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Abstract
Telescopic cranes are powerful lifting facilities employed in construction, transportation, manufacturing and other

industries. Since the ground workforce cannot be aware of their surrounding environment during the current crane

operations in busy and complex sites, accidents and even fatalities are not avoidable. Hence, deploying an automatic and

accurate top-view human detection solution would make significant improvements to the health and safety of the workforce

on such industrial operational sites. The proposed method (CraneNet) is a new machine learning empowered solution to

increase the visibility of a crane operator in complex industrial operational environments while addressing the challenges

of human detection from top-view on a resource-constrained small-form PC to meet the space constraint in the operator’s

cabin. CraneNet consists of 4 modified ResBlock-D modules to fulfill the real-time requirements. To increase the accuracy

of small humans at high altitudes which is crucial for this use-case, a PAN (Path Aggregation Network) was designed and

added to the architecture. This enhances the structure of CraneNet by adding a bottom-up path to spread the low-level

information. Furthermore, three output layers were employed in CraneNet to further improve the accuracy of small objects.

Spatial Pyramid Pooling (SPP) was integrated at the end of the backbone stage which increases the receptive field of the

backbone, thereby increasing the accuracy. The CraneNet has achieved 92.59% of accuracy at 19 FPS on a portable device.

The proposed machine learning model has been trained with the Standford Drone Dataset and Visdrone 2019 to further

show the efficacy of the smart crane approach. Consequently, the proposed system is able to detect people in complex

industrial operational areas from a distance up to 50 meters between the camera and the person. This system is also

applicable to the detection of any other objects from an overhead camera.
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1 Introduction

Telescopic cranes are widely employed in construction, oil

and gas, maritime ports, transportation and manufacturing

industries across the globe. However, the crane operations

can be precarious [1, 2] to their surrounding environment

due to the operator’s lack of visibility to detect workers [3]

and can cause accidents and even fatalities on industrial

sites [4]. Hence, it is of myriad importance to improve

safety by minimising the risks of crane operations. These

crane-related hazards can be significantly reduced by

automated monitoring and detecting the workforce in real-

time from top-view, which allows the operator to take

immediate safety actions. Human detection has wide-

spread applications in surveillance and monitoring systems,

person counting and tracking, search and rescuing missing

people [5–7], and action and behavioural understanding,

among others [8, 9]. Human detection from top-view has

also attracted attention in recent years since it deals better

with the occlusion problems and can cover a wider area of

the scenes compared with frontal-view based human

detection [10]. In addition, overhead human detection can

decrease privacy issues as only the detection of human

bodies rather than faces is involved. However, top-view

human detection is still challenging due to complex

backgrounds, small-sized human objects, different illumi-

nation, a wide range of pose variations, occlusion, and the
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industrial sites being cluttered and dynamically changing

[10]. As a result, our objective is to design and develop a

new end-to-end real-time machine-learning-based human

detection system (CraneNet) being able to detect people in

cluttered industrial sites with high accuracy and efficiency

considering the challenges involved in top-view human

detection and more applicable to industrial use cases and

especially crane sites. The application of the developed

integrated system has been validated in real crane operation

sites, such the one shown in Fig. 1, located at Stirling,

Scotland.

Figure 2 also presents a high-level overview of the

proposed top-view real-time human detection system for

industrial sites.

As illustrated in Fig. 2, the system comprises a video

camera subsystem attached to the crane hook to capture the

view of the concerned area and send the video stream to a

small-form PC (Jetson AGX Xavier in this study) for

space-constrained industrial operational environments such

as the cabin of a crane or small in situ operating office. This

small-form PC hosts the machine learning platform and

algorithms to detect any human object entering the prox-

imity by analysing the video input from the camera.

As a result, our contributions are summarised as follows:

• Design and develop a top-view object detection system

on compact and power-constrained devices suitable for

industrial operational sites.

• Presentation of a new convolutional neural network

(CNN) design to detect small-sized human objects from

cranes on industrial sites.

• Training and validation of CraneNet and state-of-the-art

techniques with the collected dataset and a public

dataset to compare the performance.

• Perform both qualitative and quantitative testing eval-

uation of CraneNet and comparing it with the state-of-

the-art algorithms under study using images captured by

a camera attached to the crane hook.

• Application of the proposed solution in a real-world use

case in a complex industrial scenario.

The rest of the paper is organised as follows. Section 2

presents the related work. Section 3 describes the design of

the proposed algorithm to detect humans, followed by the

experimental setup in Section 4. Section 5 discusses the

results of the proposed algorithm. Section 6 concludes the

paper.

2 Related work

This section reviews state-of-the-art work related to human

detection, with a focus on techniques used in this paper for

small object detection.

