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Abstract Model performance evaluation for real-time

flood forecasting has been conducted using various criteria.

Although the coefficient of efficiency (CE) is most widely

used, we demonstrate that a model achieving good model

efficiency may actually be inferior to the naı̈ve (or persis-

tence) forecasting, if the flow series has a high lag-1

autocorrelation coefficient. We derived sample-dependent

and AR model-dependent asymptotic relationships between

the coefficient of efficiency and the coefficient of persis-

tence (CP) which form the basis of a proposed CE–CP

coupled model performance evaluation criterion. Consid-

ering the flow persistence and the model simplicity, the

AR(2) model is suggested to be the benchmark model for

performance evaluation of real-time flood forecasting

models. We emphasize that performance evaluation of

flood forecasting models using the proposed CE–CP cou-

pled criterion should be carried out with respect to indi-

vidual flood events. A single CE or CP value derived from

a multi-event artifactual series by no means provides a

multi-event overall evaluation and may actually disguise

the real capability of the proposed model.

Keywords Model performance evaluation � Uncertainty �
Coefficient of persistence � Coefficient of efficiency �
Real-time flood forecasting � Bootstrap

1 Introduction

Like many other natural processes, the rainfall–runoff

process is composed of many sub-processes which involve

complicated and scale-dependent temporal and spatial

variations. It appears that even less complicated hydro-

logical processes cannot be fully characterized using only

physical models, and thus many conceptual models and

physical models coupled with random components have

been proposed for rainfall–runoff modeling (Nash and

Sutcliffe 1970; Bergström and Forsman 1973; Bergström

1976; Rodŕiguez-Iturbe and Valdés 1979; Rodriguez-Iturbe

et al. 1982; Lindström et al. 1997; Du et al. 2009). These

models are established based on our understanding or

conceptual perception about the mechanisms of the rain-

fall–runoff process.

In addition to pure physical and conceptual models,

empirical data-driven models such as the artificial neural

networks (ANN) models for runoff estimation or fore-

casting have also gained much attention in recent years.

These models usually require long historical records and

lack physical basis. As a result, they are not applicable for

ungauged watersheds (ASCE 2000). The success of an

ANN application depends both on the quality and the

quantity of the available data. This requirement cannot be

easily met, as many hydrologic records do not go back far

enough (ASCE 2000).

Almost all models need to be calibrated using observed

data. This task encounters a range of uncertainties which

stem from different sources including data uncertainty,
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parameter uncertainty, and model structure uncertainty

(Wagener et al. 2004). The uncertainties involved in model

calibration will unavoidably propagate to the model out-

puts. The simple regression models and ANN models are

strongly dependent on the data used for calibration and

their reliability beyond the range of observations may be

questionable (Michaud and Sorooshian 1994; Refsgaard

1994). Researchers have also found that many hydrological

processes are complicated enough to allow for different

parameter combinations (or parameter sets), often widely

distributed over their individual feasible ranges, to yield

similar or compatible model performances (Beven 1989;

Kuczera 1997; Kuczera and Mroczkowski 1998; Wagener

et al. 2004; Wagener and Gupta 2005). This is known as

the problem of parameter or model identifiability, and the

effect is referred to as parameter or model equifinality

(Beven and Binley 1992; Beven 1993, 2006). A good

discussion about the parameter or model equifinality was

given by Lee et al. (2012).

Since the uncertainties in model calibration can be

propagated to the model outputs, performance of hydro-

logical models must be evaluated considering the uncer-

tainties in model outputs. This is usually done by using

another independent set of historical or observed data and

employing different evaluation criteria. A few criteria have

been adopted for model performance evaluation (here-

inafter abbreviated as MPE), including the root-mean-

squared error (RMSE), correlation coefficient, coefficient

of efficiency (CE), coefficient of persistence (CP), peak

error in percentages (EQp), mean absolute error (MAE), etc.

The concept of choosing benchmark series as the basis for

model performance evaluation was proposed by Seibert

(2001). Different criteria evaluate different aspects of the

model performance, and using a single criterion may not

always be appropriate. Seibert and McDonnell (2002)

demonstrated that simply modeling runoff with a high

coefficient of efficiency is not a robust test of model per-

formance. Due to the uncertainties in the model outputs, a

specific MPE criterion can yield a range of different values

which characterizes the uncertainties in model perfor-

mance. A task committee of the American Society of Civil

Engineers (ASCE 1993) conducted a thorough review on

criteria for models evaluation and concluded that—‘‘There

is a great need to define the criteria for evaluation of

watershed models clearly so that potential users have a

basis with which they can select the model best suited to

their needs’’.

The objectives of this study are three-folds. Firstly, we

aim to demonstrate the effects of parameter and model

structure uncertainties on the uncertainty of model outputs

through stochastic simulation of exemplar hydrological

processes. Secondly, we intend to evaluate the effective-

ness of different criteria for model performance evaluation.

Lastly, we aim to investigate the theoretical relationship

between two MPE criteria, namely the coefficient of effi-

ciency and coefficient of persistence, and to propose a CE–

CP coupled criteria for model performance evaluation. In

this study we focus our analyses and discussions on the

issue of real-time flood forecasting.

The remainder of this paper is organized as follows.

Section 2 describes some natures of flood flow forecasting

that should be considered in evaluating model performance

evaluation. In Sect. 3, we introduce some commonly used

criteria for model performance evaluation and discuss their

properties. In Sect. 4, we demonstrate the parameter and

model uncertainties and uncertainties in criteria for model

performance evaluation by using simulated AR series.

Section 5 gives a detailed derivation of an asymptotic

sample-dependent CE–CP relationship which is used to

determine whether a forecasting model with a specific CE

value can be considered as achieving better performance

than the naı̈ve forecasting. Section 6 introduces the idea of

using the AR(2) model as the benchmark for model per-

formance evaluation and derives the model-dependent CE–

CP relationships for AR(1) and AR(2) models. These

relationships form the basis for a CE–CP coupled approach

of model performance evaluation. In Sect. 7, the CE–CP

coupled approach to model performance evaluation was

implemented using bootstrap samples of historical flood

events. Discussions on calculation of CE values for multi-

event artifactual series and single-event series are also

given in Sect. 7. Section 8 discusses usage of CP for per-

formance evaluation of multiple-step forecasting. Section 9

gives a summary and concluding remarks of this study.

2 Some natures of flow forecasting

A hydrological process often consists of many sub-pro-

cesses which cannot be fully characterized by physical

laws. For some applications, we are not even sure whether

all sub-processes have been considered. The lack of full

knowledge of the hydrological process under investigation

inevitably leads to uncertainties in model parameters and

model structure when historical data are used for model

calibration.

Another important issue which is critical to hydrological

forecasting is our limited capability of observing hydro-

logical variables in a spatiotemporal domain. Hydrological

processes occur over a vast spatial extent and it is usually

impossible to observe the process with adequate spatial

density and resolution over the entire study area. In addi-

tion, temporal variations of hydrological variables are

difficult to be described solely by physical governing

equations, and thus stochastic components need to be

incorporated or stochastic models be developed to
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characterize such temporal variations. Due to our inability

of observing and modeling the spatiotemporal variations of

hydrological variables, performance of flood forecasting

models can vary from one event to another, and stochastic

models are sought after for real-time flood forecasting. In

recent years, flood forecasting models that incorporating

ensemble of numerical weather predictions derived from

weather radar or satellite observations have also gained

great attention (Cloke and Pappenberger 2009). Flood

forecasting systems that integrate rainfall monitoring and

forecasting with flood forecasting and warning are now

operational in many areas (Moore et al. 2005).

