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Abstract
The increasing number of people with hypertension worldwide has become a matter of grave concern. Blood pressure moni-
toring using a non-contact measurement technique is expected to detect and control this medical condition. Previous studies 
have estimated blood pressure variations following an acute stress response based on facial thermal images obtained from 
infrared thermography devices. However, a non-contact resting blood pressure estimation method is required because blood 
pressure is generally measured in the resting state without inducing acute stress. Day-long blood pressure variations include 
short-term variations due to acute stress and long-term variations in circadian rhythms. The aim of this study is to estimate 
resting blood pressure from facial thermal images by separating and excluding short-term variations related to acute stress. To 
achieve this, short-term blood pressure variations components related to acute stress on facial thermal images were separated 
using independent component analysis. Resting blood pressure was estimated with the extracted independent components 
excluding the short-term components using multiple regression analysis. The results show that the proposed approach can 
accurately estimate resting blood pressure from facial thermal images, with a 9.90 mmHg root mean square error. In addition, 
features related to resting blood pressure were represented in the nose, lip, and cheek regions.
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1  Introduction

The increasing number of people suffering from hyperten-
sion constitutes a social problem. Hypertension is a major 
risk factor for cardiovascular diseases and is associated with 
unhealthy lifestyle behaviors [1]. Daily blood pressure moni-
toring is important for prevention or early detection of these 
diseases. The conventional blood pressure measurement 
method applied pressure using a cuff attached to the finger 
or upper arm. This method has several disadvantages, such 
as personal discomfort and inability to continuously moni-
tor blood pressure variations. A non-contact blood pressure 

measurement technique can reduce these problems and 
facilitate daily blood pressure monitoring [2].

Visible and thermal images are physiological indices that 
reflected skin hemodynamic and non-contact measurable 
using a web camera or an infrared thermography device. 
Pulse waves can be measured from visible images based on 
the relationship between hue and blood flow fluctuation [3]. 
Skin temperature obtained from thermal images is related to 
skin blood flow, which is controlled by the sympathetic nerv-
ous system. The skin temperature variations depend on the 
heat conduction from the skin blood [4]. In particular, facial 
skin temperature shows a capacitive variation that reflects 
a dermovascular capacitance and the heat capacity of skin 
tissue [5]. This capacitive variation is spatially dependent 
on differences in blood vessel distribution and skin tissue 
structure in the facial skin. The techniques of non-contact 
blood pressure measurement have been developed using 
facial visible and thermal images.

In cardiovascular physiology, the Windkessel model is 
a hemodynamics model including blood pressure [6]. This 
model is an electric circuit model representing the cardio-
vascular system that consists of blood pressure as power, 
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the peripheral vascular resistance as resistance, flexibility 
as capacitance, and blood flow as current. Blood pressure 
can be obtained from these parameters. Kato et al. estimated 
blood pressure based on the Windkessel model using electric 
current and charge from facial visible and thermal images, 
respectively [7]. This study was expanded to attempt a blood 
pressure estimation using only facial thermal images (FTIs).

In previous studies using FTIs, blood pressure was 
estimated when it was artificially elevated by acute stress 
response using deep learning algorithms [8] or independ-
ent component analysis (ICA) [9]. Blood pressure is gener-
ally measured in the resting state without inducing acute 
stress. However, to the best of our knowledge, a non-contact 
method for resting blood pressure estimation using FTIs has 
not been established.

