the corollary follows directly from Theorem 3,
because 7’ is a lower bound on the weight of a minimum Steiner tree in Iy p. Thus,
we assume P’ # () in the following.

@ Springer

924 D. Rehfeldt, T. Koch

Suppose there is a minimum Steiner tree S for / such that Y is P-peripherally
contained in S. Define S as in the proof of Theorem 3. Further, proceed as in the proof
of Theorem 3 to reconnect all connected components of S that contain a vertex from
P’. As aresult, S has at most |P”| 4 1 connected components. Because S is assumed
to be optimal, each connected component of S contains at least one terminal. Thus, we
can reconnect the remaining connected components similarly to Theorem 3, by using
paths corresponding to edges of F”. We need to add at most | P”| such paths. Overall,
we have increased the weight of S by at most z’ 4+ z”. From z’ + 2 < ¢(E(Yp)) we
obtain that

c(E(S)) < c(E(S)),

which contradicts the optimality of S. O

As for Theorem 3, the contractions in Corollary 3 should only be performed
implicitly in practice. Furthermore, one requires a careful implementation to avoid
a recomputation from scratch of the two minimum spanning trees in Corollary 3 for
each enumerated tree in Algorithm 1.

Next, let Y € G be a tree with pruning set P, and let v, w € V(Y) and let Q
be the path between v, w in Y. We define a pruned tree bottleneck between v and
w as a subpath Q(a, b) of Q that satisfies |6y(u)] = 2 and u ¢ P for all u
V(Q(a, b))\la, b}, V(Q(a,b)) N T C {a, b}, and maximizes c(V(Q(a, b))). The
weightc(V (Q(a, b))) of such a pruned tree bottleneck is denoted by by p (v, w). Using
this definition and the implied bottleneck Steiner distance, we obtain the following
result.

Proposition7 Let Y be a tree, let P be a pruning set for Y, and let v, w € V(Y).
If sp(v, w) < by p(v, w), then Y is not P-peripherally contained in any minimum
Steiner tree.

The proposition can be proven in a similar way as Theorem 2 (and is indeed a gener-
alization of the latter).

Based on the SPG instance in Fig. 9, we demonstrate the usage of the extended
reduction framework and the above reduction criteria in the following. We aim to
replace (or pseudo-eliminate) vertex vs. To show that this operation is valid, we prove
that the tree Y with V(Y) = {v3}UN (v3), E(Y) = §(v3) is not peripherally contained
in any minimum Steiner tree. We call Algorithm 1 with Y as defined above. We are
neither able to rule out Y in Line 2, nor do we truncate the search in Line 4. In Line 5,
we consider vertex vs and mark it as promising. The extension sets obtained from
Algorithm 2 are: {{fz, vs}}, {{va, v5}}, and {{#2, vs}, {v4, v5}}. We (recursively) call
Algorithm 1 for each of these three extensions in Line 8.

First, we consider the extension via the edge {t2, vs}. The tree Y := Y + {{t2, vs}}
with pruning set P = {1, >, v2} can be shown to not be P-peripherally contained
in a minimum Steiner tree by using Proposition 7: It holds s, (11, 2) = 2 < 2.5 =
by’ p(t1, 12), where the pruned tree bottleneck corresponds to the edges {vs, vs} and
{t2, vs}.

Next, we consider the extension via the edge {v4, vs}. We are not able to rule out this
extension, and thus extend the tree Y’ := Y + {{v4, v5}} from vertex v4. The extension

@ Springer

Implications, conflicts, and reductions for Steiner trees 925

Fig.9 Segment of a Steiner tree
instance. Terminals are drawn as
squares. By using the extended
reduction framework, one can
show that vertex v3 can be
replaced

set obtained from Algorithm 2 is just {{v4, vg}}, because any extension of ¥’ via the
edge {va, v4} would results in a cycle and can thus be discarded. However, the tree
Y” := Y + {{v4, v6}} with pruning set P = {t1, v2, vg} can be ruled out by using
Proposition 7: It holds that s, (t1, v6) = 2 < 3 = by~ _p(t1, ve), Where the pruned tree
bottleneck corresponds to the edges {vs, vs}, {v4, vs}, and {v4, ve}.

Finally, we consider the extension via the edge set {{r2, vs}, {v4, vs}}. We are not
able to rule out this extension, and thus extend the tree Y’ := Y + {{r2, vs5}, {v4, v5}}
from vertex v4. As before, the extension set obtained from Algorithm 2 is {{vs4, ve}}.
The tree Y” := Y’ + {{v4, ve}} with pruning set P = {t1, 12, v2, v} can again be ruled
out by using Corollary 3: It holds that c(E(Y)) = 6.5, but the weight of an MST
on DGw,p(P’ sy»,p) is 6; the edges of the MST on DGw,p(P’ sy» p) are {11, 12},
{t1, v2}, and {12, ve}.

In summary, all extensions of the initial tree Y along vertex vs are ruled out in the
first call of Algorithm 1. Thus, the algorithm returns frue, which implies that vertex
v3 can be replaced.

Another criterion can be devised by using the reduced costs of the well-known
bidirected cut formulation [50] for SPG. This formulation is based on the observation
that any optimal Steiner arborescence for the bidirected equivalent of a given SPG
instance with arbitrary root » € T corresponds to an optimal Steiner tree for the
original SPG. Let D = (V, A) be the bidirected equivalent of G, and let r € T.
Consider a dual solution for the bidirected cut formulation, with reduced costs ¢, and
with objective value L. Further, for any v, w € V, let c?(v, w) be the length for a
shortest, directed path from v to w in A with respect to the reduced costs. From the
observation that an optimal Steiner arborescence cannot contain any cycles, we obtain
the following result with standard linear programming arguments:

Proposition8 Ler Y be a tree. Let P = {p1, ..., px} be a strict pruning set for Y
such that there is a k' < k with p; € T if and only if i > k'. Further, assume that
VYp)NT C L(Yp), and |P| < |T|. The weight of any Steiner tree that strictly
P-peripherally contains Y is at least

@ Springer

926 D. Rehfeldt, T. Koch

min max dr, pi) + dipi,t)t. @7
ie{l,..., kY {1, tiz iy 1 YST\V(Yp) pi]<k2/;#l pj !

Given an upper bound on the cost of a minimum Steiner tree, this proposition can be
used in the RULEOUTSTRICT routine. In practice, we only use a lower bound on the
max subterm in (27).

Finally, another important reduction criteria is constituted by edge conflicts—this
result follows directly from Proposition 5.

Corollary 4 Let I®) be an SPG obtained from performing a series of k valid reductions
onanSPG I.LetY € G® be atree, and let P a pruning set for Y. If there are distinct
edgesey, ey € E® YY) such that AP (e1)NA® (e3) # (), then Y is not P-peripherally
contained in any minimum Steiner tree.

5 Exact solution

This section describes how to use the techniques introduced so far for the exact solution
of SPG. The new methods have been implemented as an extension of the branch-and-
cut solver SCIP- JACK [14].

5.1 Branch-and-cut

As shown in [33], reduction techniques are the most important ingredient in a state-of-
the-art SPG solver. While [33] uses linear programming and branch-and-bound mostly
to trigger further reductions, we employ a proper branch-and-cut approach, based on
[14]. On a high level, the solution process of SCIP- JACK can be naturally divided into
three phases.

First, the presolving phase. Here, reduction techniques (combined with primal and
dual heuristics) are employed to decrease the problem size. As can be seen in Sect. 5.2
and in the detailed results in the appendix, many instances are already drastically
reduced in this phase.

Second, the linear programming (LP) based separation phase at the branch-and-
bound root node. SCIP- JACK employs a specialized separation algorithm, see e.g.
[14], to compute lower bounds based on the well-known bidirected cut formulation
[50]. Additionally, several specialized methods such as primal heuristics and domain
propagation are employed. For domain propagation, we also employ a modified version
of the extended reduction techniques that makes use of the reduced costs from the LP-
relaxation.

Third and finally, a branch-and-bound search is initiated, with the branching being
done on the vertices of the graph. In this phase, again primal heuristics and domain
propagation are employed. However, SCIP- JACK aims to avoid the branch-and-bound
search, and puts much effort into the root node. Indeed, fewer than five percent of the
instances used in this article require branching.

@ Springer

Implications, conflicts, and reductions for Steiner trees 927

We enhance several vital components of this branch-and-cut framework. The most
natural application of reduction methods is within presolving. However, one can also
use them within domain propagation, translating the deletion of edges into variable fix-
ings in the integer programming model. However, in our implementation the reduction
methods are employed far less aggressively in domain propagation than in presolving
(so also the time spent in domain propagation is usually less than 10 percent of the
time spent in presolving). The edge conflicts described in this article are used for
generating clique cuts, which are well-known for general MIPs [2]. We note, however,
that the impact of these cuts on the overall solution time is small; even for instances
with many edge conflicts the obtained speed-up is usually only a few percent. Finally,
also primal heuristics are improved. First, the stronger reduction methods enhance
primal heuristics that involve the solution of auxiliary SPG instances, such as from
the combination of several Steiner trees. Second, the implication concept introduced
in this article can be used to directly improve a classic SPG heuristic, as shown in the
following.

Implications and the shortest path heuristic

The simple 2-approximation for SPG introduced by [43] has been widely used in
the literature and is perhaps the best known primal heuristic for SPG. The algo-
rithm starts with a tree S consisting of a single vertex and iteratively connects S
by a shortest path to a terminal closest to S. As a simple postprocessing step, one
can compute a minimum spanning tree on (V (S), E[S]) and iteratively remove non-
terminal leaves. An efficient implementation is given in [3]. This section shows how
to use the implication concept introduced in Sect. 2.2 to (empirically) improve the
algorithm.

Let vg € V, and initially set § := {vg}. Define a distance array d and a predecessor
array pred by c?[u] = o0, pred[u] := null for all u € V\{vp}, and aNl[vo] =0,
pred[vg] := vg. Define for all v € V\T:

p(v) := max {0, sup {E(e) —cle) |le={v,w}ed),we T\V(S)}} . (28)

Forall v € T set p(v) := 0. Essentially, (28) is a weaker version of the implied profit
from Sect. 2.2. Finally, set Q := {vp}.

While Q # @ letv := argminueQ c?[u]. If v € T, add the path P from v to S,
marked by the predecessor array, to S, add V(P) to Q, and set d [u] := O for all
u € V(P). Furthermore, update (28). For all {v, w} € &(v) proceed as follows. If

d] + c({v, w}) — min {c({v, w)), v, c?[u]] < dwl. (29)

then set d [w] to the left hand side of (29), and add w to Q. Further, set pred[w] := v.

Note that (29) provides a bias for paths computed by the heuristic to include ver-
tices of implied profit. In this way, the distance associated with a path also reflects
the cost needed to connect additional terminals later on. Note that the minimum

@ Springer

928 D. Rehfeldt, T. Koch

spanning tree computed during postprocessing will always contain the edge asso-
ciated with each vertex of positive implied profit contained in S. We use the value
mingses)\ fe) €(€’) instead of b(e) for e = {v, w}, w € T in (28) for two reasons:
First, the value better represents the weight that can be saved when connecting w via
v (because the bottleneck edge corresponding to b(e) might already be part of the
tree computed by the heuristic so far). Second, this value is much faster to compute
(and the primal heuristic is executed often as a subroutine within our implementa-
tion).

Computational experiments on the benchmark instances from the next section have
shown that the above modifications improve the solution quality of the shortest path
heuristic in a surprisingly consistent manner: When run 100 times from different
starting points after SPG presolving (as is the default in SCIP- JACK), the solution
quality of the heuristic is improved for more than 85 % of the instances. We also
note that the shortest path heuristic is used as a subroutine in several more involved
heuristics applied by SCIP- JACK, see [14].

5.2 Computational results

This section provides computational results for the new solver. In particular, we com-
pare its performance with the updated results of the solver by [31,46] published in [37].
The computational experiments were performed on Intel Xeon CPUs E3-1245 with
3.40 GHz and 32 GB RAM. According to the DIMACS benchmark software [7], this
computer is 1.59 times faster than the machine used in [37]*. While the authors of the
current article do not have access to the machine used in [37], preliminary experiments
on different machines have shown that the DIMACS score is a good estimate for the
performance of the new solver. Thus, we have scaled the run-times reported in the fol-
lowing accordingly, by multiplying the run-times of SCIP- JACK by 1.59. We use the
same LP solver as [37]: CPLEX 12.6 [20]. All results were obtained single-threaded.

For the comparison with the solver by [31,46], we are restricted to the instances
used in [37]. Still, the experiments in [37] include a large number of test-sets (both the
STEINLIB and the 11th DIMACS Challenge collection). Thus, we only use test-sets
with at least one instance that takes more than 10 s to be solved by [37] or our solver.
There is one notable exception: We do not consider the test-sets /320 and 1640 from
the STEINLIB; for the following reason: [37] use specialized, non-default settings for
several test-sets, including 71320 and 1640, where they use only ““(...) fast calculation of
bounds (...)” during branch-and-bound. As we aim to give an unbiased picture of the
performance of our solver, we only use our default settings for all instance sets. While
we can achieve significant speed-ups on all tests-sets when using specialized settings,
the impact is by far strongest on the / instances—more than an order of magnitude
for the harder instances. We note, however, that we can match the results from [37]
on I320 and 1640 if we use dual-ascent bounds during branch-and-bound, instead of
LP-based ones.

An overview of the test-sets is given in Table 1. The second column gives the
number of instances per test-set. The third and fourth columns give the range of nodes

4 Our machine obtains a score of 488.993589 (with the same compiler as [37]).

@ Springer

Implications, conflicts, and reductions for Steiner trees 929

and edges per test-set. The fifth column states whether for all instances of the test-set
optimal solutions are known.

Impact of implied profit reductions

In the following, the impact of the s, based reduction methods on the preprocessing
strength is reported. For the reduced cost based reductions we use the dual-ascent
heuristic from [50]. We use seven benchmark sets from the literature; three from the
DIMACS Challenge, three from the STEINLIB, and one from [22]. Table 2 shows in
the first column the name of the test-set, followed by its number of instances. The
next columns show the percentual average number of nodes and edges of the instances
after the preprocessing without (column three and four), and with (columns five and
six) the s, based methods. The last two columns report the percentual relative change
between the previous results.

It can be seen that the s, methods allow for a significant additional reduction of the
problem size. This behavior is rather remarkable, given the variety of other powerful
reduction methods included in SCIP- JACK. Even if the percentage of remaining edges
and nodes is already small on average for the base processing (such as for VLSI), there
are for each of the seven test-sets at least a few instances that are still of large size.
These instances can often be significantly reduced by the s, techniques. While no run
times are reported in the table, we note that on each of the seven test-sets the overall run
time of the preprocessing (often significantly) decreases when the s, based methods
are used. Furthermore, even for other test-sets where the s, methods are less (or not at
all) successful, one does not observe an increase in the run time of the preprocessing
above 10 percent.

Comparison with the state of the art

Next, we compare the solver by Polzin and Vahdati Daneshmand [31,46] and the new
solver SCIP- JACK with respect to the mean time, the maximum time, and the number
of solved instances. For the mean time we use the shifted geometric mean with a shift
of 10. We note that the use of an arithmetic mean would bias strongly in favor of
SCIP- JACK, which is especially faster on harder instances.

