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Abstract Among optimal hierarchical algorithms for the
computational solution of elliptic problems, the fast multi-
pole method (FMM) stands out for its adaptability to emerg-
ing architectures, having high arithmetic intensity, tunable
accuracy, and relaxable global synchronization requirements.
We demonstrate that, beyond its traditional use as a solver in
problems forwhich explicit free-space kernel representations
are available, the FMM has applicability as a precondi-
tioner in finite domain elliptic boundary value problems, by
equipping it with boundary integral capability for satisfy-
ing conditions at finite boundaries and by wrapping it in
a Krylov method for extensibility to more general opera-
tors. Here, we do not discuss the well developed applications
of FMM to implement matrix-vector multiplications within
Krylov solvers of boundary element methods. Instead, we
propose using FMM for the volume-to-volume contribution
of inhomogeneous Poisson-like problems, where the bound-
ary integral is a small part of the overall computation. Our
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method may be used to precondition sparse matrices aris-
ing from finite difference/element discretizations, and can
handle a broader range of scientific applications. It is capa-
ble of algebraic convergence rates down to the truncation
error of the discretized PDE comparable to those of multi-
grid methods, and it offers potentially superior multicore
and distributed memory scalability properties on commodity
architecture supercomputers. Compared with other methods
exploiting the low-rank character of off-diagonal blocks of
the dense resolvent operator, FMM-preconditioned Krylov
iteration may reduce the amount of communication because
it is matrix-free and exploits the tree structure of FMM. We
describe our tests in reproducible detail with freely available
codes and outline directions for further extensibility.

Keywords Fast multipole method · Preconditioner · Krylov
subspace method · Poisson equation · Stokes equation

1 Introduction

Elliptic PDEs arise in a vast number of applications in
scientific computing. A significant class of these involve
the Laplace operator, which appears not only in potential
calculations but also in, for example, Stokes and Navier-
Stokes problems [25, Chapters 5 and 7], electron density
computations [53, Part II] and reaction-convection-diffusion
equations [43, Part IV]. Consequently, the rapid solution of
PDEs involving the Laplace operator is of wide interest.

Although many successful numerical methods for such
PDEs exist, changing computer architectures necessitate
new paradigms for computing and the development of new
algorithms. Computer architectures of the future will favor
algorithms with high concurrency, high data locality, high
arithmetic intensity (Flops/Byte), and low synchronicity.
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This trend is manifested on GPUs and co-processors, where
some algorithms are accelerated much less than others on the
class of architectures that can be extended to extreme scale.
There is always a balance between algorithmic efficiency in a
convergence sense, and how well an algorithm scales on par-
allel architectures. This balance is shifting towards increased
parallelism, even at the cost of increasing computation. Since
the processor frequency has plateaued for the last decade,
Moore’s law holds continued promise only for those who are
willing to make algorithmic changes.

Among the scientific applications ripe for reconsidera-
tion, those governed by elliptic PDEs will be among the
most challenging. A common solution strategy for such sys-
tems is to discretize the partial differential equations by
fairly low-order finite element, finite volume or finite dif-
ference methods and then solve the resulting large, sparse
linear system. However, elliptic systems are global in nature,
and this does not align well with the sweet spots of future
architectures. The linear solver must enable the transfer of
information from one end of the domain to the other, either
through successive local communications (as in many iter-
ative methods), or a direct global communication (as in
direct solvers with global recurrences and Krylov methods
with global reductions). In either case, avoiding synchroniza-
tion and reducing communication are the main challenges.
There has been considerable effort in this direction in the
dense linear algebra community [22]. The directed-acyclic-
graph-based technology developed in such efforts could be
combinedwith iterative algorithms of optimal complexity for
solving elliptic PDEs at extreme scale.

Scalable algorithms for solving elliptic PDEs tend to have
a hierarchical structure, as in multigrid methods [65], fast
multipole methods (FMM) [35], and H-matrices [38]. This
structure is crucial, not only for achieving optimal arithmetic
complexity, but also for minimizing data movement. For
example, the standard 3-D FFT with three all-to-all commu-
nications requires O(

√
P) communication for the transpose

between pencil-shaped subdomains on P processes [20]
and a recently published algorithm [46] with five all-to-all
communication phases achieves O(P1/3) communication,
whereas these hierarchical methods require O(log P) com-
munication [50]. This O(log P) communication complexity
is likely to be optimal for elliptic problems, since an appro-
priately coarsened representation of a local forcing must
somehow arrive at all other parts of the domain for the ellip-
tic equation to converge. In other words, an elliptic problem
for which the solution is desired everywhere cannot have
a communication complexity of O(1). However, the con-
vergence of these hierarchical solvers can be fragile with
respect to coefficient distribution in the second-order term,
and, if present, with respect to the first-order and zeroth-order
terms.

Krylov subspace methods provide another popular alter-
native to direct methods for general operators. We note that
methods such as Chebyshev semi-iteration can require even
less communication in the fortunate case when information
about the spectrum of the coefficient matrix is known [28,
Section 10.1.5], [29]. Among the best known Krylov meth-
ods are the conjugate gradient method [41], MINRES [56]
and GMRES [60], although a multitude of Krylov solvers
are available in popular scalable solver libraries. The great
advantage of these solvers is their robustness—for any con-
sistent linear system there exists a Krylov method that will
converge, in exact arithmetic, for sufficientlymany iterations.
However, the convergence rate of unpreconditioned Krylov
methods deteriorates as the discretization of an elliptic PDE
is refined.

Mesh-independent convergence for Krylov methods
applied to systems from elliptic PDEs can be obtained by
sufficiently strong preconditioning.Among the best perform-
ing preconditioners are the optimal hierarchical methods
or, for multiphysics problems such as Stokes and Navier–
Stokes equations, block preconditioners with these methods
as components. By combining these hierarchical methods
and Krylov subspace solvers we get the benefits of both
approaches and obtain a linear solver that is robust and
fast. These hierarchical methods have multiple parameters
for controlling the precision of the solution and are able
to trade-off accuracy for speed, which is a useful feature
for a preconditioner. Furthermore, in analogy to the pair of
multigrid approaches denoted geometric and algebraic, H2-
matrices [39] can be thought of as an algebraic generalization
of what FMMs do geometrically. There are advantages and
disadvantages to using algebraic and geometricmethods, and
both have a niche as preconditioners.

There has been recent work on algebraic multigrid meth-
ods (AMG) in anticipation of the coming hardware con-
straints mentioned above. Gahvari et al. [26] developed
a performance model for AMG and tested it on various
HPC systems—Intrepid, Jaguar, Hera, Zeus, and Atlas.
They showed that network distance and contention were
both substantial performance bottlenecks for AMG. Adams
presents a low-memory matrix-free full multigrid (FMG)
with a full approximation storage (FAS) [2]. He revives
an idea from the 1970s [12], which processes the multi-
grid algorithm vertically, and improves data locality and
asynchronicity. Baker et al. [4] compared the scalability of
different smoothers—hybrid Gauss-Seidel, l1 Gauss-Seidel,
and Chebyshev polynomial, and showed that l1 Gauss-Seidel
and Chebychev smoothers scale much better. Vassilevski and
Yang [66] present additive variants of AMG that are signif-
icantly improved with respect to classical additive methods
and show their scalable performance on up to 4096 cores.
Indeed, there is continuous progress to evolve multigrid to
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future hardware constraints, and it is likely thatmultigridwill
remain competitive.