The target variable or the model output of a flood

forecasting model is the flow or the stage at the watershed

outlet. A unique and important feature of the flow at the

watershed outlet is its temporal persistence. Even though

the model input (rainfalls) may exhibit significant spatial

and temporal variations, flow at the watershed outlet is

generally more persistent in time. This is due to the

buffering effect of the watershed which helps to dampen

down the effect of spatial and temporal variations of

rainfalls on temporal variation of flow at the outlet. Such

flow persistence indicates that previous flow observations

can provide valuable information for real-time flow

forecasting.

If we consider the flow time series as the following

stationary autoregressive process of order p (AR(p)),

xt ¼ /0 þ
Xp

i¼1

/ixt�i þ et ð1Þ

where xt and et respectively represent the flow and noise at

time t, and /i’s are parameters of the model. A measure of

persistence can then be defined as the cumulative impulse

response (CIR) of the AR(p) process (Andrews and Chen

1994), i.e.,

CIR ¼ 1

1� q
; ð2Þ

q ¼
Xp

i¼1

/i: ð3Þ

Figure 1 demonstrates the persistence feature of flows at

the watershed outlet. The watershed (Chi-Lan River

watershed in southern Taiwan) has a drainage area of

approximately 110 km2 and river length of 19.16 km.

Partial autocorrelation functions of the rainfall and flow

Fig. 1 An example showing higher persistence for flow at the

watershed outlet than the basin-average rainfall. The cumulative

impulse response (CIR) represents a measure of persistence (CIR).

The partial autocorrelation functions (PACF) of the rainfall and flow

series are also shown. Dashed lines in the PACF plots represent the

upper and lower limits of the critical region, at a 5 % significance

level, of a test that a given partial correlation is zero
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series (see Fig. 1) show that for the rainfall series, only the

lag-1 partial autocorrelation coefficient is significantly

different from zero, whereas for the flow series, the lag-1

and lag-2 partial autocorrelation coefficients are signifi-

cantly different from zero. Thus, basin-average rainfalls of

the event in Fig. 1 was modeled as an AR(1) series and

flows at the watershed outlet were modeled as an AR(2)

series. CIR values of the rainfall series and the flow series

are 4.16 and 9.70, respectively. The flow series have sig-

nificantly higher persistence than the rainfall series. We

have analyzed flow data at other locations and found

similar high persistence in flow data series.

3 Criteria for model performance evaluation

Evaluation of model performance can be conducted by

graphical or quantitative methods. The former graphically

compares time series plots of the predicted series and the

observed series, whereas the latter uses numerical indices

as evaluation criteria. Figures intended to show how well

predictions agree with observations often only provide

limited information because long series of predicted data

are squeezed in and lines for observed and predicted data

are not easily distinguishable. Such evaluation is particu-

larly questionable in cases that several independent events

were artificially combined to form a long series of pre-

dicted and observed data. Lagged-forecasts could have

occurred in individual events whereas the long artifactual

series still appeared to provide perfect forecasts in such

squeezed graphical representations. Not all authors provide

numerical information, but only state that the model was in

‘good agreement’ with the observations (Seibert 1999).

Thus, in addition to graphical comparison, model perfor-

mance evaluation using numerical criteria is also desired.

While quite a few MPE criteria have been proposed,

researchers have not had consensus on how to choose the

best criteria or what criteria should be included at the least.

There are also cases of ad hoc selection of evaluation

criteria in which the same researchers may choose different

criteria in different study areas for applications of similar

natures. Table 1 lists criteria used by different applications.

Definitions of these criteria are given as follows.

(1) Relative error (RE)

REt ¼
jQt � Q̂tj

Qt

� 100% ð4Þ

Qt is the observed data (Q) at time t, Q̂t is the pre-

dicted value at time t.

The relative error is used to identify the percentage

of samples belonging to one of the three groups:

‘‘low relative error’’ with RE B 15 %, ‘‘medium

error’’ with 15 %\RE B 35 %, and ‘‘high error’’

with RE[ 35 % (Corzo and Solomatine 2007).

(2) Mean absolute error (MAE)

MAE ¼ 1

n

Xn

t¼1

Qt � Q̂t

�� �� ð5Þ

n is the number of data points.

(3) Correlation coefficient (r)

r ¼
Pn

t¼1 ðQt � �QÞðQ̂t � �̂
QÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðQt � �QÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
t¼1 ðQ̂t � �̂

QÞ2
q ð6Þ

�Q is the mean of observed Q,
�̂
Q is the mean of

predicted flow Q̂.

(4) Root-mean-squared error (RMSE)

RMSE ¼
ffiffiffiffiffiffiffiffi
SSE

n

r
; ð7aÞ

SSE ¼
Xn

t¼1

ðQt � Q̂tÞ2 ð7bÞ

(5) Normalized root-mean-squared error (NRMSE)

(Corzo and Solomatine 2007; Pebesma et al. 2007)

NRMSE ¼ RMSE

sobs
ð8aÞ

sobs is the sample standarddeviationofobserveddataQ.

or

NRMSE ¼ RMSE
�Q

ð8bÞ

(6) Coefficient of efficiency (CE) (Nash and Sutcliffe

1970)

CE ¼ 1� SSE

SSTm
¼ 1�

Pn
t¼1 ðQt � Q̂tÞ2Pn
t¼1 ðQt � �QÞ2

ð9Þ

�Q is the mean of observed data Q. SSTm is the sum of

squared errors with respect to the mean value.

(7) Coefficient of persistence (CP) (Kitanidis and Bras

1980)

CP ¼ 1� SSE

SSEN

¼ 1�
Pn

t¼1 ðQt � Q̂tÞ2Pn
t¼1 ðQt � Qt�kÞ2

ð10Þ

SSEN is the sum of squared errors of the naı̈ve (or

persistent) forecasting model (Q̂t ¼ Qt�k)

(8) Error in peak flow (or stage) in percentages or

absolute value (Ep)
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Ep ¼ Qp � Q̂p

Qp

� 100% ð11Þ

Qp is the observed peak value, Q̂p is the predicted

peak value.

From Table 1, we found that RMSE, CE and MAE were

most widely used, and, except for Yu et al. (2000), all

applications used multi-criteria for model performance

evaluation.

Generally speaking, model performance evaluation

aims to assess the goodness-of-fit of the model output

series to the observed data series. Thus, except for Ep

which is a local measure, all other criteria can be viewed

as goodness-of-fit measures. The CE evaluates the model

performance with reference to the mean of the observed

data. Its value can vary from 1, when there is a perfect fit,

to -?. A negative CE value indicates that the model

predictions are worse than predictions using a constant

equal to the average of the observed data. For linear

regression models, CE is equivalent to the coefficient of

determination r2. It has been found that CE is a much

superior measure of goodness-of-fit compared with the

coefficient of determination (Willmott 1981; Legates and

McCabe 1999; Harmel and Smith 2007). Moriasi et al.

(2007) recommended the following model performance

ratings:

CE� 0:50 unsatisfactory

0:50\CE� 0:65 satisfactory

0:50\CE� 0:65 good

0:75\CE� 1:00 very good

However, Moussa (2010) demonstrated that good sim-

ulations characterized by CE close to 1 can become

‘‘monsters’’ if other model performance measures (such as

CP) had low or even negative values.