Table 3 provides the results for a time-limit of 24 h (divided by 1.59 in the case
of SCIP- JACK), which is the same time-limit as used in the updated report [37]. The
second column shows the number of instances in the test-set. Column three gives the
number of instances solved by [37], column four the number of instances solved by
SCIP- JACK. Column five shows the mean time taken by [37], column six shows the
mean time of SCIP- JACK. The next column gives the relative speedup of SCIP- JACK.
The last three columns provide the same information for the maximum run-time.

It can be seen that SCIP- JACK consistently outperforms [37]—both with respect
to mean and maximum time. Also, SCIP- JACK solves on each test-set at least as
many instances as [37]. The only test-set where [37] prevail is VLSI. On this test-set
the results of the extended reductions reported in [31] are also stronger, which might
be attributed to the use of full-backtracking, which has not yet been implemented in
SCIP- JACK.

@ Springer

D. Rehfeldt, T. Koch

930

a3u9yrey)d
SOVINIA W T wolf
*SO0UR)SUT JBAUI[T)ORI
SUIpIOAR-99BISqO
AreutsuQ
saoue)sur
810-0QFD An0qe
) JO SUOISIAA PIA[OSAI]

[Lz]

wol, "u3Isop ylomiou

UONEITUNUITIOI[S)
WOIJ PIALIP SOUB)SU]

[ov] dI'TdSL woxr]

"SOOUE]SUT 901} JOUI)S
IeauI[noal A[euIsLQ

AIINILS WOl
*SQ0URISUT 931} JAUIA)S
IeQUINOAI A[[RUISLIO

saoue)sur
uS1sap JIom)au dA0qe
9} JO SUOTSIOA PIAOSAI]

[£2] 29s ‘uS1sap y10MIdU
UONBOIUNUILIOI[)
WO1J PAALIIP SOUBISU]
[sc] usisap ISTA
woly (dL1owod3-uou)
sajoy i sydeid pro
dIINIALS Woly
sydeid pus sso1d q-¢

PoA[OS

PaAJOS

PoA[OS

PaA[OS

PIA[OS

PaAJOS

PoA[OS

PaAJOS

PaA[OS

8T6'8€—€C

919°€11-1TS 11

£60°99€-CSSTS

TSELT V01

LOY'6€

10€°05~LET

€8S°8V1-9L1€

L11°89-G€1

009°11

ELY'C1-91

P8I 1L=S9SL

989°CET-18Y TY

LTI'L1-68

610°LT

12T YE-091

965681661

11L°9€-06

000C

€C

€C

9L

S8

c8

oIl

LT

y18eydon

®-0dD

310-09D

LSAdSL

00001s4d

B-BUUIIA

S-BUUSIA

ISTA

h: 4

uondrosaq

sme)s

gl

(Al

#

QweN

308 YIewyouaq HJS Uo s[reIdq | djqel

pringer

as

931

Implications, conflicts, and reductions for Steiner trees

pringer

As

[1+] sydeis anrediq pue
‘saqnoradAy fseourisur

piey pajonnsuoy paAosu) C16°8T-C61 960119 0s ond
AIINIALS WOI] "SI[9AD
PPO pu® S[o3YMm-ppo JO
uoneuUIqUIOD (S9oUR)SUT
plIey pajonnsuon PIAIOS 8LT01-6 L66£79 8 ds
AIINIALS
woIy "usIsap [STA
woij (dL1WOoIZ-uou)
so[oy im sydesd puo PIAIOS LS9'TL08 8I¥'8€—€C LE NI'T
PIAIOS 0Cc9-6v1 891¢—18 9 eddM
[91] sworqoxd
Surssadold Funnor-arm
WO} PIALISp SadueIsUf PaA[OS 090€—881 8681011 €9 rdam
uonduosaq NN kel Al # dweN

panunuod

L3|qeL

932 D. Rehfeldt, T. Koch

Table2 Average remaining nodes and edges after preprocessing

Base preprocessing +sp techniques Relative change
Test-set # Nodes[%] Edges[%] Nodes[%] Edges[%] Nodes[%] Edges[%]
VLSI 116 0.4 0.4 0.1 0.1 -75.0 —75.0
Vienna-s 85 3.3 3.0 2.0 1.8 -394 —40.0
WRP4 63 36.2 36.0 335 33.0 -7.5 —-83
Copenhagl4 21 33.7 325 32.1 29.4 —4.7 -95
GEO-org 23 6.7 7.6 5.8 6.5 —-134 —145
ES10000FST 1 24.1 27.1 15.1 16.8 -37.3 —38.0
ES-R50 15 17.5 22.8 12.6 16.6 —28.0 —27.2

Bold numbers signify a superior performance

On the other test-sets, the difference in the run-time is especially apparent for the
maximum run time. This behavior can be explained by the fact that most test-sets
contain many instances that can be solved very fast by both solvers—which brings the
mean times closer together. Prominent examples are the SP and Copenhagl4 test-sets,
for which all instances can be solved by SCIP- JACK within roughly 1 h, whereas [37]
leave several instances unsolved even after 24 h.

As already mentioned, most test-sets in Table 3 contain a large number of instances
that can be solved by both [37] and our solver in well below 1 s. To mitigate the
impact of very easy instances on the average times, we group the instances according
to their hardness in the following experiment. We use instance groups [10%, 86,400]
fork = —o00, 0, 1, 2, 3. Any group [10%, 86,400] contains each instance from Table 3
such that [37] or SCIP-JACK solves this instance in not less than 10%, and at most
86,400 s. If an instance can be solved by only one solver within the time-limit, we
consider the run-time of the other solver on this instance as 86,400 s. Such groupings
are commonly used in computational mathematical optimization (also with the time
lower bounds being powers of 10), see e.g. [28,49]. In addition to the shifted geometric
mean, Table 4 also provides the arithmetic mean of the run-time for each group. As
before, we give the results for both [37] and SCIP- JACK, and report the respective
speed-up of SCIP- JACK.

Unsurprisingly, the ratio of the arithmetic mean stays largely unchanged with
increasing hardness of the groups. SCIP- JACK is more than a factor of 5 faster than
the solver from [37] on all groups. On the other hand, the performance difference
with respect to the shifted geometric mean significantly increases with the hardness
of the instances. For instances that take more than a 1000 s to be solved by [37] or
SCIP- JACK, the latter is even by a factor of more than 7 faster.

Further results
Finally, we provide results for several large-scale Euclidean Steiner tree problems. For
solving such problems, the bottleneck is usually the full Steiner tree concatanation [22].

This concatanation can also be solved as an SPG, however [35]. In Table 5 we give
results for Euclidean instances from [22] with 25 thousand (EST-25k), 50 thousand

@ Springer

933

Implications, conflicts, and reductions for Steiner trees

sSumas Jnejop-uou (pazierdads) Ym ‘A2'd £Q paureiqo aram x e Aq payIew sawl], -ooueutiojrad ouradns e AJudis siaqunu pjog

001 00t'98< 00t'98< 67T €896 ‘T1 6196 ‘Y1 8L L1 0$ ond
001 00t'98< 00t'98< S0T €61 €I 9¢ S¢ LE NI'T
99°'sp< 12681 00t'98< 8T'S T0¢ 7651 8 9 8 ds
99'07< L'T81Y 00%°98< LS'T 8yl L'Le 1T x0T 1C y18eydon
i 608 0'8€l L 608 0'8€l I I I 0000154
9T's vHes 0°58¢¥ St 765 9°spl €T X£C €T 510-0dD
09°L 'S8 S9LY9 ¥8'C 8'¢S L'8S1 €T €T €T e-04D
€C'T 1895+ T€LO9 oLt vel 8°TC €9 €9 €9 ed¥dM
1801 L'LS S'€T9 (£ 6°S 8L c8 X58 S8 S-BUUAIA
€LL I'LS €lvy bh1 0 TL S8 X58 8 B-BUUAIA
€9°€ Izl (X34 06T 9T 0°S LT LT LT AT
1 TS6 1901 £C'1 v'C Te 29 9 9 PdAM
ss'€ 6'9C¢ Y1911 9¢'1 'l Sl 9L 9L 9L LSAdSL
99°0 6’18 6'¢S £€9°0 80 S0 911 911 911 ISTA
dnpaadg [sI'r-'s [sI'A®d dnpaadg [s]'[-'S [sI'A®d 'S A®d # 105159,
QW) WNWIXBIA (ueowr "093 "ys) awin UL 4

(A®d) HO.VJMH Ul paqLIdSap JOAJOS 9y} pue Cr--s) donIe SIy3 I0J ﬁo&0~®>®—u JOAJOS 943 JO GOmEmQEOU EEOG.SS&EOU €9|qel

pringer

As

934 D. Rehfeldt, T. Koch

Table 4 Computational comparison of the solver developed for this article (S.-J.) and the solver described
in [31,46] (P.&V.), with instance groups ordered by hardness

Shifted geometric mean time Arithmetic mean time
Group # P.&V.[s] S.-J.[s] Speedup P.&V.[s] S.-J.[s] Speedup
[0, 86, 400] 644 12.2 7.9 1.54 1235.5 229.0 5.40
[1, 86, 400] 342 34.5 19.5 1.77 2326.4 431.2 5.40
[10, 86, 400] 178 125.4 52.6 2.38 4466.6 825.5 541
[100, 86, 400] 66 1403.2 295.0 4.76 11,999.0 2197.6 5.46
[1000, 86, 400] 30 8035.8 1099.0 7.31 25,923.1 4653.8 5.57

Bold numbers signify a superior performance

Table 5 Results of SCIP- JACK for Euclidean Steiner tree instances

Test set # # solved Mean time [s] Maximum time [s]
EST-25k 15 15 43.2 54.6
EST-50k 15 15 128.2 196.5
EST-100k 15 15 477.9 729.7

(EST-50k), and 100 thousand (EST-100k) points in the plane. For EST-25k the mean
and maximum times are between one and two orders of magnitude faster than those
of the well-known geometric Steiner tree solver GEOSTEINER 5.1 [22]. Moreover, 7 of
the 15 instances from EST-50k are solved for the first time to optimality—in at most
197 s. On the other hand, GEOSTEINER cannot solve these instances even after seven
days of computation. For EST-100k, GEOSTEINER even leaves 12 of the 15 instances
unsolved after one week of computation. In contrast, we solve all these instances to
optimality in less than 13 minutes. Overall, we solve 19 instances for the first time to
optimality.

Unfortunately, [37] does not report results for these instances. However, the solver
by [30], which won the heuristic SPG category at the 11th DIMACS Challenge, does
not reach the upper bounds from GEOSTEINER on any of the EST-25k, EST-50k, and
EST-100k instances.

6 Conclusion and outlook

This article has described the combination of implication, conflict, and reduction
concepts for the SPG, with the aim of improving the state of the art in exact SPG solu-
tion. This combination has spawned several new techniques that (provably) dominate
well-known results from the literature, such as the bottleneck Steiner distance. The
integration of the new methods into the branch-and-cut solver SCIP- JACK has shown
a large impact on exact SPG solution. The new SCIP- JACK could even outperform
the long-reigning state-of-the-art solver by [31,46].

Still, there are several promising routes for further improvement. First, one could
improve the newly introduced methods. For example, by using full-backtracking in

@ Springer

Implications, conflicts, and reductions for Steiner trees 935

the extended reduction methods, by improving the approximation of the implied bot-
tleneck Steiner distance, or by adapting the latter for replacement techniques. Second,
several powerful methods described in [31,46] could be added to the new solver, e.g. a
stronger IP formulation realized via price-and-cut, or additional reduction techniques
via partitioning.

Unlike the solver by [31,46], the new SCIP- JACK will be made freely available for
academic use—as part of the SCIP Optimization Suite 8.

Acknowledgements The authors would like to thank the referees for their helpful comments. The work
for this article has been conducted within the Research Campus MODAL funded by the German Federal
Ministry of Education and Research (Fund Number 05M14ZAM), and has also been supported by the DFG
Cluster of Excellence MATH+.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess Thisarticleis licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Detailed computational results

This appendix provides detailed computational results on the problem instances dis-
cussed in this article All following tables are structured as follows: First, the name of
the respective instance is given. The next three columns give the number of vertices,
arcs (after the graph transformation to bidirected SAP), and terminals of the instance.
The subsequent segment, labelled "Presolved", provides the size of the preprocessed
problem along with the preprocessing time.

The last segment provides first the dual and primal bound, or the optimal solution
value if the problem could be solved to proven optimality. Moreover, the number of
branch-and-bound nodes (V) and the total run time is given. A time-out is signified
by a “>" in front of the termination time. We stress that the reported final execution
times include both the preprocessing time and the reading time.

The time limit for the following instances is 54,340 s. This corresponds to 24 h on
the machine used by [37] (Tables 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22).

@ Springer

http://creativecommons.org/licenses/by/4.0/

936

D. Rehfeldt, T. Koch

Table 6 Detailed computational results for SPG, test-set 2R

Instance Original Presolved Optimum N t[s]
Vi |Al 7| Vi |A] 7| ts]
2rl11 2000 11,600 9 0 0 0 0.1 28,000 1 0.1
2r112 2000 11,600 9 0 0 0 0.1 32,000 1 0.1
2r113 2000 11,600 9 0 0 0 0.1 28,000 1 0.1
2r121 2000 11,532 9 0 0 0 0.1 28,000 1 0.1
2r122 2000 11,544 9 0 0 0 0.1 29,000 1 0.1
2r123 2000 11,508 9 0 0 0 0.1 25,000 1 0.1
2r131 2000 11,452 9 0 0 0 0.1 27,000 1 0.1
2r132 2000 11,450 9 636 5426 9 0.4 33,000 1 0.4
2r133 2000 11,458 9 0 0 0 0.1 29,000 1 0.1
2r211 2000 11,600 50 571 4988 34 2.8 89,000 3 7.6
2r212 2000 11,600 49 132 818 17 0.9 80,000 1 1.1
2r213 2000 11,600 48 279 2104 29 2.0 76,000 1 24
2r221 2000 11,528 50 0 0 0 1.1 83,000 1 1.1
2r222 2000 11,530 50 0 0 1.9 84,000 1 1.9
2r223 2000 11,540 49 562 4606 40 1.8 84,000 1 4.6
2r231 2000 11,474 50 0 0 0 2.3 86,000 1 2.3
2r232 2000 11,466 49 453 3358 37 2.0 87,000 1 33
2r233 2000 11,460 47 0 0 0 1.3 83,000 1 1.3
2r311 2000 11,600 95 372 2586 47 1.2 129,000 1 2.0
2r312 2000 11,600 92 482 3802 45 1.0 126,000 1 22
2r313 2000 11,600 97 306 2124 38 1.0 128,000 1 1.3
2r321 2000 11,542 92 0 0 0.3 125,000 1 0.3
2r322 2000 11,506 92 397 2784 43 1.6 130,000 1 2.3
2r323 2000 11,528 96 651 4856 64 1.7 142,000 1 5.1
2r331 2000 11,472 93 260 1584 40 1.8 134,000 1 2.0
2r332 2000 11,490 95 544 3820 50 1.7 136,000 1 44
2r333 2000 11,482 98 449 2938 54 2.1 143,000 1 33
Bold numbers signify a superior performance
Table 7 Detailed computational results for SPG, test-set Copenhagen14
Instance Original Presolved Optimum N t[s]
4 Al IT| Vi |A] \T] tls]
ind1 18 62 10 0 0 0 0.0 604 1 0.0
ind2 31 114 10 0 0 0 0.0 9500 1 0.0
ind3 16 46 10 0 0 0 0.0 600 1 0.0
ind4 74 292 25 0 0 0 0.0 1086 1 0.0
ind5 114 456 33 0 0 0 0.0 1341 1 0.0
rc01 21 70 10 0 0 0 0.0 25980 1 0.0
rc02 87 352 30 2 2 1 0.0 41,350 1 0.0

