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Abstract Based on a monthly drought index, the Stan-

dardized Precipitation Index (SPI), we investigate the

multifractality of monthly drought areas in seven major

regions in China from 1961 to 2012 using multifractal

detrended fluctuation analysis. The results show that mul-

tifractality is evident in the monthly time series for all

seven regions, but its strength varies between areas. From

the numerical results, we further examine the stationarity

and persistence of the time series in the seven drought

areas. The characteristics of the variance of big and small

fluctuations are also analyzed. The characteristics of mul-

tifractal spectra are used to distinguish the features of the

singularity of all the data, as well as the large and small

fluctuations and the spread of the changes of fractal pat-

terns, and so on, in the monthly drought area time series for

the different regions. Finally, we investigate the possible

source(s) of multifractality in the drought series by random

shuffling as well as surrogating the original series for each

region.

1 Introduction

Droughts are among the most severe and frequently

occurring natural hazards. They have substantial effects on

economic, agricultural, ecological, and environmental

activity worldwide (Begueria et al. 2010; Li et al. 2013;

Vicente-Serrano et al. 2010). Recent studies have indicated

an increasing number of global droughts, both observed

and modeled (Dai 2013). Since the 1970s, the frequency of

extreme droughts has increased in central North China,

northeastern China, and the eastern part of northwestern

China (Ma and Fu 2006). Despite increasing precipitation,

the uneven spatial and temporal distribution of changes in

precipitation has resulted in occasional severe droughts in

southern China, especially in the southwest (Gao and Yang

2009; Qiu 2010; Song et al. 2003; Zhang et al.

2010a, b, 2011; Zhou et al. 2009).

For the purpose of predicting, monitoring, and assessing

the severity of droughts, several numerical drought indices

have been developed: the Rainfall Anomaly Index (RAI)

(Van-Rooy 1965), Palmer Drought Severity Index (PDSI)

(Palmer 1965), Standardized Precipitation Index (SPI), etc.

The present study focuses only on the meteorological

drought expressed by drought indices. The SPI (Hayes

et al. 1999; McKee et al. 1993) is widely used to reveal

meteorological droughts and has proved to be a useful tool

in estimating the severity and duration of droughts (Bordi

et al. 2004; Moreira et al. 2008; Silva et al. 2007). The SPI

has also been used in Argentina (Seiler et al. 2002), Canada

(Anctil et al. 2002), China (Wu et al. 2005), Europe

(Lloyd-Hughes and Saunders 2002), Hungary (Domonkos

2003), India (Chaudhari and Dadhwal 2004), Korea (Min

et al. 2003), Spain (Lana et al. 2001), and Turkey (Ko-

muscu 1999) for real-time monitoring or retrospective

analysis of droughts.
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Many natural processes, including droughts, may be

considered as complex systems. Chaos and fractal theories

were one of the important theories to be applied to the

analysis of complex systems (Tokinaga 2000; Tsonis 1992;

Lorenz 1969a, b). Peng et al. (1994) introduced detrended

fluctuation analysis (DFA) to calculate the variance of data

at different scales and scaling exponents. Following that,

Kantelhardt et al. (2002) extended DFA into multifractal

detrended fluctuation analysis (MFDFA) which enables the

multifractal behavior of data to be detected, and by

studying their shuffled and surrogate time series and

comparing them with the results of the original series, the

sources of multifractality can be investigated (Jafari et al.

2007; Kimiagar et al. 2009; Lim et al. 2007; Niu et al.

2008; Pedram and Jafari 2008; Telesca et al. 2004).

MFDFA has been used to study time series in geophysics

(Kantelhardt et al. 2003; Kavasseri and Nagarajan 2005;

Koscielny-Bunde et al. 2006), physiology (Dutta 2010;

Makowiec et al. 2006, 2011), financial markets (Oswiec-

imka et al. 2005; Yuan et al. 2009), and the exchange rates

of currencies (Norouzzadeh and Rahmani 2006a, b; Oh

et al. 2012; Wang et al. 2011a, b). Multifractals describe

the dynamic characteristics of systems more carefully and

comprehensively, and characterize their properties both

locally and globally. This is an important research ques-

tion, as the evidence of multifractality suggests that mul-

tifractal models could be built to allow variables of interest

to be forecast, and the prediction study based on multi-

fractality is a hot domain in last decades (de Benicio et al.

2013; Alvarez-Ramirez et al. 2008; Grech and Mazur 2004;

Lana et al. 2001, 2010; Martı́nez et al. 2007, 2010; Sun

et al. 2001; Wei and Wang 2008).We can examine the

multifractal properties of a time series using MFDFA and

any models that contemplate the phenomena should be

capable of reproducing the results, such as the relation of

intensity to complexity, the sources of multifractality and

the relation of small or large scale fluctuations with the

increase of intensity. The results of Chen et al. (2004) also

showed that some sign sequences of the parameter 1f could

be used to predict the probability of the near future price

movements. Wei and Huang (2005) studied the multifrac-

tality of the Shanghai Composite Index and proposed

volatility measure based on the multifractal spectrum of the

intraday price data, the so-called multifractal volatility

(MFV). Evaluated by the superior prediction ability (SPA)

test, the ARFIMA-MFV model obtained a higher degree of

forecasting accuracy than several GARCH-class models.