Although not widely used for model performance eval-

uation, usage of the coefficient of persistence was also

advocated by some researchers (Kitanidis and Bras 1980;

Gupta et al. 1999; Lauzon et al. 2006; Corzo and

Table 1 Summary of criteria for model performance evaluation

Applications Criteria Target variable

RMSE ra CE CP MAE NRMSE Ep RE

Schreider et al. (1997) 4 4 4 Flow

Labat et al. (1999) 4 Flow

Yu et al. (2000) 4 Flow

Markus et al. (2003) 4 4 Water quality

Anctil and Rat (2005) 4 Flow

Sarangi and Bhattacharya (2005) 4 4 4 Sediment yield

Lauzon et al. (2006) 4 4 Flow

Sahoo et al. (2006) 4 4 4 Flow, water quality

Corzo and Solomatine (2007) 4 4 4 4 Flow

Coulibaly and Evora (2007) 4 4 Precipitation, temperature

Dibike and Coulibaly (2007) 4 4 Flow

Harmel and Smith (2007) 4 4 4 Flow, water quality

Pebesma et al. (2007) 4 4 4 4 Flow

Calvo and Savi (2009) 4 4 Flow

Chang et al. (2009) 4 4 4 Flow

Lin et al. (2009) 4 4 4 4 Flow

Sauter et al. (2009) 4 4 4 Water level

Wang et al. (2010) 4 4 4 Flow

Wu et al. (2010) 4 4 4 Rainfall

Sattari et al. (2012) 4 4 4 4 Flow

Chen et al. (2013) 4 4 4 4 4 Flow

Kasiviswanathan and Sudheer (2013) 4 Flow

Chiew et al. (2014) 4 Flow

Wang et al. (2014) 4 Flow

Counts of applications 13 8 16 8 10 3 2 1

a Including applications using coefficient of determination (r2)

Stoch Environ Res Risk Assess (2017) 31:1123–1146 1127

123



Solomatine 2007; Calvo and Savi 2009; Wu et al. 2010).

The coefficient of persistence is a measure that compares

the performance of the model being used and performance

of the naı̈ve (or persistent) model which assumes a steady

state over the forecast lead time. Equation (10) represents

the CP of a k-step lead time forecasting model since Qt-k is

used in the denominator. The CP can assume a value

between -? and 1 which indicates a perfect model per-

formance. A small positive value of CP may imply

occurrence of lagged prediction, whereas a negative CP

value indicates that performance of the model being used is

inferior to the naı̈ve model. Gupta et al. (1999) indicated

that the coefficient of persistence is a more powerful test of

model performance (i.e. capable of clearly indicating poor

model performance) than the coefficient of efficiency.

Standard practice of model performance evaluation is to

calculate CE (or some other common performance mea-

sure) for both the model and the naı̈ve forecast, and the

model is only considered acceptable if it beats persistence.

However, from the research works listed in Table 1, most

research works which conducted model performance

evaluation did not pay much attention to whether the model

performed better than a naı̈ve persistence forecast. Yaseen

et al. (2015) also explored comprehensively the literature

on the applications of artificial intelligent for flood fore-

casting. Their survey revealed that the coefficient of per-

sistence was not widely adopted for model performance

evaluation. Moriasi et al. (2007) also reported that the

coefficient of persistence has been used only occasionally

in the literature, so a range of reported values is not

available.

Calculations of CE and CP differ only in the denomi-

nators which specify what the predicted series are com-

pared against. Seibert (2001) addressed the importance of

choosing an appropriate benchmark series which forms the

basis for model performance evaluation. The following

bench coefficient (Gbench) can be used to compare the

goodness-of-fit of the predicted series and the benchmark

series to the observed data series (Seibert 2001).

Gbench ¼ 1�

Pn

t¼1

ðQt � Q̂tÞ2

Pn

t¼1

ðQt � Qb;tÞ2
; ð12Þ

Qb,t is the value of the benchmark series Qb at time t.

The bench coefficient provides a general form for

measures of goodness-of-fit based on benchmark compar-

isons. The CE and CP are bench coefficients with respect

to benchmark series of the constant mean and the naı̈ve-

forecast, respectively. The bottom line, however, is what

benchmark series should be used for the target application.

4 Model performance evaluation using simulated
series

As we have mentioned in Sect. 2, flows at the watershed

outlet exhibit significant persistence and time series of

streamflows can be represented by an autoregressive

model. In addition, a few studies have also demonstrated

that, with real-time error correction, AR(1) and AR(2) can

significantly enhance the reliability of the forecasted water

stages at the 1-, 2-, and 3-h lead time (Wu et al. 2012; Shen

et al. 2015). Thus, we suggest using the AR(2) model as the

benchmark series for flood forecasting model performance

evaluation. In this section we demonstrate the parameter

and model structure uncertainties using random samples of

AR(2) models.

4.1 Parameter and model structure uncertainties

In order to demonstrate uncertainties involved in model

calibration and to assess the effects of the parameter and

model structure uncertainties on MPE criteria, sample

series of the following AR(2) model were generated by

stochastic simulation

Xt ¼ /1Xt�1 þ /2Xt�2 þ et; ð13Þ

et � iid N 0; r2e
� �

; /2j j\1; �1\
/1

1� /2

\1

It can be shown that the AR(2) model has the following

properties:

q1 ¼
/1

1� /2

; ð14Þ

q2 ¼
/2
1

1� /2

þ /2; ð15Þ

and

r2X ¼ r2e
ð1� /1q1 � /2q2Þ

ð16Þ

where q1 and q2 are respectively lag-1, lag-2 autocorrela-

tion coefficients of the random process {Xt, t = 1, 2,…},

and r2X is the variance of the random variable X.

For our simulation, parameters /1 and /2 were set to be

0.5 and 0.3 respectively, while four different values (1, 3,

5, and 7) were set for the parameter re. Such parameter

setting corresponds to values of 1.50, 4.49, 7.49, and 10.49

for the standard deviation of the random variable X. For

each (/1, /2, re) parameter set, 1000 sample series were

generated. Each series is composed of 1000 data points and

is expressed as {xi, i = 1, 2,…, 1000}. We then divided

each series into a calibration subseries including the first
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800 data points and a forecast subseries consisting of the

remaining 200 data points. Parameters /1 and /2 were then

estimated using the calibration subseries {xi, i = 1, …,

800}. These parameter estimates (/̂1 and /̂2) were then

used for forecasting with respect to the forecast sub-

series{xi, i = 801, …, 1000}. In this study, only forecast-

ing with one-step lead time was conducted. MPE criteria of

RMSE, CE and CP were then calculated using simulated

subseries {xi, i = 801, …, 1000} and forecasted subseries

fx̂i; i ¼ 801; . . .; 1000g. Each of the 1000 sample series

was associated with a set of MPE criteria (RMSE, CE, CP),

and uncertainty assessment of the MPE criteria was con-

ducted using these 1000 sets of (RMSE, CE, CP). The

above process is illustrated in Fig. 2.

