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Abstract
Nowadays, computer-aided decision support systems (CADs) for the analysis of images have been a perennial technique in the 
medical imaging field. In CADs, deep learning algorithms are widely used to perform tasks like classification, identification 
of patterns, detection, etc. Deep learning models learn feature representations from images rather than handcrafted features. 
Hence, deep learning models are quickly becoming the state-of-the-art method to achieve good performances in different 
computer-aided decision-support systems in medical applications. Similarly, deep learning-based generative models called 
Generative Adversarial Networks (GANs) have recently been developed as a novel method to produce realistic-looking syn-
thetic data. GANs are used in different domains, including medical imaging generation. The common problems, like class 
imbalance and a small dataset, in healthcare are well addressed by GANs, and it is a leading area of research. Segmentation, 
reconstruction, detection, denoising, registration, etc. are the important applications of GANs. So in this work, the successes 
of deep learning methods in segmentation, classification, cell structure and fracture detection, computer-aided identification, 
and GANs in synthetic medical image generation, segmentation, reconstruction, detection, denoising, and registration in 
recent times are reviewed. Lately, the review article concludes by raising research directions for DL models and GANs in 
medical applications.

Keywords  Deep learning · Generative Adversarial Networks (GANs) · Synthetic data · Data augmentation · Computer 
aided decision support system (CADs) · Medical images

1  Introduction

In the medical care and management system, there is a 
substantial increase in medical images. There are different 
imaging modalities like Ultrasound images, Mammogra-
phy Images (MG), X-Rays, Computed Tomography (CT), 
Positron Emission Tomography (PET), Magnetic Resonance 
Imaging (MRI), Magnetic Resonance Angiography (MRA), 
pathological tests, etc. It is often difficult and time-consum-
ing to analyse medical images [1].

Deep learning (DL) models can address the problem of 
medical image analysis. Deep learning is an application of 
Artificial Intelligence that can learn from the input data 
and make decisions or predictions depending on the train-
ing data. There are three learning methods: unsupervised 
learning, supervised learning, and semi-supervised learn-
ing. Extraction of features is needed in the machine learn-
ing algorithms, and specific problem-related feature selec-
tion requires the help of a domain expert. Deep learning 
algorithms are a part of machine learning that automatically 
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extract the necessary features from the input data [2]. Most 
of the review papers are on the capabilities of deep learn-
ing algorithms in the medical fields of radiology [3], MRI 
[4], Neurology [5], and Cardiology [6]. For object detection, 
segmentation, and classification of medical images, Convo-
lutional Neural Networks (CNN) are used in deep learning 
[7, 22]. The collection of medical images requires a lot of 
effort. Even with high effort, if the data collected, the label-
ling and annotation of the data require the help of the doc-
tors. The unavailability of a large collection of images of the 
same disease is another problem. Recently, GANs have been 
extensively used for the synthesis of medical images. The 
synthetic images from GAN aid in overcoming the problems 
of privacy, low data set size, imbalanced data set, etc. Rota-
tion, scaling, flipping, and translation are traditional aug-
mentation methods. These traditional augmentation methods 
result in changes in the shape, location, and size of images. 
The GANs generate realistic images and are used to augment 
the training images with good outcomes in medical applica-
tions. The main objective of this work is to review the recent 
use of deep learning models, or GANs, in different medical 
image analysis. The paper is organised as follows: Sect. 2 
deals with different applications of deep learning models 
in the medical field; Sect. 3 deals with deep learning-based 
generative models and their applications in the medical field; 
followed by discussion and conclusion in Sects. 4 and 5.

2 � Different applications of DL model 
in medical image analysis

In the development of modern deep learning, techniques 
like Lenet and AlexNet were frequently used. Subsequent 
network architectures are substantially more complicated, 
with each generation building on ideas and insights from 
prior systems, producing in state-of-the-art improvements. 
The prominent basic building CNN architectures described 
below:

AlexNet [34] employed an eight-layer network structure 
with three fully connected layers and five convolutional lay-
ers. The maximum pooling technique is used to minimize 
the quantity of data after each convolution in the five con-
volutional layers. The input size for AlexNet is 227 × 227 
pixels. Use of RELUs, dropout regularization, dividing the 
computation across many GPUs, and data augmentation dur-
ing training are notable aspects.

Oxford University’s VGG Group first proposed VGG16. 
The larger convolution kernels in AlexNet, such as 11 × 11 
and 5 × 5, are replaced by a series of sequential 3 × 3 kernels 
in this system. The effect of using several small convolution 
kernels is better than using a larger convolution kernel for 
a given receptive field range because nonlinear layer can 

increase network depth to ensure more complex patterns are 
learned, and the computational cost is also lower.

GoogLeNet, which started the same year as VGGNet 
[35], had similar success. GoogleNet comprises a module 
called inception in contrast to VGGNet [35]. In order to min-
imize computation, it has a dense structure of convolutional 
layers with 1 × 1 kernel size.

ResNet [40] introduced skip connections, allowing for 
the training of considerably deeper networks. The network 
has the option to simply transfer the activations from layer 
to layer (more specifically, from ResNet block to ResNet 
block), maintaining information while data moves across the 
layers, by having skip connections in addition to the usual 
path. Some features are better extracted in the shallow net-
works, while others require deeper networks. The simulta-
neous capability of both is provided via skip connections, 
enhancing the network’s adaptability to input data.

DenseNet [39] was developed on the principles of ResNet, 
but concatenates the activations produced by one layer with 
those of later layers rather than adding them. Therefore, each 
layer (blocks of layers) keeps the original inputs in addition 
to the activations from previous layers, maintaining some 
sort of global state. This promotes feature reuse and reduces 
the number of parameters required for a given depth. There-
fore, DenseNets are more suited for smaller datasets.

YOLO [37], introduced a novel, streamlined method for 
detecting objects in images and classifying them. It employs 
a single CNN that processes the image directly while output-
ting bounding boxes and class probabilities. It incorporates a 
number of components from the aforementioned networks, 
such as the inception modules and the pretraining smaller 
network. It moves quickly enough to allow real-time pro-
cessing. By lowering the size of the model, YOLO makes it 
simple to exchange accuracy for speed. On a common bench-
mark data set, YOLOv3-tiny was able to process images at 
over 200 frames per second while still delivering accurate 
predictions.

UNet [55] is a well-known and effective network for seg-
menting 2D images. A traditional CNN is used to downscale 
an input image before it is upscaled using transpose convo-
lutions till it reaches its original size. Additionally, based 
on the concepts of ResNet, there are skip connections that 
combine features from the up-sampling paths and the down 
sampling paths.

VNet is a three-dimensional version of the U-net with 
the same skip connections and volumetric convolutions as 
ResNet.