Since China is one of the countries that suffered severe

droughts for years (Weng et al. 2011), and given that a

drought is a complex, dissipative and dynamic event, the

indications are that the multifractality of droughts should

be studied. Some studies have investigated the multifrac-

tality of drought data (Jiang et al. 2005; Zhang et al.

2010a, b) and hydrological data related to river flows and

rainfall time series. Zhang et al. (2014) given a comparison

of detrending methods for fluctuation analysis in hydrology

by evaluating the Fourier based detrending method, adap-

tive detrending algorithm and average detrending tech-

nique in eliminating trends in hydrological series, they

(Zhang et al. 2008, 2009a, b, 2011, 2014; Yu et al. 2014)

analyzed the multifractal properties of rainfall time series

and streamflow records in Pearl River basin and the

Yangtze River basin of China. The results of these studies

provide practical and scientific information in regional

flood frequency analysis and water resource management

in china. However, there is no such attention has been paid

to drought areas. Thus, to better understand the complex

behavior of droughts in China, we used MFDFA to

examine the multiscaling behavior of drought areas using

the SPI on a monthly scale. An analysis of the fluctuations

of these particular drought areas, and how these relate to

their physical characteristics, contributes to the overall

information on the properties of droughts. By applying the

MFDFA technique to the monthly time series of the

drought areas in seven regions of China over the 50-year

period from 1961 to 2012, we identified the probable

source of the multifractality in these series by analyzing the

randomly shuffled series and the surrogate series corre-

sponding to each of the original series.

This paper is organized as follows: Sect. 2 contains

details of the data used in this study and of multifractal

detrended fluctuation analysis. In Sects. 3 and 4, we study

the multifractal properties and present the results of this

analysis. The work is summarized in Sect. 5.

2 Data and methods

2.1 Study area

China spans many degrees of latitude and has complicated

terrain, and therefore the climate varies sharply. Previous

studies (Wang et al. 2011a, b; Zhai et al. 2005) were car-

ried out for the whole territory of China subdivided into

seven regions, as shown in Fig. 1. These are referred to as

Northeastern China (NE), Northern China (N), North-

western China (NW), Central China (C), Southeastern

China (SE), Southwestern China (SW), and Southern China

(S). (Note: The analysis excluded Taiwan and Tibet

because of inadequate data.) The climatic zones and

landscapes of the seven regions differ from each other,

making them prone to different levels of water shortage

and drought; for example, the arid regions of western and

northern China have limited water, and drought is directly

related to low precipitation, whereas in some semi-humid

or humid regions in eastern China drought is mainly
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controlled by the East Asian monsoon. Studying droughts

in China based on these divisions is beneficial because the

different multifractality of each region provides useful

information about the dynamic system for efficient

prediction.

2.2 Data sources

Daily ground-based meteorological observation precipita-

tion data are obtained from the China Meteorological Data

Sharing Service System at http://cdc.cma.gov.cn/. Com-

plete data is held by 1283 meteorological stations for the

period 1961–2012. Most of these stations are located in

eastern China, and they are more evenly distributed there

than in the western part of the country: 137 stations in NE,

100 in N, 338 in C, 135 in SE, 146 in S, 173 in NW and 254

stations in SW. The homogeneity of the observed rainfall

values used in this study is guaranteed. Station observa-

tions collected by the National Meteorological Center of

CMA are subject to quality control procedures (Zhai et al.

2005). Currently they constitute the best dataset available

for analyzing regional rainfall variations over China. All

the observation sites are shown in Fig. 1.

In this study, the 1-month SPIs from 1961 to 2012 were

calculated for each Meteorological station following the

method of McKee et al. (1993). More details can be found

at http://ccc.atmos.colostate.edu/pub/spi.pdf and the SPI

calculation procedure can be downloaded from http://

drought.unl.edu/monitor/spi/program/spi_program.htm in

southwest China. The meteorological stations with

SPI B -1 are marked as red spots.

To investigate the multifractal properties of drought

area, based on the monthly time series and the SPI cate-

gories in Table 1, the total number of stations affected by

medium, severe and special droughts in each region

monthly was calculated for the period being studied. In this

paper, The drought area is calculated as follows: suppose

there are N meteorological stations i; i ¼ 1; 2; . . .;N within

a particular region, we first calculated monthly SPI from

1961 to 2012 (a total of 624 months) for all stations

SPIij; j ¼ 1; 2; . . .; 624. The drought studied here includes

three grades: the medium, severe and severe drought,

namely SPIij � � 1 according to the classified scales for

SPI. We counted the number of stations whose SPI B -1

each month in this region, and characterized the monthly

regional drought area by this statistic. For instance, there

were a total of 46 stations whose SPI B -1 in southwest

80 90 100 110 120 130
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Fig. 1 Location of regions and the spatial distribution of meteorological stations (blue plus symbol NW, red circle N, pink circle NE, black

diamond: C, green upward triangle SW, aqua blue downward triangle SE, blue downward triangle S)

Table 1 Classified scales for SPI

Grade SPI Category

1 -0.5\SPI No drought

2 -1.0\SPI B -0.5 Mild drought

3 -1.5\SPI B -1.0 Medium drought

4 -2.0\SPI B -1.5 Severe drought

5 SPI B -2.0 Special drought
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China on August 2009, thus the regional drought area was

46 in this month (see Fig. 2a); by the October 2009, there

were a total of 91 stations whose SPI B -1, then the

regional drought area was 91 in October 2009 (see Fig. 2b).

