Soft Computing (2020) 24:1315-1333
https://doi.org/10.1007/s00500-019-03969-6

METHODOLOGIES AND APPLICATION l‘)

Check for
updates

Neural collision avoidance system for biomimetic autonomous
underwater vehicle

Tomasz Praczyk'

Published online: 5 April 2019
© The Author(s) 2019

Abstract

Autonomous underwater vehicles (AUVs) are underwater robots which are able to perform certain tasks without the help
of a human operator. The key skill of each AUV is the capability to avoid collisions. To this end, appropriate devices and
software are necessary with the potential to detect obstacles and to take proper decisions from the point of view of both the
task and safety of the vehicle. The paper presents a neural collision avoidance system (NCAS) designed for the biomimetic
autonomous underwater vehicle (BAUV). The NCAS is a component of the path following and collision avoidance system
(PFCAS), which as the name implies is responsible for safely leading the vehicle along a desired path with collision avoidance.
The task of NCAS is to make decisions regarding vehicle maneuvers in the horizontal plane, but only in the close proximity
of the obstacles. It is implemented as an evolutionary artificial neural network designed by means of a neuro-evolutionary
technique called assembler encoding with evolvable operations (AEEO). The paper outlines operation and construction of
the BAUV as well as the PFCAS, the role of the NCAS in the entire system, and briefly presents AEEO as well as reporting

on the experiments performed in simulation.

Keywords Neural networks - Underwater vehicle - Biomimetic robot - Collision avoidance - Autonomy

1 Introduction

Currently, the underwater environment is increasingly being
explored by humans. Previously, only submarines, sub-
mersibles, and divers in heavy, uncomfortable diving suits
visited the marine depths. Today, underwater technology is
becoming more and more accessible, even for the common
man. Underwater vehicles, manned and unmanned, are cur-
rently used for various tasks, e.g., monitoring underwater
infrastructure such as pipelines and oil rigs, monitoring the
state of coral reefs, and for detection and neutralization of
mines, and, of course, also for pleasure. The most frequently
used type of underwater vehicles is the remotely operated
vehicle (ROV), which is controlled from distance by a human
operator. In addition to ROVs, autonomous vehicles are also
in use and, in contrast to the ROVs, they have skills to oper-
ate independently of a human or other external supporting

Communicated by V. Loia.

B Tomasz Praczyk

t.praczyk @amw.gdynia.pl
I Institute of Naval Weapon, Polish Naval Academy, Gdynia,
Poland

systems. The level of autonomy can vary; for example, it can
only refer to the power system which means that the vehicle
does not need external sources of energy, and it may also
relate to operation in some emergency situations like lack of
contact with the operator due to malfunction of communi-
cation system; usually, in this case, the vehicle has to safely
reach a predefined nearby marine area. However, the auton-
omy may also mean complete independence of the vehicle in
performing its mission from the very beginning to the end.
Of course, the mission has first to be defined by the operator,
but this is the only activity in which a human is involved, and
the rest is the responsibility of the vehicle.

In order for the vehicle to be able to act without any exter-
nal support, it has to be equipped with systems which provide
operational independence. To decide for itself what actions
has to be taken in order to achieve a desired goal, the vehicle
has to be in possession of information describing the state
of both the vehicle and its surroundings. The fundamental
information required for safe underwater navigation is infor-
mation about vehicle position, spatial orientation as well as
the presence of obstacles. This information is necessary to
lead the vehicle along a desired path specified as an ordered

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00500-019-03969-6&domain=pdf

1316

T. Praczyk

set of waypoints, and simultaneously to avoid collisions with
obstacles located along this the path.

Generally, the task above can be divided into two main
sub-tasks. The first one is to determine a global path from
a starting point to a destination point based on the informa-
tion from navigational charts with accurate bathymetry of
the sea. Usually, the global path is planned either manually
by a human operator or by means of well-known pathfinding
optimization algorithms like A-star (Dechter and Pearl 1985;
Hart et al. 1968), and this takes place before the start of the
vehicle mission. The second task is dedicated to safe vehicle
navigation between successive waypoints in the presence of
obstacles laying in the vehicle’s global path and is performed
by vehicle systems.

The current paper is focused only on the latter task, and
in general, three approaches can be used for that purpose
(Campbell etal. 2012; Holtung Eriksen 2015; Tan 2006). The
first of these is the so-called deliberative or sense-plan-act
approach which is, in fact, the global path planning method
applied locally. This means that the output product of the
approach is the whole collision-free path between the current
position of the vehicle and the next waypoint. To determine
the path, different techniques can be used, e.g., heuristic
search methods (Naeem et al. 2012; Tan 2006; Young-il et al.
2004; Yang et al. 2010) (A* algorithm, its modifications, and
others), evolutionary (Kanakakis and Tsourveloudis 2007,
Nikolos et al. 2007; Smierzchalski 1999; Smierzchalski and
Michalewicz 2005; Szlapczynski and Szlapczynska 2012),
and ant colony algorithms (Zeng et al. 2009). The condition
for application of the approach above is a map of the under-
water environment built based on the information gathered
by vehicle sensors.

The main problem with applying these methods to colli-
sion avoidance is their computational complexity resulting
from their inherent search or population nature. They gen-
erally cannot give a guaranty of finding a collision-free
solution in an assumed short period; how long they work
mostly depends on the conditions they are dealing with. In
most situations at sea, they will work properly and with-
out delay; however, there may be situations, e.g., a suddenly
detected underwater object, when they may fail by provid-
ing a collision-free plan too late. All this makes the methods
above suited rather for either offline global path planning or
planning in conditions when there is no need to make rapid
decisions.

The second approach, known as reactive or sense-act, has
alocal nature meaning that it relies only on local information
directly from sensors or from a map, and it then generates a
single maneuver for a next step, not the entire path to a next
waypoint. Generally, the main drawback of this approach is
locality and, in consequence, globally non-optimal paths and
sometimes even becoming trapped in dead ends. On the other
hand, the advantage over deliberative methods is high speed,

@ Springer

which makes them appropriate for applications where a fast
response is required.

The example of the reactive approach is the virtual force
field (VFF) algorithm (Im and Oh 2000; Im et al. 2002; Kwon
et al. 2005) which builds a model of attracting and repuls-
ing forces affecting a vehicle moving in an environment. The
former forces attract the vehicle to a next waypoint and some-
times also to a predefined path, whereas the latter ones push
it back from obstacles. To determine the magnitude of forces,
angle and distance parameters to all force sources are applied
which are usually additionally preprocessed, for example, by
means of fuzzy logic. The resulting force indicates the direc-
tion of movement for the vehicle.

An extension of the VFF is a vector field histogram (VFH)
(Borenstein and Koren 1991) which models the surroundings
of the vehicle in the form of three- or two-dimensional grids
with appropriately situated obstacles. The grid representation
is then converted into a histogram which shows density of
the obstacles in different directions and in this way makes it
possible to choose a direction with the lowest density.

The other example of the reactive approach is the dynamic
window algorithm (DWA) (Holtung Eriksen 2015; Fox et al.
1997). In contrast to the above two approaches, it controls
the vehicle by determining progressive and angular velocities
instead of indicating directions. Each velocity pair corre-
sponds to a predicted circular vehicle trajectory, and the task
of the algorithm is to find a pair which maximizes an objec-
tive function including three different components. The first
component is responsible for leading the vehicle toward a
next waypoint, the second “repulses” it from the obstacles,
whereas the third promotes fast movement of the vehicle.

In Wilson et al. (2003), a reactive algorithm is proposed
called a line-of-sight counteraction navigation (LOSCAN)
which is meant for two-ship encounter situations. As the
authors of Wilson et al. (2003) mention, their algorithm takes
its idea from missile proportional navigation with the differ-
ence that a missile objective is to capture the target, whereas
the task of LOSCAN is to avoid it. The basic concept of
the LOSCAN is to increase the misalignment between the
ship relative velocity and the line of sight through providing
appropriate acceleration commands. The algorithm works in
two stages: first, a risk assessment is performed, and then, if
a risk of collision exists, it generates navigation commands
to avoid a collision.