2.1 Top-view human detection techniques

Various machine learning and deep-learning based tech-

niques for human detection are based on frontal-view

imagery. The main methods adopted in top-view human

detection are traditional and deep-learning techniques. In

traditional methods, features such as hard-hat or high vis-

ibility jackets are detected [11, 12] rather than performing

directly human detection. Deep learning-based techniques

have also been explored focusing more on direct human

detection techniques [2, 13]. Two-stage and one-stage

object detectors are two major categories of CNN-based

methods. Examples of two-stage detectors are fast regions

with convolutional neural networks (R-CNN) [14], Faster

RCNN [15, 16], and Mask R-CNN [17] in which the

classification is performed after the Region of Interest

(ROI) is localised. These detectors are accurate but com-

putationally expensive and thus are not suitable for real-
Fig. 1 Industrial crane operation facility in Stirling, Scotland

Fig. 2 The system for top-view detection of industrial sites. The

system includes a video camera subsystem attached to the crane hook

to capture and send the video stream to the small-form PC. The small-

form PC hosts the machine learning platform and algorithms to detect

the human objects
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time object detection on low-power devices. One-stage

detectors such as YOLO series [18–20], ‘‘You Only Look

Twice (YOLT)’’ [21] and ‘‘Single Shot Detector (SSD)’’

[22] are more common. However, their performances are

inferior in accuracy. In these detectors, ROIs are localised

and classified in one go.

2.2 Small object detection

An object is called small when it is less than 1% of the

image area. Small object detection is still one of the most

unresolved and challenging detection problems due to the

extraction of feature information of small objects being

difficult with only a few pixels. It is very hard for standard

detectors to distinguish small objects from generic clutter

in the background. The features of small objects filter out

during the downsampling process in deeper layers of the

CNN and thereby never get detected or classified. In

addition, feature maps with low resolution and longer

distances from the ROI make detection of small objects

with various poses and viewpoints even more difficult.

Lastly, there is no large publicly available dataset for small

objects. While the mean average precision using the state-

of-the-art detectors on a dataset like PASCAL VOC is

76.3%, the mAP of a state-of-the-art on a dataset with only

small objects is just 27% [23].

2.3 Path aggregation network (PANet)

Inspired by the Feature Pyramid Network (FPN) [24], PAN

[25, 26] is a method that improves the accuracy of small

object detection by adding an additional bottom-up path

augmentation to combine features from initial layers with

more detailed information and the deeper layers with more

meaningful information as both information is needed to

improve small object detection. In other words, the data

path between lower layers and top layer is reduced using

the PAN architecture. The PAN architecture was modified

compared to that of YOLOv4 (2 upsamples) by adding an

extra upsample to retain more shallow features due to its

importance in small object detection.

2.4 SPP

Spatial Pyramid Pooling (SPP) [27] enhances the receptive

field by using relatively large k � k max-pooling and

increases the accuracy of the proposed design. It is also

vigorous to object deformation and perform some infor-

mation aggregation at a deeper stage of the neural network.

A modified SPP module in strides was used to enhance the

receptive field of the backbone in CraneNet with concate-

nation of max-pooling outputs with kernel size k � k,

where k = 4, 8, 16.

2.5 Previous work

This subsection provides an overview of previous work

related to top-view human detection. The comparative

analysis is summarised in Table 1 to highlight representa-

tive published results related to top-view human detection,

in comparison with the proposed solution in this paper

(highlighted in green).

In one study, Maheshwari et al. [28] have used state-of-

the-art Ada-Boost classifier for detection and kalman filter

for tracking of people from top-view perspective. Although

a high accuracy of 97% was achieved, and the authors

mentioned different altitudes, the results are not demon-

strated at high altitudes and cluttered environments, which

make the detection significantly more complex. In [29],

three state-of-the-art models were compared including

fully convolutional neural network (FCN) [30] with Res-

net-101 architecture, U-Net [31] with encoder-decoder

architecture and DeepLabV3 model [32] with encoder-de-

coder architecture. The experimental results reveal the

effectiveness and performance of segmentation models by

achieving mean Intersection over Union (mIoU) of 80%,

82% and 84% for FCN, U-Net, and DeepLabv3, respec-

tively. However, these models were applied on images

rather than videos. In addition, the aforementioned archi-

tecture is not fast enough to be applicable in real-time

applications. In [33], a combination of RCNN and

GOTURN algorithms was investigated for person detection

from the top view. Although very high-accuracy of 90-93%

was achieved, it is not applicable to real-time applications

due to being a heavy-weight model. In [34], SSD was

evaluated with various datasets collected from unreal

engine (UE) and real-world from the distance of 20 to 26

meters. The detector achieved the AP of 49.03% and

39.24% for UE dataset and 75.23% using real-world

dataset. However, both accuracy and speed are not suffi-

cient for our top-view human detection use case. In [35],

YOLOv3 was utilised to detect human from the top view.