By the way of analogy, we obtained the monthly regional

drought area in each region during 1961–2012 years.

In fact, due to the spatial or geographical characteristics

of the stations, the total number of stations suffering from

drought characterized the drought area. We then used

MFDFA to examine the multifractal behavior of the

drought area time series.

2.3 Multifractal detrended fluctuation analysis

(MFDFA)

The MFDFA of Kantelhardt et al. (2002) takes the fluctuant

average of time series in each partition interval as statis-

tical points, and determines a generalized Hurst exponent

which depends on the power-law property of the fluctuation

function to measure the stationary and non-stationary

sequence structures and fluctuation singularity. Recently,

the Hurst exponent has been used to detect the complexity

and persistence in meteorological or climatic variables

(Tatli 2014, 2015). The advantages of this method are that

it finds the long-term correlations of non-stationary time

series. Computer simulation has demonstrated that the

MFDFA method for analyzing multifractality for non-sta-

tionary time series was the best of the available methods

(Govindan et al. 2007).

The steps in analyzing data characteristics of a drought

area based on MFDFA are as follows:

(1) Cumulative deviation of time series

xk; k ¼ 1; 2; . . .;Nf g of monthly drought area data is given

by

YðiÞ ¼
Xi

k¼1

½xk � �x�; ð1Þ

where �x ¼ 1
N

Pi
k¼1 xk.

(2) Divide sequence YðiÞ into Ns non-overlapping

intervals v. Each interval contains the same number of

points s, where the integral part is Ns ¼ N
s
. Since the length

of the sequence is often not an integral multiple of s, to

disregard this part of the series, the same procedure is

repeated starting from the end of the series until 2Ns seg-

ments are eventually obtained.

(3) Fitting the polynomial of the vth interval by a least-

squares fit of the data for each interval vðv ¼ 1; 2; . . .; 2NsÞ
is obtained from

ŷvðiÞ ¼ â0 þ â1iþ � � � þ âmi
m;

i ¼ 1; 2; . . .; s; m ¼ 1; 2; . . .
ð2Þ

The time series removing the trend is denoted by YsðiÞ;
which gives the difference between the original series and

fitted values:

YsðiÞ ¼ YðiÞ � ŷvðiÞ; ð3Þ

where ŷvðiÞ, called an m-order MFDFA, is the local trend

function of the vth interval, and m is the different fitting

order. In MFDFA-m (mth order MFDFA), trends of order m

in the profile (or, equivalently, of order m� 1 in the

original series) are eliminated.

Fig. 2 Spatial distribution of

SPI on a August 2009 and

b October 2009
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(4) Calculate the local trend for each of the 2Ns seg-

ments by a least-squares fit of the series. Then determine

the variance

F2ðs; vÞ � 1

s

Xs

i¼1

fY ðv� 1Þsþ i½ � � ŷvðiÞg2 ð4Þ

for each segment v; v ¼ 1; 2; . . .;Ns, and

F2ðs; vÞ � 1

s

Xs

i¼1

fY ½N � ðv� NsÞsþ i� � ŷvðiÞg2 ð5Þ

for v ¼ Ns;Ns þ 1; . . .; 2Ns. Here yvðiÞ is the fitting poly-

nomial in segment v. Different orders have different abil-

ities to eliminate the trend, and the degree of the

polynomial may be varied, either to eliminate constant

(m ¼ 0), linear (m ¼ 1), quadratic (m ¼ 2) or higher-order

trends of the profile. Then F2ðs; vÞ is related to the fitting

order.

(5) Average and extract a root for all variances of equal-

length intervals. Then the q-order fluctuation function of

the whole sequence is obtained from

FqðsÞ ¼
1

2Ns

X2Ns

v¼1

½F2ðs; vÞ�q=2
( )1=q

: ð6Þ

In general, the index variable q takes any real value. For

q ¼ 0, the fluctuation function can be determined from

FqðsÞ ¼ exp
1

4Ns

X2Ns

v¼1

ln½F2ðs; vÞ�
( )

: ð7Þ

Different q values have different effects on the fluctu-

ation functions. For positive q, the segment v with large

variance (i.e., large deviation from the corresponding fit)

will dominate the average FqðsÞ. Thus, if q is positive, hðqÞ
describes the scaling behavior of the segments with large

fluctuations and, in general, large fluctuations are charac-

terized by a smaller scaling exponent hðqÞ for multifractal

time series. For negative q, segments v with small variance

will dominate the average FqðsÞ. Thus, if q is negative, the

scaling exponent hðqÞ describes the scaling behavior of

segments with small fluctuations, usually characterized by

a larger scaling exponent hðqÞ.
(6) Determine the scaling exponent of the fluctuation

function. Varying the value of s in the range from 15 to

N=5, then repeating the procedure described above for

various scales s, FqðsÞ increases with increasing s. Then,

from log–log plots FqðsÞ vs. s for each value of q, the

scaling behavior of the fluctuation functions can be deter-

mined; thus, if the drought area series xk is correlated to a

long-term power-law, FqðsÞ increases for large values of s

as a power-law:

FqðsÞ� shðqÞ: ð8Þ

Since the scaling behavior of the variances F2ðs; vÞ is

identical for all segments v, the averaging procedure in

Eq. (6) gives an identical scaling behavior for all values of

q. The family of the exponents hðqÞ describes the scaling of
the qth-order fluctuation function. Multifractality refers to

the scaling property of a time series that needs to be rep-

resented by an array of scaling exponents, but not by any

single one. The multifractality of a time series may be

identified by examining the dependence of hðqÞ on high-

and low-order moments. If the time series is monofractal,

then hðqÞ is independent of q, but if the series is multi-

fractal, then hðqÞ depends on q, thereby characterizing a

single form of self-similarity over time; hðqÞ depends

significantly on q only if large and small fluctuations scale

differently. Since richer multifractality obviously corre-

sponds to higher variability of hðqÞ, the degree of multi-

fractality is quantified by

Dh ¼ hðqminÞ � hðqmaxÞ: ð9Þ

As large fluctuations are characterized by smaller scal-

ing exponents hðqÞ than small fluctuations, hðqÞ for q\0

are larger than those for q[ 0, and Dh is positively

defined.

For q ¼ 2, it is seen that Eqs. (4) and (6) are the same,

and the standard DFA procedure is retrieved, so that at this

point DFA is a special case of MFDFA. In general, the

exponent hðqÞ will depend on q. For stationary time series,

hð2Þ is the well-defined Hurst exponent H. Thus, hðqÞ is

called the generalized Hurst exponent. For a stationary

time series (e.g., fractional Gaussian noise), the profile

defined in Eq. (1) will be a fractional Brownian motion.

Thus, 0\hðq ¼ 2Þ\1 for these processes, and hðq ¼ 2Þ is
identical to the Hurst parameter H. On the other hand, if the

original signal is a fractional Brownian motion, the profile

will be the sum of fractional Brownian motions, so

hðq ¼ 2Þ[ 1. In this case the relationship between the

exponent hðq ¼ 2Þ and H is H ¼ hðq ¼ 2Þ � 1. Further

details may be found in Movahed et al. (2006).

The above equality can be also expressed as

FqðsÞ�AshðqÞ. Taking the logarithm of both sides of the

equation,

lnðFqðsÞÞ ¼ lnAþ hðqÞlnðsÞ: ð10Þ

A corresponding fluctuation function value FqðsÞ can be

obtained for each partition length s. Different FqðsÞ are

obtained using different constant s. From least-squares

linear regression for the above equality, the estimated

gradient is the q-order generalized Hurst exponent hðqÞ.
(7) The hðqÞ obtained using MFDFA is related to the

Rényi exponent sðqÞ; that is,
sðqÞ ¼ qhðqÞ � 1: ð11Þ

Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012 463

123



(8) The multifractal spectrum f ðaÞ, which describes

multifractal time series, is obtained from

a ¼ hðqÞ þ qh0ðqÞ; ð12Þ

where a is the Hölder exponent or singularity strength, and

f ðaÞ ¼ q½a� hðqÞ� þ 1: ð13Þ

The shape and extent of the singularity spectrum f ðaÞ
curve contains significant information about the distribu-

tion characteristics of the examined dataset, and describes

the singularity content of the time series. In the generalized

binomial multifractal model, the strength of the multi-

fractality of a time series is characterized by the difference

between the maximum and minimum values of a,
Da ¼ amax � amin. It should be noted that this parameter is

identical to the width of the singularity spectrum f ðaÞ at

f ¼ 0. A wider singularity spectrum indicates a richer

multifractality (Norouzzadeh and Rahmani 2006a, b).

3 Multifractal spectrum analysis

We analyzed the multifractal behavior of the drought area

time series in each region by implementing the MFDFA

technique using a second-order detrending polynomial,

m ¼ 2. The drought area time series was then divided into

Ns non-overlapping bins. The value of s was chosen in the

range 15 to N=5 in steps of 1, for N ¼ 624. We restricted

the moment q to the range [-10, 10] with steps equal to 1.

The results obtained for only one of these are shown in

Figs. 3 and 4.

The MFDFA results for the monthly drought area time

series of the seven regions in this study are shown in

Fig. 3a. It is seen that hðqÞ are decreasing functions that

exhibit a dependence on q, which is typical of multifractal

behavior. Thus, Fig. 3a reveals the presence of multifractal

behavior in the monthly drought area time series for the

seven regions in China.

To evaluate and compare the multifractality degree of

the time series in the study, the range Dh of the hðqÞ was
calculated. A greater degree of multifractality Dh corre-

sponds to a higher rate of decrease—that is, a steeper hðqÞ
curve, in which the variability in the distribution of high

and low fluctuations is increased and the temporal distri-

bution of the drought area is more complex and heteroge-

neous. Conversely, a smaller range of Dh indicates a low

rate of decrease—that is, a gentle hðqÞ curve with smaller

variation in the distribution of high and low fluctuations,

indicating a more regular and homogeneous temporal dis-

tribution of the drought areas.