Histograms of parameter estimates (û1,/̂2) with respect

to different values of re are shown in Fig. 3. Averages of

parameter estimates are very close to the theoretical value

(/1 = 0.5, /2 = 0.3) due to the asymptotic unbiasedness

of the maximum likelihood estimators. Uncertainties in

parameter estimation are characterized by the standard

deviation of /̂1 and /̂2. Regardless of changes in re,
parameter uncertainties, i.e.s/̂1

and s/̂2
, remain nearly

constant, indicating that parameter uncertainties only

depend on the length of the data series used for parameter

estimation. The maximum likelihood estimators /̂1 and /̂2

are correlated and can be characterized by a bivariate

normal distribution, as demonstrated in Fig. 4. Despite

changes in re, these ellipses are nearly identical, reasserting
that parameter uncertainties are independent of the noise

variance r2e .
The above parameter estimation and assessment of

uncertainties only involve parameter uncertainties, but not

the model structure uncertainties since the sample series

were modeled with a correct form. In order to assess the

effect of model structure uncertainties, the same sample

series were modeled by an AR(1) model through a similar

process of Fig. 2. Histogram of AR(1) parameter estimates

(/̂1) with respect to different values of re are shown in

Fig. 5. Averages of /̂1 with respect to various values of re
are approximately 0.71 which is significantly different

from the AR(2) model parameters (/1 = 0.5, /2 = 0.3)

owing to the model specification error. Parameter uncer-

tainties (s/̂1
) of AR(1) modeling, which are about the same

magnitude as that of AR(2) modeling, are independent of

the noise variance. It shows that the AR(1) model specifi-

cation error does not affect the parameter uncertainties.

However, the bias in parameter estimation of AR(1)

modeling will result in a poorer forecasting performance

and higher uncertainties in MPE criteria, as described in

the next subsection.

Fig. 2 Illustrative diagram

showing the process of (1)

parameter estimation, (2)

forecasting, (3) MPE criteria

calculation, and (4) uncertainty

assessment of MPE criteria
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4.2 Uncertainties in MPE criteria

Through the process of Fig. 2, uncertainties in MPE

criteria (RMSE, CE and CP) by AR(1) and AR(2)

modeling and forecasting of the data series can be

assessed. The RMSE is dependent on rX which in turn

depends on re. Thus, we evaluate uncertainties of the

root- mean-squared errors normalized by the sample

standard deviation sX, i.e. NRMSE (Eq. 8a). Figure 6

demonstrates the uncertainties of NRMSE for the AR(1)

and AR(2) modeling. AR(1) modeling of the sample

series involves parameter uncertainties and model

structure uncertainties, while AR(2) modeling involves

only parameter uncertainties. Although the model speci-

fication error does not affect parameter uncertainties, it

results in bias in parameter estimation, and thus increases

the magnitude of NRMSE. Mean value of NRMSE by

AR(2) modeling is about 95 % of the mean NRMSE by

AR(1) modeling. Standard deviation of NRMSE by

AR(2) modeling is approximately 88 % of the standard

deviation of NRMSE by AR(1) modeling. Such results

indicate that presence of the model specification error

results in a poorer performance with higher mean and

standard deviation of NRMSE.

Fig. 3 Histograms of parameter

estimates (/̂1, /̂2) using AR(2)

model. Uncertainty in parameter

estimation is independent of the

noise variance r2e . [Theoretical
data model Xt = 0.5Xt-1 ?

0.3Xt-2 ? et.]
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Histograms of CE and CP for AR(1) and AR(2) mod-

eling of the data series are shown in Figs. 7 and 8,

respectively. On average, CE of AR(2) modeling (without

model structure uncertainties) is about 10 % higher than

CE of AR(1) modeling. In contrast, the average CP of

AR(2) modeling is approximately 55 % higher than the

average CP of AR(1) modeling. The difference (measured

in percentage) in the mean CP values of AR(1) and AR(2)

modeling is larger than that of CE and NRMSE, suggesting

that, for our exemplar AR(2) model, CP is a more sensitive

MPE criterion with presence of model structure uncer-

tainty. Such results are consistent with the claim by Gupta

et al. (1999) that the coefficient of persistence is a more

powerful test of model performance. The reason for such

results will be explained in the following section using an

asymptotic relationship between CE and CP.

It is emphasized that we do not intend to mean that

more complex models are not needed, but just empha-

size that complex models may not always perform

better than simpler models because of the possible

Fig. 4 Scatter plots of (/̂1,/̂2)

for AR(2) model with different

values of re. Ellipses represent
the 95 % density contours,

assuming bivariate normal

distribution for /̂1 and /̂2.

[Theoretical data model

Xt = 0.5Xt-1 ? 0.3Xt-2 ? et.]

Fig. 5 Histograms of parameter

estimates (/̂1) using AR(1)

model. Uncertainty in parameter

estimation is independent of the

noise variance re
2. [Theoretical

data model Xt = 0.5Xt-1 ?

0.3Xt-2 ? et.]
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‘‘over-parameterization’’ (Sivakumar 2008a). It is of great

importance to identify the dominant processes that govern

hydrologic responses in a given system and adopt practices

that consider both simplification and generalization of

hydrologic models (Sivakumar 2008b). Studies have also

found that AR models were quite competitive with the

complex nonlinear models including k-nearest neighbor

and ANN models. (Tongal and Berndtsson 2016). In this

regard, the significant flow persistence represents an

important feature in flood forecasting and the AR(2) model

is simple enough, while capturing the flow persistence, to

suffice a bench mark series.

5 Sample-dependent asymptotic relationship
between CE and CP

Given a sample series {xt, t = 1, 2, …, n} of a stationary

time series, CE and CP respectively represent measures of

model performance by choosing the constant mean series

and the naı̈ve forecast series as the benchmark series. There

exists an asymptotic relationship between CE and CP

which should be considered when using CE alone for

model performance evaluation. From the definitions of

SSTm and SSEN in Eqs. 9 and 10, for a k-step lead time

forecast we have

Fig. 6 Histograms of the

normalized RMSE for AR(1)

and AR(2) modeling with

respect to various noise variance

r2e
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SSTm

n
!

n!1
r2X; ð17Þ

SSEN

n
!

n!1
2r2Xð1� qkÞ: ð18Þ

And thus,

SSTm

SSEN

!
n!1

1

2ð1� qkÞ
: ð19Þ

Therefore, for forecasting with a k-step lead time,

CE ¼ 1� SSE

SSTm
¼ 1� 2ð1� qkÞ

SSE

SSEN

¼ 1� SSE

SSEN

� �
þ ð2qk � 1Þ SSE

SSEN

¼ CPþ ð2qk � 1Þð1� CPÞ
¼ 2ð1� qkÞCPþ 2qk � 1

ð20Þ

Equation (20) represents the asymptotic relationship

between CE and CP of any k-step lead time forecasting

Fig. 7 Histograms of the

coefficient of efficiency (CE)

for AR(1) and AR(2) modeling

with respect to various noise

variance r2e
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model, given a data series with a lag-k autocorrelation

coefficient qk. The above asymptotic relationship is illus-

trated in Fig. 9 for various values of lag-k autocorrelation

coefficient qk.
Given a data series with a specific lag-k autocorrelation

coefficient, various models can be adopted for k-step lead

time forecasting. Equation (20) indicates that, although the

performances of these forecasting models may differ sig-

nificantly, their corresponding (CE, CP) pairs will all fall

on or near a specific line determined by qk of the data

series, as long as the data series is long enough. For

example, given a data series with q1 = 0, one-step lead

time forecasting with the constant mean (CE = 0) results

in CP = 0.5 (point A in Fig. 9). Alternatively, if one

chooses to conduct naı̈ve forecasting (CP = 0) for the

same data series, it yields CE = -1.0 (point B in Fig. 9).

For data series with qk\ 0.5, k-step lead time forecasting

with a constant mean (i.e. CE = 0) is superior to the naı̈ve

forecasting since the former always yields positive CP

values. On the contrary, for data series with qk[ 0.5, the

naı̈ve forecasting always yields positive CE values and thus

performs better than forecasting with a constant mean.

