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Abstract
Weconsider the problemof finding an inductive construction, based on vertex splitting,
of triangulated spheres with a fixed number of additional edges (braces). We show that
for any positive integer b there is such an inductive construction of triangulations with
b braces, having finitely many base graphs. In particular we establish a bound for
the maximum size of a base graph with b braces that is linear in b. In the case that
b = 1 or 2 we determine the list of base graphs explicitly. Using these results we show
that doubly braced triangulations are (generically) minimally rigid in two distinct
geometric contexts arising from a hypercylinder in R

4 and a class of mixed norms
on R3.
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1 Introduction

A d-dimensional bar-joint framework is a pair (G, q), where G = (V , E) is a simple
graph and q ∈ (Rd)V . We think of a framework as a collection of (fixed length) bars
that are connected at their ends by (universal) joints. Loosely speaking, such a frame-
work is called rigid if it cannot be deformed continuously into another non-congruent
framework while preserving the lengths of all bars. Otherwise, the framework is called
flexible.

The rigidity and flexibility analysis of bar-joint frameworks and related constraint
systems has a rich history which dates back to the work of Euler and Cauchy on the
rigidity of polyhedra and toMaxwell’s studies ofmechanical linkages and trusses in the
19th century. Over the last few decades, the field of geometric rigidity theory has seen
significant developments due to a plethora of new applications in pure mathematics
and diverse areas of science, engineering and design. We refer the reader to [19, 23],
for example, for summaries of key definitions and results.

Triangulations of the 2-sphere play an important role in the rigidity theory of bar-
joint frameworks.Gluck has shown that generic realisations of these graphs as bar-joint
frameworks in 3-dimensional Euclidean space are minimally rigid [7]. Whiteley gave
an independent proof of Gluck’s result by observing that certain vertex splittingmoves
preserve generic rigidity and are sufficient to construct all sphere triangulations from
an easily understood base graph [22].

In this paper we consider inductive constructions, based on vertex splitting, for
triangulated spheres with a fixed number of additional edges (braces). Our first main
result establishes a linear bound for the size of an irreducible (defined below) braced
triangulation with b braces (Theorem 2.7). An easy consequence is that for fixed b
there are only finitely many irreducible braced triangulations. This is analogous to
well-known results on irreducible triangulations of surfaces by Barnette, Edelson,
Boulch, Nakamoto, Colin de Verdière, and others [1, 3].

The case b = 1 is quickly dealt with in Sect. 3 where we show that a triangular
bipyramid with a brace connecting the two poles is the unique irreducible. In other
words, every unibraced triangulation can be constructed from this single irreducible
by a sequence of vertex splitting moves of a specific kind. Triangulated spheres with a
single brace have previously been studied in [21] in relation to redundant rigidity and
more recently in [4, 11] in relation to global rigidity. The case b = 2 is more involved
and in Sect. 4 we show that there are exactly five distinct irreducibles (see Figs. 3, 4,
5, 6, and 7).

Two major new research strands in geometric rigidity are the rigidity analyses of
bar-joint frameworks in Euclidean 3-space whose joints are constrained to move on
a surface (such as a cylinder or surface of revolution) [8, 9, 17, 18] and of bar-joint
frameworks in non-Euclidean normed spaces [5, 12, 13, 15, 16].

In Sect. 5we prove an analogue ofGluck’s Theorem for bar-joint frameworkswhich
are constrained to a hypercylinder in R4 (Theorem 5.11). In this setting it is clear that
doubly braced triangulations have exactly the right number of edges to be minimally
rigid and so our inductive construction from Sect. 4 is a key ingredient in the proof.
We introduce the appropriate rigidity matrix for frameworks on the hypercylinder,
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construct rigid placements for the base graphs and show that vertex splitting preserves
rigidity on the hypercylinder.

In Sect. 6 we prove another analogue of Gluck’s Theorem, this time for a class of
mixed norms onR3 (Theorem 6.20). In this setting we first need to establish some key
geometric properties of the underlying normed spaces, in particularwe characterise the
isometries of the spaces. Our inductive construction for doubly braced triangulations
is again key to the proof.

2 Braced Triangulations

A sphere graph is a simple graph with a fixed embedding in the 2-sphere without
edge crossings. A face of a sphere graph is the topological closure of a connected
component of the complement of the graph in the sphere. In particular a face contains
its boundary.

A (sphere) triangulation, P , is a sphere graph with at least three vertices that is
inclusion-maximal among all sphere graphs with the same vertex set. We say that an
edge e ∈ E(P) is contractible in P if it belongs to precisely two 3-cycles. In other
words it does not belong to any non-facial 3-cycle of P . In that case it follows that the
simple graph P/e obtained by contracting the edge e is also a triangulation (with the
obvious embedding). The following two lemmas are well known and will be useful
for us. See, for example [6].

Lemma 2.1 Suppose that P is a triangulation with at least four vertices and that F is
a face of P. Each vertex of F is incident to a contractible edge of P that is not in F.

Lemma 2.2 Suppose that P is a triangulation with at least four vertices. Each vertex
of P is incident to at least two contractible edges of P.

A braced triangulation is a pair G = (P, B) where P is a triangulation and B is a set
of edges on V (P) such that B ∩ E(P) = ∅. We denote by V (B) the set of vertices
in V (G) := V (P) which are incident with a brace. Occasionally we shall refer to
the underlying graph of G, by which we mean the graph (V (P), E(P) ∪ B). In other
words, the underlying graph is the graph obtained by forgetting the distinction between
the braces and the edges of P .