2.1 � Image classification

In the computer-aided diagnosis system, image classification 
plays an important role. Image classification methods clas-
sify input images into classes like fracture or not-fracture or 
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diseases or no-diseases [23, 24]. Normal uses of image clas-
sification in clinical applications include glaucoma diagnosis 
[25], skin disease detection [26, 27], retinopathy-related eye 
disease detection [28, 29], corneal disease detection [30], 
Brain cancer [31], and breast cancer [32] detection using 
pathological images, eye disease [33] detection using OCT, 
spine fracture classification [34] using CT images. A fre-
quently used classification framework for medical image 
classification and analysis is the convolutional neural net-
work (CNN) [35]. There is continuous improvement in the 
CNN framework with the evolution of the deep learning 
model. The AlexNet [36] was the pioneering CNN archi-
tecture, which comprises repeated convolutions with ReLU 
activation and max pooling. The performance of CNN archi-
tecture improved by increasing the depth of architecture in 
VGGNet [37] with convolution kernels of size 3 × 3, max 
pooling with size 2 × 2, in the inception network [38] with 
stacking of convolution kernels of sizes 1 × 1, 3 × 3, and 5 × 5 
and pooling of size 3 × 3, and its alternation [39, 40]. Skip 
connections were used in DenseNet [41] and ResNet [42] to 
diminish the gradient vanishing. Apart from image classifi-
cation, the CNN can be used for some other computer appli-
cations like segmentation and detection. For the evaluation 
of binary classification algorithms, commonly used evalua-
tion metrics are recall, precision, accuracy, F1-score, AUC/
ROC curve, etc. And for multiclass classification, commonly 
used evaluation metrics are accuracy and kappa coefficient.

The design of computer-aided decision support systems 
for fracture detection, lesion detection, cancer detection, and 
others is an evolving area of research. A computer-aided 
decision support system in the medical field requires clas-
sification of the data. Compared to traditional methods of 
data augmentation, deep learning-based generative models 
(GANs) are the best method of augmentation. With a GAN-
augmented data set, we can avoid biased results and overfit-
ting of the data. The performance of the CNN classification 
can be improved with GAN-augmented data.

2.2 � Detection of object

Both localization and identification tasks are present in the 
object detection algorithms. Deciding the classes of the 
objects that appear in the region of interest is called an iden-
tification task, whereas precise localising the object position 
in the image is termed a localization task. Object detection 
in medical images aims to detect the abnormality or fracture. 
Ideal detection tasks in clinical applications comprise using 
chest X-ray or CT images to detect lung nodules [43, 44], 
mammogram detection using CT [45], and lesion detection 
on CT images [46, 47]. Anchor-based methods and anchor-
free methods are two different methods in Object detection 
algorithms. Anchor-based methods are further classified as 
single-stage and two- or multistage anchor-based methods. 

Single-stage anchor-based methods are computationally 
efficient, while on the contrary, the object detection perfor-
mance of two- or multistage anchor-based methods is bet-
ter when compared to single-stage anchor-based methods. 
Widely used single-stage detectors are single-shot multi-
boxes [48] and the YOLO family [49]. Feed-forward CNN is 
the basis of multibox and YOLO architectures. A fixed num-
ber of bounding boxes are produced by these architectures, 
and in the boxes, for each object of a given class, architec-
tures produce corresponding scores. Final predictions are 
obtained by the non-maximum suppression step. The SSD 
produces better detection performance because it makes use 
of multiscale feature maps, which is contrary to the YOLO 
architecture, which makes use of single-scale feature maps. 
Inference speed is high in a single-stage object detection 
architecture, whereas in a two-stage architecture, high object 
recognition and localization performance are present. Faster-
RCNN [50] and Mask-RCNN [51] are popular two-stage 
object detection architectures that generate a set of ROIs. In 
Faster-RCNN and Mask-RCNN, Region Proposal Networks 
(RPN) generate bounding boxes in the first stage, and in 
the second stage, classification is done. The CornerNet [52] 
is a popular anchor-free technique. It is a single CNN that 
uses paired key points instead of anchor boxes; the bounding 
box is defined by the bottom-right and top-left corners. To 
evaluate the performance of detection methods, two main 
metrics are used: false positives per image and mean aver-
age precision.

2.3 � Image segmentation

In deep learning, Image segmentation is a foremost research 
area. It is a pixel labelling method where images are sepa-
rated into regions with similar properties. Segmentation 
techniques determine the outline of a body structure or organ 
in the medical images. In clinical applications, segmentation 
is used in segmenting different organs like the liver [53], 
pancreas [54], and whole heart [55] in CT imaging modali-
ties. Expeditious development in deep learning leads to the 
development of very good semantic segmentation methods. 
In image segmentation, Fully Convolutional Neural Network 
(FCN) [56], which is the first CNN to perform segmentation 
tasks, has attained great success. In medical image segmen-
tation, there are two categories of image segmentation: 2D 
and 3D, depending on the dimensions of the input image. 
For the segmentation of medical images, UNet architecture 
[57] is extensively used. U-Net comprises a downsample 
side and an upsample side. For downsampling, it comprises 
repeated convolutions, which are followed by Rectified Lin-
ear Unit (ReLU) and strided max pooling. The number of 
feature channels is doubled in each step. The upsampling 
path consists of feature map upsampling, followed by decon-
volution with half the number of feature channels. Different 
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types of U-Net-based frameworks have been developed. 
For the segmentation of the medical images No new U-Net 
(nnU-Net) is proposed by Isensee et al. [58]. The nnU-Net 
got excellent performance in segmenting tumours, lesions, 
and different organs in different imaging modalities across 
19 different datasets with 49 segmentations. Polycystic kid-
neys segmentation [59], segmentation of brain tumours [60], 
striatum segmentation [61], deformable prostate segmenta-
tion [62], segmentation of acute ischemic lesion [63], organs 
at risk in the neck and head region segmentation using CT 
images [64], and 3D multiscale FCN segmentation of the 
spine using MR images [65], kidney by mask R-CNN seg-
mentation [66], liver segmentation [67–71] are some of the 
medical image segmentation applications. The metrics to 
evaluate the performance of the segmentation task are Inter-
section Over Union (IOU) and the dice similarity coefficient 
method.

2.4 � Image restoration

For many years, denoising MR images and estimating 
noise in MRI have been important research areas [72, 73]. 
Recently, for denoising medical images, deep learning 
approaches have been extensively used. Bermudez et al. [74] 
used deep learning for implicit brain MRI manifold learning. 
Here, with skip connections, autoencoders are implemented 
for image denoising. Benou et al. [75] addressed spatiotem-
poral denoising of brain dynamic contrast-enhanced MR 
images with bolus injections of contrast agent (CA). The 
results of quantitative and qualitative denoising were supe-
rior to those of spatiotemporal Beltrami, stacked denois-
ing autoencoders [76], and the dynamic Non-Local Means 
method [77]. Deep learning techniques are also used in fil-
tering the artefacts in spectroscopic MRI [78], automated 
reference-free detection of patient motion artefacts in MRI 
[79], and detection and removal of ghosting artefacts in MR 
spectroscopy [80].