Complementing this evolution, hierarchical low-rank
approximation (HLRA) of the off-diagonal blocks of a
matrix leads to a whole new variety of O(N ) solvers or
preconditioners. HLRA based methods include FMM itself
[35], H-matrices [38], hierarchically semi-separable matri-
ces [16], hierarchically off-diagonal low-rank technique [3],
and recursive skeletonization [42], in an increasingly diverse
pool. These techniques can be applied to a dense matrix or a
Schur complement during a sparse direct solve, thus enabling
an O(N ) matrix-vector multiplication of a N × N dense
matrix or an O(N ) direct solve of a N × N sparse matrix
to within a specified accuracy. These HLRA based methods
exploit a cheaply approximable kernel in the far field, which
yields a block low-rank structure. The distinguishing features
of the variants come in the way the low-rank approxima-
tion is constructed—rank-revealing LU [57], rank-revealing
QR [36], pivoted QR [48], truncated SVD [31], randomized
SVD [51], adaptive cross approximation [58], hybrid cross
approximation [10], and Chebychev interpolation [23] are all
possibilities. Multipole/local expansions in the FMM consti-
tute another way to construct the low-rank approximations.
Many of the original developers of FMMare nowworking on
these algebraic variants [34]. There are also several groups
actively contributing to the field of the FMM algorithm, and
its high-performance implementation to enable the algorithm
migration to the exascale systems [8]. Furthermore, several
performance models for the FMM have been developed to
anticipate the challenges for FMM on future exascale archi-
tectures [45,50,64].

Literature on the HLRA-based methods mentioned above
mainly focuses on the error convergence of the low-rank
approximation and there is less investigation of their par-
allel scalability or of a direct comparison to multigrid. An
exception is thework byGrasedyck et al. [32], where theirH-
LU preconditioner is compared with BoomerAMG, Pardiso,
MUMPS, UMFPACK, SuperLU, and Spooles. However,
their executions are serial, and show that their H-matrix
code is not yet competitive with these other highly optimized
libraries. Another is the work by Gholami et al. [27] where
they compareFFT,FMM,andmultigridmethods for thePois-
son problem with constant coefficients on the unit cube with
periodic boundary conditions. FMM has also been used as a
continuumvolume integral with adaptive refinement capabil-
ities [52]. This approach defines the discretization adaptively
inside the FMM,whereas in the presentmethod a user defines
the discretization and the preconditioner is provided.

In the present work, we consider the Laplace and Stokes
boundary value problems and devise highly scalable pre-
conditioners for these problems. Our Poisson preconditioner
relies on a boundary element method in which matrix-vector
multiplies are performed using FMM; the result is an O(N )

preconditioner that is scalable, where N is the total degrees of
freedom, not just those on the boundary. For the Stokes prob-
lem, we apply a block diagonal preconditioner, in which our
Poisson preconditioner is combined with a simple diagonal
matrix. FMM based preconditioners were first proposed by
Sambavaram et al. [61]. Such methods lacked practical moti-
vation when flops were expensive, since they turn a sparse
matrix into a dense matrix of the same size before hierar-
chically grouping the off-diagonal blocks. But in a world
of inexpensive flops relative to data motion, the notion of a
“compute-bound preconditioner” is attractive. In the present
work, we perform scalability benchmarks and compare the
time-to-solutionwith state-of-the-artmultigridmethods such
as BoomerAMG in a high performance computing environ-
ment.

The rest of the manuscript is organized as follows. In
Sect. 2 we present the model problems and in Sect. 3 we give
an overview of Krylov subspace methods and precondition-
ing. The basis of our preconditioner is a boundary element
method that is discussed in Sect. 4 and the FMM, the kernel
essential for efficiency and scalablity, is described in Sect. 5.
Numerical results in Sect. 6 examine the convergence rates
of FMM and multigrid for small Poisson and Stokes prob-
lems. In Sect. 7 we scale up the Poisson problem tests and
perform strong scalability runs, where we compare the time-
to-solution against BoomerAMG [40] on up to 1024 cores.
Conclusions are drawn in Sect. 8.

2 Model problems

In this section we introduce the model Poisson and Stokes
problems and describe properties of the linear systems that
result from their discretization. We focus on low-order finite
elements but note that discretization by low-order finite dif-
ference or finite volume methods give linear systems with
similar properties.

2.1 Poisson model problem

The model Poisson problems we wish to solve are of the
form

− ∇ · (a∇u) = f in Ω, (1a)

u = g on �, (1b)

where Ω ∈ R
d , d = 2, 3 is a bounded connected domain

with piecewise smooth boundary �, f is a forcing term, g
defines the Dirichlet boundary condition, and a ≥ a0 > 0 is
a sufficiently smooth function of space.

Discretization of (1) byfinite elements or finite differences
leads to a large, sparse linear system of the form
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Ax = b, (2)

where A ∈ R
N×N is the stiffness matrix and b ∈ R

N

contains the forcing and boundary data. The matrix A is
symmetric positive definite and its eigenvalues depend on the
mesh size, which we denote by h, as is typical of discretiza-
tions of elliptic PDEs. In particular, the condition number
κ = λmax (A)/λmin(A), the ratio of the largest and smallest
eigenvalues of A, grows as O(h−2) (see, for example, [25,
Section 1.6]).

2.2 Stokes model problem

Incompressible Stokes problems are important in the model-
ing of viscous flows and for solving Navier–Stokes equations
by operator splitting methods [9, Section 2.1]. The equations
governing the velocity u ∈ R

d , d = 2, 3, and pressure p ∈ R

of a Stokes fluid in a bounded connected domain Ω with
piecewise smooth boundary � are [9,25]:

− ∇2u + ∇ p = 0 in Ω, (3a)

∇ · u = 0 in Ω, (3b)

u = w on �. (3c)

Discretizing (3) by a stabilized1 finite element or finite dif-
ference approximation leads to the symmetric saddle point
system

[
A BT

B −C

]
︸ ︷︷ ︸

A

[
u
p

]
=

[
f
g

]
, (4)

where A ∈ R
N×N is the vector-Laplacian, a block diagonal

matrix with blocks equal to the stiffness matrix from (2),
B ∈ R

M×N is the discrete divergence matrix, C ∈ RM×M

is the symmetric positive definite pressure mass matrix and
f ∈ R

N and g ∈ R
M contain the Dirichlet boundary data.

The matrixA is symmetric indefinite and the presence of
the stiffness matrix means that the condition number of A
increases as the mesh is refined. However, as we will see in
the next section, the key ingredient in a preconditioner forA
that mitigates this mesh dependence is a good preconditioner
for the Poisson problem. This allows us to use the precon-
ditioner for the Poisson problem in the Stokes problem as
well.

1 Although we treat only stabilized discretizations here, stable dis-
cretizations are no more difficult to precondition and are discussed in
detail in Elman et al. [25, Chapter 6].

