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Abstract
This paper presents an approach, based on machine learning techniques, to predict the occurrence of defects in sheet metal

forming processes, exposed to sources of scatter in the material properties and process parameters. An empirical analysis of

performance of ML techniques is presented, considering both single learning and ensemble models. These are trained using

data sets populated with numerical simulation results of two sheet metal forming processes: U-Channel and Square Cup.

Data sets were built for three distinct steel sheets. A total of eleven input features, related to the mechanical properties,

sheet thickness and process parameters, were considered; also, two types of defects (outputs) were analysed for each

process. The sampling data were generated, assuming that the variability of each input feature is described by a normal

distribution. For a given type of defect, most single classifiers show similar performances, regardless of the material. When

comparing single learning and ensemble models, the latter can provide an efficient alternative. The fact that ensemble

predictive models present relatively high performances, combined with the possibility of reconciling model bias and

variance, offer a promising direction for its application in industrial environment.

Keywords Machine learning � Ensemble learning � Defect prediction � Sheet metal forming

1 Introduction

Sheet metal forming is a manufacturing process that is

commonly used for producing high-volume and low-cost

components in the automotive, aircraft and home appliance

industries. In this process, forces are applied to the metallic

sheet to modify its geometry, enabling the production of

complex shapes. The forces are applied by tools whose

geometry dictates the shape of the component. The process

design is complex because only the final shape of the

component is known. Moreover, the process is highly

nonlinear due to the large deformations imposed to the

metal sheet, which presents plastic behaviour, but also as a

result of the evolutionary boundary conditions imposed by

the contact between the tools and the sheet. The conven-

tional process design is based on empirical knowledge and

an experimental ‘‘trial-and-error’’ approach. In this context,

the virtual tryout of sheet metal forming components, based

on the finite element method (FEM), has become an

indispensable industrial tool to save design effort, money

and time during the process set-up and production. The
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rationale of FEM comes from the optimization of the

process parameters, such as the tools geometry. FEM is a

deterministic numerical tool since it enables the prediction

of forming defects, such as localized necking, fracture and

springback, for a predefined set of process and material

parameters [4]. Nevertheless, it should be noticed that there

are numerous variables involved in sheet metal forming

process, which are related to the material properties, the

tools geometry and process parameters. This makes the

optimization of process conditions quite complex, partic-

ularly in the production of components which require

several stages, and thus more than one set of tools.

Therefore, the virtual tryout of sheet metal forming com-

ponents with FEM is normally performed considering

predefined material properties and values for some process

parameters, such as the friction coefficient among others.

In fact, the virtual tryout is still reliant on human expertise

used to make key decisions at different stages of the design

process. Still, even when resorting to FEM, unpredicted

defects can occur in the experimental tryout or during

production, which can be associated with the scatter

observed in material properties, tools geometry and process

parameters. The increasing competitiveness and relevance

of sustainability issues in the industries lead to growing

demands for high-quality components and reducing the

costs generated by the production of defective components

(scrap).

In this work, an approach to extract information from a

sheet metal forming processes, exposed to sources of

scatter in the material properties and process parameters, is

proposed in order to enable the prediction of defects. The

motivation is to reduce the costs and the time spent in the

production of defective sheet metal components, i.e. con-

tributing to improve the industry’s efficiency. Machine

Learning (ML) techniques are used, assuming that they can

build models able to generalize well in unseen data. In this

context, an empirical analysis of performance of ML

techniques is conducted, considering single and ensemble

classifiers. These are trained using data sets populated with

numerical simulation results of two sheet metal forming

processes: U-Channel and Square Cup. These processes

were chosen for two main reasons: (i) they are benchmark

tests commonly used to investigate the influence of the

material as well as the process parameters on the occur-

rence of forming defects; (ii) they allow fast numerical

simulation results, which is suitable for performing a large

number of simulations. Since these processes present dis-

tinct features, different types of defects were considered for

each one. Each type of defect is studied separately using a

binary classification. Moreover, the data sets are generated

for each forming process, for three steels with distinct

mechanical properties.

The paper is organized as follows: Section 2 presents

the details of the sheet metal forming processes and a

review about ML applications in this context. Section 3

describes the proposed approach for evaluating the per-

formance of both single and ensemble ML classifiers in

predicting defects in sheet metal forming processes. The

selected ML classifiers and ensemble methods are also

discussed. Section 4 introduces the FEM models for the

two forming processes under analysis. The procedure for

generating and pre-processing the data sets as well as the

evaluation metrics is also indicated. In Sect. 5, the results

are presented and discussed. Firstly, the ML classifiers are

analysed under a monolithic approach, considering also the

influence of the size of sampling data. Afterwards, the

analysis of the performance is conducted for the ensemble

approach. Finally, the performance of both single and

ensemble classifiers is compared. Section 6 presents the

conclusions and future perspectives.