2.5 � Image registration

Image fusion or image warping are other names for Image 
registration. It is the process of overlaying two or more images 
that are captured from different imaging modalities or different 
angles. The main aim of medical image registration is to set 
up optimal correspondence in the images captured by differ-
ent imaging modalities like CT, X-Ray, MRI, and ultrasound, 
at different times in longitudinal studies, or from distinct 
viewpoints like axial, sagittal, and coronal, to collect valu-
able information. In many medical applications like image-
assisted surgery [81], computer-assisted intervention, and 
treatment planning [82], image registration is a very impor-
tant pre-processing technique. The overlaying of anatomical 
images like CT or MRI with functional images like PET scans 

or functional MRIs is very helpful in disease monitoring and 
diagnosis [83]. The state-of-the-art performance is achieved 
by image registration methods that are based on deep learning 
methods [84]. Abdominal MRI registration was done [85] by 
applying a CNN to compensate for respiration deformation. 
Obtaining reliable ground truth is a challenging task in spite 
of the success of supervised deep learning-based techniques. 
Unsupervised techniques can effectively diminish the absence 
of training datasets and ground truth. trained a fully convolu-
tional network to execute deformable brain 3D MRI by self-
supervision [86]. Motivated from Spatial Transfer Network 
(STN) [87], Kuang et al. [88] implemented a CNN based on 
STN to execute MRI brain volumes deformable registration. 
Lately, Reinforcement Learning and Generative Adversarial 
network (GAN)-based techniques have caught attention. 3D 
ultrasound and MRI registration were performed by Yan et al. 
[89]. In the implemented work, estimation of the rigid trans-
formation was done by a generator, and a discriminator net-
work was trained to differentiate between ground-truth-based 
aligned images and predicted ones. The 2D–3D prostate MRI 
robust nonrigid deformable registration was done by the rein-
forcement learning method [90]. Retinal imaging, is crucial for 
diagnosing eye pathologies and systemic disorders. [91–95] 
presented deep learning approaches are used for registering 
retinal images. Depending on the imaging modalities, image 
registration can be categorised into two types: multimodal or 
monomodal. For evaluation of the performance of image res-
toration, two of the most commonly used metrics are mean 
square error and Dice coefficient.

3 � Different applications of Generative 
Adversarial Networks (GANs) in medical 
image analysis

The Generative Adversarial Networks (GANs) comprises of 
generator (G) and discriminator (D) networks, where the gen-
erator learns input data distribution and uses the noise to gen-
erate realistic images. The Discriminator determines whether 
an image is real or synthetic. Discriminator input data x, the 
probability distribution is represented as pdata . The Generator 
(G) with �g  parameters G

(

Z, �g
)

 map the input noise Z of dis-
tribution Pz to data space Pg(x). Similarly, discriminator (D) 
with parameter �d takes real and generated data and gives sin-
gle scalar probability value as output. GAN plays “minmax” 
game that is (D) discriminator maximize and (G) generator 
tries to minimize the chances of predicting the correct classes 
and is represented by the Eq. (1) [20].

For medical applications, GANs can be applied in two 
ways. The first is in the generative direction, where it 

(1)
GminDmaxV(G,D) = Ex∼pdata

[ln(D(x))] + Ez∼Pz
[ln(1 − D(G(Z)))]
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generates a new realistic-looking synthetic image. The sec-
ond is a discriminator (D) to discriminate images, which can 
be employed as a detector. The main applications of GANs 
in medical applications are detection, segmentation, clas-
sification, reconstruction, registration, and image synthesis.

Deep Convolutional GAN [96] is proposed in 2015. Both 
the generator and discriminator in DCGAN use the deep 
convolutional network and make use of hierarchical fea-
ture learning. It consists of a fully connected convolution 
layer without any max pooling. Batch normalization and the 
leakyReLU activation function are used in this GAN archi-
tecture to enhance training.

Wasserstein-GAN [97] was proposed in 2017. They 
measure divergence using the Wasserstein distance. It is a 
GAN extension that uses an alternative training technique for 
better approximation. Although WGAN is practically quite 
simple to construct, it has a problem with slow optimisation.

PGGAN [98] can produce realistic images of high qual-
ity. The basic process in a PGGAN is to train at a very low 
resolution, initially starting at 4 × 4, and then build up the 
model slowly and iteratively by adding layers and fine-tuning 
up to exponentially larger resolutions in powers of 2. Prior to 
being utilised to make the lower resolution images, the input 
image is centre cropped to reach the proper input resolution. 
Networks can more easily learn various image styles since 
they develop adaptively. Instead of having to quickly learn 
how to map a random noise latent vector to an image with 
a high resolution, say 512 × 512 networks gradually pick up 
this information by starting with a small-scale image, such 
a 4 × 4,8 × 8,16 × 16, etc., images.

Super-resolution GAN [99] generates higher resolution 
images, it uses a deep network together with an adversary 
network. In comparison to a similar design without GAN, 
SRGAN generates more visually appealing images with 
more details. Super-resolution (SR) images are upsampled 
using a GAN generator. The discriminator is used to dif-
ferentiate between HR images and generated images and 
backpropagate the GAN loss to train the generator.

Conditional GAN [100] was proposed in the year 2014. 
Since no explicit control over the data generation is provided 
in the original GAN, the conditional GAN (cGAN) includes 
extra information like class labels in the synthesis process. 
In the cGAN, the generator is given some prior knowledge 
c along with random noise z. Along with the correspond-
ing real, generated data, the discriminator also receives the 
prior knowledge c. If a class label is given, it can be used 
to conditionally generate images of a specific type or class.

For the purpose of transforming images between two 
domains, the model should be able to extract distinctive 
features from each domain and identify the underlying rela-
tionship between them. The CycleGAN [101] offer these 
mappings. To identify a mapping from domain X to domain 
Y and vice versa, the system essentially merges two GANs. 

A generator G: X → Y and a generator F: Y → X, taught 
by discriminator DY and discriminator DX, respectively, 
make up these systems. A cyclic loss function causes the two 
chained GANs to condense the range of potential mapping 
functions. This cyclic loss function accurately minimises the 
difference between the original image and the reconstruction 
produced by the chained generators.

The Pix2Pix is a highly effective cGAN version for high-
resolution image-to-image translation. While the discrimi-
nator, uses a fully convolutional architecture to distinguish 
between the real and generated high resolution data, the 
Pix2Pix [101] generator adheres to the U-Net architec-
ture. The skip connections inside the U-Net generator were 
advantageous for the overall coherence of the synthesised 
images. Pix2Pix needs pairs of related input and intended 
output images, unlike the original GAN framework. This 
makes it possible to stabilise the training by using the l1 loss 
between the output of the generators and the actual ground-
truth image.

3.1 � Image synthesis for data augmentation

In image synthesis, there are two main categories: uncondi-
tional image synthesis and cross-modality image synthesis 
[102]. DCGAN, PGGAN, and WGAN are used for uncondi-
tional synthesis, where only the random noise vector is input 
to the generator and the condition vector is not provided as 
input. 256 × 256 resolution images can be generally handled 
by DCGAN and WGAN, whereas high-resolution images 
are generated by PGGAN. Table 1 shows unconditional 
image synthesis work in different imaging modalities. In 
cross-modality image synthesis, the images of one modality 
are generated from other modalities (e.g., CT from MRI or 
vice versa). Pix2Pix GAN and Cycle GAN are extensively 
used cross-modal image generators. Table 2 shows cross-
modality medical image synthesis work in different imaging 
modalities. And Table 3 shows GAN-based Segmentation in 
different imaging modalities of medical images.