Humans have a physiological response that varies over 
a 24-h cycle known as the circadian rhythm. Physiological 
indices vary throughout the day without acute stress because 
of the effects of the circadian rhythm [10, 11]. Therefore, 
the day-long variation in physiological indices includes 
short-term variations related to acute stress and long-term 
variations related to circadian rhythms. Applying ICA to 
FTIs can extract independent components related to specific 
psychophysiological responses [12]. Ito et al. separated the 
components included in FTIs using ICA and extracted the 
core temperature or heart rate variable components related 
to circadian rhythms and acute stress [13]. It is expected that 
the short-term blood pressure variation components related 
to acute stress response can be separated and extracted from 
FTIs using the same method. In addition, resting blood pres-
sure can be estimated using the independent components of 
FTIs, excluding the short-term variable component related 
to acute stress. This study aimed at estimating resting blood 
pressure from facial thermal images. In this first trial, the 
short-term blood pressure variations related to acute stress 
on FTIs were extracted and excluded using the method 
employed by Ito et al. FTIs and blood pressure were meas-
ured repeatedly throughout the day to evaluate variations 
related to circadian rhythm in each physiological index. 
For each experiment, a subject was provided with a task to 
induce acute stress to facilitate the separation of short-term 
components, such as artifacts. The task given was breath 
holding, which induced elevated blood pressure [14]. ICA 
was applied to each FTI obtained to extract the independent 
components. Correlation analysis was performed to extract 
short-term components related to acute stress. Multiple 
regression analysis was conducted to construct a model of 
resting blood pressure estimation using independent compo-
nents excluding short-term components.

2 � Independent component analysis

ICA is an algorithm that extracts a set of independent com-
ponents from a set of random variables or signals [15, 16]. 
In its simplest form, m scalar random variables x1,… xm 
were observed. It is assumed that linear combinations of n 
independent components exist, denoted by s1,… sn . In this 
study, the observed variables xj and component variables 
si were arranged as vectors � = �j(t)

T (j = 1, 2,… ,m) ; �j(t) 
have zero means, and � = �i(t)

T (i = 1, 2,… , n) . The linear 
relation is expressed as:

where � , called the weighting matrix, is an unknown t × n 
matrix of the full column rank. � denotes the observed sig-
nal. The independent components are assumed to be mutu-
ally statistically independent and have zero means. ICA was 
used to extract the weighting matrix, � and independent 
components, �i(m) from the observed signal alone.

3 � Experiment

3.1 � Experimental system

Figure 1 shows the experimental system. The physiological 
indices were FTI and mean arterial pressure (MAP). The 
experimental system comprised an infrared thermography 
device (A35 Series; FLIR Co.) and a non-invasive continu-
ous blood pressure monitor (CNAP Monitor HD, CNSys-
tems Co.). The infrared thermography device was set up 
approximately 1.0 m in front of the subject. The thermal 
images were captured at a sampling frequency of 1 Hz. The 
size of the thermal image was 320 × 256 pixels. The tem-
perature resolution was less than 0.05 ◦C , and the infrared 
emissivity of the skin was set to � = 0.98 . MAP was meas-
ured by attaching a blood pressure cuff to the left finger and 

(1)� = �� = [a(1), a(2)… , a(t)]T
[
s1, s2,… , sn

]

Infrared thermography device

Blood pressure

monitor
1m

Fig. 1   Experimental system
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upper arm with a non-invasive continuous blood pressure 
monitor at a 10 Hz sampling frequency.

3.2 � Procedure and condition

The subject of this study was a healthy adult man aged 
22 years. The subject was fully informed of the experi-
mental procedure and the purpose of the study prior to 
participation. The study obtained official approval from 
the Life Science Committee of the College of Science 
and Engineering, Aoyama Gakuin University (Approval 
number:H17-M13-3). The temperature in the experi-
mental room was set to 21.0 ± 0.6◦C . Figure 2 shows the 
experimental protocol. The experiments were conducted 
every hour from 8:00 a.m. to 11:00 p.m. daily. The same 
experimental protocol was conducted for 3 days to con-
firm repeatability. To acclimatize to the temperature of the 
experiment room, the subject entered 15 min before the 
experiment began. To control the physiological responses 
to eating, the subject was only allowed three meals: break-
fast at 8:00 a.m., lunch at 1:00 p.m., and dinner at 7:00 
p.m. sleep time was required to be at least six hours. These 
restrictions were placed on eating and sleeping times to 
prevent changes in the circadian rhythm of physiologi-
cal functions. The experiment consisted of a resting state 
segment (Rest) and an induced acute-stress physiological 
response segment (Task). In the Rest segment, subject was 
asked to rest with eyes closed for 120 s. In the Task seg-
ment, subject was asked to hold breath with eyes closed for 
60 s to induce acute stress. FTIs and MAP were measured 
continuously during the Rest and Task, and the last 10 s 
of each segment were used for analysis.