2 Background

2.1 Sheet metal forming

Sheet metal forming includes simple processes, such as

bending, stretch forming and spinning, and more complex

processes, like roll forming and deep drawing [16]. Each

type of process has its specifications and parameters,

including the tools geometry. Process design becomes even

more complex when it is required to combine several

processes and/or steps to produce the component. The main

driver for the development of numerical tools, enabling the

virtual tryout of sheet metal forming components, is the

industry, in particular the automotive industry, due to the

enormous amount of components involved in car produc-

tion. The outer panels are usually the largest components,

and their production involves the most complex operations,

including deep drawing. As shown in Fig. 1, in deep

drawing the metallic sheet is plastically deformed into the

desired shape by the action of forming tools, which typi-

cally consist of a punch, a die and a blank holder. The

blank (i.e. non-deformed metal sheet) is placed over the

die, and it is forced to flow into the die cavity by the

movement of the punch; the flow of the sheet is typically

controlled with a blank holder, i.e. a tool that imposes a

constant force on the flange region of the sheet. Thus, even

for a simple forming process and assuming that the

mechanical behaviour of the metallic sheet is known, there

are many design variables to be considered, which are

related to the blank and tools geometry and with the pro-

cess control, such as the blank holder force. As previously

mentioned, the FEM-based virtual tryout of sheet metal

forming components enables a feasible process design to

12336 Neural Computing and Applications (2020) 32:12335–12349

123



be achieved through the repetitive adjustment of process

parameters based on the personal experience of the

designer. However, to fully explore the finite element

analysis, it has been combined with optimization algo-

rithms in order to determine the process parameters auto-

matically (e.g. [29, 37, 42]). This approach is more or less

computationally intensive, depending on the number of

design variables and the type of optimization algorithm

selected. The number of trial experiments (i.e. numerical

simulations) can be reduced resorting to a surrogate model

(also called meta-model), used to guide the search for

optimized parameter combinations. Different meta-model-

ing methods have been applied to the optimization of

manufacturing process parameters (e.g. [18]), including

artificial neural networks (ANNs) (e.g. [26, 34]). In the

particular case of forming processes, researchers are also

trying to explore the large amount of data generated (both

experimental and numerical) while designing new prod-

ucts, to guide the process design from its early stage with

the help of ANN meta-models to predict product feasibility

(e.g. [40, 45]). In the context of early design stages, neural

network classifiers have been applied in automating the

sheet forming selection process, as an alternative to rule-

based programmes [16]. Moreover, the robustness of the

process design is questionable when neglecting the sources

of scatter inherent to the process. The process design can

be optimum for a specific combination of parameters but

can easily lead to defective components due to slight

variations introduced by scatter. In this context, a robust

process window should be evaluated, in order to minimize

the production of defective components (e.g. [46]).

Therefore, much of the recent work has focused on statis-

tical descriptions of variability within FEM, for assessing

the sensitivity of defect predictions to the scatter of the

parameters under analysis [19, 35, 47]. In FEM, the

material properties are commonly described using physics-

based constitutive models. ML-based models have been

pursued as an alternative to this type of models (e.g.

[21, 23]), since the neural network does not require any

prior assumption on the mathematical formulation between

the input and output variables. The prime value added by

ML is the ability to unveil the intrinsic response of a

material in case of convoluted experimental data [24].

Nevertheless, some authors point out that physics-based

constitutive models continue to provide useful insights to

interpret the phenomena taking place, pursuing a different

approach that uses machine learning to construct automatic

corrections to existing models, based on data [14].

2.2 Machine learning applications to sheet metal
forming

This subsection provides an overview of the literature on

ML applications in sheet metal forming. Table 1 shows a

comparative outline of ML applications in the prediction of

forming defects [9, 13, 15, 20, 22, 25, 28, 30, 32, 39, 41]),

which is the focus of the current work. Additional appli-

cations include: (i) material parameters’ identification (e.g.

[1–3, 6]); (ii) bend angles’ prediction in laser forming

processes (e.g. [7, 10]); (iii) die roll height prediction in

fine blanking (e.g. [43, 48]); (iv) optimization of incre-

mental sheet metal forming processes (e.g. [12, 17, 44]).

