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Abstract For variational data assimilation, the back-

ground error covariance matrix plays a crucial role because

it is strongly linked with the local meteorological features,

and is especially dominated by error correlations between

different analysis variables. Multivariate background error

(MBE) statistics have been generated for two regions,

namely the Tropics (covering Indonesia and its neighbor-

hood) and the Arctic (covering high latitudes). Detailed

investigation has been carried out for these MBE statistics

to understand the physical processes leading to the balance

(defined by the forecasts error correlations) characteristics

between mass and wind fields for the low and high latitudes

represented by these two regions. It is found that in tropical

regions, the unbalanced (full balanced) part of the velocity

potential (divergent part of wind) contributes more to the

balanced part of the temperature, relative humidity, and

surface pressure fields as compared with the stream func-

tion (rotational part of wind). However, the exact opposite

happens in the Arctic. For both regions, the unbalanced

part of the temperature field is the main contributor to the

balanced part of the relative humidity field. Results of

single observation tests and six-hourly data assimilation

cycling experiments are consistent with the respective

balance part contributions of different fields in the two

regions. This study provides an understanding of the con-

trasting dynamical balance relationship that exists between

the mass and wind fields in high- and low-latitude regions.

The study also examines the impact of MBE on Weather

Research and Forecasting model forecasts for the two

regions.

1 Introduction

Numerical Weather Prediction (NWP) accuracy relies

heavily on the quality of the initial atmospheric state

(Caron and Fillion 2010). Data Assimilation is used to

provide the initial atmospheric state for numerical weather

prediction at many NWP centers (Derber and Bouttier

1999; Lorenc 2003 ; Barker et al. 2004; Sadiki and Fischer

2005; Rawlins et al. 2007). Use of a background state is

very important, because in the absence of observations it

provides a realistic reference atmospheric state (Bannister

2008a). Generally, the background state is a short-range

(typically 6-h) forecast from a NWP model. Since the

spatial and multivariate structure of the analysis increments

is filtered by the background error (BE) statistics, the BE

matrix plays a crucial role in meteorological data analysis

(Derber and Bouttier 1999).

Derivation of a reasonable and accurate representation

of background error covariances is a major challenge for

variational data assimilation schemes (VAR) (Brousseau

et al. 2011). In the absence of knowing the true atmo-

spheric state, some basic assumptions are made to estimate

the background error statistics. Some NWP centers rely on

the NMC method (Parrish and Derber 1992). In this

method, the forecast error is approximated with the dif-

ference between two NWP forecasts (typically, 12 and

24 h) valid for the same time, and these forecast error
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statistics are averaged over a certain time period (typically,

1 month). An alternative approach for estimating BE sta-

tistics is the ensemble method (Fisher 2003; Pereira and

Berre 2006). In this method the forecast error is estimated

with ‘‘ensemble minus ensemble mean’’. Technical details

for using these two approaches for computing the BE sta-

tistics are described by Berre et al. (2006). Most often, the

size of the BE covariance matrix is very large (typically,

106 9 106) and thus it cannot be stored in any computer

memory. It is due to this reason that in VAR the analysis

control variables are carefully designed, and the back-

ground error covariances are modeled using a suitable

sequence of analysis control variable transforms (Derber

and Bouttier 1999). This approach of applying background

error in analysis control variable space has several advan-

tages, such as reducing the size of background error matrix

by making it diagonal, enhancing the physical balance

constraints, and improving the pre-conditioning of the

minimization (Bannister 2008b; Courtier and Talagrand

1990).

Most often in NWP, the balance between different

atmospheric state variables is generally defined by ‘‘geo-

strophic’’ or ‘‘hydrostatic’’ types of diagnostic relation-

ships. However, in VAR, the ‘‘balance relationship’’ across

different analysis variables is generally defined using some

regression coefficients between these variables. The

desired regression coefficients are estimated with forecast

errors using a standard regression technique. Thus the

dynamical balance imposed by the NWP model on the

forecast gets reflected in the corresponding BE statistics.

Using regression coefficients, once the ‘‘balanced’’ part of

any analysis variable is known, the corresponding

‘‘unbalanced’’ part is obtained by subtracting the balanced

part from the respective full field. Thus in VAR, some

variables are analyzed in full, while for other variables only

the corresponding unbalanced parts are analyzed. Further

details about how the balanced and unbalanced parts are

computed will be discussed in a later section while

describing the analysis control variables.