3.2 � Reconstruction

The radiation hazard is the main limitation in medical imag-
ing like MRI, CT, X-rays, etc. To avoid this decrease in 
radiation dosage, which results in the amplification of noise 
and affects the diagnostic details in the images [198]. To 
capture a high-resolution MR image, a large capture time 
is needed [199], and lower-quality medical images are the 
result of small-scale graphical coverage. So, reconstruction 
of the image is needed. The GAN, which generates a realis-
tic-looking image, can be used for reconstruction of images. 
Table 4 describes some of the reconstruction work done by 
GAN in medical applications.
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Table 1   Unconditional medical image synthesis

Authors Year Imaging modality GAN used Usage of generated images Summary

Computed Tomography (CT)
Maayan et al. [103] 2018 CT DCGAN – Liver lesion are generated by 

DCGAN
Maayan et al. [104] 2018 CT DCGAN

ACGAN
CNN classification Classification of liver lesions 

with augmentation. Compared 
with other GAN and traditional 
methods, DCGAN augmented 
data provides better classifier 
performance

Takaaki Konishi et al. [105] 2020 CT DCGAN – Realistic liver lesion synthesis 
using DCGAN

Bowles et al. [106] 2018 CT and MRI PGGAN CNN segmentation With PGGAN, MRI slices and 
CT images of the brain is gen-
erated, resulting in improved 
segmentation accuracy

Yuya Onishi et al. [107] 2018 CT WGAN DCNN classification Lung cancer pulmonary nodule 
classification with WGAN 
generated data

Sindhura et al. [108] 2021 CT DCGAN – Realistic spine fracture CT syn-
thesis using DCGAN

Sindhura et al. [109] 2022 CT PGGAN CNN Classification With PGGAN, CT slices of the 
spine fracture is generated, 
resulting in improved classifi-
cation accuracy

Kang et al. [110] 2021 CT and PET WGAN-GP – Evaluation methods indicate 
generated brain PET-CT 
distribution is approximately 
same as real

Mammographs
Tianyu Shen et al. [111] 2021 Mammographs DCGAN – Realistic Mammographs synthe-

sis using DCGAN
Korkinof et al. [112] 2018 Mammographs PGGAN – High-resolution realistic mam-

mographs are generated by 
PGGAN

Magnetic Resonance Imaging (MRI)
Jonas Denck et al. [113] 2021 MRI ACGAN – Based on Turing test results, 

MRI generated by ACGAN is 
realistic

Changhee et al. [114] 2018 MRI DCGAN WGAN – Generating multi-sequence 
MRIs. WGAN generated more 
realistic images than DCGAN

Bermudez et al. [115] 2018 MRI DCGAN – Generating more realistic MR 
images of the brain

Navid G et al. [116] 2019 MRI DCGAN CNN classification Brain tumour classification with 
DCGAN augmented data

Gab Allah et al. [117] 2021 MRI PGGAN VGG19 Classification MRI of brain generated, 
increased accuracy of the three 
class tumors classifier

Ahmad et al. [118] 2022 MRI VAE + GAN CNN Classification Variational autoencoders 
and GAN augmentation to help 
with Brain Tumor Classifica-
tion in MRI

Vashisht et al. [119] 2023 MRI GAN CNN Classification GAN augmentation aided Alz-
heimer classification

Beers et al. [120] 2018 MRI of brain and 
Retinopathy 
Images

PGGAN – High resolution Retinopathy 
Images and MRI of brain are 
generated
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3.3 � Detection

The supervised deep learning algorithm for anomaly detec-
tion in medical images needs a huge annotated or labelled 

training image. For medical applications, such hugely 
labelled data is not readily accessible. Depending only on 
annotated data whose appearance is the same during train-
ing limits the ability of supervised DL methods to detect 

Table 1   (continued)

Authors Year Imaging modality GAN used Usage of generated images Summary

Optical Coherence Tomography (OCT)
Ce Zheng et al. [121] 2021 OCT PGGAN – Good quality of OCT images is 

generated with PGGAN
X-ray
Madani et al. [122] 2018 X-Ray DCGAN CNN classification DCGAN generated images 

increased the performance 
of classifier than traditional 
augmentation methods

Hojjat Salehinejad et al. [123] 2019 X-Ray DCGAN – Realistic synthetic chest X-Ray 
image are generated

Venu et al. [124] 2021 X-Ray DCGAN CNN classification DCGAN generated chest X-Ray 
images improved the perfor-
mance of classifier than tradi-
tional augmentation method

Bradley Segal et al. [125] 2021 X-Ray PGGAN – Realistic X-rays were generated 
using PGGAN and evaluated

Others
Tomoyuki Fujioka et al. [126] 2019 JPEG DCGAN – Generation of breast ultrasound 

image for cancer detection. 
DCGAN generated images are 
more realistic

Zhanyu Wang et al. [127] 2019 JPEG DGGAN – Glaucoma Diagnosis using 
DCGAN augmented data

Hartanto et al. [128] 2020 JPEG DCGAN ResNet50 classifier White blood cell generated by 
DCGAN created balanced 
dataset for classifier

Hui Che et al. [129] 2021 JPEG DCGAN
And
Variants of DCGAN

CNN classification Liver lesions generated by 
the DCGAN and variants 
of DCGAN increased the 
performance of classifier when 
compare to original dataset 
classification

Freedom Mutepfe et al. [130] 2021 JPEG DCGAN CNN classification Skin lesions generated increased 
the binary classification 
accuracy

Lahiri et al. [131] 2018 Retinal images DCGAN Segmentation Semi supervised DCGAN 
achieved good performance 
compared to supervised CNN

Kang Li et al. [132] 2021 Retinal Images DCGAN
Double stage GAN

– Double stage GAN generated 
mammographs are more real-
istic than DCGAN synthetic 
images

Atsushi Teramot et al. [133] 2020 JPEG DCGAN
PGGAN

DCNN classification lung cancer cytological imagine 
classification. 4% improvement 
in the performance with GAN 
augmented data

Christoph Baur et al. [134] 2018 JPEG PGGAN – The generation of more realistic 
skin lesions

Ibrahim Saad Aly Abdelhalim 
et al. [135]

2021 JPEG PGGAN CNN detection Skin lesions generated by 
PGGAN increased the perfor-
mance of detection



	 D. N. Sindhura et al.161  Page 8 of 25

Table 2   Cross modality image synthesis

Authors Year Source→ Result modality GAN Used Region of study Summary of the study

Cycle GAN
Jiang et al. [136] 2018 CT → MRI Cycle GAN UNET Segmentation CT to MRI generation over-

come shortage of MRI in 
segmentation task

Zizhao Zhang et al. [137] 2018 MRI → CT
CT → MRI

Cycle GAN Heart disease CT to MRI, MRI to CT 
translation increase the 
performance of segmenta-
tion

Huo et al. [138] 2018 MRI → CT
CT → MRI

Cycle GAN Spleen CT to MRI, MRI to CT 
translation. Effect of 
translation on the perfor-
mance of segmentation in 
SynSeg-Net is evaluated

Hiasa et al. [139] 2018 MRI → CT
CT → MRI

Cycle GAN Musculoskeletal Translation accuracy is 
evaluated by segmentation

Pan et al. [140] 2018 MRI→PET Cycle GAN Brain Evaluation implies translated 
PET is effective in iden-
tification of Alzheimer’s 
disease of brain