A separate family of reactive approaches is based on fuzzy
logic (Harris and Moore 1989; Kanakakis et al. 2004; Kim
and Kim 2009). In Kanakakis et al. (2004), fuzzy logic frame-
work is applied on three levels, that is, on sensor fusion,
collision avoidance, and motion control levels. The first level
is responsible for producing possibilities of collision in four
cardinal directions, i.e., front, right, left, and back. Each
direction can be described by the following possibilities: not
possible, possible, and highly possible. Then, the collision

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1317

avoidance module supplied with the calculated possibilities,
along with pitch and heading errors, determines how pitch
and heading should be changed, for example, in the follow-
ing way: left fast, left slow, down fast, down slow. The errors
mentioned above point to a next waypoint. In addition to a
new direction of movement, the collision avoidance module
also indicates the surge speed by producing the following
values: slow, normal, and high. In the final step, the motion
control module transforms outputs of the previous level into
specific controls for vehicle drive.

In Kim and Kim (2009), fuzzy reasoning is applied on
two levels, i.e., collision avoidance and collision risk degree
computation level. In the former case, the collision risk is
calculated based on distance of the closest point of approach
(DCPA) and time of the closest point of approach (TCPA),
that is, two parameters which are commonly used by navi-
gators to evaluate risk of collision with a tracked object. In
turn, the collision avoidance is performed according to an
algorithm which for a small obstacle runs fuzzy reasoning
with the purpose of indicating a maneuver in the horizon-
tal plane. Once a wide obstacle is detected, first, the vehicle
goes up, and then, it tries again to apply a maneuver in the
horizontal plane. To fix a collision-free maneuver, the fuzzy
reasoning module indicates a narrow vertical sector in front
of the vehicle toward which it should move.

Application of artificial neural networks (ANNs) for
collision avoidance is presented in Chang and Gaudiano
(1998),Guerrero-Gonzlez et al. (2011). In Chang and Gaudi-
ano (1998), a general neural method is defined and tests on a
small land vehicle are reported, whereas in Guerrero-Gonzlez
et al. (2011) adaptation of the method to an underwater vehi-
cleis given. The ANN proposed in the above papers is trained
in an unsupervised manner to avoid obstacles. While train-
ing, the vehicle moves in a cluttered environment, collides
with obstacles and, in this way, the ANN that controls the
vehicle learns which signals on sensors and which controls
lead to collisions. In the operation phase, the appearance of a
“colliding” signal on sensors activates neurons which block
controls that contribute to the collision.

Neural collision avoidance system (NCAS), presented in
the current paper, is the next representative of the neural
reactive approach for underwater vehicles. The NCAS is a
component of the path following and collision avoidance sys-
tem (PFCAS), and, like the solution described in Kim and
Kim (2009), it is responsible for collision avoidance in the
horizontal plane in the close proximity of obstacles. Chang-
ing depth and maneuvering away from the obstacles is the
task of other PFCAS components.

The NCAS and PFCAS were designed for the AUV as
presented in Fig. 1 which, due to its biomimetic drive (fins
instead of a traditional screw propeller), is called biomimetic
AUV, in short, BAUV. The task of this vehicle is generally to
follow a predefined path with collision avoidance and pro-

(b)

Fig.1 BAUYV used in preliminary experiments at a pool

vide simultaneous recording data from cameras and sonar.
Construction of the vehicle, including the above-mentioned
systems, started in simulation because of the high cost of
tests with the application of the a real vehicle and the very
high cost of mistakes committed in the early phases of vehi-
cle construction. Moreover, the tests in simulation made it
possible to examine key components of the BAUV, e.g., the
PFCAS, in conditions which are hard to obtain in the real
world.

Originally, the PFCAS had an algorithmic form and
its parameters were determined in an evolutionary manner
(Praczyk 2015a). Although the performance of the evolution-
ary tuned PFCAS was generally satisfactory, in most testing
scenarios it was fixing safe paths; however, there were sit-
uations in which the system failed. The consequence was
the decision to modify the PFCAS by changing the method
for determining collision-free maneuvers in the horizontal
plane. Due to the successful application of ANNSs in a colli-
sion avoidance system designed for an autonomous surface
vehicle (ASV) (Praczyk 2015b), the decision was made to
apply ANNs in the BAUV. In the experiments reported in
Praczyk (2015b), it appeared that ANNs used to control the
ASYV successfully coped with avoiding collisions with both
stationary and moving obstacles. In addition to the effective-
ness itself, a key feature of ANNs which decided about their
use in ASV was their high processing speed compared to
planning methods. As a result of a specific construction of a
BAUV obstacle detection system! which requires a vehicle’s

! Two narrow-sighted echo-sounders.

@ Springer

1318

T. Praczyk

Z el S \"\:\. S SSS
SRS

Fig.2 Environment used in experiments

ability to make quick decisions, the high speed of ANNs is
also a desirable feature which was taken into account when
choosing them as the BAUV collision avoidance system.

To train collision avoidance ANNS, in Praczyk (2015b), a
neuro-evolutionary method called assembler encoding with
evolvable operations (AEEO) (Praczyk 2015c) was used. In
the BAUYV, the same method was applied to construct a col-
lision avoidance ANN which in the paper is named neural
collision avoidance system.

In order to appropriately prepare the NCAS, intense exper-
iments in a simulated underwater environment were carried
out. The environment presented in Fig. 2 was designed to
include “mountains” of different heights and covered areas
with the purpose of making it challenging for the NCAS
and the entire PFCAS. In the experiments, two collision
avoidance solutions were compared, that is, the original fully
algorithmic PFCAS (APFCAS) and the PFCAS combined
with the NCAS (PFCAS-NCAS). The current paper reports
the experiments and presents all the above-mentioned sys-
tems. The rest of the paper is organized as follows: Sect. 2
outlines the real BAUV and its simulation model used in the
experiments, Sect. 3 specifies APFCAS, PFCAS-NCAS, and
other BAUV components that are involved in obstacle avoid-
ance, Sect. 4 describes AEEOQ, that is, the neuro-evolutionary
method applied to design the NCAS, Sect. 5 reports the exper-
iments, and the final section summarizes the paper.

2 Vehicle and its model

The BAUV whose collision avoidance system is the main
subject of the paper consists of a number of hardware and
software components. They can all be divided into seven
functional parts, i.e., drive, energy system, sensors, collision
avoidance, navigation, communication, and control. From
the point of view of collision avoidance, the most important
elements of the vehicle are: drive, sensors, and navigation.
As for the drive, the BAUV is equipped with two pectoral
fins and one tail fin with the engines. The pectoral fins are
mainly used to control depth, whereas the tail fin is applied

@ Springer

to control heading.> When the BAUV is on the surface, the
pectoral fins can also be used to change heading, in which
case they work in the opposite direction, i.e., one fin pushes
the vehicle forward and the second pushes backward.

The motion of the pectoral fins is controlled with the
three parameters, i.e., frequency, amplitude, and neutral posi-
tion. Frequency and amplitude are parameters of motion,
whereas the neutral position determines the position of fins
around which their motion takes place, and each fin moves
up and down from the neutral position. In turn, the tail fin
is controlled with two parameters, i.e., neutral position and
frequency, the amplitude is constant in this case.

Characteristic of a fin-propelled vehicle is oscillation of its
motion in the horizontal plane which forced the project team
to reduce the obstacle detection system to only three echo-
sounders located at the top, bottom, and front of the vehicle
and facing up, forward, and down. Application of a more
advanced system equipped, for example, with a ring of sonar
sensors covering a wider area in front of the vehicle would be
at least problematic because of the above-mentioned oscilla-
tions.

In the experiments with the collision avoidance system
reported in the paper, a simulation model of the BAUV was
applied with the inclusion of oscillations in the horizontal
plane. In order to maximally speed up calculations during
evolutionary training of the NCAS, the model was not con-
structed in the traditional way, i.e., as a set of differential
equations, but rather as a combination of recorded behavior
of the traditional model (in the form of matrices with recorded
parameters of the model in selected maneuvers, e.g., during
turning left/right) and C++ implementation, whose task was
to “glue” pieces of records into one coherent model. This
way, calculations performed during simulations and associ-
ated with repeated, intense use of the model were shortened
several times.

Construction of the model in the form of recorded behav-
iors of the vehicle and then “gluing” by means of the
specialized software has yet another very important pur-
pose. Namely, it enables quick and easy modeling of almost
every underwater vehicle, including further versions of the
BAUYV and its successors. To perform simulations on another
vehicle, it is necessary to record its behavior for selected
maneuvers, to replace the matrices that currently represent
the BAUV with matrices that specify this vehicle and finally
to gently tune some parameters of the “gluing” software. It
is assumed that it is a considerably easier and faster pro-
cess than building the model of the vehicle according to the
traditional approach.