For any NWP model, the BE statistics depend on many

factors and may vary from region to region. Some of the

regional dependencies of BE statistics are due to observa-

tion density, the type of observations available, local

meteorological features of the region, and the balance

between different model state variables, etc. For example,

in mid- and high-latitudes, the basic balance between mass

and wind fields is dominated by the geostrophic relation-

ship, whereas in the tropics, due to the weaker Coriolis

force, the geostrophic effect is very small. Many authors

have investigated different aspects of background errors in

different regions, such as Sadiki et al. (2000), Montmerle

et al. (2006), Michel and Auligne (2010). For regional

analysis, it is very important to use the regional BE as it

reflects the local meteorological characteristics (Storto and

Randriamampianina 2010).

In VAR, the balance relationship spreads information

between different analysis variables. The spreading in

space is handled suitably by the application of horizontal

and vertical correlations. From studies such as, Berre

(2000), Žagar et al. (2005), Berre et al. (2006), Caron and

Fillion (2010), one can find the role of balance constraints

across different analysis variables. However, in different

latitude regions, little is known about the contribution of

different analysis variables towards the balanced part of

other variables. The impact of multivariate background

error covariances on data assimilation and NWP model

forecasts is also lesser known in different latitude

domains. These two issues are the main focus of the

present study.

This paper is organized as follows: Sect. 2 gives a

brief description of the variational data assimilation

system used in this study. Formulation of analysis control

variables is described in Sect. 3. Details of the various

experiments undertaken and some of the characteristics

of the corresponding MBE (such as the balance rela-

tionship, eigenvalues and length-scale) used in these

experiments are discussed in Sect. 4. The response of

assimilating a single observation is discussed in Sect. 5.

Results with month-long, six-hourly data assimilation

cycling runs are discussed in Sect. 6. Conclusions are

drawn in Sect. 7.

2 Variational data assimilation

In general, variational data assimilation schemes are

designed to provide an analysis that minimizes an objective

cost function (J), defined as

JðxÞ ¼ 1

2
ðx� xbÞTB�1ðx� xbÞ

þ 1

2
y0 � HðxÞ
� �T

R�1 y0 � HðxÞ
� �

ð1Þ

Here, x is the vector of the NWP model state variable (e.g.

wind components, temperature, humidity, and surface

pressure), xb is the background vector, y0 is the observation

vector, H is the nonlinear observation operator mapping

model space to the observation space, and B and R are the

background and observation error covariance matrices,

respectively.

Most operational NWP centers use an incremental

approach (Courtier et al. 1994) to solve the variational

problem of minimizing the cost function (J). In this

approach, the observations, the error covariances of

observations and background, and the physical laws gov-

erning the NWP model state are all combined to produce
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the analysis increment dx = (x - xb). Since B is sym-

metric positive definite, it may be partitioned in terms of a

lower triangular matrix U, as B = UUT. Here, UT is the

transpose of U. Following Derber and Bouttier (1999), let

us define a set of analysis control variables (v), as

Uv = dx. Thus, in terms of analysis control variables (v),

the objective cost function may be written as

JðvÞ ¼ 1

2
vTvþ 1

2
ðd�HUvÞTR�1ðd�HUvÞ ð2Þ

Here, d = y0 - H(xb) is the innovation vector,

representing the departure between observation and the

background, and H is the linearized version of the non-

linear observation operator, H. Typically, the analysis

control variable transform (U) consists of a sequence of

three transforms, the horizontal (Uh), vertical (Uv) and

physical (Up), defined as

U ¼ UpUvUh ð3Þ

Since, B is represented as UUT, the background error

covariances may be specified in analysis control variable

space (e.g. stream function, unbalanced part of velocity

potential, unbalanced part of temperature, unbalanced part

of surface pressure and relative humidity) via a sequence of

control variable transforms defined in terms of U and UT,

as B ¼ UpUvUhUT
h UT

v UT
p .

The WRF data assimilation (WRFDA) system used in

this study is a variational data assimilation system for-

mulated in grid-point space (Barker et al. 2012). In this

system, Uh is a recursive filter transform to impose the

horizontal correlations, Uv is the application of vertical

correlations through empirical orthogonal functions

(EOF) of analysis control variables, and Up changes the

analysis control variables to model state variables using

the statistical balance relationship. The choice of analy-

sis control variables for the WRFDA system and the

basic input for these three transforms will be discussed

in the next section. In the WRFDA system, the input

background field (xb) is the short-range (typically, 1–6 h)

forecast from the WRF model (Skamarock et al. 2008).

Further technical details about the WRFDA system may

be found in Barker et al. (2004) and Huang et al.

(2009).

The WRFDA system can ingest a wide variety of

observation types, including conventional observations

(surface, rawinsonde, dropsonde, aircraft, wind profiler and

atmospheric motion vectors) and non-conventional data

(radar reflectivity and radial velocity, GPS occultation and

radiance data observed in different channels from a variety

of satellite platforms). However, in the present study, only

conventional observations are used. All the input obser-

vations are pre-processed using the WRFDA OBSPROC

utility (Barker et al. 2003).