Hereinafter, the CE–CP relationship of Eq. 20 will be

referred to as the sample-dependent (or data-dependent)

Fig. 8 Histograms of the

coefficient of persistence (CP)

for AR(1) and AR(2) modeling

with respect to various noise

variance r2e
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CE–CP relationship since a sample series has a unique

value of qk which completely determines the CE–CP

relationship. It can also be observed that the slope in Eq. 20

is smaller (or larger) than 1, if qk exceeds (or is lower than)
0.5. Data series with significant persistence (high qk values,
such as flood flow series) are associated with very gradual

CE–CP slopes. The above observation explains why CP is

more sensitive than CE in Figs. 7 and 8. Thus, for real-time

flood forecasting or applications of similar nature, CP is a

more sensitive and suitable criterion than CE.

The asymptotic CE–CP relationship can be used to

determine whether a specific CE value, for example

CE = 0.55, can be considered as having acceptable model

performance. The CE-based model performance rating

recommended by Moriasi et al. (2007) does not take into

account the autocorrelation structure of the data series

under investigation, and thus may result in misleading

recommendations. This can be explained by considering a

data series with significant persistence or high lag-1 auto-

correlation coefficient, say q1 = 0.8. Suppose that a fore-

casting model yields a CE value of 0.55 (see point C in

Fig. 9). With this CE value, performance of the model is

considered satisfactory according to the performance rating

recommended by Moriasi et al. (2007). However, with

q1 = 0.8 and CE = 0.55, it corresponds to a negative CP

value (CP = -0.125), indicating that the model performs

even poorer than the naı̈ve forecasting, and thus should not

be recommended. More specifically, if one considers naı̈ve

forecasts as the benchmark series, all one-step lead time

forecasting models yielding CE values lower than 2q1 – 1

are inferior to naı̈ve forecasting and cannot be recom-

mended. We have found in the literature that many flow

forecasting applications resulted in CE values varying

between 0.65 and 0.85. With presence of high persistence

in flow data series, it is likely that not all these models

performed better than the naı̈ve forecasting.

As demonstrated in Fig. 7, variation of CE values of indi-

vidual events enables us to assess the uncertainties in model

performance.However, therewere real-timeflood forecasting

studies that conducted model performance evaluation with

respect to artifactual continuous series of several independent

events. A singleCE orCP value was then calculated from the

multi-event artifactual series. CE values based on such arti-

factual series cannot be considered as a measure of overall

model performance with respect to all events.

For models having satisfactory performance (for exam-

ple, CE[ 0.5 for individual events),
Pn

t¼1

ðQt � Q̂tÞ2 (the

numerator in Eq. 9) is much smaller than
Pn

t¼1

ðQt � �QÞ2 (the

denominator) for all individual events. Thus, if CE is cal-

culated for the multi-event artifactual series, increase in the

numerator of Eq. 9 will generally be smaller than increase

in the denominator, making the resultant CE to be higher

than most event-based CE values. Thus, using the CE or

CP value calculated from a long artifactual multi-event

series may lead to inappropriate conclusions of model

performance evaluation. We shall show examples of such

misinterpretation in the Sect. 8.

6 Developing a CE–CP coupled MPE criterion

Another essential concern of model performance evaluation

for flow forecasting is the choice of benchmark series. The

benchmark should be simple, such that every hydrologist can

Fig. 9 Asymptotic relationship

between CE and CP for data

series of various lag-

k autocorrelation coefficients qk.
(qk = 0.9, 0.8, 0.6, 0.5, 0.4, 0.2,

0, -0.2, -0.4, -0.5, -0.6,

-0.8, and -0.9.)
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understand its explanatory power and, therefore, appreciate

how much better the actual hydrological model is (Moussa

2010). The constantmean series and the naı̈ve-forecast series

are the benchmark series for the CE and CP criteria,

respectively. Although model performance evaluations with

respect to both series are easily understood and can be con-

veniently implemented, they only provide minimal advan-

tages when applied to high persistence data series such as

flow or stage data. Schaefli and Gupta (2007) also argue that

definition of an appropriate baseline for model performance,

and in particular, for measures such as the CE values, should

become part of the ‘best practices’ in hydrologic modelling.

Considering the high persistence nature in flow data series,

we suggest the autoregressive model AR(p) be considered as

the benchmark for performance evaluation of other flow

forecasting models. From our previous experience in flood

flow analysis and forecasting, we propose using AR(2)

model for benchmark comparison.

The bench coefficient Gbench suggested by Seibert (2001)

provides a clear indication about whether the benchmark

model performs better than the model under consideration.

Gbench is negative if the model performance is poor than the

benchmark, zero if the model performs as well as the bench-

mark, and positive if themodel is superior,with a highest value

of one for a perfect fit. In order to advocate usingmore rigorous

benchmarks for model performance evaluation, we developed

aCE–CP coupledMPE criterionwith respect to theAR(1) and

AR(2)models for one-step lead time forecasting.Details of the

proposed CE–CP coupled criterion are described as follows.

The sample-dependent CE–CP relationship indicates

that different forecasting models can be applied to a given

data series (with a specific value of q1, say q*), and the

resultant (CE, CP) pairs will all fall on a line defined by

Eq. 20 with q1 = q*. In other words, points on the

asymptotic line determined by q1 = q* represent perfor-

mances of different forecasting models which have been

applied to the given data series. Using the AR(1) or AR(2)

model as the benchmark for model performance evaluation,

we need to identify the point on the asymptotic line which

corresponds to the AR(1) or AR(2) model. This can be

achieved by the following derivations.

An AR(1) random process is generally expressed as

Xt ¼ /1Xt�1 þ et; et � iid N 0; r2e
� �

; /1j j\1: ð21Þ

with q1 = /1 and r2e ¼ 1� /2
1

� �
r2X . Suppose that the data

series under investigation is originated from an AR(1)

random process and an AR(1) model with no parameter

estimation error is adopted for one-step lead time fore-

casting. As the length of the sample series approaches

infinity, it yields

CE ¼ /2
1; ð22Þ

and

CP ¼ 1� r2e
2ð1� q1Þr2X

¼ 1� 1� /2
1

2ð1� /1Þ
¼ 1� /1

2
: ð23Þ

Thus,

CE ¼ ð1� 2CPÞ2 ¼ 4CP2 � 4CPþ 1: ð24Þ

Suppose that the data series under investigation is

originated from an AR(2) random process and an AR(2)

model with no parameter estimation error is adopted for

one-step lead time forecasting. It yields

CP ¼ 1� r2e
2ð1� q1Þr2X

¼ 1� ð1þ /2Þð1� /2 þ /1Þ
2

;

ð25Þ
2ð1� CPÞ
1þ /2

þ /2 � 1 ¼ /1: ð26Þ

From Eqs. 14 and 20, it yields

CE ¼ 4

1� /2
2

 !
CP2 þ 4� 8

1� /2
2

 !
CP

þ 4

1� /2
2

� 3

 !
: ð27Þ

Equations (24) and (27) respectively characterize the

parabolic CE–CP relationships of the AR(1) and AR(2)

models, and are referred to as the model-dependent CE–CP

relationships (see Fig. 10). Unlike the sample-dependent

CE–CP relationship of Eq. 20, Eqs. 24 and 27 describe the

dependence of (CE, CP) on model parameters (/1, /2).