3 Iterative solvers and preconditioning

3.1 Krylov subspace methods

Large, sparse systems of the form (2) are often solved by
Krylov subspace methods. We focus here on two Krylov
methods: the conjugate gradient method (CG) [41] for sys-
tems with symmetric positive definite coefficient matrices
and MINRES [56] for systems with symmetric indefinite
matrices. For implementation and convergence details, we
refer the reader to the books by Greenbaum [33] and
Saad [59].

The convergence of these Krylov subspace methods
depends on the spectrum of the coefficient matrix which for
the Poisson and Stokes problems, as well as other elliptic
PDEs, deteriorates as the mesh is refined. This dependence
can be removed by preconditioning. In the case of the Poisson
problem (2), we can conceptually think of solving the equiv-
alent linear system P−1Ax = P−1b (left preconditioning),
or AP−1 y = b, with P−1 y = x (right preconditioning), for
some P−1 ∈ R

N×N , and analogously for the Stokes equa-
tions (4). However, when the coefficient matrix is symmetric,
we would like to preserve this property when precondition-
ing; this can be achieved by using a symmetric positive
definite preconditioner [25, Chapters 2 and 6]. We also note
that in practice we never need P−1 explicitly but only the
action of this matrix on a vector. This enables us to use
matrix-free approaches such as multigrid or the fast mul-
tipole method.

Many preconditioners for the Poisson problem reduce the
number of iterations, with geometric and algebraic multi-
grid among the most effective strategies [25,65]. However,
to achieve a lower time-to-solution than can by obtained for
the original system, it is also necessary to choose a precon-
ditioner that can be cheaply applied at each iteration. Both
geometric and algebraic multigrid methods are O(N ), and
therefore exhibit good performance on machines and prob-
lems for which computation is expensive. However, stresses
arise in parallel applications as discussed in the introduction.

For Stokes problems we consider the block diagonal pre-
conditioner

P =
[
PA 0
0 PS

]
, (5)

where PA ∈ R
N×N and PS ∈ RM×M are symmetric positive

definite matrices. The advantage of this preconditioner is that
there is no coupling between the blocks, so P is scalable
provided the blocks PA and PS are.

Appropriate choices for PA and PS have been well stud-
ied and it is known that mesh-independent convergence of
MINRES can be recovered when PA is spectrally equivalent
to A in (4) and PS is spectrally equivalent to the pressure
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mass matrix Q ∈ RM×M [14], [25, Chapter 6]. These spec-
tral equivalence requirements imply that the eigenvalues of
P−1
A A and P−1

S Q are bounded in an interval on the positive
real line independently of the mesh width h.

It typically suffices to use the diagonal of Q [25, Chapter
6], [71] or a few steps of Chebyshev semi-iteration [70] for
PS . Moreover, the diagonal matrix is extremely paralleliz-
able. Thus, the key to obtaining a good preconditioner for
A is to approximate the vector Laplacian effectively. This
is typically the most computationally intensive part of the
preconditioning process, since in most cases M � N .

3.2 The FMM–BEM preconditioner

In this paper we propose a preconditioner for Poisson and
Stokes problems that heavily utilizes the fast multipole
method (FMM). The FMM isO(N ) with compute intensive
inner kernels. It has a hierarchical data structure that allows
asynchronous communication and execution. These features
make the FMM a promising preconditioner for large scale
problems on future computer architectures. We show that
this preconditioner improves the convergence of Krylov sub-
space methods applied to these problems and is effectively
parallelized on today’s highly distributed architectures.

The FMM in its original form relies on free-space Green’s
functions and is able to solve problemswith free-field bound-
ary conditions. InSect. 4 theFMMpreconditioner is extended
to Dirichlet, Neumann or Robin boundary conditions for
arbitrary geometries by coupling it with a boundary ele-
ment method (BEM). Our approach uses the FMM as a
preconditioner inside a sparse matrix solver and the BEM
solve is inside the preconditioner. Numerous previous stud-
ies use FMM for the matrix-vector multiplication inside the
Krylov solver for the dense matrix arising from the boundary
element discretization. In the present method we are calcu-
lating problems with non-zero sources in the volume, and
the FMM is used to calculate the volume-to-volume con-
tribution. This means we are performing the action of an
N × N dense matrix-vector multiplication, where N is the
number of points in the volume (not the boundary). Addi-
tionally, as discussed in Sect. 4.4, it is possible to extend the
boundary element method to problems with variable diffu-
sion coefficients, particularly since low accuracy solves are
often sufficient in preconditioning.

Figure1 shows the flow of calculation of our FMM-BEM
preconditioner within the conjugate gradient method; its role
in other Krylov solvers is similar. The FMM is used to
approximate the matrix-vector multiplication of A−1 within
the preconditioner. The BEM solver adapts the FMM to
finitely applied boundary conditions. During each step of the
iteration, the u vector from the previous iteration is used to
determine ∂u/∂n at the boundary from (8), then (9) is used
to compute the new u in the domain Ω .

Preconditioner
boundary     Eq. (8)
internal         Eq. (9)

Update conjugate vector

Obtain A and b

Compute inner products

Calculate residual

Update solution and residual

Check convergence

Fig. 1 Flow chart of the FMM-BEM preconditioner within the conju-
gate gradient method

4 Boundary element method

4.1 Formulation

We use a standard Galerkin boundary element method [62]
with volume contributions to solve the Poisson equation. A
brief description of the formulation is given here. Applying
Green’s third identity to (1a) with a ≡ 1 gives

∫
�

u
∂G

∂n
d� −

∫
�

∂u

∂n
Gd� −

∫
Ω

u(∇2G)dΩ =
∫

Ω

f GdΩ,

(6)

where G is the Green’s function of the Laplace operator, ∂
∂n

is the derivative in the outward normal direction, and � is the
boundary. Following the definition of the Green’s function
∇2G = −δ, the third term in (6) becomes

−
∫

Ω

u(∇2G)dΩ =
∫

Ω

uδdΩ =
{ 1

2u on ∂Ω,

u in Ω.
(7)

Therefore, we may solve the constant coefficient inhomo-
geneous Poisson problem by solving the following set of
equations
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∫
�

∂u

∂n
Gd� =

∫
�

u

(
1

2
δ + ∂G

∂n

)
d�

−
∫

Ω

f GdΩ on∂Ω, (8)

u =
∫

�

∂u

∂n
Gd� −

∫
�

u
∂G

∂n
d�

+
∫

Ω

f GdΩ in Ω. (9)

As an example, consider the case where Dirichlet boundary
conditions are prescribed on ∂Ω . The unknowns are ∂u/∂n
on � and u in Ω\�, where (8) solves for the former and (9)
can be used to determine the latter. For Neumann boundary
conditions one can simply switch the two boundary integral
terms in (8) and solve for u instead of ∂u/∂n. In either case,
we obtain both u and ∂u/∂n at each point on the boundary,
then calculate (9) to obtain u at the internal points.