Although a high accuracy of 92% was achieved, this is a

heavy-weight model not suitable for power constrained

devices. In another study [36], a computer vision based

person counting system was presented based on back-

ground subtraction capturing people by an overhead cam-

era installed at about 7 meters height. The proposed

algorithm achieved an average accuracy of 98% for person

detection and counting. Although they achieved high

accuracy, the speed has not been mentioned. In addition,

the results are reported at very low altitudes. Similarly, in

[37–39], the speed was not mentioned for further evalua-

tion. In [3], Retina-net was used for load-view human

detection using a simulated environment. The accuracy and

speed of the study were not enough for our use-case. In
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[40], a robust algorithm was proposed for detecting people

from overhead views. The accuracy of 95% and the aver-

age processing time of 0.7 ms per detection window were

obtained. However, the result has not been reported at high

altitudes which makes the detection more challenging. All

of the studies above except [28] have been conducted on

powerful PCs and not suitable on embedded systems such

as Jetson Xavier.

In summary, none of the above studies has covered or

considered the essential factors of human detection

[41, 42]. Moreover, none of the previous studies has con-

sidered the best trade-off between speed and accuracy

suitable for our top-view human detection use case. In

addition, CraneNet is able to detect humans up to 50 meters

which was not the case in previous studies. Therefore, in

this work, a learning-based model is provided to detect

person from overhead view at different altitudes up to 50

meters in close real-time with high accuracy on a power

constrained device (Jetson Xavier). To achieve this, a novel

object detection algorithm was proposed by using four

modified ResBlock-D in the backbone to improve the

speed, a modified SPP module at the end of the backbone

to improve the accuracy and a modified PAN to increase

the accuracy of small object detection.

3 Proposed smart crane approach

3.1 Design of object detection algorithm

In the proposed system, the small-form PC receives the

video stream from the camera, and it decodes the frames

and prepares them to enter the neural network (pre-pro-

cessing). Once the frame is pre-processed in the correct

format, it enters the proposed neural network (CraneNet)

embedded on the small-form PC. To improve object

detection speed, modified ResBlock-D [43] was proposed

to fulfill the real-time requirements. To increase the accu-

racy of small humans at high altitudes which is crucial for

this use-case, a PAN (Path Aggregation Network) module

was integrated to the architecture. This enhances the

structure of CraneNet by adding a bottom-up path to spread

the low-level information. Furthermore, three output layers

were also used in CraneNet to further improve the accuracy

of small objects. Spatial Pyramid Pooling (SPP) [27] was

also added at the end of the backbone stage which is vig-

orous to object deformation and perform some information

‘‘aggregation’’ at a deeper stage of the neural network. The

architecture of CraneNet is illustrated in Fig. 3.

As shown in Fig. 3, the backbone starts with a 3�3

convolution with the number of filter being 64. This was

Table 1 Comparison of previous works

Ref Objective Algorithm Exec Platform Accuracy Speed Model Altitude

Environment (%) (FPS) Size

(MB)

(m)

[28] Person Ada-boost/Kalman filter Raspberry

Pi3B

NG 97 Up to 40 NG NG

[37] Person RHOG-SVM PC OpenCV 94/96 NG NG 5

[34] Person SSD PC Caffe 49.0/72.3 4.6/4.8 NG 20-26

[29] Person FCN/U-net PC OpenCV 80/82 17/17.5 ms NG 4

DeepLabV3 84 18 ms

[40] Person RHOG PC OpenCV 95 0.7 ms per NG 5

bounding

box

[38] Person SVM PC LIBSVM 89.5 NG NG NG

[36] Person Morphological

operation

PC OpenCV 95 NG NG 7

[35] Person YOLOv3 PC OpenCV 95 NG NG NG

[3] Person RetinaNet PC NG 66.84/53.13 6.6/6.5 NG 25-35

[39] Person Mixture of Gaussian PC OpenCV 96 NG NG 7

[33] Person Fast-RCNN?

GOTURN

PC OpenCV 90-94 NG NG 3

TP Person Own approach Jetson

Xavier

Tensorflow 92.59 19 42.9 Up to 50

TP Person Own approach Jetson

Xavier

Tensorflow 93.2/94.3/93.4/92.0/

90.1

19 42.9 10/20/30/40/

50

TP = this paper; NG = not given
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then accompanied by a maxpooling. Inspired by ResBlock-

D like modules in [43], four modified blocks were pro-

posed in the backbone of the proposed neural network

(labelled as a1, a2, a3, and a4). The modified module

contains two paths. The first path includes one 1�1 con-

volution, one 3�3 depth-wise and groups of 32 to reduce

the number of output parameters and to speed up the pro-

posed model and to replace the traditional convolution in

[43] followed by a 1�1 convolution. The second path

includes a 2�2 max pooling and a 1�1 convolution. A

shortcut connection was used at the end of the second path.