3 Formulation of analysis control variables

For any data assimilation system, its choice of analysis

control variables makes it unique. The choice of control

variables mainly depends on the type of analysis variables

used, the definition of balance relationships across other

analysis variables, and the application of background error

covariances. The choice of balance relationships is

important because they decide whether a particular variable

will be analyzed as univariate or multivariate. The choice

of analysis control variable also depends on how B is

represented or applied in the respective variational data

assimilation. Thus, before discussing the choice of analysis

control variables in the current WRFDA, it is important to

understand how background error statistics are computed

for their application in the WRFDA system.

For computing BE for WRFDA, irrespective of the

method used, the forecast errors are accumulated typically

for a period of 1 month at least. Further, the computation of

BE statistics proceeds sequentially in the following five

steps:

a. Regression coefficients between different analysis

variables are computed. These regression coefficients

form the basis for the Up transform.

b. Using regression coefficients in step a, compute the

balanced part for all the desired analysis variables (not

aimed to be analyzed as full). Remove the balanced

part from the corresponding full variable to get the

unbalanced part.

c. Compute the vertical error covariance matrix for all the

3D-variables (full field or the unbalanced part after

step-b). Eigen-decomposition is done for the vertical

error covariance matrix to get the eigenvector and

eigenvalues. These eigenvalues and eigenvectors

(EOF) form the basis for the Uv transform.

d. Each 3D analysis variable (after step b) is projected in

EOF-space with the corresponding EOFs (computed in

step c).

e. The desired length scale for the Uh transform is

estimated for each of the analysis control variables (for

2D-variable this is the output of step b; otherwise it is

the output of step d) using a Gaussian fit method as

described in Barker et al. (2003). Here, it may be noted

that for all the analysis control variables, the length

scale does not vary horizontally, and for 3D-variables

it is eigen-mode dependent.

The WRFDA system analyzes the stream function, velocity

potential, temperature, surface pressure, and relative

humidity. The current WRFDA system defines balance

relationships between the stream function with velocity

potential, temperature, and surface pressure. Thus, the

analysis control variables for stream function (w) and
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relative humidity (rh) are for the respective full field. For

velocity potential, temperature, and surface pressure, the

analysis control variables are the corresponding unbal-

anced part, defined as follows:

vuði; j; kÞ ¼ vði; j; kÞ � awvði; j; kÞwði; j; kÞ ð4Þ

Tuði; j; kÞ ¼ Tði; j; kÞ �
XNk

l¼1

awTði; j; k; lÞwði; j; lÞ ð5Þ

Puði; jÞ ¼ psði; jÞ �
XNk

l¼1

awpsði; j; lÞwði; j; lÞ ð6Þ

Here, the indices i and j run over the horizontal dimensions

of the geographical domain, k and l run over the Nk vertical

sigma levels, and a represents the regression coefficients

between the variables specified with the respective sub-

scripts. In Eqs. (4) through (6), the second term on the

right-hand side defines the balanced part of the velocity

potential, temperature, and surface pressure, respectively.

In the WRFDA system, each of the 3D analysis control

variables is represented in EOF space with their corre-

sponding EOFs. Thus in the current WRFDA system, the

analysis control variables are the stream function (w), the

unbalanced part of the velocity potential (vu), the unbal-

anced part of temperature (Tu), the unbalanced part of

surface pressure (psu), and the relative humidity (rh). An

important point to note here is that the WRFDA analysis

procedure also follows the five steps (a through e) men-

tioned above for the computation of BE statistics, but in

reverse order. It is so because the analysis procedure starts

with full/unbalanced variables in EOF space and delivers

the analysis for the model state variables, whereas the BE

computation procedure starts with the model state variable

and produces the full/unbalanced variables in EOF space.

The different orders in which the three control variable

transforms (Up, Uv, and Uh) are carried out each have their

own advantages and disadvantages. With the balance

transform (Up), it is possible to apply a different degree of

implicit geostrophic balance depending on, for example,

the latitude. However, in this study the background errors

used are latitude-independent. The vertical transform (Uv)

filters out the vertical correlation that is outside the space

generated by the background vertical error covariances. At

the same time, it has the advantage of saving memory/

computation because most of the variance (99 %) may be

explained by only the first few leading eigenvectors (EOFs)

and so it is not necessary to include all the EOFs in the

analysis procedure. The horizontal transform (Uh) is

applied using recursive filter in EOF’s mode with uniform

(not varying with latitude) length-scale and so it inhibits

the possibilities of unbalanced part being scale-dependent,

which is important for meso-scale. The WRFDA analysis

procedure makes use of the BE statistics that are already

computed offline for the regression coefficients, eigen-

values, eigenvectors, and length-scales.