An edge e of P is said to be contractible inG if e is contractible in P and e does not
belong to any 3-cycle that contains a brace. So in that case G/e = (P/e, B) is also a
braced triangulation (we assume that if e is incident to x ∈ V (B) then we contract e
onto x , thus preserving the set V (B) as a subset of V (P/e)).

A braced triangulation G = (P, B) is said to be irreducible if there is no edge of
P that is contractible in G. This is analogous to the notion of irreducible triangulation
that is well studied in the literature on triangulations of surfaces. In that context,
it is known that for a given surface there are finitely many isomorphism classes of
irreducible triangulations, see [1, 3]. In this section, we will show that for a given
number of braces there are finitely many isomorphism classes of irreducible braced
triangulations.

123



Discrete & Computational Geometry (2024) 71:1238–1275 1241

v
v

v

v

v

Fig. 1 The faces of Quv . Each Ri is a closed quadrilateral region in the sphere

For a vertex v of P we write NP (v) for the set of neighbours of v in P . That is to
say NP (v) = {u ∈ V (P) : uv ∈ E(P)}. For vertices u, v let Xuv = NP (u) ∩ NP (v)

and define ruv = |Xuv|.
Lemma 2.3 Suppose that G = (P, B) is an irreducible braced triangulation. Then

V (P) = V (B) ∪
⋃

uv∈B
Xuv.

Proof Suppose that w ∈ V (P)\V (B). Then by Lemma 2.1 there is some edge xw
in P such that xw is contractible in P . Since G is irreducible, it follows that there is
some brace xy ∈ B such that yw ∈ E(P). Clearly w ∈ Xxy as required. ��
Now suppose that uv ∈ B. Let Quv be the sphere subgraph of P that is formed
by the complete bipartite graph K ({u, v}, Xuv). We will use Quv frequently in the
sequel, so we label its various elements as follows (see Fig. 1). Suppose |Xuv| ≥ 2.
Let R1, . . . , Rruv be the faces of Quv with the labels chosen so that Ri is adjacent
to Ri+1 for i = 1, . . . , ruv . Here we adopt the convention that Rruv+1 = R1. We
suppose that the boundary vertices of Ri are yi , u, yi+1, v for i = 1, . . . , ruv . So
Xuv = {y1, . . . , yruv } and by convention yruv+1 = y1. Note that if y is a point in
the sphere and y 	= u, v then y belongs to at most two of R1, . . . , Rruv . Furthermore
if y ∈ V (P) − {u, v} then y belongs to exactly two of R1, . . . , Rruv if and only if
y ∈ Xuv .

Lemma 2.4 Suppose that G = (P, B) is irreducible, uv ∈ B, and that some face of
Quv contains no vertices in V (B) other than u, v. Then ruv ≤ 3.

Proof Suppose ruv ≥ 4 and suppose that R is a face of Quv satisfying the hypothesis.
Let a, u, b, v be the boundary vertices of R. First we claim that there are no vertices
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of P in the interior of R. If w was such a vertex then by Lemma 2.1 it is incident with
an edge which is contractible in P . Since w /∈ V (B), it follows there is some brace
xy ∈ B such that wx and wy are edges in P . Now since, by assumption, w /∈ Xuv ,
at least one of x, y, without loss of generality say x , is not in {u, v}. Then x ∈ R and
x ∈ V (B) − {u, v} contradicting our hypothesis.

So, in view of this claim, and since P is a triangulation that does not contain the
edge uv, it follows that ab is an edge of P that is contained within R. Now since
neither a nor b is in V (B) by our hypothesis, it follows that ab is in some non-facial
3-cycle of P . Let c be the third vertex of this 3-cycle. Clearly c /∈ {u, v}. Now let S, T
be the distinct faces of Quv that are adjacent to R. Clearly c ∈ S ∩ T . On the other
hand, since ruv ≥ 4 it follows that S ∩ T = {u, v}, a contradiction. ��
Theorem 2.5 Suppose that G = (P, B) is an irreducible braced triangulation and
that b = |B| ≥ 2. Then |V (P)| ≤ 4b2 − 2b.

Proof By Lemma 2.3 we know that |V (P)| ≤ 2b+∑uv∈B ruv . Now if ruv ≥ 4 then it
follows from Lemma 2.4 that every face of Quv contains an element of V (B)−{u, v}.
Since |V (B)−{u, v}| ≤ 2(b−1), any element of V (B)−{u, v} belongs to at most two
faces of Quv , and ruv is the number of faces of Quv , we have ruv ≤ 2|V (B)−{u, v}| ≤
4b − 4. Thus

∑
uv∈B ruv ≤ b(4b − 4) and the result follows. ��

We have the following immediate corollary of Theorem 2.5.

Corollary 2.6 For any positive integer b, there are finitely many irreducible braced
triangulations with b braces.

It is natural to wonder if the bound in Theorem 2.5 can be sharpened. Indeed, in
the context of triangulations of surfaces of positive genus, Boulch et al. in [3] have
established that if f (g, c) is the maximum size of an irreducible triangulation of a
surface with genus g and c boundary components, then f (g, c) isO(g+c). Motivated
by this we devote the remainder of this section to establishing the following linear
bound for the number of vertices of an irreducible braced sphere triangulation in
terms of the number of braces.