To perform simulations with collision-avoiding BAUYV,
in addition to the vehicle itself, its vision system, i.e., its

2 Because the vehicle is not equipped with a velocity sensor, the only
controlled parameters are heading and depth.

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1319

sensors, had also to be modeled. Two virtual echo-sounders
were applied as the vehicle sensors, the first looked straight
ahead, whereas the second looked down and both of them
were installed in the front of the BAUV. To simulate the oper-
ation of echo-sounders, the distance was measured between
a current position of the BAUV and a first point located on
the straight line being a prolongation of the observation line
of the echo-sounder.

The last vehicle component crucial for collision avoid-
ance is the navigational system which provides information
about position (latitude, longitude, depth), and spatial orien-
tation of the vehicle (roll, pitch, yaw). In the real vehicle,
this information is acquired from GPS (on the surface), an
inertial unit, a speed estimator, and a pressure sensor. In
the simulations, the assumption was that all the navigational
information provided by the above sensors/devices was avail-
able to the collision avoidance system. At each point of the
simulation, the system knew an accurate vehicle position and
spatial orientation.

3 Collision avoidance

Three different BAUV software components are involved in
collision avoidance. The first is responsible for handling sig-
nals provided by echo-sounders, and then for their filtration
and interpretation. The task of the next one is to build a map
of the environment, to plan collision-free paths, and also to
determine different variants of collision-free maneuver. The
last component is responsible for collision avoidance near
the obstacles and is implemented in the form of the afore-
mentioned APFCAS and PFCAS-NCAS.

3.1 Obstacle detection and localization

The first layer in the entire collision avoidance system per-
forms preprocessing of signals produced by echo-sounders.
Since the echo-sounders may generate noisy output, Kalman
filtration is used in the first stage of processing. In the sim-
ulations, this stage was omitted due to perfect indications
of virtual echo-sounders. In the next stage, the filtered signal
which is, in fact, the distance to an obstacle or the sea floor, is
converted either into coordinates of the obstacle in the local
coordinate system or into true distance to the floor. The front
echo-sounder, depending on vehicle orientation, may point
out either an obstacle or the floor, and the same applies to
the bottom echo-sounder. To determine what echo-sounders
“see,” spatial orientation of the vehicle is necessary; more-
over, outputs of both echo-sounders are compared to each
other. When an obstacle is detected, its coordinates are com-
pared to coordinates of a previously detected obstacle. When
the distance between the coordinates is above a threshold,

the detected obstacle is passed on to the mapping process;
otherwise, it is neglected.

3.2 Mapping, path planning, collision-free
maneuvers

After receiving the obstacle, the mapping process tests
whether it overlaps with other obstacles added previously to
the map. If so, the obstacle is neglected, if not, it is inserted
into the map as a new obstacle. Since the obstacles are repre-
sented in the map as spheres of a definite radius, it is assumed
that they overlap if the degree of the coverage exceeds thirty
percent.3

An important responsibility of the mapping process is also
to generate safe local paths to a next waypoint included in
the global path. This task is performed in two different situa-
tions, and for that purpose, two distinct algorithms are used.
A form of A-star algorithm is run periodically to propose
a collision-free path when the vehicle is far away from all
obstacles and no rapid vehicle response is necessary. When
any safe maneuver cannot be found reactively due to all direc-
tions being blocked by obstacles, a quick planning algorithm
described in Praczyk (2016) is used.

The decision to rely on the BAUV collision avoidance sys-
tem mainly on a reactive basis is the consequence of sensors
being applied for obstacle detection. Only one echo-sounder
in front of the vehicle, which, as already mentioned, is the
consequence of horizontal vehicle oscillations, causes fre-
quent changes in the environment map. The vehicle observes
only a very narrow strip ahead with the effect that the map ini-
tially includes only one obstacle, of course, if it exists. Each
change of vehicle heading moves the front echo-sounder to a
neighboring fragment of the environment and if an obstacle
is in the way, it is added to the map. In a new environ-
ment region, each change of heading produces a new obstacle
which often forces the vehicle to change direction of move-
ment. Application of path planning algorithms as the main
collision avoidance tool would lead, in that situation, to con-
tinuous re-planning, which would be ineffective and, in the
close proximity of obstacles, also dangerous.

Since the mapping process is the only software component
which is in possession of complete knowledge about the envi-
ronment, its task is also to help the PFCAS in determining
collision-free maneuvers or, more strictly, the directions of
motion that avoid obstacles. To this end, the mapping process,
on demand of the PECAS, provides four different horizon-
tal directions as presented in Fig. 3 (numbered from 1 to 4),
including three which are collision-free. Direction no. 1 is
the nearest collision-free maneuver from the current vehi-
cle heading (direction no. 0) when turning left, direction no.
2 is the same except when turning right, direction no. 3 is

3 This parameter was fixed arbitrarily.

@ Springer

1320

T. Praczyk

Way-point

Fig.3 Directions determined by mapping process

the nearest collision-free maneuver from heading to a next
waypoint which is colliding and is numbered as 4.

3.3 APFCAS

The APFCAS leads the vehicle along a path specified as a list
of waypoints. When necessary, the system avoids collisions
by changing heading or depth. The high-level pseudo-code
of the APFCAS is presented in Fig. 4.

The moveBack operation changes the direction of vehi-
cle motion to the opposite direction, e.g., if the vehicle
moves forward, moveBack changes the maneuver to move
backward, if the vehicle goes up, moveBack changes the
maneuver to go down. The reverse maneuver is stopped when
the vehicle is a safe distance from obstacles and is able to
continue its mission.

The task of the moveForward operation is high-level
control of vehicle heading, depth, and speed which means
that moveForward determines values of the parame-
ters, whereas the low-level control system decides how to
achieve them by means of drive. The general algorithm
of moveForward is presented in Fig. 5 and shows that
control of vehicle parameters is performed in three almost
independent steps implemented by operations setSpeed,
setHeading, setDepth whose pseudo-code is given in
Figs. 6,7, 8 and 9.

The operation of set Speed is reduced to only adjusting
the speed of the vehicle to the distance to the closest obstacle.
If the distance is greater than an assumed threshold, the speed
is set to a desired value attached to a description of a goal
waypoint, otherwise it is reduced to a small value equal to
SPEED_CLOSE_OBSTACLES which, as with other param-
eters of the APFCAS, was optimized in the evolutionary way
during experiments reported in Praczyk (2015a).

setHeading changes the heading of the vehicle in two
situations, the first being when the position of the vehicle is
inside a virtual spherical obstacle and obstacles are detected
above and below the vehicle, whereas the second is when
the distance from the recent update of the heading is greater
than an assumed threshold. The first situation may take place

@ Springer

when collision with an obstacle is not detected by vehicle sen-
sors; however, the vehicle position is inside a virtual obstacle
added to the environmental map. In that case, when obsta-
cles sensed by vehicle sensors make it impossible to change
depth, the heading is altered, otherwise, the vehicle goes up
or down. Periodical update of vehicle heading is performed
to respond to different external forces which push the vehi-
cle from a desired path to a waypoint and is performed every
thresholdDistanceFromLastTurn meters and the
valueof thresholdDistanceFromLastTurndepends
mainly on the distance from the obstacles, however, it can
also be radically reduced to zero meters when a new obstacle
is added to the map. Regardless of the situation, the heading
value that is provided to the low-level control by means of
setParameter is determined by the getHeading func-
tion which is supported by the mapping component of the
PFCAS.

A new heading determined by getHeading is pro-
duced, in fact, by the mapping component and is either
direction no. 3, no. 1 or no. 2, the mentioned directions are
already specified in Fig. 3. First, direction no. 3 is tested
(heading := getDirection (3,wayPoint)), that
is, the collision-free direction toward the goal waypoint, and,
if the change of the vehicle heading necessary to achieve the
new heading is lower than thresholdangle, the direc-
tion no. 3 is accepted and sent to the low-level control,
otherwise, getHeading selects from directions no. 1 or
2 (getDirection function) and decides on the direction
which needs the smallest change of vehicle heading.

setDepth function which, as the name implies, is
responsible for control of the vehicle depth, on the one hand,
maintains a safe distance from the sea bottom and, on the
other hand, also minimizes the difference between a desired
depth defined in goal waypoint and the current vehicle depth.
When the vehicle is inside a virtual obstacle and there is no
collision risk above or below the vehicle, the change of depth
is dependent of param; otherwise, the vehicle depth is a bal-
ance between collision risk with the obstacles and the sea
floor and the maintenance of desired vehicle parameters.