4.2 Singular integrals

The Laplace Green’s function in 2-D

G = − 1

2π
log r (10)

is singular. Therefore, the integrals involving G or ∂G/∂n
in (8) and (9) are singular integrals. As described in the
following subsection, these singular integral are discretized
into piecewise integrals, which are evaluated using Gauss-
Legendre quadratures with special treatment for the singular
piecewise integral. For boundary integrals in (8) and (9), ana-
lytical expressions exist for the piecewise integral. However,
for the volume integral an analytical expression does not exist
[1]. For this reason, we used a smoothed Green’s function of
the form

G = − 1

2π
log

(√
r2 + ε2

)
(11)

where ε is a small number that changes with the grid res-
olution. An alternative approach is to instead approximate
these singular integrals by hierarchical quadrature [11]. This
approach expresses singular integrals in terms of regular ones
by splitting the domain of integration into a hierarchy of
suitable subdomains where standard quadrature can be per-
formed.

4.3 Discretization

The integrals in Eqs. (8) and (9) are discretized in a similar
fashion to finite element methods. In the following descrip-
tion of the discretization process, we will use the term on
the left hand side in (8) as an example. The first step is to

break the global integral into a discrete sum of piecewise
local integrals over each element

∫
�

∂u

∂n
Gd� ≈

N�∑
j=1

∫
� j

∂u j

∂n
Gd� j , (12)

where N� is the number of boundary nodes. These piece-
wise integrals are performed by using quadratures over the
basis functions [62]. In the present case, we use constant
elements so there are no nodal points at the corners of the
square domain for the tests in Sects. 6 and 7. By applying this
discretization technique to all terms in (8) we obtain

N�

N�︷ ︸︸ ︷⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

. . .

Gi j

. . .

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

.

.

.
∂u j
∂n
.
.
.

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
unknown

=

N�︷ ︸︸ ︷⎡
⎢⎢⎣

. . .

1
2δi j + ∂Gi j

∂n
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...

u j
...

⎤
⎥⎥⎦ −

NΩ︷ ︸︸ ︷⎡
⎢⎢⎣

. . .

Gi j
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...

f j
...

⎤
⎥⎥⎦ ,

where NΩ is the number of internal nodes. All values on
the right hand side are known, and ∂u/∂n at the boundary is
determined by solving the linear system. Similarly, we apply
the discretization to (9) to have

NΩ

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

...

ui
...

⎤
⎥⎥⎦ =

N�︷ ︸︸ ︷⎡
⎢⎢⎣

. . .
∂Gi j
∂n

. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...

u j
...

⎤
⎥⎥⎦

−

N�︷ ︸︸ ︷⎡
⎢⎢⎣

. . .

Gi j
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...
∂u j
∂n
...

⎤
⎥⎥⎦ +

NΩ︷ ︸︸ ︷⎡
⎢⎢⎣

. . .

Gi j
. . .

⎤
⎥⎥⎦

⎡
⎢⎢⎣

...

f j
...

⎤
⎥⎥⎦ .

At this point, all values on the right hand side are known
so one can perform three matrix-vector multiplications to
obtain u at the internal nodes, and the solution to the original
Poisson equation (1a). The third term on the right hand side
involves an NΩ ×NΩ matrix, and is the dominant part of the
computational load. This matrix-vector multiplication can be
approximated inO(N ) time by using the FMM described in
Sect. 5. We also use the FMM to accelerate all other matrix-
vector multiplications.
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4.4 Variable coefficient problems

A natural question that arises is how to extend the boundary
element method, which is the basis of our preconditioner, to
problems (1) with variable diffusion coefficients.

Several strategies for extending boundary element meth-
ods to problemswith variable diffusion coefficients havebeen
proposed (see, for example, the thesis of Brunton [13, Chap-
ter 3]). Additionally, in this preconditioner setting we may
not need to capture the variation in the diffusion coefficient
to a high degree of accuracy; for a similar discussion in the
context of additive Schwarz preconditioners see, for exam-
ple, Graham et al. [30].

Although analytic fundamental solutions can sometimes
be found for problems with variable diffusion (see, e.g.,
Cheng [17] andClements [18]), inmost cases numerical tech-
niques are employed. One popular method is to introduce a
number of subdomains, on each of which the diffusion coef-
ficient is approximated by a constant function [49,67].

A second option is to split the differential operator into
a part for which a fundamental solution exists and another
which becomes part of the source term. Specifically, starting
from (1), a similar approach to that described in Banerjee [7]
and Cheng [17] leads to

∫
�

au
∂G

∂n
d� −

∫
�

a
∂u

∂n
G −

∫
Ω

u∇a · ∇GdΩ

−
∫

Ω

au∇2GdΩ =
∫

Ω

f GdΩ,

where again G is the standard fundamental solution for the
Laplace operator, i.e., not the fundamental solution for (1).
We can then proceed as described above for (6). It is also pos-
sible (see Concus and Golub [19]) to change the dependent
variable to soak up the variation in a prior to discretization,
again resulting in a modified source FEM.

5 Fast multipole method

5.1 Introduction to FMM

The last term in Eq. (9) when discretized has the form

ui =
NΩ∑
j=1

f jGi j , (13)

where i = 1, 2, . . . , NΩ . If we calculate this equation
directly, it will requireO(N 2) operations. In Fig. 2, we show
by schematic how the fast multipole method is able to cal-
culate this in O(N ) operations. Figure2a, b show how the
source particles (red) interact with the target particles (blue)

for the direct method and FMM, respectively. In the direct
method, all source particles interact with all target particles
directly. In the FMM, the source particles are first converted
to multipole expansions using the P2M (particle to multi-
pole) kernel. Figure2c shows the corresponding geometric
view of the hierarchical domain decomposition of the parti-
cle distribution. Then, multipole expansions are aggregated
into larger groups using the M2M (multipole to multipole)
kernel. Following this, the multipole expansions are trans-
lated to local expansions between well-separated cells using
the M2L (multipole to local) kernel. Both Fig. 2b, c show
that the larger cells interact if they are significantly far away,
and smaller cells may interact with slightly closer cells. The
direct neighbors between the smallest cells are calculated
using the P2P (particle to particle) kernel, which is equivalent
to the direct method between a selected group of particles.
Then, the local expansions of the larger cells are translated
to smaller cells using the L2L (local to local) kernel. Finally,
the local expansions at the smallest cells are translated into
the potential on each particle using the L2P (local to parti-
cle) kernel. The mathematical formulas for these kernels will
be given in Sect. 5.3. Note, for simplification purposes, that
each scale of the hierarchical summation can be translated
asynchronously from source to target.

In order to perform the FMM calculation mentioned
above, one must first decompose the domain in a hierar-
chical manner. It is common to use an octree in 3-D and
quad-tree in 2-D, where the domain is split by a geometri-
cal center plane. The splitting is performed recursively until
the number of particles per cell reaches a prescribed thresh-
old. The splitting is usually performed adaptively, so that
the densely populated areas result in a deeper branching of
the tree. A common requirement in FMMs is that these cells
must be isotropic (cubes or squares and not rectangles), since
they are used as units for measuring the well-separateness as
shown in Fig. 2c during the M2L interaction. However, our
FMM does not use the size of cells to measure the distance
between them and allows the cells to be of any shape as
long as they can be hierarchically grouped into a tree struc-
ture. Once the tree structure is constructed, it is trivial to find
parent-child relationships between the cells/particles. This
relation is all that is necessary for performing P2M, M2M,
L2L, andL2Pkernels. However, for theM2LandP2Pkernels
one must identify a group of well-separated and neighboring
cells, respectively. We will describe an efficient method for
finding well-separated cells in the following subsection.