The model-dependent CE–CP relationships are derived

based on the assumption that the data series are truly

originated from the AR(1) or AR(2) model, and forecast-

ings are conducted using perfect models (correct model

types and parameters). For a specific model family, say

AR(2), any pair of model parameters (/1, /2) defines a

unique pair of (CE, CP) on a parabolic curve determined

by /2. However, in practical applications the model and

parameter uncertainties are inevitable, and the resultant

(CE, CP) pairs are unlikely to coincide with their theo-

retical points. For model performance evaluation using the

1000 simulated series of the AR(2) model with /1 = 0.5

and /2 = 0.3 (see details in the Sect. 4), scattering of the

(CE, CP) pairs based on the AR(1) and AR(2) forecasting

models are depicted by the two ellipses in Fig. 10. The

AR(2) forecasting model which does not involve the model

uncertainty clearly outperforms the AR(1) forecasting

model.
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7 Bootstrap resampling for MPE uncertainties
assessment

7.1 Model-based bootstrap resampling

In the previous section we used simulated AR(2) sample

series to evaluate uncertainties of CE and CP. But in

reality, the true properties of the sample series are never

known and thus we propose to use the model-based boot-

strap resampling technique to generate a large set of

resampled series, and then use these resampled series for

MPE uncertainties assessment. Hromadka (1997) con-

ducted a stochastic evaluation of rainfall–runoff prediction

performance based on similar concept. Details of the

model-based bootstrap resampling technique (Alexeev and

Tapon 2011; Selle and Hannah 2010) are described as

follows.

Assuming that a sample data series {x1, x2,…, xn} is

available, we firstly subtract the mean value ð�xnÞ from the

sample series to yield a zero-mean series, i.e.,

x�t ¼ xt � �xn; t ¼ 1; 2; . . .; n: ð28Þ

A set of resampled series is then generated through the

following procedures:

(1) Select an appropriate model for the zero-mean data

series{x�t , t = 1, 2,…, n}and then estimate the

model parameters. In this study the AR(2) model is

adopted since we focus on real-time forecasting of

flood flow time series which exhibits significant

persistence. Let /̂1 and /̂2 be estimates of the AR(2)

parameters, the residuals can then be calculated as

et ¼ x�t � ð/̂1x
�
t�1 þ /̂2x

�
t�2Þ; t ¼ 1; . . .; n: ð29Þ

(2) The residuals are then centered with respect to the

residual mean ð�enÞ, i.e.
~et ¼ et � �en; t ¼ 1; . . .; n: ð30Þ

(3) A set of bootstrap residuals (et, t = 1, …, n) is

obtained by re-sampling with replacement from the

centered residuals ð~et; t ¼ 1; . . .; nÞ.
(4) A bootstrap resampled series {y1, y2, …, yn} is then

obtained as

yt ¼ ð/̂1x
�
t�1 þ /̂2x

�
t�2 þ etÞ þ �xn; t ¼ 1; . . .; n:

ð31Þ

7.2 Flood forecasting model performance evaluation

Hourly flood flow time series (see Fig. 11) of nine storm

events observed at the outlet of the Chih-Lan River

watershed in southern Taiwan were used to demonstrate

the uncertainties in flood forecasting model performance

based on bootstrap resampled flood flow series. The Chih-

Lan River watershed encompasses an area of 110 km2. All

flow series have very high lag-1 autocorrelation coeffi-

cients (q1[ 0.8) due to significant flow persistence. For

each of the nine observed flow series, a total of 1000

Fig. 10 Parabolic CE–CP relationships of the AR(1) and AR(2) models. The two ellipses illustrate scattering of (CE, CP) pairs for AR(1) and

AR(2) forecasting of 1000 sample series of the AR(2) modelXt = 0.5Xt-1 ? 0.3Xt-2 ? et. [See details in the Sect. 6.]
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bootstrap resampled series was generated through the

model-based bootstrap resampling. These resampled series

were then used for assessing uncertainties in model per-

formance evaluation.

The artificial neural network (ANN) has been widely

applied for different hydrological predictions, including

real-time flood forecasting. Thus, we evaluate the model

performance uncertainties of an exemplar ANN model for

real-time flood forecasting, using the AR(2) model as the

benchmark. In particular, we aim to assess the capability of

the exemplar ANN model for real-time forecasting of

random processes with high persistence, such as flood flow

series. In our flood forecasting model performance evalu-

ation, we only consider flood forecasting of one-step (1 h)

lead time. For small watersheds, the times of concentration

usually are less than a few hours, and thus flood forecasts

of lead time longer than the time of concentration are less

useful. Besides, if the performance of the one-step lead

time forecasts is not satisfactory, forecasts of longer lead

time (multiple-step lead time) will not be necessary.

For forecasting with an AR(2) model, the nine observed

flood flow series were divided into two datasets. The cal-

ibration dataset is comprised of 6 events (events 1, 2, 3, 4, 7

and 9) and the test dataset consists of the remaining three

events. Using flow series in the calibration dataset, flood

flows at the watershed outlet can be expressed as the fol-

lowing AR(2) random process:

xt ¼ 7:3171þ 1:2415xt�1 � 0:3173xt�2 þ et; et � iid

N 0; re ¼ 43:96m3=s
� �

ð32Þ

Thus, the one-step lead time flood forecasting model for

the watershed was established as

x̂t ¼ 7:3171þ 1:2415xt�1 � 0:3173xt�2 ð33Þ

The above equation was then applied to the 1000

bootstrap resampled series of each individual event for

real-time flood forecasting. Figure 12 shows scattering of

(CE, CP) of the resampled series of individual events. The

means and standard deviations of CE and CP are listed in

Table 2.

For ANN flood flow forecasting, an exemplar back-

propagation network (BPN) model with one hidden layer of

two nodes was adopted in this study. The BPN model uses

three observed flows (xt, xt-1, xt-2) in the input layer for

flood forecasting of xt?1. An ANN model needs to be

trained and validated. Thus, the calibration dataset of the

AR(2) modeling was further divided into two groups.

Events 1, 4 and 9 were used for training and events 2, 3 and

7 were used for validation. After completion of training

and validation, the BPN model structure and weights of the

trained model were fixed and applied to the bootstrap

resampled series of individual events. Figure 13 shows

scattering of (CE, CP) based on BPN forecasts of
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Fig. 11 Flow hydrographs of the flood events used in this study. The mean (m), standard deviation (s) and lag-1 autocorrelation coefficient (q1)
of individual flow series are also shown
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resampled series. The means and standard deviations of CE

and CP of BPN forecasts are also listed in Table 3.

With the very simple and pre-calibrated AR(2) model,

CE values of most resampled- series are higher than 0.5

and can be considered in the ratings of good to very good

according to Moriasi et al. (2007). Whereas a significant

portion of the bootstrap resampled series of events 2, 3, 6

and 9 are associated with negative CP values, suggesting

that AR(2) forecasting for these events are inferior to the

naı̈ve forecasting. Although the AR(2) and BPN models

yielded similar (CE, CP) scattering patterns for resampled

series of all individual events, the BPN forecasting model

yielded negative average CP values for six events, com-

paring to four events for the AR(2) model.