Theorem 2.7 Suppose that G = (P, B) is an irreducible braced triangulation. Then
|V (P)| ≤ 11b − 4.

Before giving the proof of Theorem 2.7 we need some lemmas.

Lemma 2.8 Suppose that G = (P, B) is a braced triangulation such that uv 	= xw
and ruv, rxw ≥ 4. Then either

• there exists a face R of Quv that contains Qxw, or
• ruv = rxw = 4 and Quv ∪ Qxw is an octahedral graph.

Proof Suppose that one of x, w, say x , is contained in the interior of some face R
of Quv . Then NP (x) ⊂ R and since at least one of u, v is not in NP (x) and rxw ≥ 4
it follows that w ∈ R also. So Qxw ⊂ R in this case.

So, using the fact that xw /∈ E(P) we can assume that {x, w} ⊂ Xuv . If {x, w} is
contained in a face R of Quv then since ruv ≥ 4 it follows that Qxw ⊂ R and we are
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done. On the other hand suppose that there is no face of Quv containing both of x, w.
Then it follows that Xxw ⊂ V (Quv) and using the assumption that ruv, rxw ≥ 4 we
see that the only possibility is that Quv ∪ Qxw is an octahedral graph. ��

Now suppose that G = (P, B) is a braced sphere triangulation. For the remainder
of this section it will be convenient to work in the context of plane graphs instead of
sphere graphs. So we fix some point in the sphere that is not in P and by removing that
point we consider P as a plane graph. In particular any subgraph of P has a unique
unbounded face.

We will need the following elementary observations about certain collections of
plane graphs. Suppose that C is a finite set of plane graphs such that

for all H , K ∈ C with H 	= K , there is some face of H that contains K . (1)

Observe that C has a partial order defined by H � K if either H = K or H is
contained in a bounded face of K . This partial order will be key in the remainder of
this section.

Lemma 2.9 Suppose that H , K are distinct graphs in C and that there is some z in the
plane that does not lie in the unbounded face of H and does not lie in the unbounded
face of K . Then either H ≺ K or K ≺ H.

Proof Suppose that H , K are incomparable. Then, by (1), H is contained in the
unbounded face of K and vice versa. Since z lies in a bounded face of H , it must
lie in the unbounded face of K which contradicts our assumption. ��
We have the following immediate consequence of Lemma 2.9.

Corollary 2.10 For any point z in the plane let

Cz = {H ∈ C : z is not in the unbounded face of H}.

Then, with respect to �, Cz is a totally ordered subset of C.

From now on, let CG = {Quv : uv ∈ B, ruv ≥ 6} and suppose |CG | = c. For
convenience we will write CG = {Q1, . . . , Qc} where Qi = Quivi and ri = ruivi . By
Lemma 2.8, CG satisfies (1) and so Lemma 2.9 and Corollary 2.10 apply to CG .

Now for each i , let Ri
1, . . . , R

i
ri be the faces of Qi , labelled so that Ri

1 is the
unbounded face and so that Ri

j is adjacent to Ri
j+1 for j = 1, . . . , ri −1. We choose a

set of vertices Zi ⊂ V (B) \ {ui , vi } as follows. Start with Zi = ∅. Now suppose that
t is the smallest integer such that 5 ≤ t ≤ ri − 1 and Ri

t does not contain any vertex
in Zi . Let Qi = Qs1 � Qs2 � . . . � Qsk be a chain in CG of maximal length such
that Qs2 is contained in Ri

t , and for m ≥ 2, Qsm+1 is contained in Rsm
3 . Moreover we

choose so that, for m ≥ 1, Qsm+1 is a maximal element (with respect to ≺) in the set
{Ql ∈ CG : Ql ≺ Qsm }. So form ≥ 1 there is no element of CG strictly between Qsm
and Qsm+1 .
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Since the chain above has maximal length, it follows that

Rsk
3 , respectively Ri

t , does not contain

any Q j ∈ CG if k ≥ 2, respectively if k = 1.
(2)

By Lemma 2.4, Rsk
3 , or Ri

t if k = 1, contains some vertex z ∈ V (B)\{usk , vsk }.
In particular, since z does not lie in the unbounded face of Qsk it follows
that z /∈ {ui , vi }. So z ∈ V (B)\{ui , vi } and z lies in Ri

t . We add z to the
set Zi .

We continue choosing elements in this way until each of the faces Ri
5, . . . , R

i
ri−1

contains at least one element of Zi . Since no vertex in V (P) \ {ui , vi } is contained
in more than two of Ri

5, . . . , R
1
ri−1 it follows that |Zi | ≥ (ri − 5)/2. Also since

Zi ⊂ Ri
5 ∪ · · · ∪ Ri

ri−1 it follows that

for 1 ≤ i ≤ c no element of Zi lies in Ri
1 or in Ri

3. (3)

Lemma 2.11 Zi ∩ Z j = ∅ for all i 	= j .