5.2 Dual tree traversal

The simplest method for finding well-separated pairs of cells
in the FMM is to “loop over all target cells and find their par-
ent’s neighbor’s children that are non-neighbors,” as shown
by Greengard and Rokhlin [35]. A scheme that permits the
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(a) (b)

(c)

P2M
M2M L2L

L2P

M2L

P2P

M2M

M2L
L2L

L2P

P2PP
source particles target particles

P2M

M2L

Fig. 2 Schematic of fast multipole method. a shows the interactions
for a O(N 2) direct method. b shows the interactions for the O(N )

FMM, describing the type of interaction between elements in the tree

data structure. c shows the same FMM kernels as in (b), but from a
geometric point of view of the hierarchical domain decomposition

interaction of cells at different levels for an adaptive tree was
introduced by Carrier et al. [15]. This scheme is used inmany
modern FMMcodes, and is sometimes called theUVWX-list
[50]. Another scheme to find well-separated pair of cells is
to “simultaneously traverse the target and source tree while
applying amultipole acceptance criterion,” as shown byWar-
ren and Salmon [69]. Teng [64] showed that this dual tree
traversal can produce interaction pairs that are almost iden-
tical to the adaptive interaction list by Carrier et al. [15].
A concise explanation and optimized implementation of the
dual tree traversal is provided by Dehnen [21].

The dual tree traversal hasmany favorable properties com-
pared to the explicit construction of interaction lists. First of
all, the definition of well-separateness can be defined quite
flexibly. For example, if one were to construct explicit inter-
action lists by extending the definition of neighbors from

3 × 3 × 3 to 5 × 5 × 5 using the traditional scheme, the
M2L list size will increase rapidly from 63 − 33 = 189 to
103 −53 = 875 in 3-D, which is never faster for any number
of expansions. On the other hand, the dual tree traversal can
adjust the definition of neighbors muchmore flexibly and the
equivalent interaction list always has a spherical shape. (We
say “equivalent interaction list” because there is no explicit
interaction list construction in the dual tree traversal.) The
cells no longer need to be cubic, since the cells themselves are
not used to measure the proximity of cells. The cells can be
any shape or size—even something derived from hierarchical
K-means clustering. The explicit interaction list construction
canbemodified to includemoreflexibility, aswell [37].How-
ever, the resulting code becomes much more complicated
than the dual tree traversal, which is literally a few lines of
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code.2 This simplicity is a large advantage on its own. Fur-
thermore, the parallel version of the dual tree traversal simply
traverses the local tree for the target with the local essential
tree [68] for the sources, so the serial dual tree traversal code
can be used once the local essential tree is assembled.

A possible (but unlikely) limitation of dual tree traver-
sals is the loss of explicit parallelism—it has no loops. It
would not be possible to simply use an OpenMP “parallel
for” directive to parallelize the dual tree traversal. In con-
trast, the traditional schemes always have an outer loop over
the target cells, which can be easily parallelized and dynam-
ically load balanced with OpenMP directives. However, this
is not an issue since task-based parallelization tools such as
Intel Thread Building Blocks (TBB) can be used to paral-
lelize the dual tree traversal. With the help of these tools,
tasks are spawned as the tree is traversed and dispatched to
idle threads dynamically. In doing so, we not only assure
load-balance but also data-locality, so it may actually end up
being a superior solution than parallelizing “for loops” with
OpenMP, especially on NUMA architectures.

Considering the advantages mentioned above, we have
decided to use the dual tree traversal in our current work.
This allows us to perform low accuracy optimizations by
adjusting the multipole acceptance criterion without increas-
ing the order of expansions too much, which is the secret to
our speed [72]. These low accuracy optimizations can give
the FMMaperformance boostwhen used as a preconditioner.

5.3 Multipole expansions

For the 2-D Laplace equation, the free space Green’s func-
tion, as noted in (10), has the form

Gi j = 1

2π
log

(
1

ri j

)
, (14)

where ri j = |xi − x j | is the distance between point i and
point j . By using complex numbers to represent the two-
dimensional coordinates z = x + ιy, Eq. (13) can be written
as

ui =
NΩ∑
j=1

f j
2π

	 {− log(zi j )
}
, (15)

where 	(z) represents the real part of z. Figure3 shows the
decomposition of vector xi j into five parts, xi j = xiλ +
xλ� + x�M + xMμ + xμj , where λ and � are the center
of local expansions and μ and M are the center of multi-
pole expansions. The lower case is used for the smaller cells
and upper case is used for the larger cells. When assuming

2 https://github.com/exafmm/exafmm.git.

x
xj

xxi
x

x

Fig. 3 Decomposition of the distance vector xi j = xi − x j into five
parts, that correspond to the five stages P2M, M2M, M2L, L2L, and
L2P in the FMM

the relation |x�M | > |xiλ + xλ�| + |xMμ + xμj | the fol-
lowing FMM approximations are valid [15]. We denote the
nth order multipole expansion coefficient at x as Mn(x), and
the nth order local expansion coefficient as Ln(x), where
n = 0, 1, . . . , p − 1 for a pth order truncation of the
series.

1. P2M from particle at x j to multipole expansion at xμ,

M0(xμ) =
N∑
j=1

f j , (16)

Mn(xμ) =
N∑
j=1

− f j (−zμj )
n

n
, n = {1, 2, . . . , p − 1}.

(17)

2. M2Mfrommultipole expansion atxμ tomultipole expan-
sion at xM ,

M0(xM ) = M0(xμ), (18)

Mn(xM ) = −M0(xμ)
(−zMμ)n

n

+
n∑

k=1

Mk(xμ)(−zMμ)n−k
(
n − 1

k − 1

)
. (19)

3. M2L from multipole expansion at xM to local expansion
at x�

L0(x�) ≈ M0(xM ) log(z�M ) +
p−1∑
k=1

Mk(xM )

zk�M

, (20)

Ln(x�) ≈ − M0(xM )

(−z�M )nn

+
p−1∑
k=1

(−1)nMk(xM )

zn+k
�M

(
n + k − 1

k − 1

)
. (21)

4. L2L from local expansion at x� to local expansion at xλ,

Ln(xλ) ≈
p−1∑
k=n

Lk(x�)zk−n
λ�

(
k

n

)
. (22)
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5. L2P from local expansion at xλ to particle at xi ,

ui ≈ 	
⎛
⎝p−1∑

n=0

Ln(xλ)z
n
iλ

⎞
⎠ . (23)

For the P2M, M2M, and M2L kernels, the first term requires
special treatment. The expansions are truncated at order p,
so the accuracy of the FMMcan be controlled by adjusting p.
When recurrence relations are used to calculate the powers
of z and the combinations they can be calculated at the cost
of one multiplication per inner loop (k loop) iteration. In our
implementation, we do not construct any matrices during the
calculation of these kernels. The P2P kernel is vectorized
with the use of SIMD intrinsics, and the log() function is
calculated using a polynomial fit for log2(x)/(x − 1) using
SIMD.