The summary presented in Table 1 highlights that ML

applications have been focused on regression. In this

regard, back-propagation-based artificial neural network

(BP-ANN) is the primary option for the development of

prediction models, some of them coupled with FEM

analysis [9, 22, 28, 30, 32, 41]; ANN models trained with

genetic algorithms (GA-ANN) were also developed

[25, 39]. Most ML strategies in Table 1 are used to predict

and account for springback in steel and aluminium parts

obtained by sheet bending. This may be connected with the

fact that springback (related to the elastic recovery of the

material after tool release) is one of the main sources of

geometrical and dimensional inaccuracy in sheet metal

formed components, but also because of the simple

geometries used. Nevertheless, models were also built to

predict wrinkling and necking defects [9, 32]. In general,

the features for training the ML models are material

parameters (namely elastic and/or plastic properties) and

the initial sheet thickness. This can be related to the fact

that the standards for commercial metal sheets specify only

a minimum allowable value or a relatively large range of

values for the mechanical properties. Nevertheless, there

are models that also consider process parameters. Globally,

the literature review reveals that ML techniques to predict

defects in sheet metal forming take into account different

set-ups. Although promising results were reported,

Fig. 1 Schematic representation of the sheet metal forming process
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techniques to predict more than one type of defect for

different types of materials and forming processes have

rarely been considered. To the best of the authors’

knowledge, there are currently no studies available in the

literature regarding ML classification focused on defect

prediction in sheet metal forming processes under vari-

ability, which is the main subject of the current work.

3 Proposed approach for building defect
predictive models

This work focuses on the building of models able to predict

the occurrence of defects for different types of materials

and sheet metal forming processes under variability.

Figure 2 presents the schematic diagram of the proposed

approach, considering the branches for the monolithic and

the ensemble classifiers. The first phase of both approaches

consists in training the selected classifier. When resorting

to an ensemble model, either stacking or majority voting is

used in the learning phase. Once the training phase is

concluded, the predictive model is tested and the perfor-

mance analysis is accomplished. To simplify Fig. 2, the

predictive model is represented by only one box, although

distinct types are built depending on the approach (mono-

lithic or ensemble). To guarantee a proper comparison of

performance, each model uses the same training and testing

data, obtained from the same scaled sampling data. In

addition, the same configuration with random weights was

used.

3.1 Single learning classifier models

To accomplish the task for evaluating the best predictor of

single sheet metal forming defects, seven ML classifiers

were selected:

– Multilayer perceptron (MLP)

– Decision tree (DT)

Table 1 Summary of ML applications for the prediction of forming defects

Authors Strategy Forming process Material Features Outputs

Inamdar et al.

[20]

BP-ANN Air V-bending Steel and

aluminium

alloys (4)

Material parameters ? Process

parameters

Springback

angle ? Punch

displacement

Guo and Tang

[15]

BP-ANN Air V-bending Steel and

aluminium

alloys (5)

Sheet thickness ? Material

parameters ? Process parameters

Bending springback

angle

Miranda et al.

[28]

ANN?FEM Air V-bending Steel alloys (2) Sheet thickness ? Process parameters Punch displacement

Kazan et al.

[22]

BP-ANN?FEM Wipe bending High-strength

steel

Sheet thickness ? Process parameters Springback angle

Nasrollahi and

Arezoo [30]

BP-ANN?FEM Wipe bending on

perforated metal

sheets

Steel alloys (2) Hole number and geometry ? Process

parameters ? Type of material

Springback angle

Gisario et al.

[13]

BP-ANN Laser bending Aluminium

alloy

Starting deflection ? Process

parameters

Springback angle

Ruan et al.

[39]

BP/GA-ANN Multicurvature parts Steel and

aluminium

alloys (4)

Sheet thickness ? Process parameters Springback angles

Liu et al. [25] GA-ANN U-bending Not specified Sheet thickness ? Material

parameters ? Process parameters

Springback angle

Sharad and

Nandedkar

[41]

ANN?FEM U-bending Steel alloys (2) Sheet thickness ? Material

parameters ? Process parameters

Springback angles

Dib et al. [9] MLP?FEM

SVM?FEM

DT?FEM

RF?FEM

NB?FEM

U-bending Steel alloys (3) Sheet thickness ? Material

parameters ? Process parameters

Springback

angle ? Maximum

thinning

Phatak et al.