The number of filters of the first module were selected 128,

64, 64 and 128. The number of filter were 256, 128, 128

and 256 for the second module, and the number of filters

for the third and the forth modules were 512, 256, 256, 512.

In addition, the maxpooling of the second path has been

eliminated in this module. This was proposed to deal with

small object detection.

Secondly, Spatial Pyramid Pooling (SPP) [27] was uti-

lised (labelled as b) at the end of the backbone. However,

the max-pooling strides were selected as 4, 8 and 16 dif-

ferent from those of [44]. A PAN (Path Aggregation Net-

work) module [25, 26] was also integrated (labelled as c) in

the algorithm which consists of a top-down pathway with

Fig. 3 The architecture of the proposed algorithm. Four modified

ResBlock-D like modules were proposed in the backbone (labeled as

(a)) including two paths: first path with one 1�1 convolution, one

3�3 depth-wise followed by a 1�1 convolution and the second path

with a 2�2 max pooling and a 1�1 convolution. The SPP module

(labelled as (b)) includes the max-pooling with strides of 4, 8 and 16.

The PAN section (labelled as (c)) consists of with a top-down

pathway with three up-samplings. The extra bottom-up path augmen-

tation was gradually down-sampled. The features from the bottom-up

path were then concatenated, and 1�1 convolution was run on the

result
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three up-samplings and the number of filters being 128,

256, 128 and 64, respectively. The extra bottom-up path

augmentation was gradually down-sampled with factors of

16, 8, 4 and 2, respectively. The number of filters used

were 32. The features from the bottom-up path were then

concatenated, and 1�1 convolution was run on the result

(labelled as d). The YOLOv3 headers were used for the

final detections. The detection heads applied the anchors to

outputs the coordinates, the class of object being detected

and probability estimated for such detection (level of

confidence) shown on the screen. The resolution of three

scales of the feature map was 19�19, 38�38 and 76�76

for the three detection heads. The combination and inte-

gration of modified ResBlock-D like backbone blocks, SPP

module and PAN created the CraneNet. To sum up, to

improve the accuracy of CraneNet, a modified SPP module

was used to enhance the receptive field of the backbone in

our approach with a concatenation of max-pooling outputs

with kernel size k �k, where k = 4, 8, 16 and stride 1. This

relatively large k � k max-pooling increases the receptive

field of the backbone and thereby increases the accuracy of

the proposed design. It is also vigorous to object defor-

mation and perform some information aggregation at a

deeper stage of the neural network. To increase the accu-

racy of small humans at high altitudes (top-view object

detection) which is crucial for this use case, a modified

PAN (Path Aggregation Network) module was imple-

mented and added into the architecture. Inspired by the

Feature Pyramid Network (FPN), PAN is a method that

improves the accuracy of small object detection by adding

an additional bottom-up path augmentation to combine

features from initial layers with more detailed information

and the deeper layers with more meaningful information as

both information is needed to improve small object

detection. In other words, the data path between lower

layers and top layer is reduced by using the PAN archi-

tecture. The PAN architecture was modified compared to

that of YOLOv4 (2 upsamplings) by adding an extra

upsample (3 upsamplings) to retain more shallow features

due to its importance in small object detection. The extra

bottom-up path augmentation was gradually downsampled

(4 downsamplings) compared to the 2 downsamplings in

YOLOv4. To improve object detection speed, four modi-

fied ResBlock-D were proposed in the backbone. The

modified module contains two paths. The first path includes

one 1�1 convolution, one 3�3 depth-wise to speed up the

Cranenet followed by a 1�1 convolution. The second path

includes a 2�2 max pooling and a 1�1 convolution. A

shortcut connection was used at the end of the second path.

The max-pooling of the second path in the fourth module

was eliminated in this module to deal with and improve the

small object detection.

3.2 Design of object detection pipeline

The proposed CraneNet should be executed in an optimised

machine learning platform. As convolutional neural net-

works are computationally expensive, the results may

produce delays. The achievement of real-time execution

mainly depends on two factors: execution environment and

the algorithm complexity. In order to mitigate the delays

produced by these factors, we designed and implemented a

Multi-Thread Pipeline software illustrated in Fig. 4.

The execution platform is divided into two threads: the

main thread and the detection thread. The main thread is

accountable for receiving and decoding the video frames

from the camera on the hook of the crane. It also chooses

whether a frame should be processed or discarded by the

proposed CNN model. The decision to process a frame

depends on the availability of the detection thread. The

availability is provided by a blocking queue (BQueue)

occupancy of size one. If the queue is already full, it means

that the detection thread is currently executing the object

detector algorithm, and thereby the queue is blocked and

the current frame is discarded. By contrast, if the BQueue

is empty, the main thread will store the frame in BQueue.