4 � Indices for analysis

The analysis method comprised five procedures: (1) sta-
tistical evaluation, (2) extraction of FTIs, (3) extraction of 
independent components, (4) correlation analysis, and (5) 
multiple regression analysis. The details of each procedure 
are described in this section.

4.1 � Statistical evaluation

Statistical evaluation was conducted to evaluate the 
physiological states. A two-factor analysis of variance 
(ANOVA) was used to measure MAP variations to assess 
the differences statistically between the two conditions, 
Rest and Task, and time lapse. A mean value of MAP 
for 10 s obtained from each experiment was used for the 
analysis.

4.2 � Extraction of facial thermal images (FTIs)

FTIs were extracted from thermal images obtained in the 
experiment. A face detection algorithm based on a single 
shot multibox detector (SSD) and active appearance models 
(AAM) was used for FTIs extraction from thermal images 
[17, 18]. An 82 × 65 pixel FTI was cropped from each ther-
mal image based on the face detection algorithm, and the 
background or subject’s hair was removed. Figure 3 shows 
an example of FTI. Each FTI was normalized to subtract 
blackbody temperature and mosaicked to remove tempera-
ture fluctuations caused by imperceptible facial movements.

4.3 � Extraction of independent components

The observed signal was created from the extracted FTIs, 
and independent components were extracted based on 
ICA. The mean FTI was acquired from the FTIs measured 
for 10 s at time t and expanded to a one-dimensional vec-
tor, represented as:

where xa×b(t) represents the pixel a × b value of the mean 
FTI at time t. �(t) are normalized to zero means. The mean 
FTI vectors for t hours, which were extracted using a similar 
technique, were stored in a matrix:

(2)x(t) =
[
x1(t), x2(t),… , xa×b(t)

]

Rest 120 s Task 60 s

.m.p 00:11.m.a 00:9.m.a00:8

Time/h

FTI, MAP: 10 sFTI, MAP: 10 s

Fig. 2   Experimental protocol

Fig. 3   Example of a FTI
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ICA applied to �FTI . The weighting matrix � and independ-
ent components � were obtained using Eq. (1) as follows:

The independent components � were represented the feature 
map of the face. The weighting variations � indicated time 
series variation. The fastICA algorithm [19–21], which out-
performs the majority of commonly used ICA algorithms 
in terms of convergence speed, was used. The number of 
independent components was determined to be 13 based on 
negentropy [22, 23]. The observed signal for applying ICA 
was all FTIs for 3 days. At time t, the FTIs for Rest and 
Task were included. This observed signal was defined as 
�ALL . The extracted independent components and weight-
ing variations from �ALL were defined as �ALL and �ALL , 
respectively.

4.4 � Correlation analysis

It is expected that �ALL includes long-term variable compo-
nents on Rest or Task and short-term variable components 
due to acute stress. Correlation analysis was performed to 
separate short-term variable components in �ALL . As shown 
in Table 1, FTIs were considered as observed signals, and 
the extracted independent components and weighting varia-
tions from each FTI were defined for correlation analysis. In 
Table 1, �Rest and �Task were observed signals created from 
FTIs during the Rest or Task, respectively. �Rest , �Task , �Rest , 
and �Task are the independent components and weighting 

(3)�FTI = [x(1), x(2),… , x(t)]T =

⎡
⎢⎢⎣

x1,1 … x1,a×b
⋮ ⋱ ⋮

xt,1 … xt,a×b

⎤
⎥⎥⎦

(4)� =[a(1), a(2),… , a(t)]T =

⎡
⎢⎢⎣

a1,1 … a1,n
⋮ ⋱ ⋮

at,1 … at,n

⎤
⎥⎥⎦

(5)� =
�
s1, s2,… , sn

�T
=

⎡
⎢⎢⎣

s1,1 … s1,a×b
⋮ ⋱ ⋮

sn,1 … sn,a×b

⎤
⎥⎥⎦

variations created from each observed signal. The num-
ber of independent components of �Rest and �Task was set 
to 13, similar to �ALL . The correlation coefficients between 
sn(n = 1, 2,… , 13) in �ALL and 13 independent components 
included in �Rest or �Task in Table 1 were calculated. If the 
maximum absolute value of the 13 correlation coefficients 
obtained was over 0.8, sn is related to long-term variation 
of the Rest or Task. By contrast, if sn in �ALL was not cor-
related with either �Rest or �Task , then sn was related to the 
short-term variation.