It may be seen that in the current WRFDA system,

temperature and surface pressure observations will influ-

ence the velocity potential via its balanced part contributed

by the stream function. However, since there is no corre-

lation used between the velocity potential and temperature

or the velocity potential and surface pressure, neither tem-

perature nor surface pressure observations can directly

influence the divergent part of the wind. Due to similar

reasons, the moisture observations will not have any impact

on other variables like wind, temperature, and surface

pressure. To overcome these limitations, six additional

regression coefficients, namely avuT ; avups; awrh; avurh; aTurh

and apsurh are introduced in defining the balance relationship

across different analysis variables. Thus, the new set of

equations defining the balance relationships across other

analysis variables, parallel to Eqs. (4) through (6), is as

follows:

vuði; j; kÞ ¼ vði; j; kÞ � awvði; j; kÞwði; j; kÞ ð7Þ

Tuði; j; kÞ ¼ Tði; j; kÞ �
XNk

l¼1

awTði; j; k; lÞwði; j; lÞ

�
XNk

l¼1

avuTði; j; k; lÞvuði; j; lÞ ð8Þ

psuði; jÞ ¼ psði; jÞ �
XNk

l¼1

awpsði; j; lÞwði; j; lÞ

�
XNk

l¼1

avupsði; j; lÞvuði; j; lÞ
ð9Þ

rhuði; j; kÞ ¼ rhði; j; kÞ �
XNk

l¼1

awrhði; j; k; lÞwði; j; lÞ

�
XNk

l¼1

avurhði; j; k; lÞvuði; j; lÞ

�
XNk

l¼1

aTurhði; j; k; lÞTuði; j; lÞ � apsurhði; j; kÞpsuði; jÞ

ð10Þ

In Eqs. (7) through (10), the balanced parts for different

variables are represented collectively with the 2nd term on

the right-hand side. Thus, with the new setup of the anal-

ysis control variables, the definition of the balanced part of

temperature and surface pressure has changed, and the

relative humidity also has a balanced and unbalanced part.

With the inclusion of correlation between temperature and

surface pressure with unbalanced velocity potential, one

can see that in the new analysis procedure, the temperature

and surface pressure observations will also influence the

divergent part of the wind. Additionally, the inclusion of
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moisture correlations with all other analysis variables will

also lead to multivariate moisture analysis. It is via these

additional correlations that the moisture will have impact

on other analysis variables like wind, temperature, and

surface pressure, and vice versa.

The new set of analysis control variables, defined by

(7)–(10), has already been successfully implemented

within the framework of WRFDA system (Krysta et al.

2009). This gives an opportunity to study the impact of

MBE on WRFDA analyses and the subsequent WRF model

forecasts.

4 Formulation of the MBE statistics

4.1 Domains and experiments

Two domains, a tropical region (covering Indonesia and its

neighborhood, representing a part of tropics) and an Arctic

region (representing high latitudes), are configured at a

horizontal resolution of 30 km with 51 vertical sigma

levels (Table 1) and with the model top at 10 hPa. Exact

geographical locations for these two domains are shown in

Fig. 1. For both these domains, 12- and 24-h forecasts are

generated for a period of 1 month (00 UTC of 15 July to 18

UTC of 15 August 2009) using the WRF model with all its

default options. The initial and boundary conditions for

WRF are prepared using the NCEP GFS analysis at 1�
(*100 km) horizontal resolution. Forecast differences

(perturbations) between 12- and 24-h forecasts valid at the

same time are used as input to the NMC method for gen-

erating the MBE statistics. While creating the perturba-

tions, forecasts both from 00 to 12 UTC initial conditions

are used to avoid any systematic errors due to diurnal

variation in the WRF forecasts. Thus, for each region, the

NMC method is used with 62 forecast error samples to

estimate the MBE statistics for each of the seven experi-

ments. Here it may be noted that for any statistical esti-

mate, large sample size is always good. In keeping with the

practices followed at various operational NWP centers for

estimating the background error statistics using NMC

method, the forecast error sample size of 62 used in this

study is sufficient. As a reference, NCEP used 30 samples

for its SSI scheme (Parrish and Derber 1992) and 48

samples for its GSI scheme (Wu and Purser 2002), EC-

MWF used 45 samples (Derber and Bouttier 1999). The

MBE statistics corresponding to each of the seven experi-

ments have been described below.