The post-processed frames will then be sent to a secondary

blocking queue (SQueue) to be then shown on the screen.

The main task carried out by the detection thread is the

execution of the object detector algorithm on frames pro-

vided by the main thread. After dequeuing a frame from the

BQueue, the detection thread starts a three-stage process to

provide the detection results. First, a pre-processing step

will prepare the image as an input for the neural network.

The detection stage executes the CNN model and provides

three results: the class of the object, the location of the

object and the confidence score. This step is the most time-

consuming task.

4 Experimental setup

4.1 Dataset

A Reolink optical camera was employed to fulfil the aims

of the project. The camera was attached to the hook of the

crane pointing down to the ground and moved at different

heights between 10 and 50 meters in various industrial

sites. The live videos were recorded in 2K from top-view,

and the images were extracted from the collected videos for

further processing. The experiments took place during the

daytime in cloudy and sunny weather conditions. Business

team ground personnel (men and women) were asked to

perform their routine activities in different operational

venues. The people were wearing special uniforms, hi-vis
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jackets and hard hats in red, green, white or yellow. The

data were collected at different industrial sites with various

backgrounds. More obstacles and distractions (traffic

cones, wheelie waste bins,...) were added to the experi-

mental scene to make it more cluttered and challenging for

human detection. In addition, to collect the required data-

set, various poses, figures, postures, scales, angles, orien-

tations, sizes and altitudes were taken into consideration.

Finally, the detection of single and multiple ground per-

sonnel was shown on a screen at various altitudes from 10

to 50 meters.

Totally, 20,234 images (10,336 positive samples and

9898 negative samples) were extracted and manually

annotated to create the training dataset.

YOLO-Mark2 [45] was used to label the images

required for the dataset. To further increase the perfor-

mance of the developed model and avoid class imbalance,

synthetic image was added using copy-paste [46] and data

augmentation strategies [47, 48] to generate same number

of positive and negative images. Different geometric

transformation techniques such as rotation, flipping, blur-

ring, Gaussian noise and various brightness and contrast

were used to create synthetic images.

According to Table 2, the average scale of human size is

1802�7176 at 10 m, 209�2376 at 20 m, 135�621 at

30 m, 80�400 at 40 m, and 72�260 at 50 m, respectively.

4.2 Hyperparameters

This subsection determined the hyperparameters used to

achieve the aims of this study. To determine the best

anchor boxes for the dataset, the size of the input images

(608� 608 pixels) and the number of the anchors boxes (9

in this case) were adopted to recalculation the anchor boxes

using k-means technique [49]. The same values of the

hyperparameters were used for all the algorithms to con-

duct a true comparison of the algorithms. The total number

of training iterations was set to 30,000. The initial learning

rate was set to 0.008. A Stochastic Gradient Descent with

Warm Restarts (SGDR) [50] was used as the solver. The

momentum coefficient was set to 0.9 for the learning pol-

icy. A weight decay and the subdivision were set to 0.001

and 8, respectively. The hyperparameters are summarised

in Table 3.

The performance of each model was evaluated in terms

of two metrics: mAP on validation data and FPS as the

speed of the algorithms. The model with best mAP vali-

dation was selected for further comparison.

Transfer learning [51] was employed using pre-trained

weights obtained from COCO dataset [52] to further

increase the performance of the models.

Fig. 4 The Execution Platform.

The main thread receives and

decodes the video frames from

the camera and decides whether

a frame should be processed or

discarded by the CNN model.

The detection thread executes

the object detector algorithm on

frames provided by the main

thread. Opencv was used in

components colored in yellow.

Components in green have been

performed using python.

Tensorflow was used for the

detection model

Table 2 The size of human at different altitudes

Altitude (m) Min size (px) Max size (px)

10 1440 7272

20 300 6336

30 165 6120

40 130 5986

50 108 5916
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4.3 Evaluation of the approach in a real use case

The proposed object detection system was deployed and

evaluated in a real-world scenario in an industrial site

located in Stirling (Scotland), with access to a cameras

attached to the hook of different cranes.