Bin Jin et al. [141] 2019 CT → MRI CycleGAN Brain Paired and unpaired method 
of translating CT to MRI 
done

Kang et al. [142] 2021 CT → MRI CycleGAN Abdomen
Thorax
pelvis

CycleGAN with perceptual 
loss effectively translated 
MRI to CT

Peng et al. [143] 2020 CT → MRI CycleGAN, Conditional 
GAN

Nasopharyngeal cGAN generated high-qual-
ity CT images from MRI

Tomar et al. [144] 2021 MRI → CT
CT → MRI

CycleGAN
SASAN

Brain and cardiac UsgGAN performs better 
translation in cardiac struc-
ture segmentation

Lapaeva et al. [145] 2022 MRI → CT CycleGAN Abdominal area Synthetic CT (sCT) gener-
ated from MRI for radio-
therapy

Sun et al. [146] 2023 3DMRI → CT Double U-Net CycleGAN Brain Synthetic CT generated from 
MRI for radiotherapy

pix2pix
Choi et al. [147] 2017 PET → MRI pix2pix Brain Translated MRI can be 

used for effective amyloid 
quantification

Maspero et al. [148] 2018 MRI → CT Pix2pix Pelvic region Translated CT of pelvic 
region from MRI helps in 
prostate cancer detection

Conditional GAN
Yang et al. [149] 2018 MRI → CT

CT → MRI
Conditional GAN Brain Translated multichannel 

segmentation of MRI was 
done in translated images

Emami et al. [150] 2018 MRI → CT Conditional GAN Brain T1 – MRI effectively trans-
lated into synthetic CT in 
less time

Ben-Cohen et al. [151] 2018 CT → PET FCN + Conditional GAN Lesion detection CT to PET generation to 
improve detection accu-
racy of liver lesions

Wei et al. [152] 2018 MRI → PET
PET → MRI

Cascade cGAN Brain Synthetic translated images 
of brain generated from 
anatomical feature with the 
help of sketch-refinement 
process
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anomalies. The new paradigm is GAN-based unsupervised 
anomaly detection. Pioneering work on AnoGAN, imple-
mented in [217], inferred that a similar idea could be helpful 
in anomaly detection in retinal OCT. Brain anomaly detec-
tion in MR images was implemented in [218] and [219]. 
Similarly, Alzheimer’s disease detection using VA-GAN 
(visual attribution GAN) was implemented [220]. Detec-
tion of prostate cancer [221] and skin lesions [228] by GAN, 
in which the generator uses U-Net and CGAN, respectively. 
Table 5 summarises how anomaly detection works.

3.4 � Registration

Heavy optimisation load and parameter dependency are 
the drawbacks of traditional registration methods [230]. 
Medical images are successfully aligned using CNNs in a 
single forward pass. The Generative Adversarial Networks 
are considered a candidate to extract optimal registration 
mapping with their very good image transformation ability. 

Unsupervised GAN is implemented for structural pattern 
registration in brain images, where implemented GAN does 
not require specific similarity metrics or ground truth defor-
mations [231]. An adversarial image registration framework 
is implemented for the registration of MRI and transrectal 
ultrasound. This image fusion helps in prostate interven-
tions [232]. In the same way, [233] implemented GANs for 
deformation regularisation, which helps in training image 
registration.

3.5 � Super‑resolution [SR] methods

The generation of high-resolution images from low-res-
olution images is the main purpose of the SR method. In 
the GAN-based techniques to improve the resolution of 
LR images, the patterns are learned in the same region of 
paired low- and high-resolution training images. In GAN, 
low-resolution images are given as input to the genera-
tor, which generates synthetic SR images as output. And 

Table 2   (continued)

Authors Year Source→ Result modality GAN Used Region of study Summary of the study

Ranjan et al. [153] 2022 MRI → CT Conditional GAN Brain Synthetic CT generated from 
MRI for radiotherapy

Qin et al. [154] 2022 MRI → MRI Style Transfer Conditional 
GAN

ST-cGAN

Brain Brain MRI cross-modality 
synthesis

Others
Bi et al. [155] 2017 CT → PET Multichannel GAN Lung cancer High resolution PET scan 

images of lungs generated 
from the CT scan

Armanious et al. [156] 2020 PET → CT MedGAN Brain Evaluation by radiologist 
implies good quality CT 
scan generated by transla-
tion

Florkow et al. [157] 2020 MRI → CT 3D U-Net Pelvic bone Translated synthetic CT 
images increased the 
performance, robustness of 
DL model

Yanxia Liu et al. [158] 2021 MRI → CT Multi Cycle GAN Head and Neck Designed multicycle GAN 
performs better translation 
when compare to tradi-
tional GAN

Alaa Abu-Srhan et al. 
[159]

2021 MRI → CT
CT → MRI

usgGAN Brain UsgGAN performs better 
translation when compare 
to traditional GAN

Yi Gu et al. [160] 2021 CT → MRI Dual3D and PatchGAN Multiple domain Dual3D and PatchGAN per-
forms better translation

Yan et al. [161] 2022 MRI → MRI
(Multimodal)

Swin Transformer based 
GAN (STG)

Brain Multimodal MRI translation 
using a STG

Wang et al. [162] 2023 Cross-modality FedMed-GAN Brain cross-modality synthesis of 
brain images

Jang et al. [163] 2023 MRI → PET
Text → PET

TauPETGen Brain tau PET synthesis from 
MRI and text-conditional 
using latent diffusion 
models
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Table 3   GAN based segmentation in different imaging modalities

Authors Year Imaging modality GAN used Summary of the study

Computed Tomography (CT)
Sandfort et al. [164] 2019 CT Cycle GAN Segmentation of organs like kidneys, liver, 

spleen, etc.,
Stiehl et al. [165] 2021 CT Constrained GAN Lung lobes segmentation based on quorum 

method
Jain et al. [166] 2021 CT GAN Lung lobes segmentation by GAN based 

on “Salp Shuffled Shepherd Optimization 
Algorithm”

Li et al. [167] 2021 CT GAN Segmentation of Pancreas
Kan et al. [168] 2021 CT CFG-SegNet “conditional feature genera-

tion segmentation network”
Segmentation of multi organs like uterus, 

Prostate
Nishiyama et al. [169] 2021 CT Cycle GAN

pix2pix
Gluteus Medius segmentation

Cui et al. [170] 2021 CT
MRI

GAN Cardiac image segmentation by GAN based 
on bidirectional cross-modality

Conze et al. [171] 2021 CT
MRI

Conditional GAN Segmentation of multi organs like kidneys, 
liver, spleen, etc.,

Magnetic Resonance Imaging (MRI)
Xue et al. [172] 2018 MRI SegAN SegAN based on Multi-scale L 1 Loss helps 

in Segmentation of tumor and core of 
tumor in brain

Rezaei et al. [173] 2018 MRI Cascade of 3 Conditional GANs Adversarial networks used in segmenting 
blood pool and myocardium

Kohl et al. [174] 2018 MRI Conditional GAN Improved sensitivity in segmenting prostate
Zhao et al. [175] 2018 MRI Deep-supGAN “deep-supervision discrimi-

nator”
Initial block generates high quality CT image 

from MRI followed by segmentation of 
bone in both modalities in next block

Yuan et al. [176] 2019 MRI Unified Attentional GAN Translation followed by segmentation helps 
in segmenting the object in many modali-
ties simultaneously