Figure 3b shows the Dh of the drought area for seven

regions. It is clear that Dh for central and eastern China is

greater than in regions in western and northern China. This

indicates that the variation in the distribution of fluctua-

tions of the drought areas in central and eastern China is

greater than in western and northern China. The largest

variation is seen in SE (Dh = 0.49); that is, the hetero-

geneity and complexity of the temporal distribution of

drought areas in SE is also the most marked of all seven

regions. The second-largest variation is seen in C

(Dh = 0.34). The least variation occurred in SW, where the

smallest Dh values are reached (Dh = 0.17), indicating that

the temporal distribution of drought areas in SW is the

most homogeneous and regular of the seven regions. The

values of Dh in S, N, NE and NW are almost identical

0.2
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Fig. 3 a hðqÞ curves; b whole Dh; and c sectional Dh of monthly

drought area for seven regions in China
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(ranging from 0.29 to 0.20), indicating that the temporal

distribution of droughts is more regular and homogeneous

than in SE and C.

In Fig. 3a, it is notable that hðqÞ values in SW are all

greater than 0.5. This indicates that the drought areas in

SW have an obvious long memory, with persistent fluctu-

ations in both large and small drought areas. Conversely,

the hðqÞ in N and NW are all \0.5, indicating short-

memory drought areas in which the fluctuations of the

drought areas are intermittent, or non-persistent. On the

whole, the persistence of small fluctuations of drought

areas is weaker, in descending order, in the SE, C, SW, S,

and NE regions, and the intermittent nature of large fluc-

tuations of drought areas is stronger, in ascending order, in

the C, NE, SE, S, NW, and N regions. The large discrep-

ancy between SW and the other regions is in terms of

positive q, indicating that it is mainly related to the scaling

properties of the large fluctuations.

Changes of hðqÞ mainly depend on the variation of small

fluctuations if q\ 0, and mainly depend on the variation of

large fluctuations if q[ 0. Figure 3c shows that, for NE,

SW, and C, the ranges Dhq\0 are larger than Dhq[ 0, which

indicates that the variation of small fluctuations is greater

than the variation of large fluctuations in those three

regions, since the sparsely populated time domains are

more heterogeneous and complex than those densely

clustered on the time axis. In N and NW, Dhq[ 0 are larger

than Dhq\0, indicating that large fluctuations vary more

than small fluctuations in the two regions, where the den-

sely clustered time domains are more heterogeneous and

complex than the more sparsely populated time axis. For

SE and S, Dhq[ 0 are almost identical to Dhq\0, which

implies that the variation in large fluctuations is almost the

same as the variation in small fluctuations, and the densely

clustered time domains are almost the same as the sparsely

populated domains.

The scaling exponent hð2Þ ¼ 0:54 exceeds 0.5 for the

SW region. This indicates that the drought area was sta-

tionary and long-term correlated or persistent; however, the

hð2Þ are all less than 0.5 for the other six regions, which

indicates that their drought areas tended to be anti-persis-

tence (or mean-reverting process) and tended to be non-

stationary and short-term correlated or intermittent. The

strongest short-term correlation is found in N, shown by its

smallest scaling exponent hð2Þ = 0.35, whereas NW, NE,

S, C, and SE have a weaker short-term correlation with

hð2Þ ¼ 0.40, 0.41, 0.42, 0.45, and 0.47, respectively.

The hð2Þ clearly exceeding 0.5 suggests persistence, in

other words, forthcoming predictions of elements will be

strongly governed by trends on the preceding elements. On

the contrary, values of hð2Þ lowering 0.5 will suggest anti-

persistence. In this case, a good estimation of new elements

will take into account an average of previous elements.

Due to the long-term correlations in the drought area time

series, large values are rather followed by large values and

small values are rather followed by small values, leading to

periods with fewer drought events and to a clustering of

more drought events on the other hand. A short-term cor-

relations in the drought area time series indicate that an up

value will most likely be followed by a down value and

vice versa, which means that future values have a tendency

to return to a long-term mean. The stronger short-term

correlation switch their sign more frequently and a random

process does (Feder 1988; Kantelhardt 2008; Mensia et al.

2017; Mali et al. 2017). Finally, hð2Þ close to 0.5 evidences
series modeled by pure randomness. Consequently, forth-

coming elements could reach any value within the range of

the sample data (Turcotte 1997; Hurst et al. 1965).The

predictability of the drought area in SW and N was higher

than in other regions. In descending order, the pre-

dictability of the drought areas was increasingly weak in

NW, NE, S, C, and SE (toward 0.5).

The multifractal spectra adequately characterize the

multifractal nature of drought areas, which enables the

fluctuations of areas and the previously defined time

scales to be described in detail. For a multifractal time

series, the shape of the singularity spectrum resembles a

0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0
(A)

 NE
 N
 NW
 SW
 C
 SE
 S

NE N NW SW C SE S
0.2

0.3

0.4

0.5

0.6

0.7
(B)

Regions

Fig. 4 a Multifractal spectra; b width of monthly drought areas for

the seven regions
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wide inverted parabola whose left- and right-hand wings

refer to positive and negative q, respectively. For pure

multifractals, the value of a decreases with increased

fluctuation.