The video feeds were sent from the customised Reolink

camera (Reolink RLC-511W) attached to the crane hook

(Fig. 5a) to the proposed CNN-based model embedded on

an NVIDIA Jetson Xavier small-form PC connected to a

monitor for human detection through the Real-Time Mes-

saging Protocol (RTMP) and Real-Time Streaming proto-

col (RTSP) (Fig. 5b). The small-form PC is a commercial

off-the-shelf platform with 512-core Volta GPU and 64

Tensor Cores. It runs on Linux, with more than 21 (Tera

Operations Per Second) TOPS of computation performance

and 32GB of RAM. Moreover, it has the ability of working

at different power modes. The NVIDIA Jetson Xavier was

transformed to an access point using a wireless card which

allowed the transmission of the video from the Reolink

Camera to the Jetson for human detection. The crane sys-

tem was elevated to the maximum altitude and then was

lowered one step at a time to evaluate and see the result on

the screen at various altitudes.

All the algorithms were implemented and executed on

Tensorflow 2. TensorFlow [53], which is a state-of-the-art

machine learning platform, is fully compatible with NVI-

DIA CUDA; therefore, it is the selected platform for

implementation and execution of the algorithm.

OpenCV [54] is also deployed for the purpose of image

processing due to being mature in the field of computer

vision.

5 Results and discussion

A set of videos were collected from the crane site to val-

idate and further evaluate the effectiveness of the proposed

model against different state-of-the-art models.

5.1 Quantitative results

Table 4 shows the comparison results of various state-of-

the-art models including YOLOv4 the improved version of

YOLOv3 [44] against the Smart Crane approach (our

approach).

5.2 Accuracy and speed comparison

According to the results in Table 4 and Fig. 8, the standard

YOLOv4 achieved a high accuracy of 93.62% but with 6.1

FPS on the Jetson Xavier small-form PC with input size of

608 which is not suitable for our use case. Hence, the

standard Tiny-YOLOv4 [44], which is a simplified, light

version of YOLOv4, was also compared with the CraneNet

approach. It achieved an accuracy of 90.0% with 31 FPS on

the Jetson Xavier. Standard Tiny-YOLOv3 was also

trained and compared. The results show that the accuracy is

less (86.0%) with 29 FPS and input size of 608 on the

Jetson Xavier. However, they only use two output layers

compared with three output layers in standard YOLOv4,

which decreases the accuracy of human detection at higher

altitudes ([ 20 m). Hence, an extra output layer has been

added to the standard Tiny-YOLOv4 [44]. Tiny-YOLOv4

with 3 layers (3l) achieved an accuracy of 91.5% with FPS

of 28. Our approach achieves an accuracy of 92.59% and

19 FPS on the Jetson Xavier. Considering both speed and

accuracy, the Smart Crane approach has high accuracy on

top-view small human detection, which is an imperative

factor when it comes to workforce safety and still fulfil the

speed requirement for our use case.

5.3 Model size

Table 4 and Fig. 9 show the average model size versus the

average Billion Floating-Point Operations (BFLOPS) of

the concerned models. According to the results, the

Table 3 Execution hyperparameters

Hyperparameters Values

Image size in pixel 608 9 608

Number of iteration 30,000

Batch size 64

Initial learning rate 0.008

Solver SGDR

Momentum coefficient 0.9

Weight decay 0.001

Fig. 5 The integration with Reolink camera. The customised camera

is attached to the crane hook (a). The NVIDIA Jetson Xavier is

connected to a monitor for human detection through the Real-Time

Messaging Protocol (RTMP) (b)
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standard Tiny-YOLOv4 had the smallest model size and

the BFLOPS of 23.5 and 14.5, respectively.The standard

Tiny-YOLOv3 has the model size and the BFLOPS of 34.7

and 11.6. The standard Tiny-YOLOv4 (3l) had the model

size and the BFLOPS of 24.5 and 17.1, respectively. The

model size of CraneNet is (42.9 MB) with 24.5 BFLOPS.

The standard YOLOv4 had the model size of 256 and 127.2

BFLOPS which is not light enough for our use case on the

Jetson Xavier. Our approach, on the other hand, is highly

accurate whilst still maintaining the trade-off between

accuracy and speed.

5.4 Results at different altitude

The accuracy of the proposed model was also evaluated at

different altitudes, and the accuracy was 93.2, 94.3, 93.4,

92.0 and 90.1 at the altitudes of 10, 20, 30, 40 and 50

meters, respectively.

5.5 Results with public dataset

Since our collected dataset is private, we have also com-

pared the performance of our model with two public

datasets suitable for our use case. For this purpose, the

Standford Drone Dataset (SDD) [55] and Visdrone 2019

dataset [56] were chosen for this purpose. The SDD dataset

was chosen due to images being taken from top-view

perspective. The SDD Dataset is a very large-scale dataset

taken in a real-world university campus with six classes of

objects. Since the orthoimagery contains limited informa-

tion for object detection, we used a subset of it with four

scenes, named bookstore, hyang, death circle and little,

respectively [57]. The videos were shortened to videos of

1-min length by removing the repetitive, unuseful frames.