Proof Suppose that z ∈ Zi ∩ Z j . By Lemma 2.9 and (3) it follows that Qi and Q j

are comparable with respect to �. Without loss of generality suppose that Q j ≺ Qi .
Now consider the sequence Qs1 � . . . � Qsk that is constructed during the selection
of z for Zi . Since z does not lie in the unbounded face of any Qsm , we see that
for m = 1, . . . , k, Qsm ∈ Cz

G (as defined in Corollary 2.10). Moreover, using (2),
and since there is no element of CG strictly between Qsm and Qsm+1 , it follows that
{Qs1, . . . , Qsk } = {Ql ∈ Cz

G : Ql � Qi }. In particular, since Q j ∈ Cz
G and Q j ≺ Qi ,

we have Q j = Qsm for some m ≥ 2. But this implies that z ∈ R j
3 and, since z ∈ Z j ,

this contradicts (3). ��
Proof of Theorem 2.7 Suppose that r1, . . . , rc and Z1, . . . , Zc are as in the discussion
above. By Lemma 2.3 we have

|V (P)| ≤ 2b +
∑

uv∈B
ruv

Now, using |Zi | ≥ (ri − 5)/2, we have

∑

uv∈B
ruv =

∑

{uv:ruv≤5}
ruv +

c∑

i=1

ri ≤ 5(b − c) +
c∑

i=1

(2|Zi | + 5) = 5b + 2
c∑

i=1

|Zi |.

By Lemma 2.11,
∑c

i=1 |Zi | = ∣∣⋃c
i=1 Zi

∣∣. Now suppose that Ql is maximal with
respect to� inCG (there is at least one such l).Observeul , vl /∈⋃c

i=1 Zi as ul , vl ∈ Ri
1

for i = 1, . . . , c. Thus
∣∣⋃c

i=1 Zi
∣∣ ≤ |V (B)| − 2 ≤ 2b − 2 and

∑
uv∈B ruv ≤ 9b − 4

as required. ��
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3 Unibraced Triangulations

A unibraced (i.e., b = 1) triangulation must have at least five vertices. Up to home-
omorphism of the sphere there is a unique triangulation with five vertices. It follows
immediately that up to homeomorphisms, there is exactly one unibraced triangulation
with five vertices. Observe that in this unibraced triangulation the three vertices that
are not in the brace must span a nonfacial triangle of P . The following is implicit in
[11]. Also see [4] for related results.

Theorem 3.1 Every unibraced triangulation with at least six vertices has a con-
tractible edge. Equivalently, the unibraced triangulationwith five vertices is the unique
irreducible unibraced triangulation.

Proof Suppose that G is an irreducible unibraced triangulation with brace uv. Since
G has at least five vertices, it follows from Lemma 2.3 that ruv ≥ 3. By Lemma 2.4,
ruv ≤ 3. Thus, ruv = 3. The conclusion now follows from Lemma 2.3. ��

With a little more effort we can strengthen Theorem 3.1 as follows.

Lemma 3.2 Suppose that G = (P, B) is a unibraced triangulation with at least six
vertices. Let T be a face of P. There is some edge of P, not in T , that is contractible
in G.

Proof Let ui , i = 1, 2, 3, be the vertices of T . By Lemma 2.1 there are edges ei ,
i = 1, 2, 3, such that ei is incident with ui , ei is not an edge of T and ei is contractible
in P . If any ei is not adjacent to the brace then we are done. So we may as well assume
that each ei is adjacent to the brace for i = 1, 2, 3.

It follows, in particular, that e1, e2, e3 cannot be pairwise non-incident, so there are
two cases to consider. Either (a) e1 and e2 share a vertex and e3 is non-adjacent to e1
and e2, or (b) e1, e2, e3 have a common vertex.

In case (b), let p be the common vertex of e1, e2, e3. Clearly p must be one vertex
of the brace and it follows from the planarity of P that the other vertex of the brace
must lie in the interior of the face T (since it is also adjacent in P to u1, u2, u3).
This contradicts the fact that T is a face of P and so has no vertices in its interior, by
definition (see Fig. 2).

Thus, only case (a) remains. Let p be the common vertex of e1 and e2 and let q be
the vertex of e3 that is different from u3. It is clear that the brace must be either pq
or pu3. If pq is the brace then u1q, u2q, pu3 must all be edges of P . It is not hard to
see that this contradicts the planarity of P .

Finally suppose that pu3 is the brace. Note that u1, u2 ∈ X pu3 . Let v be a vertex
of G that is not in {u1, u2, u3, p}. By Lemma 2.2 there are two edges of P incident
to v that are contractible in P . If any such edge is not adjacent to the brace pu3 then
we are done. Thus we may assume that V (G) = {p, u3} ∪ X pu3 and that G is in fact
a braced n-gonal bipyramid where the brace joins the two poles. Since G has at least
six vertices, all of the equatorial edges are contractible in G and so the conclusion of
the lemma is true in this case also. ��
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w

Fig. 2 If u1 p, u2 p, u3 p are uncontractible edges, then V (B) = {p, w} where w lies in the interior of the
face T

Fig. 3 The doubly braced octahedron

4 Doubly Braced Triangulations

In this section we will show that in the case b = 2 there are five irreducibles. These
are shown in Figs. 3, 4, 5, 6, and 7. The braces are indicated with dotted lines.

First we observe that there are precisely two distinct triangulations of the sphere
with six vertices. They are the octahedron and the capped hexahedron. It is not hard
to deduce that there are three distinct braced triangulations with six vertices and that
each of these is irreducible since any braced triangulation with two braces must have
at least six vertices. Observe that each of these three irreducibles has underlying
graph isomorphic to K6 with one edge removed (which is, of course, the unique six
vertex graph with 14 edges). The two seven vertex irreducibles also have isomorphic
underlying graphs. In those cases the graph is isomorphic to that obtained by gluing
two copies of K5 together along a K3.