Resampled-series-wise comparison of (CE, CP) of the

two models was also conducted. For each resampled series,

CE and CP values of the AR(2) and BPN models were

compared. The model with higher values is considered

superior to the other, and the percentages of model supe-

riority for AR(2) and BPN were calculated and shown in

Table 4. Among the nine events, AR(2) model achieves

dominant superiority for four events (events 2, 4, 7 and 8),

whereas the BPN model achieves dominant superiority for

events 3 and 9 only. Overall, the AR(2) model is superior

to the BPN model for 61.5 and 54.4 % of all resampled

series in terms of CE and CP, respectively. It is also worthy

to note that the AR(2) model is superior in terms of CE and

CP simultaneously for nearly half (48.7 %) of all resam-

pled series. Han et al. (2007) assessed the uncertainties in

real-time flood forecasting with ANN models and found

that ANN models are uncompetitive against a linear

transfer function model in short-range (short lead time)

predictions and should not be used in operational flood

forecasting owing to their complicated calibration process.

Fig. 12 Model performance uncertainties in terms of (CE, CP). The linear and parabolic CE–CP relationships have been illustrated in Figs. 9

and 10. [AR(2) model for real-time flood forecasting.]
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The results of our evaluation are consistent with such

findings and reconfirm the importance of taking into

account the persistence in flood series in model perfor-

mance evaluation.

Considering the magnitude of flows (see Fig. 11), the

BPN model seems to be more superior for events of lower

flows (events 3 and 9) whereas the AR(2) model has

dominant superiority for events of median flows (events 2,

4, 7 and 8). For events of higher flows (events 1 and 5),

performance of the two models are similar. Figure 14

demonstrates that the average CE and CP values tend to

increase with mean flows of individual flood events. The

dependence is apparently more significant between the

average CP and mean flow of the event. This result is

consistent with previous findings that CP is more sensitive

Table 2 Mean and standard deviation of CE and CP of the resampled

series of individual events [AR(2) forecasting]

Event CE CP Remark

Mean SD Mean SD

1 0.7549 0.1190 0.1542 0.1227 Calibration

2 0.5600 0.1362 -0.0536 0.3041 Calibration

3 0.5369 0.3292 -0.5377 0.8172 Calibration

4 0.7858 0.0743 0.1121 0.0824 Calibration

5 0.7773 0.0909 0.2215 0.0952 Test

6 0.4311 0.2802 -0.2326 0.5939 Test

7 0.6666 0.1581 0.0372 0.1498 Calibration

8 0.7354 0.0824 0.0680 0.0780 Test

9 0.6050 0.2892 -1.292 1.3896 Calibration

Fig. 13 Model performance uncertainties in terms of (CE, CP). The linear and parabolic CE–CP relationships have been illustrated in Figs. 9

and 10. [BPN model for real-time flood forecasting.]
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than CE, and is a more suitable criterion for real-time flood

forecasting.

It is also worthy to note that a few studies had evaluated

the performance of forecasting models using CE calculated

from multi-event artifactual series (Chang et al. 2004;

Chiang et al. 2007; Chang et al. 2009; Chen et al. 2013;

Wei, 2014). To demonstrate the effect of using CE calcu-

lated from multi-event artifactual series for performance

evaluation of event-based forecasting (such as flood fore-

casting) models, CE and CP values calculated with respect

to individual flood events and multi-event artifactual series

are shown in Fig. 15. The artifactual flow series combines

observed (or AR(2)-forecast) flow hydrographs of Event-1

to Event-5 in Fig. 11. CE value of the multi-event arti-

factual series is higher than CE values of any individual

events. Particularly, in contrast to the high CE value

(0.879) of the artifactual series, Event-2 and Event-3 have

lower CE values (0.665 and 0.668, respectively). Although

the artifactual series yields a positive CP value (0.223),

Event-2 and Event-3 are associated with negative CP val-

ues (-0.009 and -0.176, respectively). We have also

found that long artifactual series consisting of more indi-

vidual flood events are very likely to result in very high CE

values (for examples, between 0.93 and 0.98, Chen et al.,

2013) for short lead-time forecast. We argue that for such

studies CE values of individual flood events could be lower

and some events were even associated with negative event-

specific CP values.

Results in Fig. 15 show that CE value of the multi-event

series is higher than all event-based CE values. However,

under certain situations, for example forecasts of higher

flows are less accurate, CE value of the multi-event series

can be smaller than only a few event-based CE values. To

demonstrate such a situation, we manually adjusted the

AR(2) forecasts for two events (event 1 and event 5) with

higher flood flows such that their forecasts are less accurate

than those of the other three events. We then recalculated

CE values for individual events and the multi-event series,

and the results are shown in Fig. 16. With less accurate

Table 3 Mean and standard deviation of CE and CP of the resampled

series of individual events [BPN forecasting]

Event CE CP Remark

Mean SD Mean SD

1 0.7320 0.1441 0.1651 0.1731 Training

2 0.4471 0.1901 -0.2330 0.1569 Validation

3 0.5742 0.2804 -0.1944 0.4578 Validation

4 0.7577 0.0942 0.0493 0.1139 Training

5 0.7774 0.0965 0.2301 0.1825 Test

6 0.4274 0.2599 -0.1144 0.2891 Test

7 0.6043 0.2121 -0.0430 0.1631 Validation

8 0.6796 0.1054 -0.0804 0.1161 Test

9 0.7111 0.1882 -0.4204 0.6270 Training

Table 4 Sample-wise (CE, CP) comparison

Event Ratio of AR(2) superioritya Ratio of BPN superioritya

CE CP CE&CP CE CP CE&CP

1 0.610 0.408 0.336 0.390 0.592 0.318

2 0.916 0.942 0.901 0.084 0.058 0.043

3 0.349 0.094 0.052 0.651 0.906 0.609

4 0.839 0.815 0.744 0.161 0.185 0.090

5 0.455 0.353 0.290 0.545 0.647 0.482

6 0.576 0.490 0.404 0.424 0.510 0.338

7 0.766 0.805 0.711 0.234 0.195 0.140

8 0.951 0.969 0.941 0.049 0.031 0.021

9 0.076 0.023 0.001 0.924 0.977 0.902

Overall 0.615 0.544 0.487 0.385 0.456 0.327

a The ratio of model superiority represents the proportion of the

resampled series that a model (AR(2) or BPN) achieves higher CE or

CP values than the other

Mean flows (in m3/sec) of individual flood events.

Mean flows (in m3/sec) of individual flood events.

C
E a

vg
an

d 
C
P a

vg
C
E a

vg
an

d 
C
P a

vg

(a)AR(2) forecasting

(b) BPN forecasting

CEavg CPavg

CEavg CPavg

Fig. 14 Model performance evaluation (in terms of CEavg and CPavg)

with respect to mean flows of individual flood events. a AR(2)

forecasting. b BPN forecasting. [Note: CEavg and CPavg are average

values of CE and CP of the 1000 bootstrap resampled series.]
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forecasts for events 1 and 5, CE values of the two events

and the multi-event artifactual series were reduced. CE

value of the multi-event artifactual series (0.727) became

smaller than CE of event 4 (0.829). However, the multi-

event CE value was still larger than event-based CE values

for 4 of the 5 events. It can also be observed that the multi-

Event 1 Event 2 Event 3 Event 4 Event 5

CE=0.803
CP=0.193

CE=0.665
CP= - 0.009

CE=0.668
CP= - 0.176

CE=0.829
CP=0.138

CE=0.847
CP=0.285

Ar�factual series CE=0.879, CP=0.223

Time (hours)

Fl
ow

 (m
3 /s

ec
)

Observed flow
AR(2) forecasts

Mean flow of the 
ar�factual series

Mean flow of
Event 1

Fig. 15 Comparison of (CE, CP) values with respect to individual

events and (CE, CP) of the multi-event artifactual series. Forecasts

are based on an AR(2) model. The artifactual series yielded higher CE

value than any individual event. CP of the artifactual series is positive

whereas two events are associated with negative CP values

Fig. 16 Comparison of (CE, CP) values with respect to individual

events and (CE, CP) of the multi-event artifactual series. Forecasts of

events 2, 3, and 4 are based on an AR(2) model. Forecasts of event 1

and 5 were manually adjusted from AR(2) forecasts to become less

accurate. The multi-event artifactual series yielded higher CE value

than all individual event, except event 4. CP values were negative for

the artifactual series and four individual events
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event CP value changed from 0.223 to -0.751. This

demonstrates that CP is a more powerful test of model

performance (i.e. capable of clearly indicating poor model

performance) than CE. In this example, forecasts of events

1 and 5 (having higher flows) were manually adjusted to

make them less accurate. However, for models which yield

similar forecast performance for low to high flood events

(i.e. having consistent model performance), we believe that

CE value of the artifactual multi-event series is likely to be

higher than all event-based CE values.