[32]

BP-ANN?FEM Axisymmetric cup

deep drawing

Aluminium

alloy

Material parameters Thickness ? Friction

coefficient
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– Random forest (RF)

– Naive Bayes (NB)

– Support vector machine (SVM)

– K-Nearest neighbours (KNN)

– Logistic regression (LR)

Seven ML models were created for each of the two types of

defects considered in each of the two forming processes

under analysis, for three different materials. The models

were built using Python v3.6.2 and related libraries, such as

SciPy Ecosystem and SciKit-learn, using default values for

the parameters of each classifier [5, 33]. The following

sections provide a theoretical background concerning each

of the studied classifiers.

3.1.1 Multilayer perceptron (MLP)

The multilayer perceptron (MLP) is a class of feed-forward

neural networks that consists of one input layer with n

neurons Xn ¼ ðx1; x2; :::; xnÞ, at least one hidden layer,

where the number of hidden layers is arbitrary, and one

output layer. Each layer has neurons that will connect with

the neurons of the next layer, but they cannot be inter-

connected. The MLP learning process is to adapt the

connection weights in order to obtain a minimal difference

between the network output and the desired output,

resorting to learning algorithms such as back-propagation,

which is based on gradient descent techniques.

The MLP output needs to compute the output of each

unit in each layer, considering the set of hidden layers

H ¼ ðh1; h2; :::; hnÞ and ni neurons in each hidden layer hi.

The following equation is used to calculate the output of

the first hidden layer:

hli ¼ /
X

j

wl�1
ij xj þ bli

 !
; ð1Þ

where l is the layer position in the MLP architecture, / is

the activation function, that are nonlinear functions, wl�1
ij

are the weights between the neuron i in the hidden layer

l� 1 and the neuron j in the hidden layer lþ 1. Finally, the

network output is computed by:

yi ¼ /
X

j

wl
ijh

l
j þ bli

 !
; i ¼ 1; :::; n and

l ¼ n and j ¼ 1; :::; n;

ð2Þ

where wl
ij is the weight between the neuron i in the last

hidden layer l ¼ n, which is the output layer, and the

neuron j in the output layer.

3.1.2 Decision tree (DT)

The decision tree (DT) is a nonparametric classifier that

splits data continuously, based on simple decision rules.

The choice of which feature to consider when splitting the

data on each node is made in order to maximize informa-

tion gain, which means minimizing:

F ¼
Xm

i¼1

ni

Ni

HðDiÞ; ð3Þ

where n is the number of examples in the resulting node i

with the desired label, N is the total number of examples in

the resulting node i, D represents the data in said node, and

H is an impurity function, such as entropy:

HðDÞ ¼ �
Xm

i¼1

pi logðpiÞ; ð4Þ

where p is the probability that an example in the data set

corresponds to label i. This splitting process is repeated

until each of the final nodes (leaves) only has samples with

the same label. Alternatively, a stopping criterion can be

defined in order to avoid overfitting.

Fig. 2 Proposed approach for building sheet metal defect prediction models
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3.1.3 Random forest (RF)

Random forest (RF) consists in a combination of several

randomized decision trees and aggregating their predic-

tions by averaging, characterizing the ensemble learning

method, to solve classification and regression problems. In

the binary supervised classification problem, the random

response Y takes values in {0,1} and a given input X has to

guess the value of Y. A classification rule mn is a mea-

surable function of x and training sample Tn that attempts

to estimate the label Y from x and Tn, where Tn ¼
ðX1; Y1Þ; :::; ðXn; YnÞ of independent random variables dis-

tributed the same as the independent prototype pair (X,Y),

and X ¼ fX1;X2; :::;Xng.
A random forest is a predictor consisting of a collection

of M randomized regression trees. For the kth tree in the

family, the predicted value at the query point x is denoted

by mnðx; hk; TnÞ, where hk is a random vector generated

with independent random variables of the kth tree, not

related to the past random vectors h1; :::; hk�1 but with the

same distribution.

In the classification situation, the random forest classi-

fier is obtained via majority voting among the classification

trees, that is:

mM;nðx; fh1; :::; hkg; TnÞ

¼ 1 if
1

M

XM

k¼1

mnðx; hk; TnÞ[
1

2

0 Otherwise

8
><

>:
ð5Þ

3.1.4 Naive Bayes (NB)

Naive Bayes is a classifier based on the application of the

Bayes theorem, with the (naive) assumption that every pair

of features is independent. Bayes’ theorem states that:

Pðyjx1; :::; xnÞ ¼
PðyÞPðx1; :::; xnjyÞ

Pðx1; :::; xnÞ
ð6Þ

After applying the naive assumption, this expression is

simplified to:

Pðyjx1; :::; xnÞ ¼
PðyÞ

Qn
i¼1 PðxijyÞ

Pðx1; :::; xnÞ
ð7Þ

For a given data set, the denominator will be the same for

all entries, so a proportionality is considered:

Pðyjx1; :::; xnÞ / PðyÞ
Yn

i¼1

PðxijyÞ ð8Þ

The chosen label is the one that presents the maximum

probability:

y ¼ argmaxyPðyÞ
Yn

i¼1

PðxijyÞ ð9Þ

3.1.5 Support vector machine (SVM)

Support vector machine (SVM) is supervised learning

models, used to solve classification or regression problems.