Theorem 4.1 Any irreducible braced triangulation with two braces is isomorphic to
one of the examples shown in Figs. 3, 4, 5, 6, or 7.
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Fig. 4 Capped hexahedron with disjoint braces

Fig. 5 Capped hexahedron with adjacent braces

Fig. 6 Irreducible with seven vertices and adjacent braces
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Fig. 7 Irreducible with seven vertices and non-adjacent braces

Clearly it suffices to show that any irreducible with at least seven vertices is isomorphic
to one of the examples shown in Figs. 6 or 7. The rest of this section is devoted to prov-
ing that. We observe that by Theorem 2.5, any irreducible doubly braced triangulation
has at most 12 vertices. Thus, in principle at least, we have a finite list of candidates
among which we can search for irreducibles. However since there are a large number
of doubly braced triangulations with at most 12 vertices we find it desirable instead to
narrow the search space by improving the general bound of Theorem 2.5 in the case
b = 2.

Suppose thatG = (P, B) is an irreducible braced triangulationwith B = {uv,wx}.
As above, let Quv be the bipartite sphere graph induced by K{u,v},Xuv and, when
ruv ≥ 2, let R1, . . . , Rruv be the faces of Quv . Furthermore Xuv = {y1, y2, . . . , yruv }
where u, yi , v, yi+1 are the boundary vertices of Ri for i = 1, . . . , ruv (adopting the
convention that yruv+1 = y1).

Lemma 4.2 Let G = (P, B) be an irreducible braced triangulation with B =
{uv,wx}. Suppose that max {ruv, rwx } ≥ 4. Then G is the doubly braced octahedron
(Fig. 3).

Proof Without loss of generality, suppose that ruv ≥ 4.ByLemma2.4,we see that each
Ri contains some element of V (B)−{u, v} = {w, x}. Note that w (and x) can belong
to at most two faces of Quv . It follows that w, x ∈ Xuv and ruv = 4. Now since w, x
do not belong to any common face of Quv , it is clear that Xwx ⊂ {u, v} ∪ Xuv . Using
Lemma 2.3 we see that |V (G)| = 6 and the conclusion follows easily since the doubly
braced octahedron is the only six vertex irreducible that satisfies max {ruv, rwx } ≥ 4.

��
Thus we may assume from now on that max {rwx , ruv} ≤ 3.

Lemma 4.3 Let G = (P, B) be an irreducible braced triangulation with B =
{uv,wx}. Suppose thatmax {rwx , ruv} ≤ 3. Then at most one ofw, x is in {u, v}∪Xuv .

Proof Suppose thatw, x ∈ {u, v}∪Xuv . Sincewx is not an edge of P andwx 	= uv, it
follows that {w, x} ⊂ Xuv . Since ruv ≤ 3, we may assume, without loss of generality,
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v

Fig. 8 A sketch for the proof of Lemma 4.4

that {w, x} = {y1, y2}. Now since P is a triangulation and since neither uv nor wx
can be edges of P it follows that there are some vertices in R̊1 (R̊1 denotes the interior
of R1). By Lemma 2.3, all such vertices must be in Xwx . However, in this situation
u, v ∈ Xwx and since rwx ≤ 3, it follows that there is exactly one vertex, z, in R̊1.
Since P is a triangulation not containing uv,wx it must be that zx, zw, zu, zv are all
edges of P . Thus z ∈ Xuv which contradicts the fact that z is in R̊1. ��

Lemma 4.4 If G is an irreducible doubly braced triangulation with braces uv andwx
then max {ruv, rwx } ≥ 3.

Proof For a contradiction assume that rwx ≤ ruv ≤ 2.
Suppose that rwx + ruv ≤ 2. By Lemma 2.3 we see that |V (G)| ≤ 6. However, it

is easy to see that there are only three irreducible doubly braced triangulations with
at most six vertices (these are shown in Figs. 3, 4, and 5) and none of these satisfy
rwx + ruv ≤ 2.

Now suppose that rwx ≤ 2 and ruv = 2. By Lemma 4.3 we may suppose that
w ∈ R̊1. If x /∈ R1 then, by planarity we have Xwx ⊆ {u, v, y1, y2}. Thus, by Lemma
2.3, we have |V (G)| ≤ 6. As in the previous paragraph, this is not possible since in
each of the Figs. 3, 4 and 5 we have max {ruv, rwx } ≥ 3. So we can assume x ∈ R1.
Now since w ∈ R◦

1, it follows that Xwx ⊆ R1.
By Lemma 2.3, there are no vertices in R̊2. It follows that y1y2 is an edge

of P that is contained in R2. If this edge is part of a braced triangle then with-
out loss of generality y1 ∈ {w, x} and y2 ∈ Xwx . Thus, in this case, |V (G)| =
|V (B) ∪ Xuv ∪ Xwx | ≤ 6 and we know that no six vertex irreducible satisfies
max {ruv, rwx } ≤ 2 .