Seven experiments have been designed to illustrate the

impact of MBE with the inclusion of different regression

coefficients. The first experiment, Exp-1 (control run), is

performed with the original formulation, which takes into

account only three regression coefficients (awv, awT, and

awps). In the subsequent experiments 2 through 7, the six

new regression coefficients are included gradually, and

thus defining accordingly the balanced part of the different

analysis variables. Details, showing which of the nine

regression coefficients are active in each of the seven

experiments, are listed in Table 2. Thus, each experiment

has its own set of analysis control variables and runs

WRFDA with the corresponding MBE. Some important

features of MBE statistics, such as the balanced contribu-

tions, eigenvalues, and horizontal length scales for all

seven experiments, are discussed in the rest of this section.

4.2 Balanced part contributions

Figure 2 displays the contribution of different control

variables in the balanced part of different variables for the

two regions. It can be seen that in the tropical region, the

contribution of unbalanced velocity potential in the bal-

anced part of temperature, surface pressure, and relative

Table 1 Pressure estimate (based on 1000 hPa surface pressure) for 51-vertical sigma levels, used for tropical and Arctic regions

Sigma

level

Pressure

(hPa)

Sigma

level

Pressure

(hPa)

Sigma

level

Pressure

(hPa)

Sigma

level

Pressure

(hPa)

Sigma

level

Pressure

(hPa)

1 1000 12 830.71 23 450.55 34 185.23 45 45.64

2 994.06 13 803.98 24 418.87 35 168.4 46 37.72

3 986.14 14 774.28 25 389.17 36 152.56 47 29.8

4 978.22 15 742.6 26 361.45 37 136.72 48 21.88

5 968.32 16 707.95 27 334.72 38 122.86 49 15.544

6 957.43 17 671.32 28 309.97 39 109.99 50 12.772

7 931.69 18 632.71 29 286.21 40 97.12 51 10

8 915.85 19 592.12 30 263.44 41 85.24

9 893.03 20 554.5 31 241.66 42 74.35

10 877.24 21 517.87 32 221.86 43 64.45

11 855.46 22 483.22 33 203.05 44 54.55
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humidity is large as compared with the stream function,

whereas for the Arctic region the contribution of stream

function is greater than the unbalanced velocity potential,

in the balanced part of the other analysis variables. As a

result, the inclusion of additional correlations, between

unbalanced velocity potential and temperature, and

between unbalanced velocity potential and surface pres-

sure, is expected to enhance the divergent part of the wind

more in the tropical than in the Arctic region.

In addition, it is seen that the total contributions of the

balanced part of surface pressure (from stream function and

unbalanced velocity potential) is about 34 % in the tropical

region and about 90 % in the Arctic region. For the Arctic

region, most of the contribution (75 %) in the balanced part

of surface pressure is from stream function. However, for

the tropical region, it is the velocity potential via its

unbalanced part which contributes 22 % to the balanced

part for the surface pressure. This means that with the

formulation of new analysis control variables in the tropi-

cal region, the velocity potential field will have greater

impact on the surface pressure. It is also seen that, in both

the tropical and Arctic regions, the balanced part of relative

humidity is mainly due to the unbalanced part of temper-

ature. Thus in both the regions the temperature, via its

unbalanced part, may affect the moisture analysis.

Here, it may be noted that Exp-3 collectively deals with

the impact of the correlation of unbalanced velocity

potential with both the temperature and surface pressure.

The contributions of the unbalanced part of velocity

potential and surface pressure on relative humidity is very

small, and so no significant changes are expected between

the output of experiments Exp-4, Exp-5, Exp-6 and Exp-7.

The contribution of stream function to rh is very small, and

so the output of Exp-3 and Exp-4 may not differ much. It is

mainly due to these reasons that only the assimilation

results corresponding to Exp-1, Exp-3 and Exp7 have been

discussed in Sect. 6.

4.3 Eigenvalues and horizontal length-scales

For the tropical region, Fig. 3 displays eigenvalues and

horizontal length scales of unbalanced temperature (Tu)

and relative humidity (rh) analysis control variables cor-

responding to each of the seven experiments. In this figure,

the x-axis represents the vertical mode number for the

corresponding EOF and the y-axis displays the eigenvalues

(Fig. 3a) and the horizontal length scale (Fig. 3b) for the

corresponding EOF mode. For each of the seven experi-

ments and for each variable the corresponding values of the

horizontal length scales and eigenvalues are used in the

respective Uh and Uv transforms.