We have also found a few studies that aimed to simulate

or continuously forecast daily or monthly flow series over a

long period. Most of such applications are related to water

resources management or for the purpose of understanding

the long-term hydrological behaviors such as snow-melt

runoff process and baseflow process (Schreider et al. 1997;

Dibike and Coulibaly 2007; Chiew et al. 2014; Wang et al.

2014; Yen et al. 2015). For such applications, long-term

simulation or forecasts of flow series were required and CE

and CP measures were calculated for flow series spanning

over one-year or multiple-year periods. However, in con-

trast to these aforementioned studies, the work of real-time

flood forecasting is event-based and the model perfor-

mance can vary from one event to another, it is therefore

imperative for researchers and practitioners to look into the

model performance uncertainties. A single CE or CP value

derived from a multi-event artifactual series does not pro-

vide a multi-event overall evaluation and may actually

disguise the real capability of the proposed model. Thus,

CE or CP value derived from a multi-event artifactual

series should not be used for event-based forecasting

practices.

8 MPE for multiple-step lead time flood
forecasting

In the previous section, we only consider one-step lead

time forecasting models. There are also studies (for

example, Chen et al. 2013) that aimed to develop multiple-

step lead time flood forecasting models. Using CP as the

MPE criterion for multiple-step lead time flood forecasting

deserves a careful look.

For a k-step lead time flood forecasting, the sample-

dependent asymptotic CE–CP relationship is determined

by qk of the data series. Generally speaking, the flow

persistence and qk decrease as the time lag k increases. For

large enough lead time steps (for examples, 4-step or 6-step

lead time forecasts), qk becomes lower and the naı̈ve

forecasting models can be expected to yield poor perfor-

mance. Thus, it is possible to yield positive CP values for

multiple-step lead time forecasts, whereas CP value of one-

step lead time forecasts of the same model is negative. For

such cases, it does not imply that the model performs better

in multiple-step lead time than in one-step lead time.

Instead, it’s the naı̈ve forecasting model which performs

much worse in multiple-step lead time. Since qk of flood

flow series often reduces to lower than 0.6 for k C 3, we

recommend model performance evaluation using CP be

limited to one or two-step lead time flood forecasting.

Using CP for performance evaluation of multiple-step

forecasting should be exercised with extra caution. Espe-

cially we warn of using CP values derived from multi-event

artifactual series for model performance evaluation of

multiple-step lead time flood forecasting. Such practices

may further exacerbate the misleading conclusions about

the real forecasting capabilities of the proposed models.

9 Summary and conclusions

We derived the sample-dependent and AR model-depen-

dent asymptotic relationships between CE and CP. Con-

sidering the temporal persistence in flood flow series, we

suggest using AR(2) model as the benchmark for event-

based flood forecasting model performance evaluation.

Given a set of flow hydrographs (test events), a CE–CP

coupled model performance evaluation criterion for event-

based flood forecasting is proposed as follows:

(1) Calculate CE and CP of the proposed model and the

AR(2) model for one-step lead time flood forecast-

ing. A model yielding negative CP values is inferior

to the naı̈ve forecasting and cannot be considered for

real-time flood forecasting.

(2) Compare CP values of the proposed model and the

AR(2) model. If CP of the proposed model is lower

than CP of the AR(2) model, the proposed model is

inferior to the AR(2) model.

(3) If the proposed model yields positive and higher-

than-AR(2) CP values, evaluate its CE values.

Considering the significant lag-1 autocorrelation

coefficient (q1[ 0.8) for most of the flood flow

series and forecasting capability of the AR(2) model,

we suggest that the CE value should exceed 0.70 in

order for the proposed model to be acceptable for

real-time flood forecasting. However, for flood

forecasting of larger watersheds, flow series at the

watershed outlet may have even higher lag-1 auto-

correlation coefficients and the threshold CE value

should be raised accordingly (for example,

CE[ 0.85 for q1[ 0.9).

(4) The above steps provide a first phase event-based

model performance evaluation. It is also advisable to

conduct bootstrap resampling of the observed flow

series and calculate the bootstrap-series average (CE,
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CP) values of the proposed model and the AR(2)

model for individual flood events. The bootstrap-

series average (CE, CP) values can then be used to

evaluate the model performance using the same

criteria in steps 1–3.

(5) Multiple-step lead time flood forecasting should be

considered only if the proposed model yields

acceptable performance of one-step lead time fore-

casting through the above evaluation.

In addition to the above CE–CP coupled MPE criterion

for real-time flood forecasting, a few concluding remarks

are also given as follows:

(1) Both CE and CP are goodness-of-fit measures of the

model forecasts to the observed flow series. With

significant flow persistence, even the naı̈ve forecast-

ing can achieve high CE values for real-time flood

forecasting. Thus, CP should be used to screen out

models which yield serious lagged-forecast results.

(2) For any given data series, there exists an asymptotic

linear relationship between CE and CP of the model

forecasts. For k-step lead time forecasting, the

relationship is dependent on the lag-k autocorrelation

coefficient.

(3) For AR(1) and AR(2) data series, the model-

dependent asymptotic relationships of CE and CP

can be represented by parabolic curves which are

dependent on AR parameters.

(4) Flood flow series generally have lag-1 autocorrela-

tion coefficient higher than 0.8 and thus the AR

model can easily achieve reasonable performance of

real-time flood forecasting. Comparing to forecast-

ing with a constant mean and naı̈ve forecasting, the

simple and well-known AR(2) model is a better

choice of benchmark reference model for real-time

flood forecasting. Flood forecasting models are

recommended only if their performances (based on

the above CE–CP coupled criterion) are superior to

the AR(2) model.

(5) A single CE or CP value derived from a multi-event

artifactual series by no means provides a multi-event

overall evaluation and may actually disguise the real

capability of the proposed model. Thus, CE or CP

value derived from a multi-event artifactual series

should never be used in any event-based forecasting

practices.

(6) It is possible for a model to yield positive CP values

for multiple-step lead time forecasts, whereas CP

value of one-step lead time forecasts of the same

model is negative. For such cases, it does not imply

that the model performs better in multiple-step lead

time than in one-step lead time.

In concluding this paper, we like to cite the following

comment of Seibert (2001) which not only is truthful but

thought-provoking:

Obviously there is the risk of discouraging results

when a model does not outperform some simpler way

to obtain a runoff series. But if we truly wish to assess

the worth of models, we must take such risks. Igno-

rance is no defense.
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