So y1y2 is not part of any braced triangle. It must therefore be part of a non-facial
triangle. Thus there is a vertex z ∈ R̊1 and edges y1z and zy2. See Fig. 8 for an
illustration. Note that R1 splits into two closed regions R

+
1 and R−

1 whose intersection
is the path y1, z, y2 as shown in Fig. 8.
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Now, we claim that in fact w = z. If not, then since w ∈ R̊1 it follows that w is
contained in the interior of either R+

1 or R−
1 (see Fig. 8), without loss of generality

say R+
1 . Suppose x lies in the interior of R−

1 . In this case, by Lemma 2.3, the interior
of R−

1 contains no other vertices. There are now exactly two ways to triangulate the
region R−

1 . For each of these triangulations note that xv is an edge of P which is
contractible in G, a contradiction. Thus we may assume that x does not lie in the
interior of R−

1 . It follows that zv ∈ E(P). Note that the edge zv cannot lie in a
nonfacial triangle of P . Also, since z /∈ Xuv , the edge zv cannot lie in a 3-cycle
containing the brace uv. Thus zv must lie in a 3-cycle containing the brace wx . It
follows that x = v and that wz ∈ E(P). Since there can be no other vertices in R+

1 it
follows that wy1 and wy2 are edges in P , whence rwx ≥ 3. Thus our assumption that
w 	= z leads to a contradiction.

On the other hand, if x ∈ R̊1, then we may assume without loss of generality that
x lies in the interior of R−

1 . In this case, there are no vertices in the interior of R+
1 .

Moreover, the edge uw lies in P and is contractible in G, a contradiction. Thus we
may assume that x ∈ {u, v}: without loss of generality x = u. Now it is clear that
Xwx = Xuv = {y1, y2}. Thus, by Lemma 2.3 we have |V (G)| = 5, a contradiction. ��
Lemma 4.5 Suppose that rwx ≤ ruv = 3 and that there is no face of Quv that contains
bothw and x. Then G is a doubly braced capped hexahedron with disjoint braces (see
Fig. 4).

Proof ByLemma4.3,we can assume thatw ∈ R̊1. So x /∈ R1 and since, byLemma2.3,
V (G) = {u, v, w, x} ∪ Xuv ∪ Xwx we see that w is the only vertex in R̊1. Thus
NP (w) ⊂ {y1, u, y2, v}. Also |NP (w)| ≥ 3 since the min degree of any triangulation
is at least three. Furthermorew /∈ Xuv , so it follows thatw is adjacent to both of y1, y2
and exactly one of u, v, say u without loss of generality. In a triangulation an edge
incident to a vertex of degree 3 cannot belong to a nonfacial triangle. Thus none of
wy1, wy2, wu are in nonfacial triangles. Also, since wv is not an edge of G, the edge
wu is not in a triangle that contains the brace uv. It follows that the edgeswy1, wy2, wu
must all belong to triangles containing the brace wx . Thus x is a common neighbour
in P of y1, y2, and u that is not in R1. Since ruv = 3 we must have by planarity
that Xuv = {x, y1, y2}. It now follows easily that G is the doubly braced capped
hexahedron with disjoint braces as claimed. ��
Lemma 4.6 Suppose that rwx ≤ ruv = 3. Then Xuv spans a 3-cycle in P.

Proof If no face of Quv contains bothw, x then by Lemma 4.5, G is isomorphic to the
capped hexahedron shown in Fig. 4 and the conclusion is true. Using this and Lemma
4.3 we may assume that w ∈ R̊1 and x ∈ R1. Now it is clear that there are no vertices
in R̊2 or in R̊3 since such vertices would have to be in Xwx , by Lemma 2.3 and this
contradicts w ∈ R̊1. Now, since uv is not an edge of P , it follows that y2y3 and y3y1
are both edges of P . Since y3 /∈ Xwx we also conclude that both of these edges must
lie in nonfacial triangles of P . Furthermore, it follows that NP (y3) = {u, v, y1, y2}.
Therefore y1y2 must also be an edge of P as required. ��
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v

w

Fig. 9 The case rwx ≤ ruv = 3. Here R1 is split into two triangular regions by the edge y1y2. One is the
unbounded region (in this plane embedding) and one is the region containing w

Proof of Theorem 4.1 If max {ruv, rwx } ≥ 4 then, by Lemma 4.2, G is isomorphic to
the example of Fig. 3. So we assume that rwx ≤ ruv ≤ 3. By Lemma 4.4 we have
ruv = 3.

Now using Lemmas 4.3 and 4.6 we have the situation illustrated in Fig. 9. Note that
any vertices that are not in Xuv ∪ {u, v, w, x} must lie in the interior of the triangular
region labelled T in Fig. 9, since any such vertex must be in Xwx .

Now suppose that x does not lie in the closed region T . If x /∈ R1 then, by Lemma
4.5,G is isomorphic to the doubly braced capped hexahedron in Fig. 4. If x ∈ R1 then,
using the observation in the paragraph above, we see that there are no other vertices in
the interior of the region R1\T . If x 	= v then the triangulation P contains the edges
xv, xy1, and xy2. Now note that the edge xv is contractible in G, a contradiction.
Thus, we conclude that x = v and so V (G) = {u, v, w} ∪ Xuv . In other words, G
has six vertices and adjacent braces and so it is isomorphic to the example shown in
Fig. 5.