Totally 42,462 frames were extracted from the aforemen-

tioned scenes (bookstore (12,304), death circle (5,513),

hyang (18,404) and little (6,247)). Three classes of objects

(pedestrian, Biker and car) were selected for comparison.

The Visdrone 2019 dataset as a second dataset was selected

Table 4 Accuracy, speed,

model size and BPLOPS of

different models

Index Model Accuracy (mAP) Speed (FPS) Model size (MB) BFLOPS

1 Standard Tiny-YOLOv4 90 31 23.5 14.5

2 Standard Tiny-YOLOv3 86.0 29 34.7 11.6

3 Standard Tiny-YOLOv4(3l) 91.5 28 24.5 17.1

4 Standard YOLOv4 93.62 6.1 256 127.2

5 Our approach 92.59 19 42.9 24.5

Table 5 Accuracy and speed of different models with SDD dataset

Model Input size Pedestrian (mAP) Biker (mAP) Car (mAP) Accuracy (mAP) Speed (FPS) GPU

Standard YOLOv3 416 � 416 73.52 51.33 61.8 62.23 46.94 TITAN X

PeleeNet 304 � 304 68.10 59.02 74.26 67.13 30.21 TITAN X

PeleeNet ?DMS 304 � 304 69.27 60.14 75.44 68.28 23.60 TITAN X

Our approach 304 � 304 60.28 58.66 77.13 65.35 93.2 TITAN X

Our approach 416 � 416 61.25 60.04 80.60 67.29 75.8 TITAN X

Our approach 416 � 416 61.25 60.04 80.60 67.29 26.5 Jetson

Our approach 608 � 608 67.50 63.34 79.61 70.15 19 Jetson

Fig. 6 mAP for pedestrian, biker and car objects using SDD dataset.

The turquoise bar represents the pedestrians. The purple bar shows the

bikers, and the gray indicates the car. The accuracy of pedestrians,

bikers and cars was 73.52%, 51.33% and 61.8% with an input size of

416 for YOLOv3. The accuracy of pedestrians, bikers and cars was

68.10%, 59.02% and 74.26% for PeleeNet. The accuracy of

pedestrians, bikers and cars was 69.27%, 60.14% and 75.44% for

PeleeNet?DMS. The accuracy of pedestrians, bikers and cars was

60.28, 58.66, 77.13 for CraneNet with the input size of 304, 61.25%,

60.04% and 80.60% with input size of 416 and 67.50%, 63.34% and

79.61% with the input size of 608
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due to images were captured from a drone and at distance

and thereby being small in size and suitable to be used to

further prove the robustness of our proposed model. The

Visdrone 2019 dataset was collected and manually anno-

tated by the AISKYEYE with 288 videos (261,908 frames

and 10,209 static images). The images covers various

scenarios in 14 various cities containing different objects

such as pedestrian, vehicles, bicycles under different

weather and lighting conditions with more than 2.6 million

bounding boxes.

The CraneNet was compared with Standard YOLOv3

[20], PeleeNet [58], and PeleeNet?DMS [57] with Deep

Motion Saliency (DMS) [58] using SDD. Apart from

Fig. 7 Example of human detection at different altitudes in an

industrial operational site. The images on the first row show the

human detection up to 10 m; images on the second row show the

human detection up to 20 m. The third row displays the human

detection up to 30 m, and the last row illustrates the human detection

up to 50m
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Jetson Xavier and for the sake of comparison, we also

evaluated the result of our approach with the input size of

304 and 416 on TITAN X Platform (a computer with an

NVIDIA TITAN X GPU with 12 GB RAM), since the

results of compared models have been evaluated on TITAN

X GPU in literature [43] [20].

Regarding the standard YOLOv3 being trained with

SDD, based on Table 5 and Fig. 6, the average accuracy of

62.23% was obtained with a speed of 46.94 FPS on an

NVIDIA TITAN X (Pascal) GPU device [58]. The accu-

racy of pedestrians, bikers and cars was 73.52%, 51.33%

and 61.8% with an input size of 416 for YOLOv3. As

apparent from the results, the overall accuracy is lower

with an input size of 416 (62.23% against 67.29%). In

addition, YOLOv3 introduces high power consumption and

computational overhead to embedded devices such as a

Jetson Xavier [59] with FPS of around 10 with the input

size of 416 which is slow and unsuitable for our use case.

In terms of PeleeNet, the accuracy of pedestrians, bikers

and cars was 68.10%, 59.02% and 74.26%. Although the

overall accuracy of 67.13% was achieved, which is slightly

higher than that of CraneNet (65.35%) with the input size

of 304, the FPS of 30.21 was obtained on an NVIDIA

TITAN X (Pascal) GPU device [58] that is three times less

than our approach on TITAN X and thereby slow and

computationally expensive for our use-case on Jetson.