Nema et al. [177] 2020 MRI RescueNet “residual cyclic unpaired 
encoder-decoder “

Segmentation of core tumor, whole tumor 
region of brain

Xinheng Wu et al. [178] 2021 MRI Symmetric driven GANs SD-GAN provided superior performance in 
segmenting brain tumor compare to state of 
art unsupervised methods

Cheng et al. [179] 2021 MRI 3D-GAN Segmentation of core tumor, whole tumor 
region of brain. By label correction this 
method is effective in handling false label 
mask

Wang et al. [180] 2021 MRI SegDGAN Segmentation of Prostate gland
Dai et al. [181] 2021 MRI

CBCT
Cycle GAN and FPN “Feature pyramid 

network”
Spine, optic chiasm, left/right cochlea, brain 

stem, larynx, left/ right eye, oral cavity, 
mandible, optic chiasm, pharynx, etc. 
segmentation

Güven et al. [182] 2023 MRI Supervised SimDCL Supervised SimDCL, GAN architecture for 
segmentation of brain MRI

Al Khalil et al. [183] 2023 MRI GAN Improving the robustness of DL based 
segmentation of cardiac MRI with GAN 
generated data

Al Khalil et al. [184] 2023 MRI late feature fusion and GAN Using GAN-based augmentation and late fea-
ture fusion to reduce segmentation failures 
within cardiac MRI

Optical Coherence Tomography (OCT)
Tennakoon et al. [185] 2018 OCT GAN Segmentation of retinal fluid
Ouyang et al. [186] 2019 OCT Conditional GAN Segmentation of Cornea and limbus cornea
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generated images and real SR images are given as input 
to the discriminator, which distinguishes their authentic-
ity [234]. The Meta-SRGAN implemented [235] generates 
arbitrary SR images of brain 2D-MRI, which perform well 
when compared to traditional methods. Meta-SRGAN is 
a network that uses a Meta-Upscale Module and SRGAN. 
Rather than a single GAN, [236] implemented an ensem-
ble model for SR-MR knee image synthesis by training 
multiple GANs and merging multiple outputs into one 
final output. In terms of peak SNR (peak signal-to-noise 
ratio) and structural similarity index, the ensemble model 
performed well. SR methods have been implemented for 
3D image generation. A SRGAN-based network with 
enhanced up-sampling techniques is able to generate real-
istic synthetic images. The 3D-SRGAN is implemented in 
[237] to generate high-resolution images from low-reso-
lution MR images of the brain. A multi-scale GAN with 
patch-wise learning is implemented to generate synthetic 
high-resolution 2D, 3D CT, and X-Ray thorax images. 
The GAN suppressed the objects that occur in patch-wise 
training and generated realistic 3D 512 × 512 thorax CT 
and 2048 × 2048 thorax X-ray images [238]. High-dose CT 
images and brain MRIs from low-dose images can also be 
generated with SRGAN.

3.6 � De‑noising

In CT and MR images, to reduce the exposure to radiation 
dose and to decrease image capturing time, Generative 
Adversarial Networks (GANs) have been implemented to 
reduce noise in CT and MR images captured in low-dose 
conditions. De-noising of low-dose single-photon emis-
sion computed tomography (SPECT) images was done 
using GANs [239]. CT images look forward to giving 
anatomic information; the removal of noise is very impor-
tant while preserving contrast and the shape of organs. To 
accomplish this need, GANs that use perceptual sharp-
ness loss The GANs with perceptual loss are implemented 
to generate high-dose abdominal CT from normal dose 
and simulated four-dose and are evaluated using a pre-
trained VGG [240]. In the other modified type of GAN, 
a sharpness detection network is added to calculate the 
denoised image sharpness [241]. The models were trained 
with high- and low-dose pair CT images, which generate 
reduced-noise versions of images. Jelmer and team [242] 
trained the model with low-dose, routine CT pair images 
to generate synthetic noise-reduced images based on the 
low-dose images. The GAN-based reduction of noise helps 

Table 3   (continued)

Authors Year Imaging modality GAN used Summary of the study

Schlegl et al. [187] 2019 OCT f-AnoGAN “Fast unsupervised anomaly 
detection”

Fundus abnormalities segmentation and 
detection

Wang et al. [188] 2021 OCT Cycle GAN Retinal OCT image anomaly segmentation 
by weakly supervised method

Others
Jiang et al. [189] 2018 ICGA​ Conditional GAN Segmentation of Lacquer crack. By using 

Dice loss function the segmentation accu-
racy further increased

Son et al. [190] 2019 Funduscopy image GAN Fine, thin retinal vessel detection by segmen-
tation using GAN was done

Kadambi et al. [191] 2020 Funduscopy WGAN In fundus images WGAN is used to segment 
optic cup and optic disc

Guo et al. [192] 2020 Mammographs GAN Chest muscle segmentation
Yıldız et al. [193] 2021 Microscopy image GAN

Patch GAN
Segmentation of Corneal sub basal nerves

Gilbert et al. [194] 2021 Ultrasound Cycle GAN Left atrium and ventricle segmentation by 
GAN

Brion et al. [195] 2021 CBCT U-Net
GAN

Segmentation of male organs like prostate, 
rectum, bladder

Kunapinun et al. [196] 2023 Ultrasound GAN Enhancing GAN Training Dynamics for 
Segmenting Thyroid Nodules

Narayanan et al. [197] 2023 Brain Images U-Net
Dual stage GAN

Two-stage GAN, the first stage is DCGAN, 
which generates a binary tumor mask, 
and the second stage is the pix2pix GAN 
network, which applies style transfer and 
creates a realistic brain image. Followed by 
U-Net for the segmentation of images
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for accurate quantification of calcification of the coronary 
artery from low-dose cardiac CT.

4 � The datasets and evaluation indicators 
for various medical applications

Deep learning models have shown remarkable promise 
in healthcare and other domains, demonstrating that they 
are capable of performing tasks that humans could. But 
there are obstacles on the path to success. Large datasets 
are necessary for the training of deep learning algorithms. 
Deep learning’s applicability to medical image analy-
sis has been limited by the lack of data. The expense of 
acquiring, annotating, and analysing medical images is 
high, and ethical restrictions limit their use. This makes 
it challenging for researchers who are not in the medi-
cal field to obtain huge amounts of relevant medical data. 
Thus, in an attempt to be as thorough as possible, this 

section of the paper presents a selection of medical imag-
ing datasets for deep learning research (Table 6).

During the classification training process, the evalu-
ation metric is essential to obtaining the best classifier. 
Therefore, choosing an appropriate assessment metric is 
crucial to differentiating and achieving the best classifier. 
The list of commonly used evaluation metrics that are 
particularly intended for classifier optimization [278] are:

•	 Accuracy: The accuracy metric quantifies the propor-
tion of accurate predictions to all instances examined.

•	 Error Rate: The ratio of inaccurate predictions to the 
total number of instances evaluated is known as the 
misclassification error.