It is characterized as a discriminative classifier that finds

the optimal separating hyperplane for test data points. The

method consists in the binary classification of the training

examples with features x and labels y, where y 2 f�1; 1g,
and uses the following function for classification:

hw;bðxÞ ¼ gðwTxþ bÞ ð10Þ

The SVM classifier directly predicts 1 or �1, instead of

first estimating the probability of y being 1, where

gðzÞ ¼
1 if z� 0

�1 Otherwise

�
ð11Þ

The separating hyperplane is completely defined by ðw; bÞ.
Given a training sample of ðxn; ynÞ, the functional margin

can be defined as:

ĉn ¼ ynðwTxþ bÞ ð12Þ

Given a training set that is linearly separable, the opti-

mization problem described by the following equation

should be solved:

minc;w;b
1

2
kwj

s.t yn ¼ ðwTxnþ bÞ� 1; i ¼ 1; :::;m

ð13Þ

The above is an optimization problem with a convex

quadratic objective and only linear constraints, providing

the optimal margin classifier.

3.1.6 K-nearest neighbours (KNN)

The k-nearest neighbours classifier does not create a model

with the training data. Instead, each time it performs a

prediction for a certain point, it starts by calculating the

distance between each of the training data points and the

test point. Then, the k training points that are nearest to the

test point are selected, and these are used to make the

prediction. The result of the prediction can be obtained by a

simple majority vote from the selected training points. The

KNN classifier is often known as a lazy learning since there

is no training procedure but rather an assignment of the

labels to the training instances in the first phase. In the

second phase, the computation of the distance is performed

as explained above.
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3.1.7 Logistic regression (LR)

Logistic regression (LR) studies the association between a

categorical dependent variable y and a set of independent

(explanatory) variables x, where y consists of a binary code

(0,1 or true, false) and x is numerical. With the require-

ments satisfied, this method fits a logistic curve, i.e. sig-

moid curve, to the relationship between x and y. The

sigmoid curve starts with slow, linear growth, followed by

exponential growth, which then slows again to a stable rate.

The simple logistic function is defined as follows:

y ¼ ex

1þ ex
! y ¼ 1

1þ e�x
ð14Þ

With the aim to provide more flexibility to the function, the

logistic regression formula can be extended to a form

where a and b are, respectively, the intercept of y and the

regression coefficient:

y ¼ eðaþbxÞ

1þ eðaþbxÞ ! y ¼ 1

1þ e�ðaþbxÞ
ð15Þ

3.2 Ensemble models

Ensemble methods combine single classifiers, called base

learners in this context, and are able to be more stable and

predict better than single classifiers. The rationale is to

reduce the bias and variance of the model to improve

predictions. The goal is to build a model less noisy, more

stable and less prone to overfitting. Since various base

learners are used, each one can lead to a different predic-

tion, where diversity among the base learners is a key

aspect to ensemble performance. In this work, the follow-

ing ensemble methods were used:

Majority Voting in the initial phase each base learner is

trained. Afterwards, each base learner is fed with the

testing data in order to have a prediction. The final pre-

dicted label is the one that has more than half of the votes;

Stacking similarly, in the initial phase, each base learner

is trained. Afterwards, their outputs are used as features to

train another ML classifier that is called meta-learner,

which will make the final prediction.

Taking into account that majority voting favours the use

of odd numbers of base learners, both methods were tested

using combinations of 3 and 5 base learners. All possible

combinations of the single classifiers described in Sect. 3.1

were tested. These classifiers were also tested as meta-

learner. All this leads to a total of 56 combinations, for

majority voting, and 392 combinations, for stacking.