6 Numerical results

In this section we demonstrate the potential of the FMM-
based preconditioner by applying it to a number of test
problems and comparing it with standard preconditioners.
The primary aim is to assess the effectiveness of the precon-
ditioner at reducing the number ofKrylov subspace iterations
that are required for convergence to a given tolerance. Addi-
tionally, we seek to ascertain whether mesh independence
is achieved. We defer reporting on performance to Sect. 7.
Accordingly, we choose problems that are small enough to
enable solution by Matlab.

The Poisson problems are all two dimensional and include
examples with homogeneous and inhomogeneous Dirich-
let boundary conditions. We additionally present a two-
dimensional Stokes flowproblemand show that, as predicted,
combining the FMM-based Poisson preconditioner with a
block diagonal matrix gives an effective preconditioner for
the saddle point problem (4).

Throughout, our stopping criterion is a decrease in the rel-
ative residual of six orders of magnitude. If such a decrease
is not achieved after maxit iterations the computations are
terminated; this is denoted by ‘—’ in the tables. This maxi-
mum number of iterations is stated for each problem below.
For all problems and preconditioners the initial iterate is the
zero vector.

6.1 The Poisson equation

We first test our preconditioner on three two-dimensional
Poisson problems with a constant diffusion coefficient on
the domain on [−1, 1]2. Though these problems differ only
in their inhomogeneities and appear redundant with respect
to the operator, they verify different segments of code for the

Table 1 PreconditionedCG iterations for the relative residual to reduce
by six orders of magnitude for the problem with −∇2u = 1 and homo-
geneous boundary conditions

h GMG AMG FMM IC

2−4 6 5 5 10
2−5 6 6 6 18
2−6 7 6 6 —
2−7 7 6 6 —
2−8 7 6 7 —

PDE and boundary element discretization. We discretize the
problems by Q1 finite elements using IFISS [24,63], with
default settings. The fast multipole preconditioner is com-
pared with the incomplete Cholesky (IC) factorization [54]
with zero fill implemented inMatlab and the algebraic multi-
grid (AMG) and geometric multigrid (GMG) methods in
IFISS. Within the GMG preconditioner we select point-
damped Jacobi as a smoother instead of the default ILU,
which is less amenable to parallelization. Otherwise, default
settings for bothmultigridmethods are used. For all precondi-
tioners,maxit = 20 and we apply preconditioned conjugate
gradients.

Our first example is the first reference problem in Elman
et al. [25, Section 1.1] for which

∇2u = 1 in Ω = [−1, 1]2, u = 0 on �.

Table1 lists the preconditioned CG iterations for each pre-
conditioner applied. The FMM preconditioner, as well as
GMG and AMG appear to give mesh-independent conver-
gence, although the incomplete Cholesky factorization does
not.

In Table2 we list the eigenvalues of the FMM precondi-
tioned stiffness matrix for h = 2−4, 2−5 and 2−6. It is clear
that the smallest eigenvalue of A decreases as the mesh is
refined leading to an increase in the condition number; this is
particularly problematic for Krylov subspace methods, such
as CG iteration, whose iteration count can grow as the square
root of the condition number. However, the eigenvalues of the
FMM-preconditionedmatrix are bounded away from the ori-
gin in a small interval that does not increase in size as the
mesh is refined.This hints at spectral equivalencebetween the
FMM-based preconditioner and the stiffness matrix which
is unsurprising given that FMM is derived from the exact
inverse of the continuous problem. The condition number
appears to be bounded,which explains themesh-independent
convergence observed.

Our second example is the third reference problem from
Elman et al. [25, Section 1.1] posed on [−1, 1]2 which is
characterized by inhomogeneous Dirichlet boundary condi-
tions and the analytic solution
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Table 2 Smallest (λmin) and largest (λmax ) eigenvalues and condition number (κ) of the stiffness matrix A and FMM-preconditioned matrix P−1A
for the problem with −∇2u = 1 and homogeneous boundary conditions

h λmin(A) λmax (A) κ(A) λmin(P−1A) λmax (P−1A) κ(P−1A)

2−4 0.076 3.94 52 0.73 1.29 1.77
2−5 0.019 3.99 207 0.72 1.29 1.79
2−6 0.005 4.00 830 0.72 1.30 1.80

Table 3 PreconditionedCG iterations for the relative residual to reduce
by six orders of magnitude for the problem with −∇2u = 0 and inho-
mogeneous boundary conditions

h GMG AMG FMM IC

2−4 5 5 5 11
2−5 5 5 5 19
2−6 5 5 5 —
2−7 5 5 5 —
2−8 5 5 5 —

u(x, y) = 2(1 + y)

(3 + x)2 + (1 + y)2
.

From Table3 we find that, similarly to the previous problem,
the FMM preconditioner and both multigrid preconditioners
aremesh independent but the Cholesky preconditioner is not.
The FMM preconditioner is also competitive with the multi-
grid methods. Thus, on systems on which applying the FMM
preconditioner is significantly faster than applying the multi-
grid preconditioners,wewill achieve a faster time-to-solution
with the former. We note that the eigenvalues and condi-
tion numbers obtained for the FMM preconditioned stiffness
matrix are the same as those computed for the previous exam-
ple.

Thefinal problemweconsider in this section is thePoisson
problem with solution

u(x, y) = x2 + y2

on [−1, 1]2, which has forcing term f ≡ −4 in the domain
and inhomogeneous Dirichlet boundary conditions. The con-
vergence results for this problem, given in Table4, are similar
to those for the previous problems. They show that the FMM
preconditioner gives mesh independent convergence and is
competitive with AMG and GMG. We also obtain the same
eigenvalue results as for the previous examples.

6.2 Effect of FMM precision on convergence

For the results shown above, the FMM precision was set to
preserve six significant digits. However, the FMM can be
sped up by reducing precision. Since we are using the FMM
as a preconditioner, the accuracy requirements are somewhat
lower than that of general applications of FMM. Although

Table 4 PreconditionedCG iterations for the relative residual to reduce
by six orders of magnitude for the problem with −∇2u = −4 and
inhomogeneous boundary conditions

h GMG AMG FMM IC

2−4 5 5 5 10
2−5 5 5 5 18
2−6 5 5 5 —
2−7 5 5 5 —
2−8 5 5 5 —
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Fig. 4 Convergence rate of the FMM preconditioner with different
precision, plotted along with algebraic multigrid, geometric multigrid,
and incomplete Cholesky preconditioners. The ε represents the preci-
sion of the FMM, where ε = 10−6 corresponds to six significant digits
of accuracy

this balance between the accuracy and speed of FMM is a
critical factor for evaluating the usefulness of FMM as a
preconditioner, the relation between the FMM precision and
convergence rate has not been studied previously.

In Fig. 4 the relative residual at eachCG iteration is plotted
against the number of iterations for FMM, AMG, GMG, and
IC. The problem is the same as in Table1. Three cases of
FMM are used with six, four, and two significant digits of
accuracy, respectively. The ε = 10−6 case corresponds to the
condition for the tests in Tables1, 2, 3 and 4. Decreasing the
FMM accuracy to four digits has little effect during the first
few iterations, but slows down the convergence near the end.
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Fig. 5 Convergence of spatial discretization error for the FEM and
BEM. The relative L2 norm of the difference between the analytical
solution is plotted against the grid spacing �x

Decreasing the FMM accuracy further to two digits slows
down the convergence somewhat, but is still much better than
the incomplete Cholesky.