@ Springer

Implications, conflicts, and reductions for Steiner trees 937
Table 7 continued
Instance Original Presolved Optimum N t[s]
Vi A IT| Vi |A] [T] tls]

rc03 109 404 50 0 0 0 0.0 54,160 1 0.0
rc04 121 394 70 0 0 0 0.0 59,070 1 0.0
rc05 247 972 100 0 0 0 0.0 74,070 1 0.0
rc06 2502 12,488 100 1991 8880 90 .1 79,714 1 4.9
rc07 2740 13,156 200 2001 8674 139 1.8 108,740 7 7.2
rc08 7527 36,340 200 6840 30,894 186 4.8 112,564 55 156.8
rc09 6128 30,528 200 5290 24,238 168 4.0 111,005 1 86.3
rcl0 1572 6490 500 572 2078 163 0.8 164,150 1 1.2
rell 2858 11,638 1000 1055 3676 337 2.7 230,837 1 35
rt01 262 1480 10 0 0 0 0.0 2146 1 0.0
rt02 788 3876 50 0 0 0 0.3 45,852 1 0.3
rt03 1725 8184 100 1430 6198 82 0.9 7964 5 2.7
rt04 9469 45,486 100 9035 41,352 94 42 9693 2717 736.1
rt05 15,473 77,856 200 14,488 68,570 190 72 51,313 57 2630.6
Bold numbers signify a superior performance
Table 8 Detailed computational results for SPG, test-set ES10000FST
Instance Original Presolved Optimum N t[s]

V] [A| IT| Vi 1Al IT] tls]
es10000fst01 27,019 78,814 10,000 4080 13,246 1621 36.8 716,174,280 1 509
Table 9 Detailed computational results for ESMT, test-set ESMT-R25

Original Presolved
Instance 4 |A] |T| 4 |A] |T| t[s] Optimum N t[s]
R25KO1EFST 39,277 94,524 25,000 92 294 40 347 989612134 1 40.1
R25K02EFST 39,306 94,978 25,000 59 180 30 384 99.0370878 1 47.1
R25KO03EFST 39,549 96,348 25,000 3893 12,466 1785 35.0 99.2157207 1 458
R25KO4EFST 39,555 96,260 25,000 84 274 37 38.0 989431392 1 476
R25KOSEFST 39,153 93,806 25,000 49 146 26 289 994912321 1 39.1
R25KO06EFST 39,438 95,690 25,000 5990 19,160 2804 12.7 99.3728768 1 29.6
R25KO7EFST 39,900 98,180 25,000 47 140 24 384 995646105 1 51.6
R25KO08EFST 39,529 95,920 25,000 65 200 32 39.6 99.2662017 1 485
R25K09EFST 39,732 97,060 25,000 3807 12,238 1773 38.1 99.0968636 1 44.7
R25K10EFST 39,248 94,668 25,000 48 136 23 28.1 99.1104801 1 357
R25K11EFST 39,425 95470 25,000 2661 8418 1239 42.1 99.1216345 1 475
R25KI12EFST 39,293 94,888 25,000 3434 10,960 1593 37.3 99.1134447 1 455
R25KI13EFST 39,284 94,770 25,000 3328 10,524 1566 264 99.4005526 1 33.0
R25KI14EFST 40,063 98,534 25,000 3957 12,746 1795 389 99.2046414 1 46.1
R25KISEFST 39,498 95,704 25,000 44 130 21 437 992521324 1 546

Bold numbers signify a superior performance

@ Springer

D. Rehfeldt, T. Koch

938

Qouew1ojrad Jotadns e AJ1uSis sroquuinu pjog

7'OLT 1 9T6LYY OV 951 Y4 ¥CC 99 000°0S Y61 £87°6L LSHHSIN0SY
8161 1 S6L60T 01 L'SEl ¥C 9¢1 IS 000°0S ovi'e6l 9TE6L LSHa7 105
9'1¢l 1 666€£0°0V1 €911 796¢ 01¥ ‘¥C S9L 000°0S sve161 TL68L LSHHETN0SYT
L'LS 1 PETIOT OVT £'6c YT 961 IS 000°0S 89L°T61 €€I°6L LSJHTIN0SYT
9'6¢1 1 9SL691 01 reel L6LE 8T6 ‘ST 9¢18 000°0S 809°C61 121°6L LSAATTA0SE
008 1 €601 0V1 801 €¢ 9¢C €L 000°0S orLT6l 8176°8L LSHHOTAM0SYT
9'0C1 I I8YE€9€ 0P 1 0°L0T 9T 9¢1 129 000°0S 756061 GT8'SL LSHH60M0SYT
89C1 I LPTISE OVT L1111 84 8LE 801 000°0S (44 ¥4 SLI'6L LSHH80M0SY
098 I 8S6YT Ov1 [B4% 05¢€9 90S ‘tv 1€9 ‘€l 000°0S 8CTTT61 9Y0°6L LSHHLOMOSYH
6791 1 hS8re 0L 6°¢el Sovy 0Tl ‘1€ S0L6 000°0S YL Y61 081°6L LSIH90X05Yd
S$961 1 SE€TS66°'6E1 LTyl €C 9C1 a4 000°0S 8161 00T°6L LSJHS0YM0SYT
(%Y 1 7S8€60°0V1 gl 8¢ VLI 9¢ 000°0S ¥81°161 £8°68L LSd970X05Yd
ja04! 1 7179000V 1 9l STee 990 ‘€T 861L 000°0S 8Se161 ¥96°8L LSJHE0X05Yd
(Y4 1 I8LSS6'6ET oIl 611 86L ¥S¢ 000°0S 9zL 061 PSL'8L LSA9T0¥0Sd
8'6¢1 1 Y9L86E 0V ozt LTvy 9¥€ ‘0¢ 1256 000°0S OvL Y61 SOS‘6L LSAHTONM0SYT
[s]h l.Ll vl f Izl v (Al
[s]h N wnwndo paajosalg reurduQ oue)sup

0SY-LINSH 19s-159) ‘L JNSH J10J S)nsax TWEOS.S:QEOU pa[reIs ol o|qel

pringer

As

939

Implications, conflicts, and reductions for Steiner trees

Qouew1ojrad Jotadns e AJ1uSis sroquuinu pjog

0°09% I 8Y0PLT 861 €161 9 °C1 881 ‘L8 CET LT 000001 PO v8€ £€0°8S1 LSHHSTH00TY
L'6tL 1 £6697T'861 S0I1¢ (44 91 0S 000°001 799°98¢ 916861 LSHA7I3001d
V'LSY 1 PrSES0'861 Ayt 6L8 ‘Tl 768 ‘L8 619°LT 000°001 91 18¢ 099°LST LSHHETX001Td
00LS 1 96918¢€'861 9CLY (44 8S1 0S 000°001 T6ET8E 908°LST LSAHTIN00TYd
9'89¢ 1 TEEIET 861 LvCl ¥26 ‘11 9LE ‘€8 ¥26 ‘ST 000°00T 061°68¢ S9T'8ST LSAATIY00TYd
1'9%S 1 S066€0'861 €'8YY YTr8 0L0 ‘LS 710 ‘81 000°00T PrE98€ GLS'8ST LSA90T300Td
7'16€ I TE€8SET'861 €Sl ILSTI ¥76 ‘S8 606 ‘9T 000001 0LY'€8€ 690°8S1 LSAH603001Td
81¥S I €EPP66'L61 €ILY LL6L vy ‘¥S 980 ‘L1 000001 YO T8¢ 6€8°LST LSAH803001d
9°69¢ I 9IP8LS L61 vCll SPS 11 s 6L L¥8 T 000001 96T°€8¢ LV6°LST LSAHLOM00TE
€'8C¢ I I8PPLI 861 L'LIT Y4 9LT €L 000001 980°98¢ P1S°8SI LSAH9031001d
1'cLe 1 LETEST' 861 9°¢Cl (44 Il Ly 000°001 979 98¢ L8S8ST LSAHS0X001d
£7CI9 1 L0968T'861 8°0SS 6C 0T 9 000°001 T6T°S8¢ S0T'8ST LSAd703001d
L'0¥9 1 €1€TT0'861 6'LLY 0€98 020 ‘8§ LEE ‘81 000°001 06678¢ 06T°8ST LSAHE03001d
1'0LE 1 SLT0L6'L6T 9961 9C e IL 000°00T 766°€8¢ 1€0°8ST LSAHT0300Td
L'1€9 1 S0L90E'861 (2499 T 9¢1 0s 000°00T TL1E8E 698°LST LSAATON00TH
[s] [.LI V] [Al 4 (Al
[s]h N wnwndo paAjosald reurSuQ oue)sup

001 ¥-LINSH 195-159) {LINSH 10 si[nsai [euoremndwion pajiesdd LL djqeL

pringer

As

D. Rehfeldt, T. Koch

940

0] I €L99 10 0 0 0 1 8TH ‘€I SL9¢ ozut
10 ! 897€T 10 I 0S¢ So1 8% YTEL 0102 6ru
S0 I vIL6 S0 9 € €l ST T6TL Y661 grulf
1’0 I Sov8 10 0 0 0 0T T8TL 6861 Liur
10 I 8199 0] 0 0 0 ! 992L 1861 grui|
00 I SPIL 00 0 0 0 € 896¢ 08 Srur
00 I pT8s 00 0 0 0 (44 Yr6T 878 prul
00 I 609% 00 0 0 0 91 TE6T 78 erur
00 I 0sTs 00 8 24! Ly ! Y26 818 (4L
00 I (11744 00 0 0 0 01 0262 918 I
00 ! ({34 00 0 0 0 0c 080T |¥43 oruy
00 I TSLT 00 0 0 0 Tl 901 €leg 60ul|
00 I 8hT 00 0 0 0 01 0901 413 goulf
00 I S88L 00 0 0 0 9 7801 LO€ Lourf
00 I SHEL 00 0 0 0 1 8% S91 9ouI|
00 I €0LT 00 0 0 0 6 €6 091 soutp
00 I 6€TL 00 0 0 0 9 439 LST poury
00 T 976 00 0 0 0 8 891 LS couty
00 I LSS 00 0 0 0 9 Y91 S¢S zoutf
00 [£0S 00 0 0 0 ¥ 091 € rout|
[s]h [l 4 [Al L] 4 [Al
[s]3 N 9, deny [ewig renQq PaAjosaId reusuQ Qoue)suy

NI'T 195-159) ‘DJS 10 synsai1 [euoneindwiod payreldq gL 3jqel

pringer

as

941

Implications, conflicts, and reductions for Steiner trees

douewo)rad Jotradns e AJrugs sequnu pjog

OvErS < I LT LEL ‘66 €L9S°0€1°L6 L'8CI1 691 916 ‘88 1L6 ‘€T CL1 PIE ‘evl 81¥ ‘8¢ Leur
1'€9¢ I 809°ss S0l LS 960 ‘99 1€6 ‘L1 8¢S 760 ‘evl LOE ‘8¢ geun
(Sl 1 6SS‘0S 1'66 [S% 796 ‘1S S60 ‘vl 8% 990 ‘el ¥6T ‘8¢ geurp
T'8S1 1 810°Sst I'LST €€ vy ‘o 197 11 123 w0 ‘evl 78T ‘8¢ peull

L9yl 1 190°9 TS L6 889 ‘0T T1LS LT1 09% ‘1L LLT ‘61 ceul
0°L9 1 7€8°6€ (2% s 80¢ ‘ST 2069 €S 0€€ ‘TIL TI1 ‘61 ceun
9y 1 969°T€ 6°6¢ LE 8¥1 ‘v LLS9 oy 90¢ ‘IL 001 ‘61 reut
6°S1 1 ¥89°LT 6°S1 61 0S9 061 1€ 88T IL 160 ‘61 oeur
611 I S9L'ET 6’11 61 VILE (440! YT LT IL €80 ‘61 ocu
0l I ¥85°TE 811 144 00CI1 1433 I8 966 ‘6C 7908 8cul|

[3%3 I 8L9°0T [81 0¢ 6 9¢ 90S ‘6T L108 Leuy
y'e 1 LSLIT 743 0 0 0 0¢ 861 ‘6T €108 gcul
4% 1 €08°LT vy 0C 144% 1€6 ¥C 981 ‘6T L008 geurg
Sl 1 9L0ST €1 91 90L ‘01 0L6T 91 891 ‘6T 866L yeull
80 1 09S°L1 80 L1 8LC 78 [4S 00S ‘€1 9ILE caul
0 1 6IS‘01 0 0 0 0 8¢ [4S3 769¢ ceun
0 1 (3419 0 6 oy 6¢C1 0c vEY ‘€1 £€89¢ reuy
[s]h Ll 4 [Al l.Ll 14 (Al
[s]h N 9, deny [ewiLg renq PAA[0SI] reurSuQ Qoue)suy

panunuod z| 3jqel

pringer

As

D. Rehfeldt, T. Koch

942

overs < I $9 ¥ST 8088Y9 ¥H 1 Tl 19 0£6 ‘6 Te€T 9 0€6 ‘6€ €€l n[y-god
0FEYS < 60vS 80 965°S1 L809+9¥°S1 01 19 0€6 ‘6¢ 1e€l 19 0£6 ‘6€ £33 dry-¢oo
0FEYS < 61t Ty 9C1 S8SH88°0CI 01 0S 000 ‘LT 0001 0 000 ‘LT 0001 nQ[-¢o9
0OFEYS < €ELL 90 €8L°CI YITEYOLTI 90 0S 000 ‘LT 0001 0 000 ‘LT 0001 do1-¢o
0OFEYS < 87T 6'C P8I11 SO6LT'0STI ¢y €Ly 871 ‘61 960% €Ly 871 ‘6t 9601 ng-g1o9
0OrEYS < IS1 ¥'C €TS 1Tl 796'619°811 87 €Ly 8¥1 ‘61 960% €Ly 871 ‘6% 9601 dz-z1o
0bEYS < T81¢ c 19 95625209 61 T 9T$ ‘T 80T e 9T$ ‘T 80T ng-1199
OrErs < £70CT ¥'T 0+9°€9 €567 EETTY €1 T 9T$ ‘7T 870T aq4 9Ts ‘7T 80T dz-1190
OvErs < 4823 T €re TELLOSVEE 80 SeT 0t ‘01 ¥201 Sel 0tz ‘01]! ng-Q199
0OFEYs < Yoz €T These S8EEESHE 0 el 0tz ‘01 Y201 Sel 0¥T ‘01 ¥201 dz-0190
769 L6 ps T0 0S 920 ‘0T 0SS 0S 920 ‘0T 0SS nzadiq
gsel 1651 9195 10 0S 920 ‘01 0SS 0 920 ‘01 0SS dgadiq
0FEYS < 69€ ‘€11 8T ove 981529°0€¢ Tl 00€ 066 ‘S¢ 8€TE 00€ 91 ‘9¢ 00€€ nzediq
0bEYS < €69 °08 91 £E€°5E 1€86' V8L Y€ [00€ 886 ‘G¢ 6€1¢ 00€ 9¥1 ‘9¢ 00€€ dzediq
0rEYS < P8Y SLI €T 0Tt PISS6611T S0 00T 000 ‘0T 6611 00T %00 ‘0T 0021 nzodiq
0bEYS < 0¥€ ‘091 €1 688°CC 1T€L'985°CT €0 00T 000 ‘0T 6611 00T 00 ‘0T 00TI dzodiq
0FEYS < 80 ‘T0E Sl €T £68185°0€T 90 00T 949 ‘v1 8181 002 66 ‘ST 002t nzgdiq
0FEYS < 69LY ‘0€ Tl S65¥7C YOr8°0TE+T 70 00T 089 ‘¥1 L181 002 766 ‘ST 0022 dzgdiq
SLOT'TT 8€€ ‘STT 9€T T0 002 91TL 686 002 ¥96L 0021 nzydiq
L'8TT0T 1256 ‘91 LS9bT T0 002 YE€TL 066 002 ¥96L 0021 dzydiq
[s] [l 4 [Al Il v [Al
—m_] N % &m@ Tewrid Teng PaAjosald ﬂmﬁm_uo due)isuy