The multifractal spectrum curves f ðaÞ of the studied

elements were calculated by the moment method (Halsey

et al. 1986). In all cases, the multifractal spectra (see

Fig. 4a) are all continuous and asymmetrical with convex

parabolas, which confirms that the drought area time series

for the seven regions are multifractal, but to a varying

degree, since the curves are all different. All of them reach

the maximum f ðaÞ value of 1, relating to the single

dimension of the studied variables. When the spectra are

compared, we observe that their shapes are different;

consequently, all of the studied datasets are subject to

different high and low fluctuations.

Several useful indices were used in this work:

Da ¼ amax � amin, DaL ¼ a0 � amin, DaR ¼ amax � a0,

R ¼ DaL�DaR
DaLþDaR

, Df ðaÞ ¼ f ðamixÞ � f ðamaxÞ; where a0 is the

particular value of a corresponding to q = 0; amin and amax

are the minimum and maximum values of a, respectively.
The width Da of a multifractal spectrum provides a mea-

sure of multifractality: a larger range of Da indicates a

wider multifractal spectra, implying a higher degree of

multifractality. A larger or smaller multifractal signal

(corresponding to a larger or smaller Da) implies a greater

or lesser heterogeneous signal. A signal is heterogeneous if

it is characterized by sudden bursts of high frequency,

intermittencies and/or irregularities. DaL and DaR are,

respectively, the left- and right-hand branches of the mul-

tifractal spectrum curve; their values describe the distri-

bution patterns of high and low fluctuations, respectively

(Agterberg 2001; Evertsz and Mandelbrot 1992). The

asymmetry index (R), which ranges from -1 to 1, quan-

tifies the deviations of the multifractal spectrum curve (Xie

and Bao 2004): R[ 0 suggests a left-hand deviation of the

multifractal spectrum, likely to have resulted from some

degree of local high fluctuations; R\ 0 suggests a right-

hand deviation with local low fluctuations; and R = 0

represents a symmetrical multifractal spectrum. Df ðaÞ is

the difference between the maximum and minimum values

of f ðaÞ.

The result of the Da values for different regions is

shown in Fig. 4b and Table 2. Similar to hðqÞ, the results

show that the regions in central and eastern China have

stronger multifractal fluctuations (larger Da); that is,

greater variation in the distribution of fluctuations and

more heterogeneous temporal distribution of drought areas,

than the regions in western and northern China. The highest

Da for SE suggests that this region has the greatest irreg-

ularity and multifractality, and therefore the singularity of

its drought area time series is the greatest, which indicates

that the changes in the drought area in this region are more

extreme than elsewhere and the prediction was the most

difficult in SE. The Da of C and S are similar, both higher

than in the other four regions and the prediction was also

very difficult in C and S. The Da of SW is the smallest,

meaning that changes in the drought area in this region are

smaller than in the other regions and the prediction was the

easiest relatively in SW; and the Da of NE, N, and NW are

also similar and the drought area in these regions also has a

low predictability.

Furthermore, the multifractal spectrum of SE is sym-

metrical (R & 0), and DaL � DaR, that is, the singularity

of the large and small fluctuations is identical. The multi-

fractal spectrum of N, NW, and S is left-deviant. Of these,

left-deviation is most significant and DaL 	 DaR in NW

with the highest the values of DaL, which implies that the

singularity with the high values is greatest, and it is far

greater in magnitude than low-value cases; it also has the

largest local high fluctuations in drought clusters spatially.

In N and S it is almost the same, with DaL slightly larger

than DaR, but there is no significant difference of singu-

larity between the high and the low values in those regions,

with droughts showing only slightly higher spatial clusters

locally.

The multifractal spectra of SW, NE, and C, in that

sequence, are right-deviant—that is, the singularity of the

low values is larger than the high values, and local

droughts in those regions have been more sparse spatially.

The difference Df ðaÞ between maximum and minimum

values of the singularity provides an estimate of the spread

in changes in fractal patterns. Since Df ðaÞ denotes the

frequency ratio of the largest to the smallest fluctuation,

Table 2 Multifractal

parameters of the studied data
amin amax a0 DaL DaR Da R f ðaminÞ f ðamaxÞ Df ðaÞ

NE 0.327 0.648 0.446 0.119 0.202 0.321 -0.259 0.626 0.225 0.401

N 0.140 0.532 0.379 0.239 0.153 0.392 0.2190 0.106 0.295 -0.189

NW 0.161 0.474 0.445 0.284 0.029 0.313 0.814 0.097 0.820 -0.723

SW 0.464 0.758 0.561 0.097 0.197 0.294 -0.339 0.583 0.178 0.405

C 0.330 0.802 0.522 0.192 0.280 0.472 -0.186 0.562 0.134 0.428

SE 0.228 0.915 0.572 0.344 0.343 0.687 0.002 0.142 -0.105 0.247

S 0.190 0.640 0.465 0.275 0.175 0.450 0.222 0.075 0.353 -0.278
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Df ðaÞ[ 0 means that the largest fluctuations are more

frequent than smallest fluctuations, while Df ðaÞ\ 0 is the

reverse. It is apparent that Df ðaÞ are positive in NE, SW, C,

and SE, which reveals that the largest fluctuations of these

drought areas are more frequent than the smallest fluctua-

tion areas. The size of this characteristic is much the same

in NE, SW, and C, but it is weaker in SE. In N, NW, and S,

Df ðaÞ are negative—that is, the smallest fluctuations of

drought areas are more frequent than the largest fluctua-

tions, especially for NW, but it is weaker in N than in S.