4 Experimental set-up

4.1 Simulated data sets

The sampling data were generated using numerical simu-

lation results, obtained with DD3IMP in-house FEM code

[27, 31]. The numerical models for the U-Channel and the

Square Cup processes are shown in Fig. 3. In both cases the

total punch displacement is 30 mm. The U-Channel

Fig. 3 Finite element models of: a U-Channel; b Square Cup
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corresponds to a bending process, and thus, the sheet is

prone to significant springback. This type of defect is

negligible in the Square Cup. In both cases, the occurrence

of excessive thinning is an indicator of necking, which can

also be controlled using the maximum equivalent plastic

strain (EPS). Thus, two types of defects were considered:

(i) springback and maximum thinning, for the U-Channel,

and (ii) maximum EPS and maximum thinning, for the

Square Cup. The tool geometry and the initial in-plane

shape of the sheet are assumed fixed. Each process was

simulated considering three steels commonly used in the

automotive industry that cover a wide range of mechanical

properties and applications: DC06 (mild steel), HSLA340

(high-strength low-alloy steel) and DP600 (dual-phase

steel). The constitutive model considers: (i) elastic beha-

viour, Young’s modulus, E, and Poisson ratio, m; (ii) plastic
behaviour, yield stress, Y0, strength and hardening coeffi-

cients, C and n, and anisotropy coefficients r0, r45 and r90.

The initial sheet thickness t0 is also considered. The vari-

ability in the input features related to the material param-

eters is typified by a normal distribution, with mean (l) and
standard deviation (r) values shown in Table 2.

Two input features related to process parameters were

also considered: the friction coefficient and the blank

holder force (BHF). The mean value of the friction coef-

ficient is 0.144 for all materials, with r/l ¼ 20% [19]. For

the BHF, two mean values were considered, which corre-

spond to a lower and an upper level of the process window.

For the U-Channel, the mean values used were 4.9 and 19.6

kN, while for the Square Cup, they were 2.45 and 9.8 kN.

For each BHF value, the variability is r/l = 5%. Thus, the

variability of a total of 11 features was considered in

analysis of both forming processes, for the three materials.

In this context, random numerical simulations were per-

formed within the range of variation of the input features

(see Table 2). The numerical simulations using the mean

values of the input features presented in Table 2 lead to a

non-defective solution, which is considered as a reference

solution. A defect occurs when the output value obtained

from the random simulations is greater than that of the

reference solution, whose values are presented in Table 3.

4.2 Data set pre-processing

The data sets were split in training (70%) and testing data

(30%). Data scaling was performed in all the data sets. A

maximum of 2000 experiments (i.e. numerical simulation

results) was considered for each material and forming

process. The data were randomly shuffled in order to repeat

the process 30 times (runs).

Table 2 Mean value and

standard deviation of the

material input features [35, 36]

Materials C (MPa) n Y0 (MPa) E (GPa) r0 r45 r90 t0 (mm)

DC06 l 565.32 0.259 157.12 206 1.790 1.510 2.270 0.780

r 26.85 0.018 7.16 3.85 0.051 0.037 0.121 0.013

HSLA340 l 673.00 0.131 365.30 210 0.820 1.070 1.040 0.780

r 32.30 0.011 10.67 7.35 0.033 0.039 0.061 0.005

DP600 l 1093.00 0.187 330.30 210 1.010 0.760 0.980 0.780

r 52.46 0.020 9.64 7.35 0.040 0.030 0.060 0.010

For each material and feature, the first row is the mean value and the second row is the standard deviation.

The Poisson ratio feature (l ¼ 0:3, r ¼ 0:015) is identical for all materials

Table 3 Reference values for

the non-defective U-Channel

and Square Cup

Material Springback (mm) Maximum thinning (%)

BHF ¼ 4:9 kN BHF ¼ 19:6 kN BHF ¼ 4:9 kN BHF ¼ 19:6 kN

U-Channel

DC06 5.67 2.62 2.85 9.58

HSLA340 8.75 5.11 2.70 7.70

DP600 11.19 8.55 2.08 5.86

Maximum EPS Maximum thinning (%)

BHF ¼ 2:45 kN BHF ¼ 9:8 kN BHF ¼ 2:45 kN BHF ¼ 9:8 kN

Square Cup

DC06 0.92 0.87 14.01 20.00

HSLA340 0.92 0.86 24.22 47.43

DP600 1.14 0.85 28.35 39.18
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4.3 Performance measures

The F-score measure is used to evaluate the performance of

both single and ensemble classifiers. This performance

metric combines both precision and recall metrics and

provides a break-even between them. The F-score is cal-

culated as the harmonic mean between precision and recall,

as follows:

Fig. 4 F-score per number of samples for the U-Channel predictive models
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F-score ¼ 2� Precision� Recall