In total, the APFCAS has 18 parameters which affect its
operation. All of them were tuned in the evolutionary way
during experiments reported in Praczyk (2015a). The tuned
system was applied as the point of reference for the proposed
NCAS.

3.4 PFCAS-NCAS

The PFCAS-NCAS is, in fact, the APFCAS with a different
getHeading implementation (see Fig. 10). In this case,
determination of the vehicle heading is the responsibility of
an evolutionary artificial neural network (EANN), a recur-
rent (REANN) or feed-forward version (FFEANN), designed
by means of a neuro-evolutionary method called assem-

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1321

APFCAS: :run(wayPoints)
begin
currentWayPoint := 0;

loop until currentWayPoint < wayPoints.size()
if collision detected (vehicle hit obstacle)

moveBack() ;
else

moveForward (wayPoints [currentWayPoint]) ;

end if

distanceToWayPoint := getDistance(vPosition,wayPoints[currentWayPoint]);

if distanceToWayPoint < threshold

currentWayPoint++;
end if
end loop
end

Fig.4 Pseudo-code of APFCAS

Fig.5 Pseudo-code of
moveForward

begin

moveForward: :run(wayPoint)

distanceToObstacles := getDistance(vPosition,obstacles);
setSpeed(distanceToObstacles);
setHeading(wayPoint,distanceToObstacles) ;
setDepth(wayPoint,distanceToObstacles);

end

Fig.6 Pseudo-code of

setSpeed: :run(distanceToObstacles)

setSpeed

begin

if distanceToObstacles < threshold

setParameter (SPEED_CLOSE_OBSTACLES, SPEED) ;

else

setParameter(wayPoint.speed, SPEED) ;

end if
end

bler encoding with evolvable operations (AEEQ), described
among other things in Praczyk (2015c). Regardless of the
type, the neural network has three outputs corresponding to
three different collision-free directions produced by the map-
ping component of the PFCAS. Selection of the direction to
follow by the vehicle is indicated by the “strongest” neuron.

The input layer, depending on the network type, consists of
either ten or twelve neurons which supply the EANN with the
information about the surroundings of the vehicle, possible
heading options, direction toward the goal waypoint, and in
the case of the FFEANN, also with information about a short
history of decisions taken.

The surroundings of the vehicle are divided into eight
sectors of observation* specified in Fig. 11. The mapping
component provides the EANN information about obstacles
in six horizontal sectors, that is, sectors 3 to 8. This informa-
tion takes the form of the closeness of the obstacles scaled to
therange (0, 1), where zero means either no obstacle or a very
distant obstacle. When determining sector values, vehicle
range of vision is reduced to a threshold which is a parame-

4 The number of sectors is a compromise between accuracy and sim-
plicity of surrounding representation, too few sectors mean insufficient
information to make proper decisions, whereas too many sectors mean
many input neurons, complex architecture of the neural network and,
in effect, problems with network training.

ter of the NCAS. This way, the EANN is sensitive exclusively
to obstacles which are in the vehicle proximity determined
by the threshold. Formally, the sector values can be defined
as follows:

SVa(n) 0 if distanceToObstacles > Dpax
n) = —_ai .
2 Dnax—distanceToObstacles otherwise

D max

ey

where n is a sector number, whereas Dyy,x is the threshold
for the vehicle range of vision.

In order to indicate possible options to select by the
EANN, that is, directions which can be chosen by the vehicle
when avoiding collisions, and direction toward the goal way-
point, the network is supplied with appropriately scaled num-
bers of sectors which correspond to individual directions. For
example, when direction no. 1 is located in sector no. 3, the
EANN input corresponding to the direction is fed with the
value equal to 3/8 where 8 means the number of sectors.

Additional information provided to the FFEANN is infor-
mation about a recent vehicle maneuver and the time elapsed
since performing the maneuver. The NCAS assumes six vehi-
cle maneuvers, i.e., move forward, move back, turn left, turn
right, go up, and go down. Each maneuver has a number
assigned, and as before, the network receives the numbers

@ Springer

1322 T. Praczyk

Fig.7 Pseudo-code of setHeading: :run(wayPoint,distanceToObstacles)
setHeading begin
if distanceToObstacles < 0 //vehicle 1n51de obstacle
if obstacles above and below vehic
setParameter(getHeadlng(wayP01nt) HEADING) ;

positionLastTurn := vPosition;
end if
else
distanceFromLastTurn := getDistance(vPosition,positionLastTurn);

if distanceFromLastTurn < thresholdDistanceFromLastTurn;
setParameter(getHeading(wayPoint) ,HEADING) ;

positionLastTurn := vPosition;
end if
end if
end
Fig.8 Pseudo-code of getHeading: :run(wayPoint)
getHeading begin
heading := getDirection(B,wayPoint,vPosition,obstacles);

angle := getAngle(vHeading,heading);
if angle > thresholdAngle
headingl := getDirection(1l,vPosition,vHeading,obstacles);
heading? := getDirection(2,vPosition,vHeading,obstacles);
anglel := getAngle(vHeading,headingl);
angle2 := getAngle(vHeading,heading?2);
if anglel < angle2
heading := headingl;

else
heading := heading?2;
end if
end if
return heading;
end
Fig.9 Pseudo-code of setDepth: :run(wayPoint,distanceToObstacles)
setDepth begin
if distanceToObstacles < 0 //vehicle inside obstacle
if no obstacles above vehicle
setParameter (vDepth/param,DEPTH) ;
else
setParameter (vDepth*param,DEPTH) ;
end if
else
if vDepth !'= wayPoint.depth;
//adjust depth to conditions
end if
end if
end
Fig. 10 Pseudo-code of neural getHeading::run(wayPoint)
variant of getHeading begin
input[1-6] := getVehicleSurrounding(vPosition,vHeading,obstacles);
input[7-9] := getDirections(wayPoint,vPosition,vHeading,obstacles);
input[10] := getDirectionToWayPoint(wayPoint,vPosition,vHeading);
if EANN is feed-forward
input[11] := getLastManeuver();
input [12] := getDurationLastManeuver() ;
end if

output := EANN.run(input);
if output([1] > output[2] and output[1] > output[3]
return getDirection(l,vPosition,vHeading,obstacles);
else if output[2] > output[1] and output[2] > output[3]
return getDirection(2,vPosition,vHeading,obstacles);
else
return getDirection(S,wayPoint,VPosition,obstacles);

end if
end

@ Springer

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1323

front: sector 3

30 deg

left-front: right-front:
above: sector 1 sector 5 sector 4
75 deg r$'| 75 deg
VEHICLE L |
(@)
] 75deg | [| 75deg
below: sector 2 left-back: right-back:
sector 7 30 deg sector 6

back: sector 8

Fig. 11 Sectors around the vehicle

scaled to the range (0, 1). The duration of the maneuver is
passed on to the network as a value 1/k where & is the number
of iterations performed since the start of the maneuver.

In total, the networks were supplied with the follow-
ing input signals: input 1. ..6—information about obstacles
around the vehicle, each input corresponds to a different
sector, input 7. ..10—information about direction to a next
waypoint and directions that correspond to possible vehi-
cle maneuvers, each input is an encoded number of sector,
input 11 (only FFEANN)—recent vehicle maneuver, input
12 (only FFEANN)—duration of the recent maneuver.