4.5 � Multiple regression analysis

Multiple regression analysis was performed to construct the 
blood pressure estimation model from independent compo-
nents, excluding the short-term component. Multiple regres-
sion analysis is represented as:

where �k and Cnst. represent the partial regression coef-
ficients and the constant term, respectively. Only MAP 
at rest was used for the blood pressure estimation model 
because this study aimed to estimate resting blood pressure. 
The dependent variable, y, was the mean MAP over 10 s 
obtained in each experiment at Rest for 3 days. The explana-
tory variables, xk , were weighting variations �ALL excluding 
the independent components related to short-term variation 
identified in the correlation analysis. The explanatory vari-
ables were optimized using a stepwise procedure based on 
Akaike’s information criterion (AIC) [24].

5 � Results and discussion

5.1 � Independent component analysis to FTIs

Figure 4 shows the measured MAP variations in a subject 
over 3 days. The vertical axis, horizontal axis, and error 
bars indicate the mean value of MAP, time for 3 days, and 
standard error, respectively. The solid and dashed lines indi-
cate the MAP in the Rest and Task segments, respectively. 
The ANOVA shows a significant main effect for conditions 
( p < 0.05 ) and time lapse ( p < 0.001 ), and there was no 
interaction. The significant main effect for conditions was 
caused by blood pressure variation of the cardiac-dominant 
pattern induced by the task. On the other hand, it has been 
reported that blood pressure fluctuates based on circadian 
rhythms [25]. The significant main effect of time lapse is 
believed be caused by the circadian rhythm.

Figure 5 shows the result of �ALL and the corresponding 
�ALL . In �ALL , red and blue colors signify strong features, 

(6)y =
∑
k=1

�kxk + Cnst.

Table 1   Defined observed signals, independent components, and 
weighting variations

FTIs Observed signal Independent 
component

Weight-
ing vari-
ation

Rest in day m �Restm �Restm �Restm

Task in day m �Taskm �Taskm �Taskm

Rest for 3 days �Rest1-3 =

[
�Rest1,�Rest2,�Rest3

]
�Rest1-3 �Rest1-3

Task for 3 days �Task1-3 =

[
�Task1,�Task2,�Task3

]
�Task1-3 �task1-3
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and white colors signify weak features. In �ALL , the verti-
cal and horizontal axes indicate the weighting values and 
the time for 3 days, respectively. Each day is divided by 
vertical lines.

The results of correlation analysis are shown in Table 2. 
If the maximum absolute value of thirteen correlation 
coefficients (|R|) in is more than 0.8, each cell in Table 2 
is denoted by “ ○ ” and the others by “-”. The s12 and s13 
in �ALL were related to �Task1-3 and �Rest1-3 , respectively, as 
shown in Table 2. These components are expected to be 
long-term components related to circadian rhythms and rep-
resent rhythms that are reproducible for three days. The s3 
in �ALL was not correlated with the other observed signals, 
as shown in Table 2. The corresponding weighting variation 

(a) Day 1

(b) Day 2

(c) Day 3

Fig. 4   Measured MAP variations. Error bars indicate the standard 
error
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a3 qualitatively shows a time series of cyclic variation com-
pared to other weighting variations, as shown in Fig. 5. ICA 
was applied to the FTIs dataset with Rest and Task arranged 
alternately because it assumed that the blood pressure vari-
ations were represented on the FTIs. It is considered that a3 
was affected by blood pressure variations by acute stress. 
Therefore, s3 corresponding to a3 is expected to be a short-
term blood pressure variable component related to acute 
stress. It could be shown that a short-term blood pressure 
variable component related to acute stress could be separated 
and extracted from FTIs.