DNd 195-159) ‘DS 105 sinsaz reuonendwod pare1dq €1 3jqel

pringer

as

943

Implications, conflicts, and reductions for Steiner trees

OveEwS < 1 6'¢ 1cee 16060°€€TT 9L 8¥0T 44 9601 8¥0C 4 Ni4 960% ngroy
oveEws < €EST 91 €LS°9€T TEE616'TET 8'v 8¥0T 444 9601 8¥0C (4 Ni4 960% dzioy
oveEYs < LOT ‘€1 ¥'e Yo11 7'STIT 1c 201 8TS ‘TT 8¥0¢C ¥201 8TS ‘TT 8¥0T nppdy
ovEPS < wT vl 0C S86°T1 6YLISYLTT Tl 201 8¢S 'TC 8¥0C 201 8TS ‘CT 8¥0C drroy
OvEPS < 750 ‘€S €1 SLS 688888°L9¢ 80 459 0¥ 01 201 (48 ove 01 ¥201 noroy
OvEYS < 06T ‘1¥ 80 LLL'6S 6CTEL'LST6S 70 419 0¥ 01 201 (48 ove ‘01 $201 doroy
OvErS < 7669 (4 891 8LLSS8' €91 €0 9 809% 45 9 809¥% 419 ng-69
oveEwS < 98GL [¥8T'L1 STP9'91691 20 9 809% 459 9 809¥% 419 dz-699
OvEwS < 8€EL 6C ss €0€5L99¢S 8’1 e 919 ‘0¢ L8IT e 919 ‘0¢ L8IT ng-£39
OveEYS < €98 0¢ TLO'LS CTILE YOV SS L1 e 919 ‘0¢ L8IT e 919 ‘0¢ L8IT dg-£2
7°€00°01 9¢ Lol 90 75 9¢L8 6CL 9L 9¢L8 6CL ng-99o
oreEYs < 6L9°CC S0 98T°0C I87€°€61°0C €0 oL 9¢L8 6CL 9L 9¢L8 6CL dg-920
0 1 € 00 4! 8¢ 9 4! 8¢ 9 ng-939
o I 1LT€ 00 Cl 8¢ 9 4! 8¢ 9 dz-990
699 L0T 1L 1’0 LT (1974 €ve LT 0€¥C £ve ng-¢ao
079y 1061 66CL 1'0 LT 0eve €ve LT 0eve £eve dg-¢oo
80 1 9¢ 00 €l 0081 STl €l 0081 Gcl ng-¢39
80 1 199¢ 00 €l 00ST STl €l 00ST gel dg-¢2o
00 1 €T 00 8 9LS 9 8 9LS ¥9 Ny-€30
00 1 8€€T 00 8 9LS 9 8 9LS ¥9 dp-¢22
oreYs < ¥C L9 981 8E8I6T VLI L1 YL ¥20°LS 8CLI YL ¥20°LS 8CLI ngr-¢99
ovEPS < 8911 90 €68°81 G80TLEL'ST Sl YL ¥20 ‘LS 8CLI YL ¥20 ‘LS 8CLI dzr-¢9
[s] Ll 4 [Al l.LI v [Al
[s]h N 9, deny rewrig reng PaA[0saI] reurSuQ Qoue)suy

ponunuod g 3jqel

pringer

as

D. Rehfeldt, T. Koch

944

Qouewtojrad Joradns e AJ1usis sroquuinu pjog

OvErS < 918 ‘S6€ L1 6¢ SCI'L8T €0 96¢ 809% 419 96¢C 809¥ 419 nedY
OvErS < €0S ‘8S1 60 LYT0g 9L8L'€866T (4 96¢ 809¥ 119 96¢C 809¥ (45 deoy
OvES < TST99I ‘1 9l 871 98TYIL 'SPl N0} 8¢CI 8¥0C 9s¢ 8¢l 8¥0C 96¢ ngoy
1'8LETT 109 ‘+0€ TEST N0} 8¢CI 8¥0C 9s¢ 8¢CI 8¥0C 9¢¢ dgoy
1"180% €8T ‘665 LL N0} 9 968 8¢CI 9 968 81 nzoy
L'L6LT €98 ‘15C S06L 00 9 968 8¢CI 9 968 81 dzoy
0°¢ €69 6€ 00 [43 8¢ 9 [43 8¢ 9 ngdy
LT 6851 €00y 00 [43 8¢ 9 43 8¢ 9 dooy

[s] [.L| 4 (Al [.L] V] [Al
[s]h N 9, deny rewg reng paajosald reurduQ Qoue)suy

ponunuod g 3jqel

pringer

as

945

Implications, conflicts, and reductions for Steiner trees

Joueuojrad Jouadns e £J1usis sroquinu pjog

9'1TE I vS8T I'e 81 96$ “0T L66€ ¥87C 9GS ‘0T L66€ 1LSoem
00611 43 689 L0 499 81€9 1801 Tss 8%€9 1801 £7oETM
€LE 9 LOS ¥0 90¥ vesy €8L 90% vTsy €8L 609¢1M
00 I 4} 00 0 0 0 12 w €l €09s
00 I S 00 0 0 0 12 81 L €[o9YMPpO
00 I 12 00 0 0 0 € 81 9 €9[0Koppo
00 I 6 00 0 0 0 12 or 8 Tepusisop
00 I L 00 0 0 0 S 0¢ 01 Sleaymnue
[s]1 L] vl [Al [zl 4 [Al
ﬁmf N E—.:bﬁmo U®>~Ow®.~m ﬂm:MWEO due)suy

dS 195-189) ‘DS 105 synsar euonendwod paqrere 1L |qel

pringer

As

D. Rehfeldt, T. Koch

946

10 I 00L ‘ST 10 6 (14 9zl 0S1 1740 68¢ 130 TVory
00 I 10V 0T 00 0 0 0 001 00S L61 1SJ00T VO]
00 I 90€T 00 (44 Y01 e 79T 1! LES ISJ9TI8
9'50C SeT 19¢ ‘78T €Te ¥8¥C 8¥L ‘ST 0TLL 19%% YOL ‘¥S LTI LT ISFIOPIUY
0 ! 06T ‘€88 ‘0T 10 43 8¢t vel LY 891¢ TeL ISILTYY
98 I 958 ‘6TS ‘ST 0¢ T 9691 447 S6LE 8L0 ‘€I 658% ISIS6LEY
€0 I 979 ‘ST8 ‘61 10 8% (049 6 LLST ¥289 €Ive ISILLSTH
8L I £7S 086 ‘L1 S0 12 8791 844 00¥1 7606 69T 1300V 1B
10 I €IS 10 ¢ T0¢ 6 9L 95L LE€T 18J9L[10
10 I 60¥ 00 6€ 9LE 148! IS 8LS 181 Is¥IGIe
0 I S09 10 9 0SS 991 101 9L01 0ge ISFIOTIIR
€0 I 659 ‘+9S ‘LI 70 8¢ 0ze 69 000T 0T€L 798¢ 1830001 [sp
L0 I 68S ‘IL €0 9¢ 1384 €l LS9 966¢ 9T#1 1SJLSOP
10 [LET ‘0T€ 10 9 08¢ 6 ¥4 96T Sso1 1SIE6YP
00 I L6L ‘69L 00 0 0 0 €01¢ 12454 90TT ISJE01TP
00 I SLI ‘621 00 0 0 0 861 TIs (4% 181861
00 I 816 ‘v8S 00 91 001 €€ SS91 991¥ 9061 SIS 1P
00 I ITh ‘18% 00 0 0 0 1621 TI6¢ S9¢1 ISFI6CIP
00 I $8T ‘P01 00 0 0 0 LTl vIL 86T IsLTIIRIq
00 I 09L9 00 0 0 0 s 80¢C 68 IsygguriIaq
0] I 600 ‘p8 0 €01 S8 0LT 439 1137 8911 IsJrEShe
00 I 9€T ‘0€ 00 €T 981 8¢ 8% 114 6€1 sI8pNe
00 ! T0ST 00 0 0 0 6LT 969 €I¢ 18J08Ce
[s]h [l 4 [Al L] v [Al
[s]3 N wnwndo paajosald [eursuQ Qoue)suy

LSAdSL 19s-189) ‘DS JI0J S)nsarx MNEOE.SSQEOO poea gl olqel

pringer

as

947

Implications, conflicts, and reductions for Steiner trees

00 1 00L ‘0L 00 0 0 0 9cC 8¢S 944 1839¢d
00 ! €CE P9 00 0 0 0 49! 798 80¢ Isygg1ad
00 1 ST6 ‘¢S 00 0 0 0 ed! 0LS 1ce sy 1ad
00 1 118 ‘98 00 0 0 0 9¢l 00§ 961 1859¢ 11d
00 1 6SL ‘TS 00 0 0 0 yCl1 0ge Iz 1spperad
00 I 0S8 ‘bE 00 0 0 0 LOT 0ce I1 1s3L012d
00 I 9LY ‘€VT 00 0 0 0 2001 0eve LV 1320012
1'0 I ST9 “18b ‘CC 1’0 IS 96¢ L6 L6EL 0€9 ‘61 06L8 1s3L6¢LEId
00 1 SLY ‘LY 00 0 0 0 (424 2901 €0S 1syzyaod
70 1 S68 ‘I€1 70 or [4%4 LL 8¢€0¢ Y01 ‘ST 6788 1838€0¢€qd
00 1 T0€ ‘€S 00 o1 8 L1 ELIT Claqd clel s3eL1190d
00 1 ST6 ‘vIE 00 0 0 0 ¥S9 ELT LLL 183p69d
4! 1 L0T ‘9§ 8'¢ 1SL 9¢6L 0L€ET 6LET 01T 91 960S IsjoLEImIU
1o 1 SEE ‘6€ 10 8¢ [4Y4 8L 81¢ 090T 8L9 18381 gdqury
1’0 I SEE '6€ o 8¢ [4Y4 8L 8I¢ 090C 8L9 Isjgreut
00 I 6Tr ‘€1 00 0¢ Pel 194 So1 9t9 91¢ Isycorull
00 I SPT 1T 00 1T ovl Ei4 001 19 9TC 18JO0 15O
00 1 LEY ‘0T 00 L 123 1! 001 9LS 91¢ 183001 Aoy
00 1 (43 A4 00 81 91 S% 001 L9 e 183001 D0
1'0 ! €08 ‘8¢ 10 Sy 0ce 01 00¢ orel 08 18J00Td o
10 1 LIT ST 10 4 0T 29 0ST 8¢Cl ocy 18JOS 1o
00 1 11T °1¢ 00 0 0 0 00T 929 0€C 18J001 9o
00 1 7S9 ‘8¢ 00 0 0 0 00¢ 8Tl 00§ 15300TVory
[s] [.L] (Al [.L] 4 [Al
[s N wnwndo paajosald reuisuQ Qoue)suy

panunuod G| 3|qel

pringer

as

D. Rehfeldt, T. Koch

948

00 1 06€ 00 0 0 0 6S1 LE 781 1sjeSIn
00 I SOv1 00 0 0 0 (494! 798¢C (4541 IsJeeyin
€1 1 TLE ‘S9T 1T 10 [43 0ce €9 0901 868Y gesl 18309010
00 ! 0S8 ‘9s¢ 00 0 0 0 Sce ¥0S we 1s567ds)
00 1 0TIT 00 0 0 0 Y4 8hv [S#4 18}6TTS)
00 I 979 00 0 0 0 0L 8¢¢€ eel 18J0L3s
00 I 068 ‘6¢S 00 61 001 £3 €65 0€L ‘1 LT89 ISJPE6STE
00 [97T ‘€€S 00 61 01 143 S16S 096 ‘€1 6959 ISJST6SH
00 1 80T ‘S6T 00 LT 91¢ L9 6881 8¥¢S 78¢€T 18J688 11
00 1 079 ‘€S¢ 00 0 0 0 €eel 00S¢€ 86S1 ISJETETH
00 1 69 ‘9€C 00 o1 ¥S 81 0€l 88¢¢ 961 ISIFOCTH
10 1 06S ‘6LL ‘S 10 0s 99¢ 88 6v8 ‘11 0€9 ‘0¢ €96 ‘€1 ISJor8ITH
0 1 010 ‘L6 06V ‘T 10 S9 148 191 00t 8€8CT 1001 18JO0PI
00 1 660 ‘69T ‘9L 00 0 0 0 00T 90¢ 10T 18J001P1
00 I 1441 00 0 0 0 66 86L 69C Isj66rel
LT I €888 L1 8¢¢ 9L6C 006 €8L 0EvL L6ET Isjg8LIel
[[8089 9l 61¢ 0t6¢ 68 SLS 5€9 9861 I8§GLGvel
€0 1 98¢€T 0 0L ¥6S 81 S61 OvL1 09¢ PSR
00 ! 806 ‘S6 00 91 ¥6 €€ 9L 1404 891 1s§9,1d
00 I 00¥ ‘L6 00 0 0 0 6¢y el LS Isg6etad
00 1 IL9 ‘vv 00 0 0 0 66T 000T ocy 1s366¢1d
00 1 00y ‘1 00 0 0 0 ¥9¢ VLS 08¢ 1spp9d
00 1 686 ‘8S€ 00 0 0 0 °6¢€T eoL 86€¢ 1syz6¢cHd
[s]h [.LI v (Al L] 4 [Al
[s]h N wnwndo paajosald reurduQ Qoue)suy