Finally suppose that x also lies in the closed triangular region T . We can con-
struct a unibraced triangulation H by deleting the vertices v, y3 and all their incident
edges. Now H is a unibraced triangulation with a triangular face bounded by edges
uy1, y1y2, y2u. If H has six or more vertices, then by Lemma 3.2 there is some edge
of H that is contractible that is not one of uy1, y1y2, y2u. Such an edge would also
be contractible in G, contradicting our assumption that G is irreducible. Therefore H
has only five vertices and it follows easily that G is isomorphic to one of the examples
shown in Figs. 6 or 7. This completes the proof of Theorem 4.1. ��

If G ′ = (P, B) is a braced triangulation and e is an edge of P that is contractible
in G ′, then G = (P/e, B) is a braced triangulation and we say that G ′ is obtained
from G by a topological vertex splitting move. Combining the above results we obtain
the following theorem:
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Theorem 4.7 Let G be a doubly braced triangulation. Then G can be constructed
from one of the examples in Figs. 3, 4, 5, 6, or 7 by a sequence of topological vertex
splitting moves.

In general, a d-dimensional vertex splitting move on a graph is defined as follows (see
[22], for example). Let G = (V , E) be a graph, and let v1 ∈ V and v1vi ∈ E for
i = 2, . . . , d. If a graph G ′ is obtained from G by

• adding a new vertex v0 and edges v0v1, v0v2, . . . , v0vd to G, and
• for every edge v1x ∈ E with x /∈ {v2, . . . , vd}, either leaving the edge unchanged
or replacing it with the edge v0x ,

then G ′ is said to be obtained from G by a d-dimensional vertex split at v1 (on the
edges v1v2, . . . , v1vd ).

Of course, topological vertex splitting is a special case of (3-dimensional) vertex
splitting for graphs, and it is known that vertex splitting for graphs preserves rigidity
for generic frameworks in a wide variety of settings [4, 5, 8, 22]. Therefore it is
natural to look for geometric rigidity applications of Theorem 4.7. We provide two
such applications in Sects. 5 and 6.

5 Application: Rigidity in the Hypercylinder

There is a sizable literature on the rigidity of bar-joint frameworks in 3-dimensional
Euclidean space whose points are constrained to lie on a surface (see, for example,
[8, 9, 17, 18]. In this section, we will consider the rigidity of bar-joint frameworks in
4-dimensional Euclidean space where the points are constrained to lie on a hyper-
cylinder.

5.1 The Hypercylinder inR4

Let � = {(x, y, z, w) ∈ R
4 : x2 + y2 + z2 = 1} be the hypercylinder in R4. Observe

that � is a smooth three-dimensional manifold that inherits a natural metric as a
subspace of the Euclidean space R4. The group of isometries of � with respect to this
metric is a Lie group of real dimension 4. Indeed this group is canonically isomorphic
to O(3)× E(1) where O(3) is the group of 3× 3 orthogonal matrices and E(1) is the
group of Euclidean isometries of R.

Let T (R4) denote the real linear space of infinitesimal rigid motions of the
Euclidean space R

4. Recall that each infinitesimal rigid motion η ∈ T (R4) is an
affine map η : R4 → R

4 of the form η(x) = B(x) + c where the linear part B is
a 4× 4 skew-symmetric matrix and the translational part c is a vector in R

4. Let
π : R4 → R

3 be the projection (x, y, z, w) �→ (x, y, z) and let T (�) denote the
following subspace of T (R4),

T (�) = {η ∈ T (R4) : π(η(x)) ·π(x) = 0, ∀ x ∈ �}.

We refer to the elements of T (�) as infinitesimal rigid motions of �.
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Lemma 5.1 Let η ∈ T (R4) take the form η(x) = B(x) + c where B is a 4× 4
skew-symmetric matrix and c ∈ R

4. Then η ∈ T (�) if and only if

B =
[
B̃ 0
0 0

]
,

where B̃ is a 3× 3 skew-symmetric matrix, and π(c) = 0.

Proof Let e1, e2, e3, e4 denote the standard basis vectors in R4. If η ∈ T (�) then

π(c) =
3∑

i=1

(π(η(ei )) ·π(ei )) π(ei ) = 0.

Also, note that ei + e4 ∈ � for i = 1, 2, 3 and so,

B(e4) · ei = π(η(ei + e4)) · π(ei + e4) = 0.

Thus B has the form,

B =
[
B̃ 0
0 0

]
,

where B̃ is a 3× 3 skew-symmetric matrix. For the converse, suppose the linear part
of η has the form

B =
[
B̃ 0
0 0

]
,

where B̃ is a 3× 3 skew-symmetric matrix, the translational part c satisfies π(c) = 0.
Since B̃ is skew-symmetric, if x ∈ � then

π(η(x)) ·π(x) = B̃(π(x)) · π(x) = 0.

Thus, η ∈ T (�). ��

5.2 Frameworks in the Hypercylinder

For a graphG = (V , E), a placement ofG in� is a vector q = (qv)v∈V ∈ �V . A pair
(G, q) consisting of a graph G and a placement q is called a (bar-joint) framework
in �. A subframework of (G, q) is a framework (H , qH ) where H is a subgraph of G
and qH

v = qv for all v ∈ V (H). We say that (G, q) is full in � if the restriction map,

ρ : T (�) → (R4)V , η �→ (η(qv))v∈V ,
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is injective. In this case we refer to q as a full placement of G in �. We say that (G, q)

is completely full in� if every subframework of (G, q)with at least six vertices is full
in �.