4 Assembler encoding with evolvable
operations

Assembler encoding with evolvable operations (AEEO) orig-
inates from a generative neuro-evolutionary method called
assembler encoding (AE) (Praczyk and Szymak 2011). In
AE, an ANN is represented in the form of a linear program
consisting of operations with predefined implementations
and data. The task of the program is to create a network
definition matrix (NDM) defining a single ANN. To form
the program and, in consequence, an ANN, a cooperative
coevolutionary algorithm (CCEGA) (Potter 1997; Potter and
De Jong 2000) is used. The genetic algorithm generates
operations (parameters of operations; as mentioned above,
implementations are defined beforehand) and data which
combined together form a program. Each program builds
NDM which is then transformed into an ANN. To this end,
the matrix has to store all the information necessary to con-
struct a network. This information is included in both the
size and the individual items of the matrix, scaled always to
the range (—1, 1). The size of NDM determines a maximum
number of neurons in an ANN, whereas individual items of
the matrix define weights of interneuron connections, i.e., an
item NDM][i, j] determines a link from neuron i to neuron
Jj. Apart from the basic part, NDM also contains additional
columns that describe parameters of neurons, e.g., type of
neuron (sigmoid, radial, linear, etc.) and bias (see Fig. 12)
(Praczyk 2015d).

fnputnewrony 0 | 0.2[0.3| 0 |-0.7| 0.1
fmputneurony-0.9 [0 | 1 [-0.5| -1 | 0.9

hladen " 05| 0 | 0 |-0.5/ 0.3| 0.2
outputnedroy 0 (0.3| O | 0.6 0.1]0.5

-1
if(abs(type_of_neuron)<=0.5)
then

sigmoid
else

linear

Fig. 12 The way of encoding ANN in the form of network definition
matrix (NDM) (Praczyk 2015d)

In AEEO, the operations with predefined implementations
are replaced with ANNs-operations with the same task as in
the classic variant of the method. Moreover, the data used pre-
viously by the operations are completely removed from the
programs which, in AEEQO, include exclusively the ANNs-
operations. The ANNs-operations operate together on one
NDM which encodes one final ANN, and once the matrix is
completely formed, it is then transformed into the network.
To perform the task, ANNs-operations have two inputs, a
number of hidden neurons, and three outputs. The inputs indi-
cate an item in NDM updated by the operation (number of row
and column), whereas the outputs are used for three differ-
ent purposes, i.e., to determine a negotiation strength of each
ANN-operation, to determine whether the item should be
modified or not, and to determine a new value for the item. To
indicate which ANN-operation should determine the value of
a given item, negotiation outputs of all ANNs-operations are
compared. An ANN-operation with the greatest output value
is entitled to modify the item. In order for the item to be
updated, the second output of the selected ANN-operation
is tested. If the output value is greater than an assumed
threshold, the item gets a value from the third output of the
ANN-operation (see Fig. 13). Otherwise, the item remains
intact and the corresponding connection between neurons in
the final ANN is not established (Praczyk 2015d).

ANNs-operations evolve according to CCEGA. In CCE-
GA, each part of a solution evolves in a separate population.
To form a complete solution, selected representatives (usu-
ally, the best ones) of each population are combined together.
Application of this evolutionary scheme in AEEO consists

@ Springer

1324

T. Praczyk

Fig. 13 Using ANN-operations
to form NDM in AEEO

(T -threshold,

P AEEO

e~ -Maximum

number of neurons in resulting
ANN, L ANN—oper-number of
ANN-operations) (Praczyk

2015d)

ANN-operation: :run(LanN—opers],
begin
initiateNDM(0)//all items in NDM are set to 0
for i=1 , i < PAPEO

PAEEO)

max

max
for j=1, j< PAPEO 1
for [=1 s l < LANNfaper
ns; = FANNL(i,j) //negotiation strength
//FANNL(i,j) - kth output of [th ANN-operation
//i and j are inputs to network

end for
win = Index(ns) //index of winner ANN-operation

if FANNYn(i §)>T
NDM, ; = FANNY™ (i, j)

end if

end for
end for
end

ANN-operafion ™

Topology Parameters ‘

Population no. 2
Prggram

Oper. 1 ‘ Oper.q Oper. 3 ‘

Topology Parameters

Population no. 1

Parameters

Topology

Population no. 3

Fig. 14 Evolution of programs in AEEO (Praczyk 2015d)

in evolution of individual ANNs-operations in separate pop-
ulations. The number of ANNs-operations in a complete
program corresponds to the number of populations (see
Fig. 14). Each population delegates exactly one representa-
tive ANN-operation to each program. During the evolution,
programs expand gradually. In the beginning, they con-
tain only one ANN-operation from one existing population.
When the evolution stagnates, i.e., lack of progress in fitness
of generated solutions is observed over some period, a set
of populations containing ANNs-operations are enlarged by
one population. This procedure extends all programs by one
ANN-operation. Each population can also be replaced with a
newly created population. Such a situation takes place when
the influence of all ANNs-operations from a given population
on fitness of generated solutions is definitely lower than the
influence of ANNs-operations from the remaining popula-
tions (a population can be replaced when, for example, fitness
of a population, measured as the average fitness of all ANNs-
operations from the population, is definitely lower than the
fitness of the remaining populations) (Praczyk 2015d).

In individual populations, the evolution proceeds accord-
ing to Canonical GA (Goldberg 1989). At the genotypic level,
each ANN-operation is represented in the form of a variable

@ Springer

length chromosome consisting of two parts. The first short
part defines the topology of an ANN-operation, whereas the
second part includes parameters for the network (see Fig. 15).
Construction of an ANN-operation proceeds in three phases.
First, the topology of an ANN-operation is determined based
on the information contained in the first part of the chromo-
some. To this end, binary values from this part are directly
copied into NDM, and a single bit corresponds to a single
item in the matrix. When the number of bits is insufficient
to completely fill in the matrix, the whole sequence of bits is
used again. In the following phase, the parameters from the
second part of the chromosome are successively introduced
into NDM. In this case, only items equal to one are modi-
fied. The remaining items, i.e., items equal to zero, remain
intact. As before, transfer of the parameters is performed in a
loop until all the elements in NDM have a value assigned. In
the last phase, NDM is transformed into an ANN-operation
(Praczyk 2015d).

Table 1 Parameters of PFCAS (thresholdDistanceFromLastTurnl—
new obstacle is detected, thresholdDistanceFromLastTurn2—vehicle
close to obstacles, thresholdDistanceFromLastTurn3—vehicle away
from obstacles)

Parameter Value
Threshold (Fig. 4) Sm

Speed of BAUV away from obstacles 1 m/s or 2m/s
SPEED_CLOSE_OBSTACLES (Fig. 6) 0.5m/s
ThresholdDistanceFromLastTurn1 (Fig. 7) Om
ThresholdDistanceFromLastTurn2 (Fig. 7) Im
ThresholdDistanceFromLastTurn3 (Fig. 7) 10m
ThresholdAngle (Fig. 8) 40deg

Param (Fig. 9) 2

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1325
Fig. 15 Themethod of building Topology Parameters
NDM representation of
ANN-operation (Praczyk
2015d) 111000 | p1,p2,p3,p4,p5,p6,p7,p8,p9
T71 717000111 0 | [pITp2[p3 [pd [p5[p6 | p7 [p8 [p9[pl
0 [1 0[0[0 1 P2 [p3 [pd [p5 [pb6 | p7 [p8 [p9 | pl1 [p2
00 1 0 0 | [p3[pd|p5[p6|p7[p8[p9|pl|[p2]p3
1 1 0 p4 [p5 [p6 [p7 [p8 [p9 | p1 [p2 [p3 | p
0 0 1 p5 [p6 [p7 [p8 | p9 [p1 [p2 [p3 [p4 [p5
[1] 0 0 p6 [p7 [p8 [p9 [p1 [p2 [p3 [pd [p5 | p
11 [T[0 1 0| [p7 [p8 | p9 [pl [p2|p3[pd[p5|p6|p
O[O0 [T [1TT1 0 1] [(p81p9 [pl[p2 | p3[pd[p5]p6|p7|p8
pI[p2 p3[0[O0 0 [p7[p8[p9] 0
0[O0 [pd|p5|p6[0 [0 [0 [pl|p2|r |
p3| 0 [0 [0 [p7|[p8[p9[0 [0 [O
pA[p5[p6[0 [0 [0 [pl[p2[p3[0
0 [0 [p7[p8[p9[0 [0 |0 [pd[p5
p6 [0 [0 [0 [pfT[p2[p3]/ 0 [0 0
p7 [p8 [p9[0 [0 [0 [pd[p5[p6| 0
070 [pT[p2[p31 0 [0[O0 [p7[p8
final NDM

5 Experiments

The experiments took place in simulation conditions in an
environment of size: length = 100 m, width = 100 m, depth
= 20 m—see Fig. 2. In the experiments, the task of the vir-
tual BAUV, whose simulation model is outlined in Sect. 2,
was to move from a starting point to a goal point located
on two opposite sides of a mountainous area in the mid-
dle of the environment. To control the vehicle, APFCAS and
PFCAS-NCAS were applied whose key parameters are given
in Table 1.

In the first phase of the experiments, the AEEO was run
many times to evolve different variants of the NCAS, both
feed-forward and recurrent. To evaluate EANNs produced
in the evolutionary process, fifty “learning” scenarios were
applied which differed in the starting point, initial heading
and speed of the vehicle, and in the goal point. Thirty of the

which took place when the vehicle could not reach the goal
point in a maximum number of iterations I\, where i is
the number of the scenario. The value of I, was twice the
number of iterations which were needed by the APFCAS to
lead the vehicle to the goal point.