panunuod G| 3|qel

pringer

as

949

Implications, conflicts, and reductions for Steiner trees

Qouewtojrad Joradns v AJ1uSis sroquuinu pjog

S0 I 0L9 ‘v61 ‘€ 0 ¢8 19 161 8YLI 8L 968¢ 18§y LIWA
10 1 06€ ‘SYT ‘T 10 Sl 08 9T 7801 911y 6L91 ISJF80 WA
10 1 879 ‘690 ‘¥ 00 L [43 Il ¥CL ¥LOE 0811 ISJpCLn
10 1 SLT ‘60S ‘€ 10 0 0 0 VLS 916¢C 066 ISJpLen
00 1 TTET 00 0 0 0 61¢T 9¢9% 61¢T Isjereen
00 1 SO€ ‘€ST ‘9 00 0 0 0 [x4 89¢Y L91T Isyesien
00 1 €S0 ‘€IS ‘S 00 0 0 0 L181 T69¢ 1€81 ISJLIGIN
[s]h [.L] [Al L] v [Al
[s]h N wnwndo paAjosald reurduQ Qoue)suy

panunuod G| 3|qel

pringer

As

D. Rehfeldt, T. Koch

950

Qoueutojrad Jouadns e AJ1usis sroquunu pjog

81 I €0€ ‘'9ST ‘TI el LT1 TL8I1 9LS 206 ¥9T'LST 876 ‘L6 60€D
011 € bLY ‘669 ‘b $9 L 1247 (i[481 88 Yoy 161 ¥€8 ‘8L 80€D
8¥CS I 060 ‘61T ‘IS €6L 019 ¥0 ‘Tl L¥9€ €1€9 981°TEL 989 ‘€T LOED
€18¢ I vL8 ‘6¥6 ‘€€ ¥'6v Y47 919L 6T€T LE6Y TL0°009 ¥0v ‘961 90€D
L9T1 I TST ‘T€9 ‘OF 9T 1y 7078 01454 206€ 0S9°11S L89 ‘TLI S0€D
89 I 08T ‘TTL ‘9 L9 ¥ we LL 61t YrLLIT €It ‘98 #0€D
0'89 I 9S ‘196 ‘LT 0°s¢ €681 766 €€ (S0 66T (4% 104 8IL “L¥1 €0€D
¥'€T I 066 ‘00€ ‘€1 8¢l 16 488! ¥S¢ 6L81 90€°0€€ 9GL LTI 70€D
08 I Ibb “L6L ‘b L9 49! (4354 €Iel 161 00S°L6T 9€L°08 10€D
81 I PE8 ‘S9T T 81 0 0 0 L6 YO1°S01 187 ‘T LOTO
L01 I TT9 'SLI 6 8L 96 €8 ¥ST €08 088°591 9t ‘09 907D
¥'6LI I €8S ‘618 VT L'1g 6£9 89L ‘CI €L8€ ¥TTe YTo'vLE 998 ‘0TI S0TO
4 I 8PS ‘€IE ‘S 67 181 916¢ S06 98¢ 90¥°0€1 200 ‘0S 07D
ey I 01T ‘SST ‘€I 661 43 7965 L18I 10T 0ST°L9T 8CL ‘88 €070
€6 I €Y ‘68 9 S'L LSE 99L6 ELLT 101 YTISLI vL1 ‘T 2029
8¢ I 870 ‘¥8¥ ‘€ ¥'e 4! 88SC SLL 061 01¥°CIT ¥29 ‘vt 107D
86 I 0€S ‘STE 'L S'L L¥T T8¢ LLTT 8¢6 9TT'8TT 896 ‘¢8 LOTD
L 69% I 80T ‘LVS ‘bb 0L €€ 819% 6LET 9G5S TLT9E9 129 ‘%0 901D
0°ST I LL8 ‘LOS ‘TT 98 60¥ TIL 01 €01¢ 0SS 8L£°T0C YT ‘6L S01D
L11e I 8TS ‘S91 ‘9T L9¢ 6T6C 99T ‘+§ 6% ‘91 716€ ¥r0°08% TIT8ST 01D
Lozl I vhL ‘8€6 61 6'9C LLTT 8¥¢ ‘T 08 ‘Tl €€0€ 909°€0Y €76 ‘SET €010
¥'L9 I 8€S ‘L8I ‘ST 002 7681 YL ‘0g 68T6 Ts0C 800°1¢¢ LOLTTI 201D
TS I SOV ‘T6¥ ‘€ Ly 99 ¥¥ST 699 001 0L6'791 996 L9 101D
[s]h Ll N4 (Al [z vl [Al
Z] N E:EEQO PpaAjosald ?:MMCO duelsuy

[euIS110-003-BUUAIA J35-159) ‘DJS J0J sinsar [euoneindwiod po[reld 9| d|qel

pringer

as

951

Implications, conflicts, and reductions for Steiner trees

Qoueutojrad Jouadns e AJ1usis sroquunu pjog

vEl I €0€ '9ST ‘TI €11 0¥ 8LYL 657C 898 TOL LS Y0OL ‘81 e60£D
€L I YLV ‘669 ‘¥ €9 L9 0Lt 0L 98 0L ‘0¥ 86T ‘€I ©80€D
1'9¢¢ I 060 ‘61T ‘IS 889 019 840 ‘CI 819¢ LOT9 TETLTT 81 ‘TL ©/0€D
T°69¢ I PL8 ‘6V6 ‘€€ ¥'0S (Y47 ¥19L 6T€T 9Ly 8GS ‘SLT €TSS ©90ED
9'LT1 I TSI ‘T€9 ‘OF L9¥ STre 9L0 ‘St ¥20 ‘71 608¢ L Lyl 910 ‘Lt ©g0ED
LS I 081 ‘TTL'9 LS 0¢ 08¢ LTT (304 869 ‘OF €IT SI [371[39)
€LL I 9Sh ‘TI¥6 ‘LT (4 1€C oSty 80¢€1 S16¢ Ty STl 680 ‘LE BEOED
L'1e I 066 ‘00€ ‘€T STl 101 ¥LTT (304 L6LT ¥6T LL 1S6 ‘¥ €00
89 I b L6L ‘b €9 Y4 ¥8%¢€ 756 181 TTSs oY 16T ‘€1 e10ED
L1 I P€8 °'S9T ‘T L'l I (4 (4 86 0 ‘€T S9SL ©L0TD
L6 I TT9'SLL6 89 09 ¥L6 6T 68L v6€ ‘T 889 ‘€1 ©90TD
0'CS1 I €8S ‘618 ‘¥T '8¢ ¥29 068 ‘Tl SI8¢ oapiE 919 ‘811 86¢€ ‘LE ©S0TO
43 I 8PS ‘€IE 'S 8T 9LI 908¢ 898 9LE 86% ‘0€ 6£66 ep0TD
601 I 01T 'SST ‘€1 T8l 0ze 0165 €081 6661 0TT ‘18 169 ‘ST eeOTO
L8 I €Y ‘6+8 9 99 09¢ TSLS ILLT 86 0TT ‘tv 820 ‘Y1 ©Z0TO
9¢ I 870 ‘b8 '€ (a3 4! 08$C TLL 881 ¥E€T ST 9878 ©10TD
8’8 I 0€S 'STE 'L 9 L¥T 0S8¢€ 1811 €68 9IL LY 9€S ‘S1 e/01D
1'908 I 80T 'LYS ‘vb 879 €€T 819% 08€T €LES Y€1 °00C 81979 ©901D
Sze I LL8LOS ‘TT 9L 0P 01 ‘01 620¢ STs 006 ‘¥ 986 ‘¥1 eSO1D
0'€TC I 87S ‘S9T ‘97 8°LE 0£8¢ ¥L9 ‘TS 8+0 ‘91 9LLE 850 ‘01 16T ‘¥ epO1D
7201 I YL ‘8€6 ‘61 L9C 0L6 926 ‘L1 13479 0£6¢ OvL ‘vl 0LT ‘9¢ eeOID
1'¥9 I 8€S ‘L8T ‘ST T (949! 719 ‘6T SL68 €00¢ 0S8 °L8 968 ‘LT eZ01D
(4 I SO ‘T6b ‘€ (a4 a4 0501 98¢ 96 069 ‘C¢ €L 01 e[0[D
[s]h Ll 4 [Al [z vl [Al
Z] N E:Eﬁmo PaAjosald ﬁwﬁmﬁo duelsuy

PooUBAPE-093-BUUAIA 195-189) ‘DS J0J sinsa1 [euoneindwos pafreloq /| djqel

pringer

as

952

D. Rehfeldt, T. Koch

Table 18 Detailed computational results for SPG, test-set vienna-i-simple

Instance Original Presolved Optimum N t[s]
Vi |A] IT| Vi |A] IT] tfs]

1001 30, 190 95, 496 1184 211 646 75 2.0 253,921,201 1 2.1
1002 49,920 155,742 1665 642 1940 186 5.9 399,809, 303 1 6.7
1003 44,482 146, 838 3222 443 1342 126 9.1 788,774,494 1 12.3
1004 5556 17,104 570 0 0 0 0.1 279,512,692 1 0.1
1005 10,284 31,960 1017 0 0 0 0.2 390, 876, 350 1 0.2
1006 31,754 105,750 2202 544 1640 175 6.8 504,526,035 1 10.3
1007 15,122 48,742 737 136 400 42 0.9 177,909, 660 1 1.0
1008 15,714 51,134 871 136 404 46 1.8 201, 788, 202 1 1.9
1009 33,188 104,014 1262 297 902 100 2.3 275,558,727 1 2.5
1010 29,905 94,914 943 151 450 58 1.3 207,889, 674 1 1.3
1011 25, 195 82,596 1428 734 2258 207 2.3 317,589, 880 1 3.1
1012 12,355 39,924 503 32 98 16 0.3 118,893,243 1 0.3
1013 18,242 57,952 891 66 188 32 1.3 193,190, 339 1 1.3
1014 12,715 41,264 475 10 26 5 0.3 105,173, 465 1 0.3
1015 48,833 159,974 2493 424 1330 123 7.0 592,240, 832 1 8.1
1016 72,038 230,110 4391 742 2290 207 16.31, 110, 914, 620 1 18.1
1017 15, 095 48,182 478 76 234 21 0.5 109,739, 695 1 0.5
1018 31,121 102,226 1898 982 2914 274 4.5 463,887, 832 1 6.1
1019 25,946 83,290 866 320 970 90 1.7 217,647, 693 1 1.9
1020 21, 808 69, 842 594 98 308 35 0.9 146,515, 460 1 1.0
1021 16,013 50, 538 392 17 46 7 0.5 106,470, 644 1 0.5
1022 16,224 51,382 437 54 156 19 0.7 106,799, 980 1 0.7
1023 22,805 70, 614 582 92 294 31 0.7 131,044,872 1 0.7
1024 68,464 217,464 3001 275 848 79 10.3 758,483,415 1 11.6
1025 23,412 75,904 945 474 1488 153 3.4 232,790,758 1 35
1026 47,429 158,614 3334 1420 4372 409 10.8 928, 032,223 1 12.4
1027 85,085 277,776 3954 1166 3564 291 16.0 976, 812, 226 1 17.2
1028 72,701 230, 860 1790 176 546 59 15.8 384,053,191 1 15.8
1029 69,988 223,608 2162 349 1100 93 12.4 492,193,565 1 12.7
1030 33,188 107,360 1263 148 450 39 3.2 321, 646, 787 1 33
1031 54,351 176,422 2182 155 482 42 5.2 578,284,709 1 5.2
1032 56,023 182,798 3017 800 2404 244 6.2 773,096, 651 1 7.2
1033 18, 555 59, 460 636 59 174 25 1.5 134,461, 857 1 1.5
1034 22,311 71,032 735 64 186 21 1.8 165,115, 148 1 1.8
1035 30,585 100,908 1704 129 386 49 3.5 414,440,370 1 4.0
1036 37,208 120,712 1411 125 402 36 6.1 375,260, 864 1 6.6
1037 13,694 44,252 427 13 36 7 1.2 105,720,727 1 1.2
1038 18, 747 61,278 967 679 2106 169 1.8 255,767,543 1 2.5

@ Springer

Implications, conflicts, and reductions for Steiner trees 953
Table 18 continued

Instance Original Presolved Optimum N t[s]

Vi |A] IT| Vi |A] IT) tfs]

1039 8755 28, 898 347 88 258 38 0.6 85,566,290 1 0.6
1040 40,389 131, 640 1762 398 1236 121 5.8 431,498, 867 1 6.0
1041 47,197 150,614 1193 181 554 65 5.3 301,914, 840 1 53
1042 51,896 171, 100 2171 131 394 39 6.8 532,131,412 1 6.9
1043 10, 398 33,574 367 108 328 41 0.9 95,722,094 1 0.9
1044 68,905 227,778 3358 352 1082 90 10.7 804,532,332 1 13.5
1045 14, 685 46,932 421 80 234 26 0.5 105,944, 062 1 0.6
1046 70,843 234,418 3598 172 516 50 12.1 925,470, 052 1 13.4
1047 28,524 92,502 2354 2176 6606 622 5.5 695,163, 406 1 8.4
1048 13,189 42,438 358 0 0 0 0.5 91,509,264 1 0.5
1049 30, 857 99, 182 990 159 468 51 2.6 294,811, 505 1 2.6
1050 43,073 142,552 2868 3449 10, 540 920 10.4 792,599,114 1 18.9
1051 27,028 90, 812 1524 137 406 42 4.7 357,230,839 1 55
1052 2363 7522 40 0 0 0.0 13,309, 487 1 0.0
1053 3224 10, 570 126 19 52 0.1 30,854,904 1 0.1
1054 3803 12, 426 38 0 0 0.0 15,841,596 1 0.0
1055 13,332 43,160 570 112 338 46 0.7 144,164,924 1 0.8
1056 1991 6352 51 0 0 0 0.0 14,171,206 1 0.0
1057 33,231 110,298 1569 112 340 40 3.2 412,746,415 1 39
1058 23,527 79, 256 1256 169 538 42 1.2 305,024, 188 1 1.3
1059 9287 29, 950 363 49 134 22 0.2 107,617,854 1 0.2
1060 42,008 13,5144 1242 160 504 54 5.7 337,290, 460 1 5.7
1061 39,160 127,318 1458 171 532 46 7.1 363,042,722 1 7.7
1062 66,048 220,982 3343 122 374 43 7.2 792,941,137 1 7.6
1063 26, 840 87,322 1645 777 2366 214 3.7 459,801,704 1 4.4
1064 63,158 214,690 3458 6440 20,058 1597 19.7 863,103, 567 1 36.3
1065 3898 12,712 144 12 36 9 0.2 32,965,718 1 0.2
1066 15,038 49,192 551 70 212 28 0.4 174,219, 813 1 0.4
1067 20, 547 66, 460 627 403 1256 121 1.5 175,540,750 1 1.7
1068 33,118 110,254 1553 353 1066 100 2.7 420,730, 046 1 2.9
1069 9574 32,416 543 258 804 71 0.9 135,161,583 1 1.0
1070 15,079 49,216 550 123 364 48 1.7 136,700, 139 1 1.8
1071 33,203 108, 854 1494 233 684 70 2.9 382,539,099 1 3.1
1072 26, 948 88, 388 993 110 338 24 2.0 289,019,226 1 2.0
1073 21,653 70, 342 1847 115 336 44 2.8 663,004,987 1 35
1074 13,316 44,006 653 17 50 9 0.7 165,573,383 1 0.7
1075 57,551 190,762 2973 110 336 33 8.0 815,404, 026 1 8.5
1076 14,023 45,790 598 71 208 31 0.9 166,249, 692 1 0.9
1077 20, 856 68, 474 1787 3514 10,400 882 4.5 472,503,150 1 10.8