Since in all seven experiments the first two analysis

control variables, namely the stream function (w) and

unbalanced velocity potential (vu), are the same, the cor-

responding eigenvalues and length-scales will not differ in

all seven experiments (not shown in Fig. 3). However, for

the unbalanced temperature and relative humidity control

variables, some changes are seen both in the eigenvalues

and the horizontal length-scales. With the inclusion of

Fig. 1 Geographical display of the regions under study a tropical,

and b Arctic

Table 2 List of experiments, showing the regression coefficients that

are active in each experiment

Experiment name Active regression coefficients

Exp-1 avw, aTw, apsw

Exp-2 avw; aTtw; apsw; avuT

Exp-3 avw; aTw; apsw; avuT; avups

Exp-4 avw; aTw; apsw; avuT; avups; awrh

Exp-5 avw; aTw; apsw; avuT; avups; awrh; avurh

Exp-6 avw; aTw; apsw; avuT; avups; awrh; avurh; aTurh

Exp-7 avw; aTw; apsw; avuT; avups; awrh; avurh; aTurh; apsurh

It may be noted that in each case, all the coefficients activated in the

preceding experiments remains active in the experiments which

follow
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Fig. 2 Contributions to the

balanced part of v, T, rh, and ps

from other variables, as shown

in the respective legend or on

the x-axis (in case of ps). The

total balanced part is indicated

as ‘‘balance’’ (black) for

a tropical region, and b Arctic

region
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moisture correlations (Exp-4 to 7) the drop of eigenvalues

for relative humidity with increasing mode number (lower

right panel in Fig. 3a) is less as compared with Exp-1,

Exp-2 or Exp-3, implying that the moisture analysis cor-

responding to Exp-4 to 7 may draw more information

from the moisture observations. No significant difference

is seen in the unbalanced temperature in different exper-

iments (lower left panel in Fig. 3a). As shown in Fig 3b

(lower left panel), for the first couple of modes (which are

weighted most), the horizontal length-scale of unbalanced

temperature is slightly smaller (*10 km) in all the

experiments (Exp-2 to Exp-7) as compared with the

control experiment (Exp-1). Thus with additional regres-

sion coefficients, the changes in the temperature analysis

increments will have slightly less horizontal influence,

compared with the temperature analysis increments from

the awT regression coefficient in Exp-1. In all seven

experiments, the first 25 modes for horizontal length

scales of relative humidity do not differ much. Some

experiments show sharp fluctuations in the relative

humidity length scales for the higher modes ([30). These

fluctuations are due to the very small quantity of moisture

that is represented by the higher modes of relative

humidity. As a result, for higher modes there are insuffi-

cient numbers of moisture ‘‘bins’’ available to fit the

Gaussian curve for estimating the horizontal length scales.

In reality, there is very little moisture above 200 hPa, and

the structure of relative humidity EOFs is almost flat

above 30th sigma level (not shown). Thus, even if these

higher modes for relative humidity are used in WRFDA, it

may not have much effect on the moisture analysis.

For the Arctic region, the characteristics of eigenvalues

and horizontal length scales are similar to the tropical

region but the corresponding magnitudes are different (not

(a) Eigen-values for tropical region

uT rh

uT rh

(b) Horizontal length-scale for tropical region

Fig. 3 For the tropical region, display of a eigenvalues, and b horizontal length-scale for unbalanced temperature (Tu) and relative humidity (rh)

analysis control variables, corresponding to all seven experiments
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Fig. 4 For the tropical region, horizontal cross-section of wind vector

and u-component of wind increment at 5th sigma level as a result of

assimilating a single temperature observation at the same sigma level

at the center of the region. a Exp-1 (without avuT), and b Exp-2 (with

avuT). Horizontal cross-section of temperature increment at the 5th

sigma level as a result of assimilating a single wind (u) observation at

the same sigma level at the center of the region. c Exp-1 (without

avuT), and d Exp-2 (with avuT)
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Fig. 5 Same as Fig. 4, but for the Arctic region
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shown). As an example, for the Arctic region the horizontal

length scale for the leading eigenvectors (first ten) of

unbalanced velocity potential is about 300 km, whereas for

the tropical region it is greater than 500 km. The larger

length scale for unbalanced velocity potential may influ-

ence the divergent component of wind at larger scales in

the tropical region than in Arctic region.

5 Single observation test results

To understand the responses of different regression coef-

ficients and the overall structure of MBE, a series of single

observation assimilation tests are undertaken for both the

tropical and Arctic regions.

5.1 The effect of avuT

Results for the assimilation of a single temperature (T) or

wind (u) observation in the tropical region suggest that,

with the inclusion of the avuT correlation (Exp-2), a slight

increase in the magnitude of wind increment is seen

(Fig. 4b) as compared with Exp-1 (Fig. 4a). The magnitude

of convergence/divergence also increased due to additional

contributions to the divergent component of wind with the

inclusion of the avuT term (Fig. 4c, d). Comparison of

Fig. 4a and b also suggests that, due to enhanced conver-

gence/divergence, there is a rotation in the location of

maxima/minima of wind speed (u) increments with Exp-2

as compared with Exp-1. Due to the symmetric property of

correlations, with the assimilation of a single wind (u)

Fig. 6 For the tropical region, horizontal cross-section of analysis increments for wind (u and v components), temperature, and specific humidity

at the 5th sigma level as a result of assimilating a single moisture observation at the same sigma level at the center of the region for Exp-7
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observation, a similar response (rotation of maxima/min-

ima) is also seen in the temperature increment (Fig. 4e, f).