•	 Sensitivity: Sensitivity quantifies the percentage of 
positive patterns that are appropriately classified.

•	 Specificity: Specificity quantifies the percentage of 
negative patterns that are appropriately classified.

Table 4   Reconstruction work by GAN in medical applications

Authors Year Modality Purpose of the study GAN name

Computed Tomography (CT)
You et al. [200] 2018 CT From low resolution, counterparts high-resolution CT images 

are reconstructed
Cycle GAN

Kang et al. [201] 2019 CT Denoising of multiphase coronary CT images Cycle GAN
Liu et al. [202] 2020 CT From noisy projection of the dataset TomoGAN reconstructs CT 

images
TomoGAN

Zhang et al. [203] 2021 CT High resolution CT reconstruction from low dose CT GAN
Dashtbani Moghari et al. [204] 2021 CT Predicting normal-dose cerebral CT perfusion from low dose 

using 3D-GAN
3D-GAN

Wang et al. [205] 2023 CT Utilizing transformer and GAN for CT reconstruction from 
biplane X-rays

TRCT-GAN

Jiang et al. [206] 2023 CT CGAN-based transformer for high-quality low-dose SPECT 
reconstruction

CGAN-based transformer

Rezaei et al. [207] 2023 CT 3D lung tumor reconstruction by GAN GAN
Ramanathan et al. [208] 2023 CT Reconstructing Low-Dose CT Images using Vector Quantized 

Convolutional Autoencoder
Autoencoder

Cone Beam Computerized Tomography (CBCT)
Liao et al. [209] 2018 CBCT Sparse view CBCT reconstruction Cycle GAN
Magnetic Resonance Imaging (MRI)
Seitzer et al. [210] 2018 MRI Two stage reconstruction of MRI GAN
Chen et al. [211] 2018 MRI 3D super-resolution MRI reconstructed from low resolution 

using mDCSRN “multi-level
densely connected super-resolution network”

mDCSRN

Kim et al. [212] 2018 MRI High resolution MRI of brain generated. And evaluated by clas-
sifier

Pix2pix

Mardani et al. [213] 2019 MRI High quality MRI generated from low dimension folds LSGAN
Du et al. [214] 2023 MRI Transformer and GAN based Super-Resolution MRI Recon-

struction Network
T-GANs

Positron Emission Tomography (PET)
Wang et al. [215] 2018 PET High-quality PET generated from low dose 3D Conditional GAN
Hu et al. [216] 2022 PET Reconstruction of PET by Residual Swin-Transformer Residual Swin-Transformer
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•	 Precision: The positive patterns that are accurately 
predicted from the total anticipated patterns in a posi-
tive class are measured by precision.

•	 Recall: Recall quantifies the percentage of positive 
patterns that are appropriately classified.

•	 F1-score: The harmonic mean of the recall and preci-
sion values is represented by F1 score.

•	 Geometric-mean: This measure is used to maintain 
a somewhat balanced true positive and true negative 
rate while optimizing both rates.

•	 Averaged Accuracy, Averaged Error Rate: Average 
accuracy and error of all classes.

•	 Averaged Precision, Averaged Recall, Averaged 
F1-Measure: Average of per-class precision, Recall, 
F1-score.

Artificial intelligence research has grown rapidly over 
the past years due to deep learning models, particularly 
in the area of medical image segmentation. The list of 
commonly used evaluation metrics for segmentation [279] 
are: DSC: Dice Similarity Coefficient, IoU: Intersection-
over-Union, Sensitivity, Specificity, Accuracy, ROC: 
Receiver Operating Characteristic, AUC: Area Under 
the ROC curve, Cohen’s Kappa (Kap), AHD: Average 
Hausdorff Distance.

5 � Discussion

The main purpose of this work is to review deep learning 
model applications in Classification, segmentation, detec-
tion, restoration, registration, and GAN applications like 
data augmentation, segmentation, reconstruction, detec-
tion, denoising, and registration of medical images.

Deep learning models are most widely used for medical 
image classification and segmentation, and many works 
have been published in this area. For example, breast 
lesion segmentation and classification by an automated 
CNN approach were successfully implemented in [280]. 
Similarly, Segmentation of Cone-Beam CT for Oral Lesion 
Detection by the DL model was implemented in [281]. 
In classification applications, DL models based on CNN 
have seen progress. In medical image classification, CNN's 
success led the researchers to explore its benefits in clas-
sification. For instance, CNN's automatic classification 
of anatomical location and medical image modality got 
very good results [282]. Similarly, the lung nodule clas-
sification using the DL model [283], breast cancer clas-
sification [284], MRI brain tumour classification [285], 
shoulder fracture detection [286], COVID-19 detection 
[287], and cardiomyopathies classification in MRI [288] 

Table 5   Anomaly detection by GAN in medical applications

Authors Year Modality Purpose of the study GAN Name

(Optical Coherence Tomography) OCT
Schlegl et al. [217] 2017 OCT Unsupervised anomaly detection in OCT for marker dis-

covery using DCGAN
DCGAN

Magnetic Resonance Imaging (MRI)
Chen et al. [218] 2018 MRI Detection of brain lesion AnoGAN, WGAN-GP
Baur et al. [219] 2018 MRI Detection of brain lesion VAEGAN
Baumgartner et al. [220] 2018 MRI Alzheimer’s disease detection WGAN
Kohl et al. [221] 2017 MRI Detection of prostate in MR images U-Net, GAN
Han et al. [222] 2021 MRI Detect abnormality in brain at different stages in multi-

sequence MRI
MADGAN “Medical Anom-

aly Detection GAN”
Reddy et al. [223] 2022 MRI Detection of Brain tumor in MRI DCGAN with optimized CNN
Alrashedy et al. [224] 2022 MRI Detection of Brain tumor in MRI Vanilla GAN and DCGAN
X-Ray
Wolleb et al. [225] 2020 X-ray pleural effusions anomaly detection DeScarGAN
Nakao et al. [226] 2021 X-Ray Detection of lesions like bilateral hilar lymphadenopathy, 

lung mass, pleural effusion, cardiomegaly, dextrocardia
Auto-encoding GAN

Zhao et al. [227] 2021 OCT
X-Ray

Abnormality detection Auto-encoding GAN

Others
Udrea et al. [228] 2017 Image Detection of pigmented and non-pigmented skin lesions GAN, U-net
Tuysuzoglu et al. [229] 2018 Ultrasound image Detection of skin lesions GAN
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Table 6   Dataset for medical applications

Dataset year Organ/modality Employed In

Segmentation Classification Others

AutoImplant [243] 2020 Brain/MRI – – Cranioplasty Generation
AccelMR [244] 2020 Brain/MRI – – Generation
MRI WM Reconstruction 

[245]
2020 Brain/MRI – – Generation

Calgary Campinas Brain 
Dataset [246]

2020 Brain/MRI – – Generation

CT-ICH [247] 2020 Brain/CT Intracranial hemorrhage –
BraTS 2020 [248–250] 2020 Brain/MRI Brain tumor –
FastMRI [251] 2018 Brain/MRI – – Generation
CADA-AS 2020 Brain/MR Angiography Brain tumor –
CADA-RRE 2020 Brain/MR Angiography Brain tumor –
CADA 2020 Brain/MR Angiography Brain tumor –
RIADD[252] 2020 Eye/Fundus photograph – Eye-disease classification
The 2nd Deep DRiD 2020 Eye/Fundus photograph – Eye-disease classification
REFUGE 2 [253] 2020 Eye/Fundus photograph Yes Eye-disease classification Detection
AGE [254] 2019 Eye/OCT – Eye-disease classification Detection
Retinal OCT Images [255, 