Similarly, PeleeNet?DMS model achieved 23.60 FPS on a

TITAN X GPU device with an input size of 304, which is

more than 4 times lower than our approach with 93.2 FPS

on TITAN X that makes it slow and unsuitable for our use-

case on Jetson. Although the accuracy is higher (68.28%

against 65.35%). The accuracy of pedestrians, bikers and

cars was 69.27%, 60.14% and 75.44% for PeleeNet?DMS.

The accuracy of pedestrians, bikers and cars was 61.25 %,

62.04% and 80.60% for CraneNet with input size of 416,

and 67.50%, 63.34% and 79.61% with the input size of

608. In terms of CraneNet approach, the results demon-

strate that the proposed model can achieve the best accu-

racy and speed trade-off which was imperative for the

success of the project.

To further prove the robustness of the proposed algo-

rithm apart from Standford dataset, it was also trained with

Visdrone 2019 and compared to SlimYOLOv3 [60] as an

accurate real-time model suitable for UAV applications

and small objects. According to Table 6, our approach has

more accuracy than SlimYOLOv3 (24.44% versus 15.70%)

and faster (75.8 FPS versus 67 FPS) on TITAN X with the

input of 416.

5.6 Qualitative results

The detection results of our approach have been shown at

different altitudes up to 50 meters at different industrial

sites. To achieve these results, separate unseen testing

videos were taken at different construction sites in real

scenarios, in a complex, cluttered environment. Figure 7

illustrates some results obtained in situ. As apparent from

the results, our approach had a successful detection of

workforce on the crane operational site at different

Fig. 8 Accuracy versus Speed. The standard YOLOv4 achieved a

high accuracy of 93.62% but with 6.1 FPS. Tiny-YOLOv4 achieved

90.0% with 31 FPS on the Jetson Xavier. Standard Tiny-YOLOv3 has

the accuracy of (86.0%) with 29 FPS. Tiny-YOLOv4 with 3 layers

(3l) achieved an accuracy of 91.5% with FPS of 28. Our approach

obtained an accuracy of 92.59% and 19 FPS on the Jetson Xavier

Fig. 9 Model size versus BFLOPS. The standard Tiny-YOLOv4 had

the model size and the BFLOPS of 23.5 MB and 14.5. The standard

Tiny-YOLOv3 has the model size and the BFLOPS of 34.7 MB and

11.6. The standard Tiny-YOLOv4 (3l) had the model size and the

BFLOPS of 24.5 MB and 17.1. The model size of CraneNet is 42.9

MB with 24.5 BFLOPS. The standard YOLOv4 had the model size of

256 MB and 127.2 BFLOPS

Table 6 Comparison of results of our approach and SlimYOLOv3 on

Visdrone 2019

Models Input mAP (%) FPS Model size

(MB)

SlimYOLOv3 416 15.70 67.0 79.6

CraneNet 416 24.44 75.8 47.8
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altitudes up to 50 meters with no false negative or positive

detection in all the scenarios tested.

6 Concluding remarks and future work

The industrial operations of cranes can be hazardous to

workforce due to the operator’s lack of visibility and can

cause accidents and even fatalities on industrial sites. The

proposed Smart Crane solution reduces these hazards by

monitoring and detecting the workforce with high accuracy

from top-view and enables the operator to take concrete

and swift actions on workforce safety. The solution was

implemented on an embedded system (Jetson Xavier) and

thus is highly space friendly and portable to be deployed in

operational environments. With TensorFlow 2 as the

machine-learning platform for the proposed Smart Crane

model (CraneNet) to be executed on, the system was

optimised for detecting humans up to 50 meters of altitude,

and it has achieved 92.59% of accuracy at 19 FPS on the

power-constrained device (Jetson Xavier). Taking into

account a trade-off between accuracy and speed, the pro-

posed approach shows the best performance in small object

detection compared with state-of-the-art approaches.

Moreover, the CraneNet has been trained with the SDD

dataset and Visdrone 2019 due to containing top-view and

small-sized human objects in the images and compared it

with other architectures trained with this model. The results

have proved the efficacy of the proposed model on

resource-constrained platforms. The proposed system has

improved the safety of workforce by minimising the risks

of crane operations on industrial sites and can be employed

for other objects detection from top-view on industrial

sites. As future work, an all-day (day and night) accurate

human detection system will be designed, implemented and

expanded at more complex and cluttered industrial opera-

tional sites. For this purpose, the crane will also be

equipped with a thermal camera to capture images at twi-

light, dusk, and night. In addition, the future work will

include the detection of humans in adversarial weather

conditions, such as foggy and rainy, in which visibility is

low and makes the small object detection even harder. In

addition, the proposed novel model will also be trained for

other objects including animals as intruders to industrial

sites.
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