Similar results are also seen for the Arctic region, with

parallel runs of assimilating the single temperature (T) and

wind (u) observations (Fig. 5). Since the contribution of the

avuT term is less in the Arctic as compared with the tropical

region, an accordingly smaller increase in the magnitude of

wind and temperature increment is seen in Exp-2 (Fig. 5,

right panel) as compared with Exp-1 (Fig. 5, left panel).

Due to the same reason, since the magnitude of conver-

gence/divergence is also less, the rotation in the maxima/

minima of the temperature and wind (u) increments is also

relatively less in the Arctic (Fig. 5), as compared with the

tropical region (Fig. 4).

5.2 The effect of avups

In tropical region, with the inclusion of the avups term (Exp-

3), a slight increase in the magnitude of surface pressure,

temperature, and wind (u) analysis increment is observed

with the assimilation of a single surface pressure obser-

vation (not shown). Since the contribution of the avups

correlation in the Arctic is less than that in the tropical

region, an accordingly smaller increase in the magnitude of

surface pressure, temperature, and wind (u) analysis

increments is seen in the Artic region (not shown).

5.3 The effect of, awrh; avurh; aTurh and apsurh

As expected, with active awrh; avurh; aTurh and apsurh terms

(Exp-7), assimilation of a single moisture observation

yields multivariate analysis increments, both in the tropical

and Arctic regions. For the tropical region, the response of

assimilating a single moisture observation on wind (u and

v), temperature, and moisture analysis increments with

MBE corresponding to Exp-7 is shown in Fig. 6. Similar

multivariate response in analysis increments with the

assimilation of single moisture observation is not possible

with Exp-1, Exp-2 and Exp-3. Similar multivariate response

in analysis increments is also seen in the Arctic region but

with slightly less magnitude in the analysis increments, as

compared with the tropical region (not shown).

6 Data assimilation results

For each of the seven experiments (Table 2), a parallel six-

hourly cycling data assimilation experiment is run for a

1-month period, running from 00 UTC of 15 July to 18

UTC of 15 August 2009. Each experiment starts the first

data assimilation cycle by running WRFDA at 2009071500

with the corresponding MBE, using the GFS analysis as the

background. The background input for each following

assimilation cycle is produced using the 6-h forecast ini-

tialized with the WRFDA analysis from the previous cycle.

Parallel, 72-h forecasts are made with 00 and 12 initial

conditions (ICs) produced in the respective data assimila-

tion cycling experiments. In all the experiments, the same

boundary conditions derived from the GFS analysis are

used. All observations which are identified as ‘‘good’’ by

the WRFDA ‘‘quality control procedure’’ in the control

assimilation cycle run (Exp-1) are used in verifying the

analyses and forecasts produced for each of the seven

experiments. Verification scores of root mean square error

(RMSE) and bias are computed for the zonal (u) and

meridional (v) components of wind, temperature (T), and

specific humidity (q). Figure 7 displays analysis verifica-

tion scores for the tropical region corresponding to Exp-1,

Exp-3, and Exp-7. Parallel results for 6-h forecast verifi-

cation scores are shown in Fig. 8. Assimilation results with

Exp-1 and Exp-3 are compared to understand the impact of

unbalanced velocity potential (vu). For the tropical region,

it is seen that both BIAS and RMSE analysis scores for

Exp-3 are marginally better when compared with Exp-1

(Fig. 7). In addition, most of the improvements in the

analysis with Exp-3 are retained in the 6-h WRF forecast

(Fig. 8).

Parallel results for the Arctic region are shown in Figs. 9

and 10. For this region the improvement is relatively less

than that seen in the tropical region, and it is mainly seen at

the higher sigma levels. This is consistent with the con-

tribution of unbalanced velocity potential for the two

regions, as shown in Fig. 2. Thus in tropical region,

inclusion of avups and avuT terms in Exp-3 helped improve

wind analyses and 6-h forecasts because of better repre-

sentation of the divergent part of wind in this region. These

results are also consistent with the results from the

assimilation of single observations, discussed earlier.

Exp-4 through Exp-7 differs from Exp-2 and Exp-3 in

the formulation of the moisture analysis control variables.

In Exp-4 through Exp-7, relative humidity correlations with

stream function, unbalanced velocity potential, temperature

and surface pressure are added gradually. These moisture

correlations lead to the partitioning of relative humidity in

balanced and unbalanced parts. It is seen that there is not

much difference in the verification scores by activating

awrh
; avurh and apsurh (not shown), but there is some effect

seen in activating aTurh. This is mainly because in both the

regions the balanced part of relative humidity is largely

contributed by the unbalanced part of temperature field, as

Fig. 7 Analysis verification scores for the tropical region (from 15

July to 15 August 2009), BIAS (a) and RMSE (b), for Exp-1, 3, and 7.