@ Springer

954

D. Rehfeldt, T. Koch

Table 18 continued

Instance Original Presolved Optimum N t[s]
Vi |A] IT| Vi |A] IT) tfs]

1078 13,294 43,896 835 86 244 37 1.1 185,525,490 1 1.1
1079 19, 867 62,542 565 757 2598 213 2.5 150,506,933 1 29
1080 18, 695 59,416 548 313 966 92 1.7 164,299, 652 1 1.9
1081 25,081 81,478 888 53 154 27 2.4 247,527,679 1 2.5
1082 15,592 49,576 515 0 0 0 0.9 147,407,632 1 1.0
1083 89,596 297, 166 4991 65 202 21 11.81, 405, 593, 860 1 133
1084 44,934 147,454 2319 95 318 26 4.7 627,187,559 1 6.8
1085 9113 28,982 301 98 340 29 0.4 80,628,079 1 0.4

Bold numbers signify a superior performance

Table 19 Detailed computational results for SPG, test-set vienna-i-advanced

Instance Original Presolved Optimum N t[s]
VI |A] IT| VI |A] IT| tls]

1001a 14,675 44,110 941 212 638 72 1.8 253,921, 201 1 1.9
1002a 23,800 71,516 1282 635 1918 186 4.6 399,809, 303 1 5.5
1003a 16,270 47,838 2336 440 1332 125 7.6 788,774,494 1 10.7
1004a 867 2476 263 19 48 11 0.1 279,512, 692 1 0.1
1005a 1677 4860 491 0 0 0 0.1 390, 876, 350 1 0.1
1006a 13,339 39,064 1842 104 316 28 5.6 504,526,035 1 9.6
1007a 6873 20, 598 599 128 370 42 0.8 177,909, 660 1 0.8
1008a 6522 19,258 708 101 296 33 1.5 201,788,202 1 1.6
1009a 14,977 44,870 1053 306 924 101 1.8 275,558,727 1 2.0
1010a 13,041 39, 090 782 156 470 59 0.9 207,889,674 1 0.9
1011a 9298 27,370 1202 709 2172 200 2.2 317,589, 880 1 2.9
1012a 3500 10, 428 387 0 0 0 0.1 118, 893,243 1 0.1
1013a 7147 21,216 670 67 192 33 1.0 193,190, 339 1 1.0
1014a 3577 10, 622 364 0 0 0 0.1 105,173, 465 1 0.1
1015a 20, 573 61,082 2119 407 1270 120 5.9 592,240, 832 1 7.2
1016a 27,214 79,648 3434 507 1548 154 11.61, 110, 914, 620 1 14.0
1017a 7571 23,142 386 0 0 0 0.3 109,739, 695 1 0.3
1018a 12,258 36, 028 1549 992 2942 276 3.3 463, 887, 832 1 4.8
1019a 11,693 35,248 732 278 846 79 1.3 217, 647, 693 1 1.4
1020a 6405 19,128 508 58 180 18 0.5 146,515, 460 1 0.5
1021a 5195 15,722 295 102 306 27 0.2 106, 470, 644 1 0.2
1022a 8869 27,102 356 64 188 24 0.5 106,799, 980 1 0.5
1023a 13,724 41,726 403 222 672 64 0.5 131,044,872 1 0.5
1024a 32,357 96,500 2511 73 214 28 8.8 758,483,415 1 9.5
1025a 10, 055 29,922 833 73 228 28 2.8 232,790,758 1 3.0
1026a 18, 155 53,136 2661 1687 5180 496 8.4 928,032,223 1 10.2

@ Springer

Implications, conflicts, and reductions for Steiner trees 955
Table 19 continued

Instance Original Presolved Optimum N t[s]

VI |A] IT| VI [A] IT| tfs]

1027a 40,772 121,110 3490 109 346 33 14.7 976, 812, 226 1 16.3
1028a 43,690 132,922 1597 255 790 85 14.8 384,053,191 1 14.9
1029a 32,979 99,254 1946 270 856 73 9.2 492,193, 565 1 9.4
1030a 12,941 38,558 1093 151 460 39 2.2 321,646,787 1 2.3
1031a 21,054 62,820 1832 156 484 42 3.6 578,284,709 1 3.6
1032a 21,345 62,706 2454 344 1058 90 5.3 773,096, 651 1 6.2
1033a 8500 25,400 548 252 770 76 1.0 134,461, 857 1 1.1
1034a 9128 27,336 606 142 412 48 1.1 165,115,148 1 1.2
1035a 13,129 38,840 1428 118 352 47 2.8 414,440,370 1 3.1
1036a 17,036 50,964 1258 318 984 74 5.2 375,260, 864 1 5.8
1037a 5886 17,738 392 60 180 21 0.8 105,720,727 1 0.8
1038a 7733 22,956 798 693 2152 180 1.3 255,767,543 1 1.9
1039a 3719 11, 066 306 34 104 10 0.4 85,566,290 1 0.4
1040a 18,837 56,312 1501 165 512 49 5.6 431,498, 867 1 5.7
1041a 22,466 67,736 1014 92 272 36 2.9 301,914, 840 1 29
1042a 23,925 71,612 1923 116 346 34 5.4 532,131,412 1 5.6
1043a 4511 13, 480 335 99 288 35 0.7 95,722,094 1 0.7
1044a 31,500 93,514 2954 1327 4108 296 9.1 804,532,332 1 11.5
1045a 6775 20,454 378 83 244 26 0.4 105,944, 062 1 0.4
1046a 32,376 96, 108 3154 163 482 50 9.3 925,470, 052 1 11.0
1047a 10,622 30, 880 1791 1365 4126 392 7.7 695,163, 406 1 8.6
1048a 4920 14,712 320 0 0 0 0.3 91,509, 264 1 0.3
1049a 15,045 45,426 821 157 460 51 2.2 294,811, 505 1 2.3
1050a 17,787 52,352 2232 3357 10,250 902 9.2 792,599,114 1 17.3
1051a 12,130 35,784 1337 146 440 43 3.9 357,230,839 1 4.8
1052a 160 474 23 0 0 0 0.0 13,309,487 1 0.0
1053a 693 2046 102 26 72 13 0.0 30,854,904 1 0.0
1054a 540 1634 25 0 0 0 0.0 15, 841, 596 1 0.0
1055a 4701 13,958 483 100 284 45 0.5 144,164,924 1 0.5
1056a 290 878 34 0 0 0 0.0 14,171,206 1 0.0
1057a 13,078 38,736 1346 178 546 64 2.8 412,746,415 1 34
1058a 7877 23,314 997 156 494 39 0.9 305,024, 188 1 1.0
1059a 2800 8314 286 31 86 11 0.1 107,617,854 1 0.1
1060a 18,991 57,072 1158 191 582 70 4.6 337,290, 460 1 4.6
1061a 20,958 62,930 1337 153 464 49 5.8 363,042,722 1 6.3
1062a 23,714 70,610 2812 94 280 30 6.2 792,941,137 1 6.5
1063a 9600 28,084 1291 950 2898 255 3.1 459,801,704 1 39
1064a 31,712 93,422 3182 6460 20,152 1609 18.3 863, 103, 567 1 359
1065a 1185 3512 119 62 194 26 0.1 32,965,718 1 0.1

@ Springer

956

D. Rehfeldt, T. Koch

Table 19 continued

Instance Original Presolved Optimum N t[s]
Vi [A] IT| Vi [A] IT| tfs]
1066a 4551 13,642 417 59 182 24 0.3 174,219,813 1 0.3
1067a 10,318 31,176 579 407 1272 123 1.3 175,540,750 1 1.5
1068a 12, 191 36,046 1302 321 976 91 1.9 420,730,046 1 22
1069a 3508 10, 312 452 269 844 73 0.7 135,161,583 1 0.8
1070a 6739 20,128 511 147 438 52 1.4 136,700,139 1 1.4
1071a 12,772 37,772 1281 117 362 36 2.2 382,539,099 1 2.4
1072a 11, 628 34,822 851 92 268 38 1.1 289,019, 226 1 1.1
1073a 7510 21,746 1337 1069 3244 324 2.5 663,004, 987 1 3.1
1074a 4441 13,124 548 37 110 13 0.3 165,573,383 1 0.3
1075a 23,195 68,724 2498 102 300 33 6.3 815,404,026 1 6.7
1076a 4909 14, 536 498 20 54 11 0.6 166,249,692 1 0.6
1077a 9153 26,726 1490 3509 10,388 880 4.1 472,503,150 1 11.0
1078a 5864 17,324 692 168 486 58 1.0 185,525,490 1 1.0
1079a 7933 23,614 497 732 2516 205 2.0 150,506,933 1 2.5
1080a 7589 22,512 499 307 950 92 1.0 164,299, 652 1 1.1
1081a 10, 747 32,058 751 85 246 45 1.9 247,527,679 1 1.9
1082a 5850 17,386 435 29 82 14 0.7 147,407,632 1 0.7
1083a 34,221 100,602 4138 326 1010 86 8.91, 405, 593,860 1 10.3
1084a 17,050 50,402 1918 1265 3922 306 4.0 627,187,559 1 5.8
1085a 2780 8246 243 0 0 0 0.2 80,628,079 1 0.2
Bold numbers signify a superior performance
Table 20 Detailed computational results for SPG, test-set VLSI
Instance Original Presolved Optimum N t[s]
Vi Al 17| Vi |A] T tls]
alue2087 1244 3942 34 0 0 0 0.0 1049 1 0.0
alue2105 1220 3716 34 0 0 0 0.0 1032 1 0.0
alue3146 3626 11,738 64 0 0 0 0.1 2240 1 0.1
alue5067 3524 11,120 68 50 146 16 0.1 2586 1 0.1
alue5345 5179 16,330 68 62 202 17 0.9 3507 1 0.9
alue5623 4472 13,876 68 20 56 9 0.6 3413 1 0.6
alue5901 11,543 36, 858 68 41 124 18 0.7 3912 1 0.7
alue6179 3372 10,426 67 0 0 0 0.1 2452 1 0.1
alue6457 3932 12,274 68 0 0 0 0.1 3057 1 0.1
alue6735 4119 13,392 68 140 446 20 0.1 2696 1 0.1
alue6951 2818 8838 67 57 172 19 0.1 2386 1 0.1
alue7065 34,046 10, 9682 544 41 122 17 19.5 23,881 1 19.5
alue7066 6405 20,908 16 2281 7962 9 0.7 2256 1 0.7

@ Springer

Implications, conflicts, and reductions for Steiner trees 957
Table 20 continued

Instance Original Presolved Optimum N t[s]

Vi |A] T VI [A] 7| tfs]

alue7080 34,479 110,988 2344 862 2736 344 9.5 62,449 1 9.9
alue7229 940 2948 34 0 0 0 0.0 824 1 0.0
alut0787 1160 4178 34 0 0 0 0.0 982 1 0.0
alut0805 966 3332 34 0 0 0 0.0 958 1 0.0
alut1181 3041 11,386 64 0 0 0 0.2 2353 1 0.2
alut2010 6104 22,022 68 52 162 13 0.3 3307 1 0.3
alut2288 9070 33,190 68 0 0 0 0.9 3843 1 0.9
alut2566 5021 18,110 68 32 96 14 0.7 3073 1 0.7
alut2610 33,901 125,632 204 119 408 9 414 12,239 1 414
alut2625 36,711 136,234 879 2875 10,224 426 44.6 35,459 1 51.5
alut2764 387 1252 34 0 0 0 0.0 640 1 0.0
diw0234 5349 20,172 25 0 0 0 0.1 1996 1 0.1
diw0250 353 1216 11 0 0 0 0.0 350 1 0.0
diw0260 539 1970 12 0 0 0 0.0 468 1 0.0
diw0313 468 1644 14 0 0 0 0.0 397 1 0.0
diw0393 212 762 11 0 0 0 0.0 302 1 0.0
diw0445 1804 6622 33 21 60 12 0.1 1363 1 0.1
diw0459 3636 13,578 25 14 40 5 0.1 1362 1 0.1
diw0460 339 1158 13 0 0 0 0.0 345 1 0.0
diw0473 2213 8270 25 0 0 0 0.1 1098 1 0.1
diw0487 2414 8772 25 0 0 0 0.0 1424 1 0.0
diw0495 938 3310 10 0 0 0 0.0 616 1 0.0
diw0513 918 3368 10 0 0 0 0.0 604 1 0.0
diw0523 1080 4030 10 0 0 0 0.0 561 1 0.0
diw0540 286 930 10 0 0 0 0.0 374 1 0.0
diw0559 3738 14,026 18 171 608 12 0.2 1570 1 0.2
diw0778 7231 27,454 24 0 0 0 0.6 2173 1 0.6
diw0779 11,821 45,032 50 32 100 8 2.7 4440 1 2.7
diw0795 3221 11,876 10 0 0 0 0.1 1550 1 0.1
diw0801 3023 11,150 10 0 0.1 1587 1 0.1
diw0819 10,553 40,132 32 0 0.2 3399 1 0.2
diw0820 11,749 44,768 37 88 310 12 3.8 4167 1 3.8
dmxa0296 233 772 12 0 0 0 0.0 344 1 0.0
dmxa0368 2050 7352 18 16 40 10 0.1 1017 1 0.1
dmxa0454 1848 6572 16 0 0 0.0 914 1 0.0
dmxa0628 169 560 10 0 0 0 0.0 275 1 0.0
dmxa(0734 663 2308 11 0 0 0 0.0 506 1 0.0