Increasing the precision of the FMM past six digits does
not result in any noticeable improvement because truncation
error begins to dominate. We are preconditioning a matrix
resulting from a FEM discretization by using a integral equa-
tion with Green’s function kernels. Each has its own error,
below which algebraic error need not be reduced. We show
in Fig. 5 the convergence of spatial discretization error for
the FEM and BEM approaches. We use the same reference
problem as in Table1, which has an analytical solution. The
discretization error is measured by taking the relative L2

norm of the difference between the analytical solution and
the individual numerical solutions. We see that the FEM is
second order and BEM is first order. The five different values
of �x correspond to h = {2−4, 2−5, 2−6, 2−7, 2−8}, which
were used in the previous experiments. For the current range
of grid spacing, the discrepancies between theFEMandBEM
truncation error is in the range of 10−3–10−4.

6.3 Stokes problem

Next, we examine convergence for a two-dimensional Stokes
flow. The leaky cavity problem [25, Example 5.1.3] on
[−1, 1] is discretized by Q1 − P0 elements in Matlab using
IFISS with default settings. As described in Sect. 3, by
combining a stiffness matrix preconditioner PA with the
diagonal of the pressure mass matrix PS , an effective pre-
conditioner (5) for the saddle point system (4) is obtained.
Here, we are interested in using the FMM preconditioner for
PA, and we compare its performance with AMG and GMG.

Table 5 Preconditioned
MINRES iterations for the
relative residual to reduce by six
orders of magnitude for the
Stokes problem

h GMG AMG FMM

2−4 32 31 35
2−5 32 32 35
2−6 33 32 33
2−7 31 31 33
2−8 31 31 31

We do not consider the incomplete Cholesky factorization of
A because of its poor performance on the stiffnessmatrix (see
Tables1, 3, 4). We setmaxit = 50 and apply preconditioned
MINRES to the saddle point system (Table5).

As for the Poisson problem, the FMM-based precondi-
tioner provides a mesh-independent preconditioner that is
comparable to algebraic and geometric multigrid. Although
for coarser grids two or three more iterations are required
by the FMM preconditioner than the AMG preconditioner,
if each iteration is faster the time-to-solution may be lower.

6.4 Variable coefficient Poisson equation

For sufficiently smoothdiffusion coefficient variation,we can
precondition the variable coefficient problem with the con-
stant coefficient problem, since they are spectrally equivalent.
We test this approach on the variable coefficient Poisson
equation of the form

−∇ · (a∇u) = 1 in Ω,

u = 0 on �,

Table 6 Preconditioned CG
iterations for the relative
residual to reduce by six orders
of magnitude (h = 2−6,
m = 1 and n = 1)

μ AMG FMM

2−16 6 6
2−8 6 6
2−4 6 7
2−2 6 8

Table 7 Preconditioned CG
iterations for the relative
residual to reduce by six orders
of magnitude (h = 2−6,

μ = 2−4)

m n AMG FMM

1 1 6 7
2 2 6 7
4 4 6 7
8 8 6 7
16 16 6 7

Table 8 Preconditioned CG
iterations for the relative
residual to reduce by six orders
of magnitude (m = 4,
h = 2−6, μ = 2−4)

n AMG FMM

1 6 7
2 6 7
4 6 7
8 6 7
16 6 7
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Table 9 Smallest (λmin) and
largest (λmax ) eigenvalues and
condition number (κ) of the
stiffness matrix A and
FMM-preconditioned matrix
P−1A with μ = 2−4

h m n λmin(A) λmax (A) κ(A) λmin(P−1A) λmax (P−1A) κ(P−1A)

2−4 3 3 0.0759 3.9923 53 0.4423 1.0000 2.26
2−5 6 6 0.0192 4.0199 209 0.4371 1.0040 2.29
2−6 12 12 0.0048 4.0280 839 0.4360 1.0061 2.31

where

a = 1 + μ(sin(mπx) sin(nπy)).

Tables6, 7, and 8 show that the FMM preconditioner and
both multigrid preconditioners achieve mesh independent
convergence for different amplitudes μ and frequencies m
and n. Also, the FMM preconditioner is competitive with the
algebraic multigrid method requiring comparable number of
iterations.

Similar to Table2, Table9 shows that the eigenvalues of
the FMM-preconditioned matrix are bounded away from the
origin.

7 Performance analysis

In this section we evaluate the performance of the FMM-
based preconditioner by comparing its time-to-solution
to an algebraic multigrid code BoomerAMG. We have
implemented our FMM-preconditioner in PETSc [5,6] via
PetIGA [55]. PetIGA is a software layer that sits on top of
PETSc that facilitates NURBS-based Galerkin finite element
analysis. For our present analysis, we simply use PetIGA
to reproduce the same finite element discretization as the
tests shown in Sect. 6, but in a high performance computing
environment. We select the first problem in Sect. 6.1 with
−∇2u = 1 and homogeneous Dirichlet boundary conditions
for the following performance evaluation.

All codes that were used for the current study are pub-
licly available. A branch of PetIGA that includes the FMM
preconditioner is hosted on bitbucket.3

All calculations were performed on the TACC Stampede
system without using the coprocessors. Stampede has 6400
nodes, each with two Xeon E5-2680 processors and one
Intel Xeon Phi SE10P coprocessor and 32GB of memory.
We used the Intel compiler (version 13.1.0.146) and config-
ured PETSc with “COPTFLAGS=-O3 FOPTFLAGS=-O3
–with-clanguage=cxx
–download-fblaslapack –download-hypre
–download-metis –download-parmetis
–download-superlu_dist
–with-debugging=0”.

3 https://bitbucket.org/rioyokota/petiga-fmm.
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Fig. 6 Time-to-solution for different problem sizes of the FMM and
AMG preconditioners on a single core of a Xeon E5-2680

7.1 Serial results

We first evaluate the serial performance of our method
using the same two-dimensional Poisson problem used in
Sect. 2. We confirmed that the iteration counts shown in
Table1 did not change for the PETSc version of our code.
Then, we measured the time-to-solution for different prob-
lem sizes. Since the domain size is [−1, 1], the grid spacing
of h = {2−4, 2−5, 2−6, 2−7, 2−8} in Sect. 6 correspond
to a grid size of N = {322, 642, 1282, 2562, 5122}. In
the PETSc version, the time-to-solution improves signif-
icantly so we tested for larger problem sizes of N =
{642, 1282, 2562, 5122, 10242, 20482, 40962}.

The time-to-solution is plotted against the problem size
N in Fig. 6. Since we are using PETSc, it is trivial to
change the preconditioner to AMG by passing the option
“–pc_type hypre” during runtime. Therefore, the time-
to-solution of BoomerAMG is shown as a reference in the
same figure. For BoomerAMGwe compared different relax-
ation, coarsening, and interpolation methods and found that
“-pc_hypre_boomeramg_relax_type_all
backward-SOR/Jacobi
-pc_hypre_boomeramg_coarsen_type
modifiedRuge-Stueben
-pc_hypre_bommeramg_interp_type
classical”
gives the best performance.
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Both FMM and AMG runs are serial, where we used a
single MPI process and a single thread. The majority of the
time goes into the setup of the preconditioner “PCSetUp” and
the actual preconditioning “PCApply”, so only these events
are shown in the legend. The “PCSetUp” is called only once
for the entire run, while “PCApply” is called every iteration.
For the present runs, both FMM and AMG required six itera-
tions for the relative residual to drop six digits, so all runs are
calling “PCApply” six times. The order of expansion for the
FMM is set to p = 6 and θ = 0.4, which gives about six sig-
nificant digits of accuracy. With this accuracy for the FMM,
we are still able to converge in six iterations. The P2P ker-
nel in the FMM code is performed in single precision using
SIMD intrinsics, but this does not prevent us from reaching
the required accuracy of six significant digits because we use
Kahan’s summation technique [47] for the reduction.