Level wise, the total number of observations used in verification is

displayed on the right-hand side of the vertical axis

b
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Fig. 8 Same as Fig. 7, but for

the 6-h forecast
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Fig. 9 Analysis verification

scores for the Arctic region

(from 15 July to 15 August

2009), a BIAS and b RMSE, for

Exp-1, 3. and 7. Level wise, the

total number of observations

used in verification is displayed

on the right-hand side of the

vertical axis
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Fig. 10 Same as Fig. 9, but for

the 6-h forecast
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Fig. 11 For the tropical region,

24-h forecast verification scores

(from 15 July to 6 August 2009)

for Exp-1 and Exp-7 a BIAS,

and b RMSE
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Fig. 12 Same as Fig. 11, but

for the Arctic region

96 Y. Chen et al.

123



shown in Fig. 2. In the tropical region, comparison of

analysis and 6-h forecast verification scores for Exp-3 and

Exp-7 suggests that with the addition of moisture correla-

tions, both analysis and 6-h forecast verification scores are

slightly better for wind and temperature fields. However, in

the 6-h forecast moisture fields, slight deterioration is seen

in the lower levels. BIAS scores for analyses in the lower

levels indicate that the analysis is ‘‘over-fitting’’ the mois-

ture observations, suggesting moisture observation errors

need to be tuned. For the Arctic region, not much difference

is seen between Exp-3 and Exp-7 for wind and temperature

analysis scores (Fig. 9 and 10).

For the tropical region, 24-, 48-, and 72-h forecasts from

00 to 12 UTC initial conditions are verified for a period of

20 days (00 UTC of 15 July to 18 UTC of 15 August

2009). Results for the verification of 24-h WRF model

forecasts for Exp-1 and Exp-7, as shown in Fig. 11, indi-

cate that the verification scores corresponding to Exp-7

(with all correlations included) are marginally better than

the control run (Exp-1). However, for long-range forecast

(48 and 72 h), no significant difference is seen between

Exp-1 and Exp-7 (not shown).

For the Arctic region, a positive effect with MBE is

seen, especially above the jet level both in the analyses

(Fig. 9), 6-h forecasts (Fig. 10) and 24-h forecasts

(Fig. 12). Like in the tropical region, no significant dif-

ference is seen in the long-range forecast for the Arctic

region (not shown).

7 Summary and conclusions

For two regions, tropical (representing the Tropics) and the

Arctic (representing higher latitudes), a variety of background

error statistics with the inclusion of linear regression across

different analysis control variables has been computed using a

new formulation of multivariate background errors (MBE). It

is seen that the characteristics of the background error

covariance matrix for the tropical region differ significantly

from those in the Arctic region. In the case of the tropical

region, the contribution of velocity potential to the balanced

part of other variables is much larger than that of the stream

function. However, for the Arctic region the role of the stream

function is more dominant compared with the velocity

potential field. The total contribution of the balanced part of

surface pressure is higher (about 90 %) in the Arctic region

than in the tropical region (about 34 %). Both in the tropical

and Arctic regions, contributions to the balanced part of rel-

ative humidity are mainly due to the unbalanced part of

temperature. The unbalanced part of the surface pressure

contributes very little to the balanced part of relative humidity.

One month-long 6-h cycling data assimilation experiments for

both regions suggest marginal improvement with the

inclusion of the correlations between the unbalanced velocity

potential, temperature, and surface pressure. Since the diver-

gent part of wind contributes more in the tropical than in the

Arctic region, improvements in the tropical region are more

apparent. Inclusion of additional moisture correlations did not

show much difference in the analysis or the short-range NWP

forecast, especially in the Arctic region.

Since the distribution of moisture highly depends on the

synoptic situation, use of average (1 month) moisture

correlations might not be very effective. Nevertheless, this

study has built up necessary updates for MBE in the

WRFDA system irrespective of how it gets generated

(using either the NMC or the ensemble method). It is quite

likely that moisture correlations with MBE input derived

using case-based ensembles, either in pure 3D-VAR or in

hybrid mode, might give better results. Since the quality of

a 6-h model forecast is important for six-hourly data

assimilation, this study has ensured that MBE has added

some value to the 6-h forecast, especially in the tropical

region. After gaining confidence, we are in the process of

evaluating the impact of MBE on forecasts for some typical

synoptic events. In addition, some changes are expected in

MBE, especially due to different moisture distribution and

forecast quality for winter and summer seasons.
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