Precisionþ Recall
; ð16Þ

where precision takes into account the proportion of

correctly classified instances (true positives (TPs)), among

all the positive instances classified (true positives (TP) and

false positives (FP)),

Fig. 5 F-score per number of samples for the Square Cup predictive models
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Precision ¼ TP

TPþ FP
; ð17Þ

and recall evaluates the percentage of correctly identified

instances of a class (TP) among all the instances of a given

class (true positives (TP) and false negatives (FN)):

Recall ¼ TP

TPþ FN
ð18Þ

5 Results and discussion

5.1 Single classifiers

Figures 4 and 5 show the evolution of the F-score values

with the sampling data size, respectively, for the U-Chan-

nel and Square Cup forming predictive models, using 200,

500, 1000, 1500 and 2000 samples. In general, for both the

U-Channel and Square Cup, the values of F-score increase

with the increase in the sampling data size; exceptions

include the cases ‘‘HSLA340-springback’’ and ‘‘DP600-

springback‘‘ with the LR classifier (see Fig. 4c, e), where

the F-score is nearly constant. Accordingly, the highest

values of F-score are generally obtained for 2000 samples,

with few exceptions. Adding more training data would

reduce variance but increase bias. Therefore, the perfor-

mance analysis will focus on the results with 2000 samples,

which is considered the critical sampling size for this

problem [38]. Figure 6 shows the values of F-score, for the

critical sampling size, obtained by the U-Channel predic-

tive models in the cases of springback (Fig. 6b) and max-

imum thinning (Fig. 6c). The mean and standard deviation

values of the F-score were obtained from 30 runs of each

single classifier. The mean values of F-score range from

79.85% (springback prediction with DP600, using KNN—

see Fig. 6b) to 93.63% (springback prediction with

HSLA340, using MLP—see Fig. 6b), with relatively low

standard deviation values. MLP is the highest performing

classifier for predicting springback, with mean F-score

values of 91.39% (DC06), 93.63% (HSLA340) and 92.76%

(DP600), and LR is the highest performing classifier for

predicting maximum thinning, with mean F-score values of

93.28% (DC06), 92.17% (HSLA340) and 91.38%

(DP600). On the other hand, KNN is the lowest performing

classifier, with mean values of F-score close to 80% for all

materials and both defects (see Fig. 6b, c). The dissimi-

larity between the performances of the classifiers is more

noticeable for the springback (Fig. 6b) than for the maxi-

mum thinning (Fig. 6c), in which all the classifiers except

KNN are competitive.

Figure 7 shows the values of F-score, for the critical

sampling size, obtained by the Square Cup predictive

models of maximum EPS (Fig. 7b) and maximum thinning

(Fig. 7c). The mean values of F-score range from 74.65%

(maximum thinning prediction with DP600, using DT—see

Fig. 7c) to 90.50% (maximum EPS prediction with

HSLA340, using MLP—see Fig. 7b), with relatively low

standard deviation values. The MLP is the highest per-

forming classifier for predicting both the maximum EPS

and maximum thinning in all materials, with mean values

of F-score ranging from 84.37% (maximum thinning,

HSLA340) to 90.50% (maximum EPS, HSLA340); also,

the SVM classifiers show a relatively good performance.

The NB, KNN and DT classifiers are the lowest performing

classifiers.

Fig. 6 F-score of the classifiers for the distinct materials and defects regarding the U-Channel predictive models
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The results show that, for a given type of defect, most

classifiers show similar performances among the materials.

For a given material, the difference in the performance of

the classifiers between the two types of defects is more

noticeable in the U-Channel than in the Square Cup. It is

further noticed that MLP and KNN are, respectively, the

highest and the lowest performing classifiers. This indicates

that learning is an important step for finding the nonlinear

decision boundaries. In fact, KNN is a ‘‘lazy learner’’ and it

is harder to discriminate between the sought classes; thus, as

a predictor, it becomes less useful. Finally, a Friedman test

was conducted on the respective F-score values of each

classifier, to check whether the performances of the single

classifiers are significantly different; this nonparametric

statistical test allows for performance comparison when

dealing with several classifiers over multiple data sets

[8, 11]. In this test, the null hypothesis states that all single

classifiers performed equally. The rejection of this

hypothesis means that differences between the perfor-

mances of single classifiers are statistically significant. The

obtained Friedman statistic, equal to 59.82 (i.e. corre-

sponding to a p value equal to 4.89�10�11), is greater than

its critical values at significance levels of 5% (12.59) and

1% (16.81), which lead us to reject the null hypothesis.