@ Springer

958

D. Rehfeldt, T. Koch

Table 20 continued

Instance Original Presolved Optimum N t[s]
V] |A] IT| Vi |A] 7| t[s]
dmxa0848 499 1722 16 0 0 0.0 594 1 0.0
dmxa(0903 632 2174 10 0 0 0.0 580 1 0.0
dmxal010 3983 14,216 23 0 0 0.1 1488 1 0.1
dmxall09 343 1118 17 0 0 0.0 454 1 0.0
dmxal200 770 2766 21 33 94 13 0.0 750 1 0.0
dmxal304 298 1006 10 0 0 0 0.0 311 1 0.0
dmxal516 720 2538 11 0 0 0 0.0 508 1 0.0
dmxal721 1005 3462 18 0 0 0 0.0 780 1 0.0
dmxal801 2333 8274 17 209 716 16 0.1 1365 1 0.1
gapl1307 342 1104 17 0 0 0 0.0 549 1 0.0
gapl413 541 1812 10 0 0 0 0.0 457 1 0.0
gap1500 220 748 17 0 0 0 0.0 254 1 0.0
gapl810 429 1404 17 0 0 0 0.0 482 1 0.0
gap1904 735 2512 21 0 0 0 0.0 763 1 0.0
gap2007 2039 7096 17 0 0 0 0.0 1104 1 0.0
gap2119 1724 5950 29 0 0 0 0.0 1244 1 0.0
gap2740 1196 4168 14 0 0 0 0.0 745 1 0.0
gap2800 386 1306 12 0 0 0 0.0 386 1 0.0
gap2975 179 586 10 0 0 0 0.0 245 1 0.0
gap3036 346 1166 13 0 0 0 0.0 457 1 0.0
gap3100 921 3116 11 0 0 0 0.0 640 1 0.0
gap3128 10,393 36,086 104 0 0 0 0.2 4292 1 0.2
msm0580 338 1082 11 0 0 0 0.0 467 1 0.0
msm0654 1290 4540 10 0 0 0 0.0 823 1 0.0
msm0709 1442 4806 16 0 0 0 0.0 884 1 0.0
msm0920 752 2528 26 0 0 0 0.0 806 1 0.0
msm1008 402 1390 11 0 0 0 0.0 494 1 0.0
msm1234 933 3264 13 0 0 0 0.0 550 1 0.0
msm1477 1199 4156 31 0 0 0 0.0 1068 1 0.0
msm1707 278 956 11 0 0 0 0.0 564 1 0.0
msm1844 90 270 10 0 0 0 0.0 188 1 0.0
msm1931 875 3044 10 0 0 0 0.0 604 1 0.0
msm2000 898 3124 10 0 0 0 0.0 594 1 0.0
msm2152 2132 7404 37 0 0 0 0.1 1590 1 0.1
msm2326 418 1446 14 0 0 0 0.0 399 1 0.0
msm2492 4045 14,188 12 0 0 0 0.1 1459 1 0.1
msm?2525 3031 10, 478 12 0 0 0 0.1 1290 1 0.1

@ Springer

Implications, conflicts, and reductions for Steiner trees 959
Table 20 continued

Instance Original Presolved Optimum N t[s]

4 Y IT| 4 [A] IT| tls]

msm2601 2961 10, 200 16 0 0 0 0.1 1440 1 0.1

msm2705 1359 4916 13 0 0 0 0.0 714 1 0.0
msm2802 1709 5926 18 0 0 0 0.0 926 1 0.0
msm2846 3263 11,566 89 52 162 22 0.3 3135 1 0.3
msm3277 1704 5982 12 0 0 0 0.0 869 1 0.0
msm3676 957 3108 10 0 0 0 0.0 607 1 0.0
msm3727 4640 16,510 21 0 0 0 0.1 1376 1 0.1

msm3829 4221 14,510 12 0 0 0 0.3 1571 1 0.3
msm4038 237 780 11 0 0 0 0.0 353 1 0.0
msm4114 402 1380 16 0 0 0 0.0 393 1 0.0
msm4190 391 1332 16 0 0 0 0.0 381 1 0.0
msm4224 191 604 11 0 0 0 0.0 311 1 0.0
msm4312 5181 17,786 10 672 2332 10 0.5 2016 1 0.5

msm4414 317 952 11 0 0 0 0.0 408 1 0.0
msm4515 777 2716 13 0 0 0 0.0 630 1 0.0
taq0014 6466 22,092 128 0 0 0.5 5326 1 0.5

taq0023 572 1926 11 0 0 0.0 621 1 0.0
taq0365 4186 14,148 22 61 198 9 0.1 1914 1 0.1

taq0377 6836 23,430 136 58 160 34 1.6 6393 1 1.7

taq0431 1128 3810 13 0 0 0 0.0 897 1 0.0
taq0631 609 1864 10 0 0 0 0.0 581 1 0.0
taq0739 837 2876 16 0 0 0 0.0 848 1 0.0
taq0741 712 2434 16 53 170 9 0.0 847 1 0.0
taq0751 1051 3582 16 0 0 0 0.0 939 1 0.0
taq0891 331 1120 10 0 0 0 0.0 319 1 0.0
taq0903 6163 20,980 130 0 0 0 1.4 5099 1 1.5

taq0910 310 1028 17 0 0 0 0.0 370 1 0.0
taq0920 122 388 17 0 0 0 0.0 210 1 0.0
taq0978 771 2478 10 0 0 0 0.0 566 1 0.0

Bold numbers signify a superior performance

@ Springer

960 D. Rehfeldt, T. Koch

Table 21 Detailed computational results for SPG, test-set WRP3

Instance Original Presolved Optimum N t[s]
VI |A] rr Vi |A] IT| tls]
wrp3-11 128 454 11 0 0 0 0.01, 100, 361 1 0.0
wrp3-12 84 298 12 0 0 0 0.01, 200, 237 1 0.0
wrp3-13 311 1226 13 131 492 13 0.11, 300, 497 1 0.1
wrp3-14 128 494 14 108 422 13 0.01, 400, 250 1 0.0
wrp3-15 138 514 15 0 0 0 0.01, 500, 422 1 0.0
wrp3-16 204 748 16 0 0 0 0.01, 600, 208 1 0.0
wrp3-17 177 708 17 151 622 13 0.01, 700, 442 1 0.0
wrp3-19 189 706 19 0 0 0 0.01, 900, 439 1 0.0
wrp3-20 245 908 20 0 0 0 0.02, 000, 271 1 0.0
wrp3-21 237 888 21 0 0 0 0.02, 100, 522 1 0.0
wrp3-22 233 862 22 186 686 20 0.02, 200, 557 1 0.1
wrp3-23 132 460 23 0 0 0 0.02, 300, 245 1 0.0
wrp3-24 262 974 24 120 416 17 0.02, 400, 623 1 0.0
wrp3-25 246 936 25 0 0 0 0.02, 500, 540 1 0.0
wrp3-26 402 1560 26 0 0 0 0.02, 600, 484 1 0.0
wrp3-27 370 1442 27 58 202 14 0.22, 700, 502 1 0.2
wrp3-28 307 1118 28 2 2 1 0.02, 800, 379 1 0.0
wrp3-29 245 872 29 0 0 0 0.02, 900, 479 1 0.0
wrp3-30 467 1792 30 73 248 14 0.13, 000, 569 1 0.1
wrp3-31 323 1184 31 55 188 16 0.13, 100, 635 1 0.1
wrp3-33 437 1676 33 100 382 13 0.03, 300, 513 1 0.0
wrp3-34 1244 4948 34 1057 4206 32 2.43, 400, 646 1 3.6
wrp3-36 435 1636 36 99 332 15 0.43, 600, 610 1 0.4
wrp3-37 1011 4020 37 847 3356 37 3.23,700, 485 1 4.7
wrp3-38 603 2414 38 437 1780 37 0.93, 800, 656 1 2.1
wrp3-39 703 3232 39 609 2822 38 2.33, 900, 450 1 4.2
wrp3-41 178 614 41 129 448 36 0.24, 100, 466 1 0.2
wrp3-42 705 2746 42 572 2214 41 0.84, 200, 598 1 1.3
wrp3-43 173 596 43 0 0 0 0.14, 300, 457 1 0.1
wrp3-45 1414 5626 45 1204 4786 45 2.94, 500, 860 1 33
wrp3-48 925 3476 48 491 1816 45 1.14, 800, 552 1 2.0
wrp3-49 886 3600 49 693 2798 46 1.84, 900, 882 1 9.3
wrp3-50 1119 4502 50 915 3716 49 2.55, 000, 673 1 43
wrp3-52 701 2704 52 581 2250 49 1.65, 200, 825 1 5.2
wrp3-53 775 2942 53 148 534 12 0.35, 300, 847 1 0.3
wrp3-55 1645 6372 55 1487 5844 55 2.15, 500, 888 1 68.8

@ Springer

Implications, conflicts, and reductions for Steiner trees

961

Table 21 continued

Instance Original Presolved Optimum N t[s]
Vi |A] Iry Vi |A] T t[s]
wrp3-56 853 3180 56 590 2238 52 0.9, 600, 872 1 3.1
wrp3-60 838 3526 60 785 3300 60 2.26, 001, 164 1 29.9
wrp3-62 670 2632 62 586 2278 62 1.16, 201, 016 1 6.1
wrp3-64 1822 7220 64 1592 6402 59 3.46, 400, 931 1 9.7
wrp3-66 2521 9716 66 2269 8946 62 3.06, 600, 922 1 363.9
wrp3-67 987 3846 67 467 1848 36 1.86, 700, 776 1 3.7
wrp3-69 856 3242 69 447 1674 61 1.66, 900, 841 1 1.9
wrp3-70 1468 5862 70 964 3810 56 2.61, 000, 890 1 11.2
wrp3-71 1221 4828 71 947 3754 62 2.77,101, 028 1 17.9
wrp3-73 1890 7226 73 1679 6534 63 2.27, 301, 207 1 36.9
wrp3-74 1019 3882 74 861 3326 65 1.17, 400, 759 1 13.1
wrp3-75 729 2790 75 551 2054 75 1.67, 501, 020 1 2.6
wrp3-76 1761 6740 76 1049 4066 46 3.17, 601, 028 1 4.6
wrp3-78 2346 9312 78 1993 7980 71 3.67, 801, 094 1 224.6
wrp3-79 833 3190 79 0 0 0 1.17, 900, 444 1 1.1
wrp3-80 1491 5662 80 1214 4650 75 3.8, 000, 849 1 343
wrp3-83 3168 12,440 83 2961 11,852 80 3.28, 300, 906 1 2873.0
wrp3-84 2356 9094 84 1915 7600 73 3.48, 401, 094 1 18.5
wrp3-85 528 2034 85 509 1958 85 0.5, 500, 739 1 5.6
wrp3-86 1360 5214 86 1157 4444 86 286, 000, 746 1 439
wrp3-88 743 2818 88 390 1470 58 188, 001, 175 1 23
wrp3-91 1343 5188 91 873 3356 78 341, 000, 866 1 5.3
wrp3-92 1765 7226 92 1265 5254 70 392,000, 764 1 35.6
wrp3-94 1976 7672 94 1504 6002 79 3%, 001, 181 5 54.5
wrp3-96 2518 9970 96 2193 8800 87 3%, 001, 172 1 204.1
wrp3-98 2265 9090 98 1893 7712 83 398, 001, 224 1 303.9
wrp3-99 2076 8144 99 1689 6612 94 299, 001, 097 1 121.1

Bold numbers signify a superior performance

@ Springer

962 D. Rehfeldt, T. Koch

Table 22 Detailed computational results for SPG, test-set WRP4

Instance Original Presolved Optimum N t[s]
Vi |A] Ty |Vl |A] IT| tfs]

wrp4-11 123 466 11 0 0 0 0.0 1,100,179 1 0.0
wrp4-13 110 376 13 0 0 0 0.0 1,300,798 1 0.0
wrp4-14 145 566 14 0 0 0 0.0 1,400,290 1 0.0
wrp4-15 193 738 15 0 0 0 0.0 1,500,405 1 0.0
wrp4-16 311 1158 16 0 0 0 0.0 1,601,190 1 0.0
wrp4-17 223 808 17 138 486 13 0.0 1,700,525 1 0.0
wrp4-18 211 760 18 0 0 0 0.0 1,801,464 1 0.0
wrp4-19 119 412 19 0 0 0 0.0 1,901,446 1 0.0
wrp4-21 529 2064 21 167 644 15 0.1 2,103,283 1 0.1
wrp4-22 294 1136 22 108 392 15 0.1 2,200,394 1 0.1
wrp4-23 257 1030 23 131 478 18 0.0 2,300,376 1 0.0
wrp4-24 493 1926 24 0 0 0 0.1 2,403,332 1 0.1
wrp4-25 422 1616 25 92 332 9 0.1 2,500,828 1 0.1
wrp4-26 396 1562 26 310 1224 26 0.5 2,600,443 1 1.7
wrp4-27 243 994 27 71 260 16 0.1 2,700,441 1 0.1
wrp4-28 272 1090 28 190 756 28 0.2 2,800,466 1 0.5
wrp4-29 247 1010 29 105 394 22 0.2 2,900,484 1 0.2
wrp4-30 361 1448 30 296 1190 29 0.1 3,000,526 1 1.8
wrp4-31 390 1572 31 318 1280 30 0.3 3,100,526 1 2.2
wrp4-32 311 1264 32 246 998 29 0.1 3,200,554 1 1.3
wrp4-33 304 1142 33 103 372 19 0.0 3,300,655 1 0.0
wrp4-34 314 1300 34 45 154 9 0.1 3,400,525 1 0.1
wrp4-35 471 1908 35 320 1240 35 0.3 3,500,601 1 1.1
wrp4-36 363 1500 36 310 1276 36 0.2 3,600,596 1 1.1
wrp4-37 522 2108 37 438 1726 37 0.4 3,700,647 1 35
wrp4-38 294 1236 38 0 0 0 0.1 3,800,606 1 0.1
wrp4-39 802 3106 39 163 600 14 0.1 3,903,734 1 0.1
wrp4-40 538 2176 40 440 1774 39 0.3 4,000,758 1 6.2
wrp4-41 465 1910 41 377 1540 41 0.4 4,100,695 1 34
wrp4-42 552 2262 42 502 2038 42 0.4 4,200,701 1 9.3
wrp4-43 596 2296 43 277 1054 33 0.1 4,301,508 1 0.2

wrp4-44 398 1576 44 153 576 27 0.3 4,401,504 39 0.6

wrp4-45 388 1630 45 0 0 0 0.3 4,500,728 1 0.3
wrp4-46 632 2574 46 583 2356 46 0.4 4,600,756 1 8.6
wrp4-47 555 2196 47 0 0 0 0.9 4,701,318 1 0.9
wrp4-48 451 1650 48 0 0 0 0.1 4,802,220 1 0.1
wrp4-49 557 2160 49 158 582 22 0.5 4,901,968 1 0.6
wrp4-50 564 2224 50 223 860 24 0.4 5,001,625 1 0.6

@ Springer

Implications, conflicts, and reductions for Steiner trees 963
Table 22 continued
Instance Original Presolved Optimum N t[s]
Vi |A] Ty Vvl |A] IT| tfs]
wrp4-51 668 2612 51 407 1592 45 1.3 5,101,616 1 1.6
wrp4-52 547 2230 52 70 240 20 0.4 5,201,081 1 0.4
wrp4-53 615 2464 53 351 1370 46 0.7 5,301,351 1 1.4
wrp4-54 688 2776 54 356 1398 40 0.6 5,401,534 1 1.4
wrp4-55 610 2402 55 403 1562 51 0.7 5,501,952 1 1.0
wrp4-56 839 3234 56 489 1902 47 0.8 5,602,299 1 1.5
wrp4-58 757 2986 58 367 1446 41 0.6 5,801,466 1 1.5
wrp4-59 904 3612 59 154 506 29 0.2 5,901,592 1 0.2
wrp4-60 693 2740 60 103 346 24 0.4 6,001,782 1 0.4
wrp4-61 775 3076 61 138 500 19 0.2 6,102,210 1 0.2
wrp4-62 1283 4986 62 313 1184 29 2.6 6,202,100 1 2.7
wrp4-63 1121 4454 63 943 3752 60 0.9 6,301,479 1 59.9
wrp4-64 632 2562 64 0 0 0 0.3 6,401,996 1 0.3
wrp4-66 844 3382 66 229 834 24 1.0 6,602,931 1 1.0
wrp4-67 1518 6120 67 208 770 28 2.5 6,702,800 1 2.6
wrp4-68 917 3700 68 793 3182 67 0.8 6,801,753 1 3.7
wrp4-69 574 2330 69 0 0.7 6,902,328 1 0.7
wrp4-70 637 2538 70 0 0.1 7,003,022 1 0.1
wrp4-71 802 3218 71 0 0.1 7,102,320 1 0.1
wrp4-72 1151 4548 72 538 2132 48 1.1 7,202,807 1 4.2
wrp4-73 1898 7232 73 1290 5112 73 1.9 7,302,643 1 27.7
wrp4-74 802 3240 74 610 2422 72 0.8 7,402,046 1 1.9
wrp4-75 938 3738 75 702 2784 75 1.1 7,501,712 1 2.0
wrp4-76 766 3070 76 140 504 30 0.5 7,602,040 1 0.6