The total evaluation of each EANN was a sum of evalua-
tions obtained in scenarios in which the network was tested.
The evaluation in a single scenario was different for success
and failure in the scenario. Regardless of the scenario result,
each emerging on the surface was penalized; this way, the
EANNSs were encouraged to operate underwater. In the case
of the success in the scenario, the fewer iterations were nec-
essary to reach the goal the higher, the evaluation was. The
failure meant the evaluation that was the higher, the shorter
the distance to the goal at the end of the scenario was. For-
mally, evaluation function applied in the learning phase can
be defined as follows:

n
f(EANN) = > f;)
i=0
(I ax — Tsurface) /Iy + 1/ Dgoat, failure in ith scenario
fl= 3 L + L = Tsurtace) + (Ihax — Igoa))/Ihay, success in ith scenario (3)
0, failure in previous scenario

scenarios were already used in the experiments reported in
Praczyk (2015a) to evolve the APFCAS, which is the point
of reference for the NCAS. In all thirty scenarios as well as
in the remaining twenty, the APFCAS successfully led the
vehicle to the goal point in an assumed time.

Each evolved EANN was tested maximally in all fifty
scenarios, the tests were continued only up to the first failure

where

£
Lsurfaces
D goals
I goals
n,

evaluation received in ith learning scenario
number of iterations on surface

distance to goal point at end of scenario
number of iterations necessary to reach goal
number of learning scenarios: n = 50.

@ Springer

1326

T. Praczyk

Table 2 Parameters of
evolutionary process

Parameter Value
Max number of evolutionary generations 60,000
Probability of crossover 0.7
Probability of cut-splice 0.1
Probability of mutation 0.06

Size of tournament

Number of elite individuals

Number of subpopulations (ANN-operations)
Size of subpopulations

No. of integer genes in chromosomes

Type of neurons in ANN-operations

Hidden neurons in ANN-operations

1

1

Min =1, max =5

50

Min = 7, max = 20 (varied length chromosomes)
Sigmoid, radial, linear, sinusoid, cosinusoid

4

Type of neurons in EANNs
Hidden neurons in EANNs

Sigmoid, radial, linear, sinusoid, cosinusoid
8

The learning phase of the experiments with the parameters
specified in Table 2° was continued up to the point when a
number of successful FFEANNs and REANNSs were evolved,
that is, the networks which successfully led the vehicle to the
goal point in all the learning scenarios. The purpose was to
produce neural solutions comparable to the APFCAS, that
is, which were prepared in the same conditions and with the
same effect as their algorithmic counterpart.

The learning phase showed, generally, that evolving an
effective EANN is a highly challenging task. In order to
achieve a single fully successful EANN, many AEEO runs
were necessary, and statistically, it appeared that to produce
ten successful networks, more than two hundred evolutionary
runs were required. Moreover, it also turned out that effec-
tive feed-forward EANNs are much harder to evolve than
recurrent ones. In order to produce a successful FFEANN,
the AEEO needed about twice as many runs as in the case
of REANNSs. Since the complexity of the networks could
not be the cause, REANNS had generally more parameters
to evolve than their feed-forward counterparts and, in effect,
they were harder to learn so, it seems that the only sensible
explanation is insufficient/redundant or inappropriate input
information provided to FFEANNSs. The proof of that may
be the most efficient feed-forward network which does not
include an input neuron which supplies the network with the
information about recent vehicle maneuver. As it appeared,
in order to effectively control the vehicle, information about
the duration of the recent maneuver is sufficient. It reflects the
state of the vehicle and its readiness to changing the maneu-
ver, and the BAUV simply has certain inertia which has to
be taken into account when controlling the vehicle.

5 Parameters of evolutionary process given in Table 2 and applied in the
experiments are the most successful parameters applied in experiments
reported in Praczyk (2015b).

@ Springer

The learning phase also showed that the sector informa-
tion provided to the EANNS should take the form of scaled
distance to an obstacle, binary information about the exis-
tence of an obstacle or its absence at some distance from the
vehicle turned out to be simply too weak in order to efficiently
avoid collisions.

The next phase of the experiments was devoted to com-
parisons between the APFCAS and the selected EANNS.
The experiments took place in a modified underwater envi-
ronment in relation to the previous phase. The modification
consisted in a slight displacement of mountain obstacles and
changing their height. In this phase, the next twenty-two gen-
eralization scenarios were applied. As before, they differed in
the starting point, initial heading and speed of the vehicle, and
in the goal point. This time, evaluation of the APFCAS and
EANNs was performed based on all twenty-two scenarios,
and even in the case of failure, the evaluation was continued
up to the last scenario.

In order to compare all the collision avoidance solutions,
two criteria were used. The first, more important criterion
is the number of successful scenarios, whereas the second
criterion is the total number of iterations in all the successful
scenarios. Results achieved in that phase of the experiments
are given in the following figures.

Figure 16 presents results of all compared solutions in all
twenty-two generalization scenarios, and the NCAS is repre-
sented in the figure by networks that were the most effective
in the second phase, one FFEANN and one REANN (NDMs
of both networks are presented in Fig. 26 in “Appendix”).
The figure shows that both the APFCAS and the FFEANN
failed in three scenarios (negative values indicate failure in
scenario), and they were unable to lead the vehicle to the
goal point in the maximum number of iterations which in the
generalization phase was very high, and for each scenario
amounted to 10,000 iterations.

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1327
Fig. 16 Number of iterations 6000
necessary to lead vehicle to goal " 500
point. Negative value means §
lack of success in scenario S 4000
w
o
3000
5 W APFCAS
S 2000
= O FFEANN
= 1000
‘s REANN
o
S {1 O L LR L O L T
E 1 2 3 4 5 6 7 & 9 IO 11 12 13 14 15 16 17 18 “} Hﬁ IJ, 22
g -1000
-2000

Fig. 17 Paths of the vehicle in
generalization scenario no. 21.
All methods failed in the
scenario

number of generalization scenario

]

1
LH+HH

In the case of REANN, only one scenario did not end
in success, and the same scenario appeared, however, to be
equally challenging for the remaining methods which also
did not cope with it. Behavior of the vehicle in that scenario
is depicted in Fig. 17 which shows that regardless of col-
lision avoidance method the reason why the vehicle could
not reach the goal was the same. As it appeared, the vehi-
cle was trapped between two underwater hills. When it hit
the first hill, it started to withdraw, resulting in it hitting the
hill at its rear, which, in turn, forced the vehicle to move
forward with the effect of collision with the first hill, and
so forth. In addition to scenario no. 21, a similar situation
also happened in other unsuccessful scenarios, for example,
in scenario no 8 depicted in Fig. 18 in which the vehicle
controlled by the APFCAS was also trapped between two
obstacles.

Such behavior of the vehicle is due to the moveBack
function (see Fig. 4) which, regardless of the method, moves
the vehicle in the opposite direction to the previous maneuver
when a collision is detected. The move is continued up to the

H
(d) FFEANN

+
T

(e) REANN

point when a minimum distance to an obstacle is achieved
which guarantees a safe collision-free maneuver. Unfortu-
nately, as it turned out, such an after-collision vehicle strategy
appeared to be ineffective and needs correction.

In scenarios successful for all the methods, the REANN
was again the most effective. In the majority of them, it
needed the least iterations to reach the goal point. When com-
paring the two remaining methods, Fig. 16 shows that the
APFCAS outperforms the FFEANN, and there are a num-
ber of scenarios in which the latter method had to resort to
surfacing the vehicle which always prolonged the way (see
Fig. 19). In spite of the fact that surfacing the vehicle was
penalized during the learning phase, this strategy of colli-
sion avoidance was in some circumstances applied by all the
methods which is depicted in Figs. 20, 21, and 22.

When comparing decisions taken by the methods during
the move to the goal point, it is necessary to state that they are
often almost the same or very similar as shown, for example,
in Figs. 23, 24 and 25. Such a result proves the correctness
and effectiveness of solutions applied in the APFCAS in spite

@ Springer

1328

T. Praczyk

Fig. 18 Paths of vehicle in
generalization scenario no. 8.
Both EANNSs were successful in
scenario, whereas APFCAS
failed because of entrapment
between two obstacles

HAHAEER

Fig. 19 Paths of vehicle in
generalization scenario no. 4,
surfacing the vehicle by
FFEANN

(a) APFCAS

of the fact that they were designed by a human and only tuned
by means of evolutionary techniques.