5.2 � Construction of model for resting blood 
pressure estimation

The explanatory variables were �ALL , excluding a3 , which 
is the short-term variation component related to acute stress 
in the multiple regression analysis. Table 3 shows the results 
of multiple regression analysis. The shaded cells indicate 
excluded independent components, and the hyphen indi-
cates the variables not selected as explanatory variables. 
Figure 6 shows the time variation of measured and esti-
mated MAP. The vertical axis indicates the value of MAP, 
and the horizontal axis indicates time. The solid and dashed 
lines indicate the measured and estimated MAP, respec-
tively. The coefficient of determination was 0.253, and the 
root mean square error was 9.90 mmHg. a4 , a7 , a11 , and a13 
were selected as explanatory variables for the resting blood 

Table 2   Correlation between 
�
ALL

 and other independent 
components

“○ ” represents that correlation coefficients (R) are greater than the threshold value ( |R| > 0.8), and the oth-
ers are represented by “–”

Number of �
ALL

s
1

s
2

s
3

s
4

s
5

s
6

s
7

s
8

s
9

s
10

s
11

s
12

s
13

Rest
 �Rest1 – – – – – – ○ – ○ – – – –
 �Rest2 – – – – – – ○ ○ – ○ ○ – –
 �Rest3 ○ – – ○ – – ○ – – – ○ – –
 �Rest1-3 – – – ○ ○ – ○ ○ ○ ○ ○ – ○

Task
 �Task1 – – – – – ○ ○ – – – – – –
 �Task2 – ○ – – – ○ – – ○ – ○ – –
 �Task3 – – – ○ ○ – – – –- – ○ – –
 �Task1-3 – – – ○ ○ ○ ○ ○ ○ ○ ○ ○ –

Table 3   Results of multiple 
regression analysis

Bold cells indicate the excluded independent components. The hyphen indicates the variables not selected 
as explanatory variables

Cnst Standard partial regression coefficients corresponding to �
k
 to �

ALL R
2  RMSE

/ mmHg
�
1

�
2

�
3

�
4

�
5

�
6

�
7

�
8

�
9

�
10

�
11

�
12

�
13

98.2 – – – 2.33 – – − 2.16 – – – 3.30 – − 3.49 0.253 9.90

Fig. 6   Time variation of meas-
ured and estimated MAP at Rest
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pressure estimation model. Therefore, s4 , s7 , s11 , and s13 were 
independent components related to the resting blood pres-
sure variation. Additionally, s13 corresponding to a13 was a 
long-term component related to circadian rhythm, as men-
tioned in Sect. 5.1. s13 was expected to represent the blood 
pressure variable components related to the main circadian 
rhythm. The coloration in the nose in s4 , lip in s7 and s13 , 
and cheek in s11 regions were intensified as shown in Fig. 5, 
and these regions were suggested to be related to resting 
blood pressure. In a previous study, the nose region was 
extracted as feature quantities related to short-term blood 
pressure variations based on acute stress [26]. The nasal and 
lip region is well known as the peripheral region reflecting 
the blood flow variation [27]. Therefore, it is considered that 
regions reflecting blood flow fluctuations are more likely to 
be used to estimate resting blood pressure.

6 � Conclusion

The objective of this study was to estimate resting blood 
pressure by separating acute stress blood pressure varia-
tions using FTIs. ICA was applied to the FTIs to extract 
features related to acute stress blood pressure variations. 
From the extracted independent components, a correlation 
analysis was used to separate and extract the short-term vari-
able components related to acute stress. Multiple regression 
analysis was performed to estimate resting blood pressure 
using independent components, excluding short-term vari-
able components. As a result, resting blood pressure was 
estimated from FTIs with an accuracy of 9.90 mmHg root 
mean square error between measured and estimated MAP. 
The features related to resting blood pressure variation were 
represented in the nose, lip, and cheek regions. The con-
tribution of this study is the separation and extraction of 
short-term components related to acute stress blood pressure 
variations, and resting blood pressure could be estimated 
with an accuracy of 9.90 mmHg.

This study has a limitation owing to its lack of generality, 
because only one subject was involved. In future studies, 
it is necessary to test the generality of resting blood pres-
sure estimation using FTIs by increasing the number of sub-
jects and comparing the obtained results. Additionally, the 
components of FTIs need to be evaluated while considering 
interday differences in blood pressure, because a difference 
was observed in blood pressure variations on day 1, 2, and 3.
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