Bold numbers signify a superior performance

@ Springer

964 D. Rehfeldt, T. Koch

References

1. Achterberg, T.: Conflict analysis in mixed integer programming. Discrete Optim. 4(1), 4-20 (2007).
https://doi.org/10.1016/].disopt.2006.10.006

2. Achterberg, T.: Constraint Integer Programming. Ph.D. thesis, Technische Universitit Berlin (2007)

3. de Aragdo, M.P., Werneck, R.F.: On the implementation of MST-based heuristics for the Steiner
problem in graphs. In: Proceedings of the 4th International Workshop on Algorithm Engineering and
Experiments, pp. 1-15. Springer (2002). https://doi.org/10.1007/3-540-45643-0_1

4. Bonnet, E., Sikora, F.: The PACE 2018 parameterized algorithms and computational experiments
challenge: the third iteration. In: Paul, C., Pilipczuk, M. (eds.) 13th International Symposium on
Parameterized and Exact Computation (IPEC 2018), Leibniz International Proceedings in Informatics
(LIPIcs), vol. 115, pp. 26:1-26:15. Schloss Dagstuhl-Leibniz—Zentrum fuer Informatik, Dagstuhl,
Germany (2019). https://doi.org/10.4230/LIPIcs.IPEC.2018.26

5. Byrka, J., Grandoni, F., RothvoB, T., Sanita, L.: Steiner tree approximation via iterative randomized
rounding. J. ACM 60(1), 6 (2013). https://doi.org/10.1145/2432622.2432628

6. Cheng, X., Du, D.Z.: Steiner Trees in Industry, vol. 11. Springer, Berlin (2004). https://doi.org/10.
1007/0-387-23830-1_4

7. DIMACS: 11th DIMACS Challenge. http://dimacs11.zib.de/ (2015). Accessed 10 Jan 2020

8. Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195-207 (1971). https://
doi.org/10.1002/net.3230010302

9. Duin, C.: Steiner Problems in Graphs. Ph.D. thesis, University of Amsterdam (1993)

10. Duin, C.: Preprocessing the Steiner Problem in Graphs. Springer US, Boston (2000). https://doi.org/
10.1007/978-1-4757-3171-2_10

11. Duin, C., Volgenant, A.: An edge elimination test for the Steiner problem in graphs. Oper. Res. Lett.
8(2), 79-83 (1989). https://doi.org/10.1016/0167-6377(89)90005-9

12. Duin, C.W., Volgenant, A.: Reduction tests for the Steiner problem in graphs. Networks 19(5), 549-567
(1989). https://doi.org/10.1002/net.3230190506

13. Fischetti, M., Leitner, M., Ljubi¢, I., Luipersbeck, M., Monaci, M., Resch, M., Salvagnin, D., Sinnl,
M.: Thinning out Steiner trees: a node-based model for uniform edge costs. Math. Program. Comput.
9(2), 203-229 (2017). https://doi.org/10.1007/s12532-016-0111-0

14. Gamrath, G., Koch, T., Maher, S., Rehfeldt, D., Shinano, Y.: SCIP-Jack—a solver for STP and variants
with parallelization extensions. Math. Program. Comput. 9(2), 231-296 (2017). https://doi.org/10.
1007/512532-016-0114-x

15. Goemans, M.X., Olver, N., RothvoB, T., Zenklusen, R.: Matroids and integrality gaps for hypergraphic
Steiner tree relaxations. In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of
Computing, STOC 12, pp. 1161-1176. Association for Computing Machinery, New York, NY, USA
(2012). https://doi.org/10.1145/2213977.2214081

16. Hegde, C., Indyk, P., Schmidt, L.: A fast, adaptive variant of the Goemans—Williamson scheme for the
prize-collecting Steiner tree problem. In: Workshop of the 11th DIMACS Implementation Challenge.
Workshop of the 11th DIMACS Implementation Challenge (2014)

17. Hougardy, S., Silvanus, J., Vygen, J.: Dijkstra meets Steiner: a fast exact goal-oriented Steiner tree
algorithm. Math. Program. Comput. 9(2), 135-202 (2017). https://doi.org/10.1007/s12532-016-0110-
1

18. Husek, R., Knop, D., Masaiik, T.: Approximation Algorithms for Steiner Tree Based on Star Contrac-
tions: A Unified View. arXiv preprint arXiv:2002.03583 (2020)

19. Hwang, F., Richards, D., Winter, P.: The Steiner Tree Problem. Annals of Discrete Mathematics.
Elsevier Science, Amsterdam (1992)

20. IBM: Cplex. https://www.ibm.com/analytics/cplex-optimizer (2020)

21. Iwata, Y., Shigemura, T.: Separator-based pruned dynamic programming for Steiner tree. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 1520-1527 (2019). https://doi.org/
10.1609/aaai.v33i01.33011520

22. Juhl, D., Warme, D.M., Winter, P., Zachariasen, M.: The GeoSteiner software package for computing
Steiner trees in the plane: an updated computational study. Math. Program. Comput. 10(4), 487-532
(2018). https://doi.org/10.1007/s12532-018-0135-8

23. Karp, R.: Reducibility among combinatorial problems. In: Miller, R., Thatcher, J. (eds.) Complexity of
Computer Computations, pp. 85-103. Plenum Press, New York (1972). https://doi.org/10.1007/978-
1-4684-2001-2_9

@ Springer

https://doi.org/10.1016/j.disopt.2006.10.006
https://doi.org/10.1007/3-540-45643-0_1
https://doi.org/10.4230/LIPIcs.IPEC.2018.26
https://doi.org/10.1145/2432622.2432628
https://doi.org/10.1007/0-387-23830-1_4
https://doi.org/10.1007/0-387-23830-1_4
http://dimacs11.zib.de/
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1002/net.3230010302
https://doi.org/10.1007/978-1-4757-3171-2_10
https://doi.org/10.1007/978-1-4757-3171-2_10
https://doi.org/10.1016/0167-6377(89)90005-9
https://doi.org/10.1002/net.3230190506
https://doi.org/10.1007/s12532-016-0111-0
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1007/s12532-016-0114-x
https://doi.org/10.1145/2213977.2214081
https://doi.org/10.1007/s12532-016-0110-1
https://doi.org/10.1007/s12532-016-0110-1
http://arxiv.org/abs/2002.03583
https://www.ibm.com/analytics/cplex-optimizer
https://doi.org/10.1609/aaai.v33i01.33011520
https://doi.org/10.1609/aaai.v33i01.33011520
https://doi.org/10.1007/s12532-018-0135-8
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Implications, conflicts, and reductions for Steiner trees 965

24.

25.

26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

36.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Kisfaludi-Bak, S., Nederlof, J., Leeuwen, E.J.V.: Nearly ETH-tight algorithms for planar Steiner tree
with terminals on few faces. ACM Trans. Algorithms (TALG) 16(3), 1-30 (2020). https://doi.org/10.
1145/3371389

Koch, T., Martin, A.: Solving Steiner tree problems in graphs to optimality. Networks 32, 207-232
(1998). https://doi.org/10.1002/(SICI)1097-0037(199810)32:3%3C207::AID-NET5%3E3.0.CO;2-O
Koch, T., Martin, A., Vo8, S.: SteinLib: An updated library on Steiner tree problems in graphs. In: Du,
D.Z., Cheng, X. (eds.) Steiner Trees in Industries, pp. 285-325. Kluwer, Alphen aan den Rijn (2001)
Leitner, M., Ljubic, L., Luipersbeck, M., Prossegger, M., Resch, M.: New Real-World Instances for the
Steiner Tree Problem in Graphs. Tech. rep, ISOR, Uni Wien (2014)

Miiller, B., Serrano, F., Gleixner, A.: Using two-dimensional projections for stronger separation and
propagation of bilinear terms. SIAM J. Optim. 30(2), 1339-1365 (2020). https://doi.org/10.1137/
19M 1249825

Nederlof, J.: Fast polynomial-space algorithms using Mobius inversion: improving on Steiner tree and
related problems. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W.
(eds.) International Colloquium on Automata, Languages, and Programming, pp. 713-725. Springer
(2009). https://doi.org/10.1007/978-3-642-02927-1_59

Pajor, T., Uchoa, E., Werneck, R.F.: A robust and scalable algorithm for the Steiner problem in graphs.
Math. Program. Comput. (2017). https://doi.org/10.1007/s12532-017-0123-4

Polzin, T.: Algorithms for the Steiner Problem in Networks. Ph.D. thesis, Saarland University (2003)
Polzin, T., Daneshmand, S.V.: A comparison of Steiner tree relaxations. Discrete Appl. Math. 112(1-3),
241-261 (2001). https://doi.org/10.1016/s0166-218x(00)00318-8

Polzin, T., Daneshmand, S.V.: Improved algorithms for the Steiner problem in networks. Discrete Appl.
Math. 112(1-3), 263-300 (2001). https://doi.org/10.1016/S0166-218X(00)00319-X

Polzin, T., Daneshmand, S.V.: Extending Reduction Techniques for the Steiner Tree Problem, pp.
795-807. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45749-6_69

Polzin, T., Daneshmand, S.V.: On Steiner trees and minimum spanning trees in hypergraphs. Oper.
Res. Lett. 31(1), 12-20 (2003). https://doi.org/10.1016/S0167-6377(02)00185-2

Polzin, T., Daneshmand, S.V.: Practical partitioning-based methods for the Steiner problem. In: Alvarez,
C.., Serna, M.. (eds.) Experimental Algorithms, pp. 247-252. Springer, Berlin (2006). https://doi.org/
10.1007/11764298_22

. Polzin, T., Vahdati-Daneshmand, S.: The Steiner Tree Challenge: An updated Study (2014). Unpub-

lished manuscript at http://dimacs11.cs.princeton.edu/downloads.html

Rehfeldt, D., Koch, T.: Implications, conflicts, and reductions for Steiner trees. Tech. Rep. 20-28, ZIB,
Takustr. 7, 14195 Berlin (2020)

Rehfeldt, D., Koch, T.: On the exact solution of prize-collecting Steiner tree problems. Tech. Rep.
20-11, ZIB, Takustr. 7, 14195 Berlin (2020)

Reinelt, G.: TSPLIB—a traveling salesman problem library. ORSA J. Comput. 3(4), 376-384 (1991).
https://doi.org/10.1287/ijoc.3.4.376

Rosseti, 1., de Aragdo, M.P,, Ribeiro, C.C., Uchoa, E., Werneck, R.F.: New Benchmark Instances for
The Steiner Problem in Graphs. Springer US, Boston (2004). https://doi.org/10.1007/978-1-4757-
4137-7_28

Savelsbergh, M.W.P.: Preprocessing and probing techniques for mixed integer programming problems.
ORSA J. Comput. 6(4), 445-454 (1994). https://doi.org/10.1287/ijoc.6.4.445

Takahashi, H., Matsuyama, A.: An approximate solution for the Steiner problem in graphs. Mathematica
Japonicae 24, 573-577 (1980)

Uchoa, E.: Reduction tests for the prize-collecting Steiner problem. Oper. Res. Lett. 34(4), 437-444
(2006). https://doi.org/10.1016/j.011.2005.02.007

Uchoa, E., Poggi de Aragdo, M., Ribeiro, C.C.: Preprocessing Steiner problems from VLSI layout.
Networks 40(1), 38-50 (2002). https://doi.org/10.1002/net.10035

Vahdati Daneshmand, S.: Algorithmic Approaches to the Steiner Problem in Networks. Ph.D. thesis,
Universitidt Mannheim (2004)

Vygen, J.: Faster algorithm for optimum Steiner trees. Inf. Process. Lett. 111(21), 1075-1079 (2011).
https://doi.org/10.1016/j.ip.2011.08.005

Winter, P.: Reductions for the rectilinear Steiner tree problem. Networks 26(4), 187—198 (1995). https://
doi.org/10.1002/net.3230260404

Witzig, J., Gleixner, A.: Conflict-driven heuristics for mixed integer programming. INFORMS J. Com-
put. (2020). https://doi.org/10.1287/ijoc.2020.0973. (Epub ahead of print)

@ Springer

https://doi.org/10.1145/3371389
https://doi.org/10.1145/3371389
https://doi.org/10.1137/19M1249825
https://doi.org/10.1137/19M1249825
https://doi.org/10.1007/978-3-642-02927-1_59
https://doi.org/10.1007/s12532-017-0123-4
https://doi.org/10.1016/s0166-218x(00)00318-8
https://doi.org/10.1016/S0166-218X(00)00319-X
https://doi.org/10.1007/3-540-45749-6_69
https://doi.org/10.1016/S0167-6377(02)00185-2
https://doi.org/10.1007/11764298_22
https://doi.org/10.1007/11764298_22
http://dimacs11.cs.princeton.edu/downloads.html
https://doi.org/10.1287/ijoc.3.4.376
https://doi.org/10.1007/978-1-4757-4137-7_28
https://doi.org/10.1007/978-1-4757-4137-7_28
https://doi.org/10.1287/ijoc.6.4.445
https://doi.org/10.1016/j.orl.2005.02.007
https://doi.org/10.1002/net.10035
https://doi.org/10.1016/j.ipl.2011.08.005
https://doi.org/10.1002/net.3230260404
https://doi.org/10.1002/net.3230260404
https://doi.org/10.1287/ijoc.2020.0973

966 D. Rehfeldt, T. Koch

50. Wong, R.: A dual ascent approach for Steiner tree problems on a directed graph. Math. Program. 28,
271-287 (1984). https://doi.org/10.1007/BF02612335

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer

https://doi.org/10.1007/BF02612335

	Implications, conflicts, and reductions for Steiner trees
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Preliminaries and notation

	2 From implications to reductions
	2.1 The bottleneck Steiner distance
	2.2 A stronger bottleneck concept
	2.3 Approximating the implied bottleneck Steiner distance
	2.4 Bottleneck Steiner reductions beyond edge deletion

	3 From reductions to conflicts
	3.1 Node replacement
	3.2 Edge replacement

	4 From Steiner distances and conflicts to extended reduction techniques
	4.1 The framework
	4.2 Reduction criteria

	5 Exact solution
	5.1 Branch-and-cut
	Implications and the shortest path heuristic

	5.2 Computational results
	Impact of implied profit reductions
	Comparison with the state of the art
	Further results

	6 Conclusion and outlook
	Acknowledgements
	A Detailed computational results
	References