Figure 23 also displays differences between APFCAS and
REANN. The latter method steadily leads the vehicle toward
the obstacle and avoids it by the maneuver to the right. There
are no additional exploring moves observable in front of
the obstacle which means that the collision-free maneuver
was taken based on poor information about the surround-
ing world. The vehicle is equipped with a narrow-sighted
echo-sounder which limits the ability of the vehicle to detect
obstacles to a narrow strip directly in front of it. In order
to acquire information about obstacles outside the strip and,
in effect, to take a better decision, the vehicle has to per-

@ Springer

SR SR
(a) APFCAS

(e) REANN

\I

(0 REANN

form exploring maneuvers right and left which is noticeable
in the case of REANN. Before the final obstacle avoidance
maneuver, the network gathers information about the world
in front of the vehicle, and the maneuver is almost identical to
the APFCAS one, with only a slight difference relating to the
distance to the avoided obstacle. The APFCAS leads the vehi-
cle at a greater distance from the obstacle than the REANN
which seems to result from weaker information about the sur-
rounding world. The consequence of this is a slightly longer
way of the vehicle, in the case of APFCAS, which is con-
firmed by the detailed simulation results.

Analysis of paths produced by the FFEANN-controlled
vehicle does not provide a clear answer to why this solu-

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1329

Fig.20 Paths of vehicle in
generalization scenario no. 9,
surfacing the vehicle by
APFCAS and REANN, in the
case of neural network the
surfacing is gradual

(a) APFCAS (b) FFEANN (¢) FFEANN

//////‘

N

Fig.21 Paths of vehicle in
generalization scenario no. 10,
surfacing the vehicle by
APFCAS

(a) APFCAS (c) FFEANN

(d) REANN

Fig.22 Paths of vehicle in
generalization scenario no. 19,
surfacing the vehicle by
APFCAS and FFEANN, neural
network failed in the scenario

(a) APFCAS

(¢) APFCAS

A

)
AN

(d) FFEANN (e) REANN (f) REANN

@ Springer

T. Praczyk

1330

Fig.23 Paths of vehicle in
generalization scenario no. 2

S

(b) REANN

(a) APFCAS

Fig.24 Paths of vehicle in
generalization scenario no. 7

(b) REAN
o o .

.M\’\.
HTTTIS

(a) APFCAS

Fig.25 Paths of vehicle in
generalization scenario no. 11

¢) REANN

IS & /'/{/'// e

(a) FFEANN

W Y A

(b) FFEANN

(d) REANN

@ Springer

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1331

tion appeared to be less effective than the remaining ones.
Some maneuvers and the conditions in which they were run
may suggest greater inertia of FFEANN compared to its rival
methods. For example, Fig. 25 shows that the first turn to the
right, whose purpose was to avoid the obstacle on the left-
hand side of the vehicle, was performed closer to the obstacle
and later in time than in the case of the REANN. The con-
sequence of this is a less smooth path of the vehicle and in
effect a longer route. A similar situation is visible in Fig. 21.
In this case, the second turn to the left is performed too late
compared to the same maneuver of the REANN. The effect is
a change of vehicle depth and a further turn to the left which,
as previously, prolongs the vehicle route.

6 Summary

The paper presents the application of evolutionary neu-
ral networks, both feed-forward and recurrent, to collision
avoidance problem in an underwater environment. Neural
networks evolved by means of a neuro-evolutionary method
called assembler encoding with evolvable operations were
used to control a biomimetic autonomous underwater vehicle
in the close proximity of obstacles. An algorithmic collision
avoidance system was applied as a point of reference for neu-
ral solutions. All the comparison tests were performed in a
simulation underwater environment of a mountainous nature.

All the experiments revealed that recurrent networks out-
perform feed-forward versions and the algorithmic approach.
As it turned out, the vehicle controlled by a recurrent network
successfully, without collision, performed almost all testing
scenarios. Moreover, most vehicle paths produced by that
network were shorter than those obtained with the use of the
remaining tested solutions.

The experiments also showed some drawbacks of the
entire path following and collision avoidance system which
need corrective actions. In the system, a separate component
is responsible for control of the vehicle in the event of a colli-
sion. When a collision is detected, it takes over control from
the collision avoidance component and its task is to bring
the vehicle to a state in which a safe collision-free maneu-
ver is possible. To this end, the vehicle performs the reverse
maneuver to a previous maneuver; for example, when the
recent maneuver before collision is “go ahead,” the reverse
maneuver is “go back.” The duration of the reverse maneuver
is constant in all cases regardless of the situation. Unfor-
tunately, the experiments showed that this after-collision
strategy is ineffective when obstacles are close to each other.
In this case, the vehicle moves back and forth between the
obstacles, always being in collision with one of them.

The other functionality which needs improvement is the
change of vehicle depth. One situation in which the vehicle
changes depth is with a high risk of collision for a longer
period. In this case, the depth is adjusted to the current situ-
ation; the vehicle goes up when obstacles are below it, and
down otherwise. The magnitude of a single depth change
maneuver is a relatively small constant value determined
in the evolutionary way. The assumption in this paper was
that, in the case of persistent risk of collision, the vehicle
should change depth gradually. However, as the experiments
showed, that value may be too high. During the tests, a quite
often situation was the emergence of the vehicle to the sur-
face, even though a slight change of depth was enough to
reduce the collision risk. Since one of the assumptions of the
system is to keep the vehicle underwater whenever possible,
the change depth maneuver has to be redesigned.

Despite all the aforementioned shortcomings, it seems that
as a whole the system proved its effectiveness. It was verified
in different conditions which often were highly demanding
and rather difficult to encounter in the real world. Therefore,
it seems that the system, after some improvements, can be
successfully applied on the real BAUV.

Acknowledgements The paper is supported by the Project No. DOBR-
BI04/033/13015/2013, entitled “Autonomous underwater vehicles with
silent undulating propulsion for underwater reconnaissance” financed
by Polish National Center of Research and Development. Further devel-
opment of the construction technology of biomimetic autonomous
underwater vehicles whose the collision avoidance part is presented in
the paper is intended to take place within the European Defense Agency
SABUVIS project.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing
interests.

Ethical approval This article does not contain any studies with human
participants or animals performed by any of the authors.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix: Matrices representing neural net-
works that were the most effective in the
second phase of experiments

See Fig. 26.

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1332 T. Praczyk
0 0 0 0 0 028 0 0 0 0.316 -0.927 0.326 0 0334 0 0339 0 0 0 0 0 0.340
0 0 0 -1.37 0.020 0.929 0.0888-0.992 0 0 -0.223 0.617 0.914 -1.356 0 0 0 0 0 0.017 0 0
-2.132 -0.995 0.029 0.715 0.857 0.716 -0.987-0.629-0.108 0 -0.060 -0.923 -0.581 -0.395 -0.996 0.118 0.995 0.515 -1.788 0.458 -1.759 -0.546
-1.76 0.674 0.942 0_-1.568 0 -0.979-0.5290.894 0.457 -0.459 0.896 0 -0.097 0.212 -0.311 0O 0 0 0 0.239 -0.609
-3.071 -0.665 0.691 -0.277 0 -2.367 0 0 0 0 0 0 0 0 -2.597 0.568 0 -2.591 0 0 -2.483-0.030
-3.263 0 0 0 0 0 0 -3.08 0 0 0 0 0 -297 0 0 -3.397 0_ -3.431-2876 0 0
-3.698 0 0 0 0 -3997 0 0 0 0 0 -4.092 0 0 0 0 0 -4174 0 0 0 0
0 -3926 0 -392 0 0 0 0 0 0 0 0 0 -3817 0 -3.802 0 0 0 0 0 0
-4.558 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -4345 0
-6.28 0 0 0 0 0 0 0 0 0 0 0 -6.039 0 0 0 0 0 -5987 0 0 0
-5.805 0 0 0 0 0 0 0 -5.639 0 -5.663 0 0 0 0 0 0 0 0 0 -5811 0
-7.273 0 -7.042 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-7.22 0 0 -0.915-0.902-7.377-0.604 -7.34 0 0 0 -0432 0 0 0 0 0 -7153 0 -7.116 0 0
-7.94 0 0.262-7.938-0.996 0.76 0.491 -8.012 0O 0 0 0.852 0.845 0.83 0.992 -8.15-0.684 0.704 0.63 0.986 0.144 -1
0.992 -0.939-8.744-0.998-8.776 0.703 0.993 -8.076 -0.24 -8.049 -0.482 0.995 0.793 -7.998 -0.982 -0.691 -8.93 0 0.997-0.047-0.379 -0.992
-8.766 -0.946 -0.87 -9.504 0 0 -8.509-0.941 0 0 0 0 -8.466 0 0 0.908-0.392 0 0 0 -0.915 -0.656
-10.391 0 0 0 0 0 0 0 0 0 -10.188 0 -10.184 0 -10.178 0 0 0 0 -9.082 0 0
-9.868 0 -9.645 0 0 0 0 0 0 -10.72 0 0 -9737 0 0 0 0 0 -9.812-10.585
0 0 0 0 0 0 0 0 0 0 -11.143 0 0 0 0 0 0 0 0 0 0 0
(a) NDM of FFEANN
0 0 0787 0 0 0 0.658 0 0 0 0.678 0 0 0 0.708 0 0 0 0.744 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0999 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
-0.939-0.889-0.2670.5260.9810.805 0.11 -0.655-0.999-0.70.0490.7670.9910.577-0.207-0.859-0.958-0.440.3610.93
-0.939-0.889-0.2670.5260.9810.805 0.11 -0.655-0.999-0.70.0490.7670.9910.577-0.207-0.859-0.958-0.440.3610.93
-0.939-0.889-0.2670.5260.9810.805 0.11 -0.655-0.999-0.70.0490.7670.9910.577-0.207-0.859-0.958-0.440.3610.93
-0.939-0.889-0.2670.5260.9810.805 0.11 -0.655-0.999-0.70.0490.7670.9910.577-0.207-0.859-0.958-0.440.3610.93
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(b) NDM of REANN