256]
2018 Eye/OCT – Eye-disease classification –

MICCAI 2020: HECK-
TOR

2020 Head and neck/ CT and PT Head and neck tumor – –

TN-SCUI 2020 [257] 2020 Head and neck/ Ultrasound – – Detection
Head Neck Radiomics 

HN1 [258, 259]
2019 Head and neck/ CT Head and neck squa-

mous cell carcinoma
– –

MNMS Challenge [260] 2020 Chest and abdomen /MRI Heart Segmentation – –
Automated Segmentation 

of Coronary Arteries
2020 Chest and abdomen /CT yes – –

C4KC-KiTS [261, 262] 2019 Chest and abdomen /CT Kidney Segmentation – –
MS-CMRSeg 2019 [263, 

264]
2019 Chest and abdomen /MRI Heart Segmentation – –

CAMUS [265] 2019 Chest and abdomen/ 
Ultrasound

Heart Segmentation – –

CT-ORG [266–268] 2019 Chest and abdomen/ CT Lung
Liver
Kidney Segmentation

– –

CT Diagnosis of COVID-
19 [269]

2020 Chest and abdomen/ CT – COVID–19
classification

–

Covid19 Challenge.eu 2020 Chest and abdomen/ CT – COVID–19
classification

–

Object CXR 2020 Chest and abdomen/ CT – COVID–19
classification

Detection

CORD-19 [270] 2020 Chest and abdomen/ CT – COVID–19
classification

–

COVID-Net [271] 2020 Chest and abdomen/ 
Ultrasound

– COVID–19
classification

–

COVID-19 CT Segmenta-
tion Dataset

2020 Chest and abdomen/ CT yes – –

COVID-19 Lung CT 
Lesion Segmentation 
Challenge 2020

2020 Chest and abdomen/ CT yes – –

BCS-DBT [272, 273] 2020 Chest and abdomen/ Digi-
tal breast tomosynthesis

– Breast cancer classification Detection
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have also been implemented successfully. The remaining 
applications of the DL model in the medical field relating 
to detection, restoration, and registration are also evolving 
areas in medical applications.

Lately, the number of medical applications implementing 
GANs has increased remarkably. A major portion of GAN's 
works are medical image synthesis in its own modality 
and cross modality, indicating image synthesis is the most 
important GAN usage in medical applications. The literature 
shows that among all imaging modalities, MR images are 
ranked as the most popular imaging modality explored by 
GANs. MRI acquisition requires a large amount of time, 
which may be the main reason for the remarkable interest 
in using GANs for MRI. GANs generate synthetic MRI 
sequences from acquired images, which reduces image 
acquisition time. Other popular medical applications of 
GAN include segmentation and reconstruction frameworks. 
On generator output, strong texture and shape regulations are 
imposed, which results in promising performance of both 
tasks. For instance, adversarial loss improves 3D CT liver 
segmentation performance on non-contrast CT better than 
CRF and graph cut [289]. Further, the applications that uti-
lised GAN for augmenting the data in classification focused 
more on generating synthetic objects like fractures, lesions, 
nodules, cells, etc. The training of a neural network (CNN) 
relies on a large data set to improve the generalisation of the 
network and reduce overfitting. Traditional data augmenta-
tion techniques like rotation, flipping, colour jittering, etc. 
are not as effective as data augmentation by GAN, which 
may be because of the smaller distribution variation in the 
synthetically generated images compared to real ones. For 
example, implementations that use GAN for generating 
chest X-rays [290] are used in the detection of pneumonia 

and COVID-19. The remaining applications of GAN in the 
medical field relating to registration, reconstruction, detec-
tion, denoising, and SR are so limited that it is difficult to 
draw any conclusions.

6 � Conclusion

The main requirement for the clinically assisted decision 
support system for medical image analysis is the need of the 
hour. This paper contains the details and strategies of Deep 
Learning and Generative Adversarial Networks for medical 
image analysis in CADs. There are two main objectives. The 
first objective is a deep learning model for medical image 
analysis. The second objective is generative adversarial net-
works in medical image analysis. The successful DL mod-
els were reviewed in different medical image applications, 
like Classification, segmentation, detection, restoration, and 
registration. The DL-based models got good results in clas-
sification, segmentation, and detection and are used most 
commonly in medical image applications. For medical chal-
lenges Various solutions exist. Although there are still some 
issues in medical image applications that are required to be 
addressed with DL models, Numerous current DL model 
implementations, including supervised, semi-supervised, 
and unsupervised models, are slowly developing that can 
manage real data without manual labelling. The DL model 
aims to help radiologists make clinical decisions. Automa-
tion of radiologist workflow can be done by the DL model 
to ease decision-making among radiologists. The DL model 
is also able to aid physicians by automatically classifying 
and identifying lesions, minimising medical errors, and 
minimising time for interpretation. In the next few decades, 

Table 6   (continued)

Dataset year Organ/modality Employed In

Segmentation Classification Others

Lung-PET-CT-Dx [274] 2020 Chest and abdomen/ CT 
and PT

– Lung cancer classification –

LNDb Challenge 2020 Chest and abdomen/ CT – Pulmonary nodule clas-
sification

Detection

A-AFMA-Detection 2020 Chest and abdomen/ 
Ultrasound

– – Detection of Amniotic 
fluid detection

KNOAP2020 2020 Bone/ MRI and X-Ray – Classification of Knee 
osteoarthritis

–

MICCAI 2020 RibFrac 
Challenge [275]

2020 Bone/CT – Classification of rib 
fracture

Detection of rib fracture

Spinal Cord MRI Public 
Database

2020 Bone/MRI yes – –

VerSe 20 2020 Bone/CT Vertebra Segmentation – –
EVerSe 19 [276, 277] 2019 Bone/CT Vertebra Segmentation – –
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DL-based CADs utilising medical images will be widely 
used for patient care. Hence, scientists, radiologists, and 
physicians look for ways to provide good patient care with 
the aid of DL models. Due to the limited availability of 
labelled data sets, weakly supervised and unsupervised tech-
niques are emerging areas of research in DL-based medical 
image analysis. Similarly, different Generative Adversarial 
Network (GAN) architectures were implemented as powerful 
tools for medical imaging applications. GANs have realised 
data augmentation, segmentation, reconstruction, detection, 
denoising, and registration of medical images. The achieve-
ment of short-time image acquisition, low-dose imaging, 
and maintained quality of images were marked as clinically 
important features. Domain adaptation that uses available 
expertise is required to be a quick solution with less time 
for emerging issues. Further advancement in network mod-
els and computational power will permit new applications 
to deal with higher-dimensional images, like temporal and 
volumetric imaging. Overall, deep learning and generative 
adversarial networks are novel, fast-developing fields in 
medical image analysis that offer many obstacles, opportu-
nities, and solutions.
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