4 Sources of multifractality

Generally, there are two types of source of multifractality in

time series. One is due to different long-term temporal

correlations for small and large fluctuations; the other is due

to the fat-tailed distributions of variations (Matia et al.

2003). To investigate the dynamic causes of multifractality

in drought areas, both methods were used in this study. The

shuffling procedure destroys any temporal correlations in the

data, but the distributions remain exactly the same. In order

to quantify the influence of the fat-tail distribution, surrogate

time series were generated from the original by randomizing

their phases in Fourier space, so that the surrogate series are

Gaussian. If the multifractality is derived from temporal

correlations, the generalized Hurst exponent hðqÞ obtained

by shuffling the data should have a constant value of 0.5;

then, if temporal correlation was the only reason for the

multifractal features, after the series is phase-randomized,

hðqÞ should be independent of q; but if both sources are the

reasons for the multifractal features, the multifractality

should remain but its strength should be diminished.

The shuffling procedure consists of the following steps

(Matia et al. 2003): first, generate ðm; nÞ pairs of random

integer numbers which satisfy m; n�N, where N is the

length of the time series to be shuffled; then interchange

entries m and n in the time series. It is critical to ensure that

the ordering of entries in the time series is fully shuffled,

such that the long-term or short-term memories, if any, are

destroyed. The shuffling is repeated with different random

seeds to avoid systematic errors in the random number

generators. The algorithm of phase randomization

(Norouzzadeh et al. 2007; Small and Tse 2003) is deter-

mined by firstly taking the discrete Fourier transform of the

time series, then shuffling the phases of the complex con-

jugate pairs (noting that the phases of complex numbers

must be shuffled pairwise to preserve the realness of the

inverse Fourier transformation) and finally, taking the

inverse Fourier transformation. Ten different realizations

of the shuffled and surrogate time series associated to the

monthly drought area were generated in this way to reduce

statistical errors.

From the results for the shuffled and surrogate cases

listed in Table 3, we found that the spectrum widths for all

seven regions became slightly narrower after the phase

randomization and shuffling procedures. At the same time,

Table 3 Generalized Hurst exponents and width of multifractal

spectrum

Region Original Shuffled Surrogate

NE

hð�10Þ 0.571 0.663 0.542

hð10Þ 0.364 0.469 0.387

hð2Þ 0.412 0.503 0.436

Dh 0.207 0.194 0.155

Da 0.321 0.317 0.261

N

hð�10Þ 0.461 0.682 0.509

hð10Þ 0.229 0.454 0.308

hð2Þ 0.347 0.504 0.374

Dh 0.232 0.228 0.201

Da 0.392 0.360 0.322

NW

hð�10Þ 0.456 0.582 0.541

hð10Þ 0.251 0.422 0.370

hð2Þ 0.400 0.493 0.423

Dh 0.205 0.160 0.171

Da 0.313 0.265 0.276

SW

hð�10Þ 0.676 0.573 0.647

hð10Þ 0.506 0.444 0.505

hð2Þ 0.545 0.500 0.561

Dh 0.170 0.129 0.143

Da 0.294 0.221 0.245

C

hð�10Þ 0.716 0.705 0.618

hð10Þ 0.374 0.444 0.403

hð2Þ 0.448 0.507 0.488

Dh 0.342 0.231 0.215

Da 0.472 0.399 0.337

SE

hð�10Þ 0.805 0.686 0.615

hð10Þ 0.313 0.464 0.455

hð2Þ 0.471 0.505 0.521

Dh 0.491 0.222 0.161

Da 0.687 0.341 0.270

S

hð�10Þ 0.575 0.656 0.544

hð10Þ 0.282 0.418 0.391

hð2Þ 0.414 0.494 0.441

Dh 0.292 0.238 0.153

Da 0.450 0.365 0.255
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for NW and SW, Da and Dh changed less between the

surrogate data and the original data than between the

shuffled data and the original data, so that temporal cor-

relations contributed more to multifractality formation in

those two regions; but the changes were larger after phase

randomization than after shuffling for the other five

regions, Thus, non-Gaussian distribution contributed more

to multifractality formation in those regions.

In particular, when q = 2 for the shuffled returns, the

Hurst exponents of all seven regions were around 0.5 (see

Table 3). These results clearly indicate that the shuffled

series obeyed random walk.