Fig.26 NDM:s of neural networks used in the generalization tests

References

Borenstein J, Koren Y (1991) The vector field histogram—fast obstacle
avoidance for mobile robots. IEEE Trans Robot Autom 7(3):278—
288

Campbell S, Nacem W, Irwin GW (2012) A review on improving the
autonomy of unmanned surface vehicles through intelligent colli-
sion avoidance maneuvers. Annu Rev Control 36:267283

Chang C, Gaudiano P (1998) Application of biological learning theories
to mobile robot avoidance and approach behaviors. J Complex Syst
1:79-114

Dechter R, Pearl J (1985) Generalized best-first search strategies and
the optimality of A*. J ACM 32(3):505536

Eriksen BOH (2015) Horizontal collision avoidance for autonomous
underwater vehicles, Masters Thesis, Department of Engineering
Cybernetics, Norwegian University of Science and Technology

Fox D, Thrun S, Burgard W (1997) The dynamic window approach to
collision avoidance. IEEE Robot Autom Mag 4(1):2333

Goldberg DE (1989) Genetic algorithms in search, optimization and
machine learning. Addison Wesley, Reading

Guerrero-Gonzlez A, Garca-Crdova F, Gilabert J (2011) A biologically
inspired neural network for navigation with obstacle avoidance
in autonomous underwater and surface vehicles, OCEANS, 2011
IEEE-Spain. IEEE

Harris CJ, Moore CG (1989) Intelligent identification and control for
autonomous guided vehicles using adaptive fuzzy-based algo-
rithms. Eng Appl Artif Intell 2(4):267-285

Hart PE, Nilsson NJ, Raphael B (1968) A formal basis for the heuristic
determination of minimum cost paths. IEEE Trans Syst Sci Cybern
SSC-4 2:100-107

Im K-Y, Oh S-Y (2000) An extended virtual force field based behavioral
fusion with neural networks and evolutionary programming for
mobile robot navigation. Evol Comput 2:1238-1244

@ Springer

Im K-Y, Oh SY, Han S-J (2002) Evolving a modular neural network-
based behavioral fusion using extended VFF and environment
classification for mobile robot navigation. Evol Comput 6(4):413—
419

Kanakakis V, Tsourveloudis N (2007) Evolutionary path planning and
navigation of autonomous underwater vehicles. In: Mediterranean
conference on control and automation. MED 07, 16

Kanakakis V, Valavanis K, Tsourveloudis N (2004) Fuzzy-logic based
navigation of underwater vehicles. J Intell Robot Syst 40:4588

Kim S-G, Kim Y-G (2009) An autonomous navigation system
for unmanned underwater vehicle. In: Inzartsev AV (ed) An
autonomous navigation system for unmanned underwater
vehicle, underwater vehicles. InTech. ISBN: 978-953-7619-
49-7. http://www.intechopen.com/books/underwater- vehicles/
an-autonomous-navigation-system-for-unmanned-underwater-
vehicle

Kwon K-Y, ChoJ, Joh J (2005) Collision avoidance of moving obstacles
for underwater robots. Syst Cybern Inform 4(5):86-91

Naeem W, Irwin GW, Yang A (2012) COLREGs-based collision
avoidance strategies for unmanned surface vehicles. Mechatronics
22:669-678

Nikolos IK, Zografos ES, Brintaki AN (2007) UAV path planning using
evolutionary algorithm. Stud Comput Intell: SCI 70:77111

Potter M (1997) The Design and Analysis of a Computational Model of
Cooperative Coevolution, PhD thesis, George Mason University,
Fairfax, Virginia

Potter MA, De Jong KA (2000) Cooperative coevolution: an archi-
tecture for evolving coadapted subcomponents. Evol Comput
8(1):1-29

Praczyk T (2015a) Using genetic algorithms for optimizing algorithmic
control system of biomimetic underwater vehicle. Comput Meth-
ods Sci Technol: CMST 21(4):251-260

Praczyk T (2015b) Neural anticollision system for autonomous surface
vehicle. Neurocomputing 149(Part B 3):559-572

http://www.intechopen.com/books/underwater-vehicles/an-autonomous-navigation-system-for-unmanned-underwater-vehicle
http://www.intechopen.com/books/underwater-vehicles/an-autonomous-navigation-system-for-unmanned-underwater-vehicle
http://www.intechopen.com/books/underwater-vehicles/an-autonomous-navigation-system-for-unmanned-underwater-vehicle

Neural collision avoidance system for biomimetic autonomous underwater vehicle 1333

Praczyk T (2015c) Assembler encoding with evolvable operations.
Comput Methods Sci Technol: CMST 21(3):123-139

Praczyk T (2015d) Using evolutionary neural networks to predict spatial
orientation of a ship. Neurocomputing 166:229-243

Praczyk T (2016) A quick algorithm for planning a path for
biomimetic autonomous underwater vehicle. Sci J Marit Univ
Szczec 45(117):23-28

Praczyk T, Szymak P (2011) Decision system for a team of
autonomous underwater vehicles—preliminary report. Neurocom-
puting 74(17):3323-3334

Smierzchalski R (1999) Evolutionary trajectory planning of ships in
navigating traffic areas. J] Mar Sci Technol 4:1-6

Smierzchalski R, Michalewicz Z (2005) Path planning in dynamic envi-
ronments. Stud Comput Intell: SCI 8:135153

Szlapczynski R, Szlapczynska J (2012) On evolutionary computing in
multi-ship trajectory planning. Appl Intell 37:155174

Tan CS (2006) A collision avoidance system for autonomous underwa-
ter vehicles, PhD Thesis, The University of Plymouth

Wilson PA, Harris CJ, Hong X (2003) A line of sight counteraction nav-
igation algorithm for ship encounter collision avoidance. J Navig
56(1):111-121

Yang A, Niu Q, Shao W, Li K, Irwin GW (2010) An efficient algorithm
for grid-based robotic path planning based on priority sorting of
direction vectors, In: Proceedings of international conference on
life system modelling and simulation, LSMS 2010, and interna-
tional conference on intelligent computing for sustainable energy
and environment, ICSEE 2010. Wuxi, China

Young-il L, Yong-Gi K, Kohout L (2004) An intelligent collision avoid-
ance system for AUVs using fuzzy relational products. Inf Sci
158:209-232

Zeng B, Yang Y, Xu Y (2009) Mobile robot navigation in unknown
dynamic environment based on ant colony algorithm. In: WRI
global congress on intelligent systems. GCIS 09, vol 3, p 98102

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

@ Springer

	Neural collision avoidance system for biomimetic autonomous underwater vehicle
	Abstract
	1 Introduction
	2 Vehicle and its model
	3 Collision avoidance
	3.1 Obstacle detection and localization
	3.2 Mapping, path planning, collision-free maneuvers
	3.3 APFCAS
	3.4 PFCAS–NCAS

	4 Assembler encoding with evolvable operations
	5 Experiments
	6 Summary
	Acknowledgements
	Appendix: Matrices representing neural networks that were the most effective in the second phase of experiments
	References