Figure6 shows that both the FMM and AMG possess
O(N ) asymptotic behavior. TheFMMseems to have a slower
preconditioning time, but a much faster setup time compared
to AMG. The FMM also has a constant overhead which
becomes evident when N is small. In summary, the time-to-
solution of the FMM is approximately an order of magnitude
larger than that of AMG for the serial runs. This is consis-
tent with the intuition that FMM is not the preconditioner
of choice for solving small problems on a single core. We
will show in the following section that the FMM becomes
competitive when scalability comes into the picture.

7.2 Parallel results

Using the same Poisson problem, we now compare the per-
formance of FMM and AMG for parallel runs on Stampede.
We also compare with a sparse direct solver MUMPS by
invoking at runtime “-ksp_type preonly -pc_type
lu -pc_factor_mat_solver_package mumps”.

The strong scaling of FMM, AMG, and MUMPS are
shown in Fig. 7. We use the largest grid size in the previ-
ous runs N = 40962. Stampede has 16 cores per node so all
runs first parallelize among these cores and then among the
nodes after the 16 cores are filled. The FMM strong scales
quite well up to 1024 cores, while the parallel efficiency of
AMG starts to decrease after 128 cores. The sparse direct
solver has a much larger time-to-solution even on a single
core, and is much less scalable than the other two hierar-
chical preconditioners. It is worth mentioning that the setup
cost of the direct solver is dominant and so if several linear
systems are solved with the same coefficient matrix then this
cost is amortized. For this particular Poisson problem on this
particular machine using this particular FMM code we see
an advantage over BoomerAMG past 512 cores.
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Fig. 7 Strong scaling of the 2-D FMM and AMG preconditioners

7.3 Extension to 3-D

The results above are all two-dimensional. A natural question
that arises is whether the extension to 3-D is straightforward,
and whether FMM will still be competitive as a precondi-
tioner or not. Our results showed that a dominant part of the
calculation time for the FMM preconditioner is the “PCAp-
ply” stage, which is the dual tree traversal for calculation
of M2L and P2P kernels. For 3-D kernels, the M2L opera-
tion is much more complicated so the calculation time of the
FMM will increase, even for the same number of unknowns
N . In the traditional use of FMM as a solver, the M2L oper-
ation has a computational complexity of O(p2) in 2-D and
at least O(p2 log p) in 3-D, O(p3) in our 3-D implemen-
tation. However, FMM may exhibit lower order asymptotic
behavior when used as a preconditioner in the low accuracy
regime making the difference in computational complexity
smaller [72].

Figure8 shows the calculation time of our 2-D FMM and
3-D FMM, both for the Laplace kernel with four significant
digits of accuracy on a single core of a Xeon E5-2680, 2.7
GHz CPU. The problem size N varies from 105 to 107. We
see that the 3-D FMM is about an order of magnitude slower
than the 2-D FMM for the same problem size. Nevertheless,
Fig. 9 shows that the three-dimensional FMMpreconditioner
strong scales quite well up to 1024 cores for N = 2563

when compared to BoomerAMG with these configurations
“-pc_hypre_boomeramg_coarsen_type hmis
-pc_hypre_boomeramg_interp_type ext+i
-pc_hypre_boomeramg_p_max 4
-pc_hypre_boomeramg_agg_nl 1”, and GMG with
“-da_grid_x 5 -da_grid_y 5 -pc_mg_
levels 5”.
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Fig. 8 Calculation time of 2-D and 3-D FMM for the same problem
size
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Fig. 9 Strong scaling of the 3-D FMM and AMG preconditioners

These runs were performed on Shaheen II which is a Cray
XC40 with 6174 compute nodes, each with two 16-core Intel
Haswell CPUs (Intel®Xeon®E5-2698 v3). The nodes are
connected by a dragonfly network using the Aries intercon-
nect.

Figure10 shows the timing breakdown for “PCSetUp” and
“PCApply” of the 2-D and 3-D FMMpreconditioners for the
same problem size on a single core of a Xeon E5-2698. Two
routines are shown in Fig. 10a for “PCSetUp”, “FMM_Init”
which initializes the FMM, and “FMM_Partition”which per-
formsOrthogonal Recursive Bisection (ORB) of the domain.
For the “PCApply” stage, Fig. 10b, the FMM functions

D-3D-2
Dimension

0

0.02

0.04

0.06

0.08

0.1

0.12

tim
e 

[s
]

FMM_Init
FMM_Partition
Other

(a)

(b)

D-3D-2
Dimension

0

5

10

15

20

25

tim
e 

[s
]

FMM_V2V
FMM_B2V
FMM_V2B
BEM_Solve
Other

Fig. 10 Time breakdown for “PCSetUp” and “PCApply” of the 2-D
and 3-D FMM preconditioners for the same problem size on a single
core (N = 5122 in 2-D and N = 643 in 3-D)

“FMM_V2B”, “FMM_B2V”, and “FMM_V2V” perform a
volume integral for every point on the boundary, a boundary
integral for every point in the volume, and a volume integral
for every point in the volume, respectively. “BEM_Solve” is
the BEM solve used to obtain u in (8).

8 Conclusions

The Fast Multipole Method, originally developed as a free-
standing solver, canbe effectively combinedwithKrylov iter-
ation as a scalable and highly performant preconditioner for
traditional low-order finite discretizations of elliptic bound-
ary value problems. In model problems it performs similarly
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to algebraic multigrid in convergence rate, while excelling
in scalings where AMG becomes memory bandwidth-bound
locally and/or syn-chronization-bound globally. The focus of
this study is onmotivating anddescribing the fundamentals of
the FMM-based preconditioner. For this purpose, we choose
simple Poisson problems where standard multigrid methods
are known to perform well. Additional algorithmic develop-
ment and additional testing of implementations on emerging
architectures are necessary to more fully define the niche in
which FMM is the preconditioner of choice. An example is
the indefinite Helmholtz equation, where multigrid methods
have severe convergence problems [65] while FMM-based
preconditioners maintain convergence independent of mesh
and wavenumber, over a moderate range of wavenumbers
[44].

No preconditioner considered in isolation can address
the fundamental architectural challenges of Krylov methods
for sparse linear systems, which are being simultaneously
adapted to less synchronization tolerant computational envi-
ronments through pipelining, but it is important to address
the bottlenecks of preconditioning this most popular class
of solvers by making a wide variety of tunable precondi-
tioners available and better integrating them into the overall
solver. Fast multipole-based preconditioners are demonstra-
bly ready to play an important role in the migration of sparse
iterative solvers to the exascale.
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