5 Summary

In this work, we investigated the fractal properties of the

drought area time series obtained from seven large regions

in China from 1961 to 2012, using the MFDFA method,

which allows the non-linearity and complexity of drought

dynamics to be determined. The q-dependence of the

generalized Hurst hðqÞ and multifractal spectrum indicated

that the drought area time series from all seven regions

demonstrated multifractal behavior. The seven subregions

are referred to as North Eastern China (NE), Northern

China (N), North Western China (NW), Central China (C),

South Eastern China (SE), South Western China (SW), and

Southern China (S).

The result of hðqÞ shows that the drought area in SW has

an obvious long memory, with persistent large and small

fluctuations in the drought area. The drought areas in N and

NW have a short memory, such that the fluctuations of the

drought areas are intermittent. In addition, the persistence

of small fluctuations of drought areas in SE, C, SW, S, and

NE regions was increasingly weak, in that order. The non-

persistence of the large fluctuations of drought areas in C,

NE, SE, S, NW, and N regions was increasingly strong, in

that order.

The results of hð2Þ show that the drought area in SW

was stationary and long-term correlated or persistent, but in

the other six regions the drought area tended to be non-

stationary and short-term correlated or anti-persistent.

According to Dh and Da for each region, the variability

in the distribution of fluctuations (evidenced by the

heterogeneity and complexity of the temporal distributions)

of the drought areas is increasingly weak in SE, C, S, N,

NE, NW, and SW, in that order. Conversely, in ascending

order, the homogeneity and regularity of the temporal

distribution of the drought areas were increasingly strong

in SW, NW, NE, N, S, C, and SE.

From the results of Dhq\0 and Dhq[ 0, it was found

that the variability of the small fluctuations was larger

than the large fluctuations in three of the regions, and the

sparsely populated time domains were more heteroge-

neous and complex than the dense clusters on the time

axis in NE, SW, and C. In N and NW, the variations in

large fluctuations was greater than variations in small

fluctuations in three regions, and the densely clustered

time domains were more heterogeneous and complex than

the sparsely populated zones on the time axis. In SE and

S, the variation of the large fluctuations was identical to

the variation of the small fluctuations, and the densely

clustered time domains were almost identical to the

sparsely populated domains.

In SE, the singularity of large and small fluctuations in

the drought area was identical. In NW, the singularity in

the high values is greatest, and far higher in the case of the

low values, and had the highest local high fluctuations

(drought cluster) spatially. In N and S no significant dif-

ference of singularity was detected between the high and

low values in the drought area, with slightly higher local

spatial clusters. In SW, NE, and C, in that order, the sin-

gularity of the low values was larger than for the high

values with more sparse local drought areas spatially.

In NE, SW, C, and SE, the largest fluctuations of

drought areas occurred more frequently than the smallest

fluctuations in those regions. In N, NW, and S, the smallest

fluctuations of drought areas were more frequent than the

largest fluctuations, especially in NW.

By comparing the results of the original drought area

time series with those of the shuffled and surrogate series,

we found that for NW and SW, temporal correlations

contributed most to multifractality formation; for the other

five regions, the multifractality due to the broad PDF made

a greater contribution than correlation. In NW and SE, the

contributions from non-Gaussian distribution and temporal

correlation are roughly equivalent.

China is located in the East Asian monsoon region.

Rainfalls are highly concentrated in rainy seasons, fre-

quently resulting in floods and droughts when they are

quite anomalous. The multifractal features of droughts of

each regions of China are associated with the seasonal,

interannual variation, interdecadal, and decadal variations

of southerly monsoon flow in eastern and southern China

and westerly flow in northwestern China. Such variation in

the distribution of fluctuations of the drought areas in

eastern China is greater than in western and northern

China, as the onset and the seasonal northward advance of

the East Asian monsoon. In East China, approximately

110�E, the rainfall gradually extends northward with the

season and is influenced by southeasterly monsoon flow

coming from the South China Sea and the tropical west

Pacific. Along the longitude of the East China Sea, the

southerly monsoon rainfall is mixed with the westerly

precipitation in the Northeast China region (Qian et al.

2009). The variability of strength and onset and termination
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times of this large-scale circulation may affect convective

activities that determine the intensity and frequency of

rainfall events. Moreover, the single-peak pattern and the

multi-peak pattern with an obvious break periods between

two adjacent peaks can be observed in the climatic pentad

rainfall series in China. The single-peak pattern reflects the

annual cycle of rainfalls, while the multi-peak pattern

shows obvious effect of the climatic intraseasonal oscilla-

tions. The single-peak pattern is widely distributed in most

regions of China, including the Central China, Northeast

China, North China, Northwest China, with the major rainy

season representing the main character of annual cycle of

rainfalls. However, annual rainfalls also show significant

multi-peak pattern in Southern China, Southwestern China,

and the middle and Southeastern China, where the spring

rainfalls and autumn rainfalls being much obvious except

for the major rainy season during summer. Thus, the rainy

seasons in these regions consist of the spring rainfalls, the

major rainy season, and the autumn rainfalls in an annual

cycle (Qian and Lin 2005; Ding and Wang 2008).

This work contributes to a better understanding of the

scaling laws of drought in different regions in China, and

may be helpful in issues of forecasting, model assessment,

and characterization of arid-meteorological variation.
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