5.2 Ensemble classifiers

Tables 4 and 5 present the best combinations of the clas-

sifiers obtained for majority voting and stacking ensembles,

respectively. The mean and standard deviation values of

the F-score were obtained from 30 runs of each ensemble.

When comparing both tables, the use of stacking ensembles

generally leads to an increase in the performance relatively

to majority voting; the increase in performance corre-

sponds to more than 1.5% in the case of the Square Cup

(see cases ‘‘HSLA340—maximum EPS’’ and ‘‘DC06—

maximum thinning’’ in Table 5). The opposite occurs only

for the maximum thinning prediction in the U-Channel (see

cases ‘‘U-Channel—Maximum Thinning’’ in Tables 4

and 5), where a maximum performance reduction in 0.4%

is obtained for DP600. In the case of stacking ensembles,

the area under the curve (AUC) metric was determined (see

Table 5), which depicts the trade-off between the true-

positive rate and the false-positive rate. The relatively high

values of AUC (generally above 90% average

Table 4 F-score for the majority voting ensembles

Material Algorithms F-score (%)

U-Channel–springback

DC06 DT, MLP, SVM 90:82� 1:07

HSLA340 DT, MLP, SVM 92:90� 0:93

DP600 DT, MLP, SVM 92:17� 0:93

U-Channel–maximum thinning

DC06 DT, MLP, LR 93:42� 0:75

HSLA340 RF, MLP, LR 92:24� 0:90

DP600 DT, MLP, LR 91:98� 1:17

Square Cup–maximum EPS

DC06 RF, DT, KNN, MLP, SVM 88:45� 1:26

HSLA340 KNN, MLP, SVM 88:87� 1:19

DP600 RF, DT, KNN, MLP, SVM 89:58� 1:47

Square Cup–maximum thinning

DC06 RF, DT, MLP, SVM, LR 87:62� 1:39

HSLA340 DT, MLP, SVM 83:58� 1:35

DP600 DT, MLP, SVM 83:80� 1:54

Fig. 7 F-score of the classifiers for the distinct materials and defects regarding the Square Cup predictive models
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performance) and their low variance (ca. 1%) confirm the

high robustness of the stacking ensembles.

The smallest standard deviation values were obtained in

both springback and maximum thinning U-Channel

ensembles, respectively, stacking for DP600 (see Table 5)

and majority voting for DC06 (see Table 4). The low

values of standard deviations on all the 30 runs in all the

experiments reveal a great deal of stability in the procedure

as well as relatively good significance of the results.

The performance comparison between single and ensemble

classifiers shows that the latter provide generally better defects

predictors. In particular, in stacking ensembles it is expected

that the meta-learner is prone to less errors by reducing error

variance and thus generalizing well in the test set. Ensemble

methods combine severalmachine learning techniques into one

predictive model in order to decrease variance and bias, or

improve predictions. The fact that the single classifiers already

provide relatively high performances (ca. 85%, on average) and

thus are stable learners; the best combinations of the classifiers

obtained for the majority voting and stacking ensembles (ca.

90% average performance) do not show to outperform signif-

icantly the single classifiers. On the other hand, the overall

increase in the ensembles’ performance is coupledwith a lower

variance, which promotes robustness and stability of the pro-

cedure and allows a better bias–variance trade-off.

6 Conclusion

In this study, machine learning techniques were used for

predicting defects of sheet metal forming processes. The

same sampling data were applied to generate single

learning and ensemble models. These data were obtained

using numerical simulations of two forming processes,

U-Channel and Square Cup, with three different materials.

In general, the performance of single classifiers increases

with the increase in the sampling data size, showing a

stabilization that enables the definition of a critical sam-

pling size. Considering the critical sampling size, the

results show that, for a given type of defect, most single

classifiers show similar performances among the materials.

The best combinations of the classifiers obtained for the

majority voting and stacking ensembles can provide better

predictors than single classifiers (particularly when using

stacking ensembles); however, the performance differences

are small. Ensemble models allow a better trade-off

between bias and variance, and it is expected they perform

well in real data from sheet metal forming industry. In fact,

the relatively high F-score values coupled with their low

variance motivate the application of the proposed approach

in industrial environment, in order to assess its feasibility

as a decision support tool for predicting defects in sheet

metal forming. Further studies will focus on the develop-

ment of ML regression models for predicting sheet metal

forming defects, and the subsequent performance com-

parison with response surface methodology and kriging

regression models.
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