Lemma 5.2 Let (G, q) be a framework in � and let S = {qv : v ∈ V }. Then (G, q) is
full in � if and only if π(S) contains at least two linearly independent vectors.

Proof Suppose π(S) does not contain two linearly independent vectors. Let A(θ) ∈
O(3) be the rotation matrix with rotation axis spanned by π(S), where θ denotes the
angle of rotation. Let B denote the skew-symmetric matrix

B =
[
A′(0) 0
0 0

]
.

Let η ∈ T (R4) be the infinitesimal rigid motion with η(x) = B(x). Then, by
Lemma 5.1, η ∈ T (�). Also, the rotation axis for A(θ) lies in the kernel of A′(0) and
so η(S) = (A′(0)(π(S)), 0) = 0. Thus (G, q) is not full.

For the converse, suppose there exists a non-zero η ∈ T (�) such that η(S) = 0.
Note that, by Lemma 5.1, η(x) = B̃(π(x)) + c for some non-zero 3× 3 skew-sym-
metric matrix B̃ and some c = (0, 0, 0, w) ∈ R

4. Now B̃(π(S)) = π(η(S)) = 0.
The rank of a skew-symmetric matrix is always even and so the kernel of B̃ must
have dimension 1. We conclude that π(S) does not contain two linearly independent
vectors. ��

We denote by Full(G;�) the set of all full placements of G in �. Note that by the
above lemma, Full(G;�) is an open and dense subset of �V .

5.3 Rigidity in the Hypercylinder

Let (G, q) be a framework in �. An infinitesimal flex of (G, q) is a vector m =
(mv)v∈V ∈ (R4)V that satisfies,

(mu − mv) · (qu − qv) = 0 for every uv ∈ E, (4)

and,

π(mv) · π(qv) = 0 for every v ∈ V . (5)

The constraints in (4) are the standard Euclidean first-order length constraints for the
edges ofG, and the constraints in (5) ensure that the velocity vectors of an infinitesimal
flex lie in the tangent hyperplanes of � at the corresponding points.

Lemma 5.3 Let (G, q) be a framework in � and let η ∈ T (�). Then the vector
m ∈ (R4)V , where mv = η(qv) for all v ∈ V , is an infinitesimal flex of (G, q).

Proof The conditions (4) and (5) are readily verified using Lemma 5.1. ��
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We refer to the infinitesimal flexes described in Lemma 5.3 as trivial infinitesimal
flexes of (G, q). The set of all trivial infinitesimal flexes of (G, q) is a linear subspace
of (R4)V , which we denote by T (q). The orthogonal projection of (R4)V onto T (q)

will be denoted Pq . We say that (G, q) is infinitesimally rigid if every infinitesimal
flex of (G, q) is trivial. Otherwise (G, q) is infinitesimally flexible.

Lemma 5.4 Let G = (V , E) be a graph and let x ∈ (R4)V . Then the map

φx : Full(G;�) → T (q), q �→ Pq(x),

is continuous.

Proof If (G, q) is full in � then a basis for T (q) is given by the vectors
m1(q), . . . ,m4(q) where for each v ∈ V , we have m1(q)v = (q3v , 0,−q1v , 0),
m2(q)v = (q2v ,−q1v , 0, 0), m3(q)v = (0, q3v ,−q2v , 0), and m4(q)v = (0, 0, 0, 1).
The result follows since Pq(x) depends continuously on m1(q), . . . ,m4(q). ��

5.4 The Rigidity Matrix

Let (G, q) be a framework in �. The rigidity matrix R(G, q) for (G, q) in � is the
matrix corresponding to the linear system in (4) and (5). It is an (|E | + |V |)× 4|V |
matrix of the following form. The rows are indexed by the set E ∪ V and the columns
are indexed in collections of four by the set V . For an edge uv ∈ E the corresponding
row has entries qu − qv in the collection of columns corresponding to u and qv − qu
in the collection of columns corresponding to v and zeroes in all other columns. For a
vertex v ∈ V the corresponding row has entries (π(qv), 0) in the collection of columns
indexed by v and zeroes in all other columns.

Lemma 5.5 Let (G, q) be a full framework in �. Then (G, q) is infinitesimally rigid
if and only if rank R(G, q) = 4|V | − 4.

Proof Note that the kernel of R(G, q) is the linear space of infinitesimal flexes of
(G, q). Thus, (G, q) is infinitesimally rigid if and only if ker R(G, q) = T (q).
Also, note that rank R(G, q) = 4|V | − dim ker R(G, q). Since (G, q) is full in �,
dim T (q) = dim T (�) = 4. The result now follows. ��

All of the above discussion is by way of context for the following result, which
provides necessary conditions for a full framework in� to beminimally infinitesimally
rigid. We say that a graph G = (V , E) is (3, 4)-tight if |E | = 3|V | − 4 and |E ′| ≤
3|V ′| − 4 for every subgraph G ′ = (V ′, E ′) containing at least one edge.

Theorem 5.6 Suppose that G = (V , E) has at least six vertices and that (G, q) is
completely full and infinitesimally rigid in�. Furthermore suppose that for any e ∈ E,
(G − e, q) is not infinitesimally rigid. Then G is (3, 4)-tight.

Proof Since (G, q) is full in � we have dim T (q) = 4. If |E | < 3|V | − 4, then the
rigidity matrix R(G, q) has rank less than 4|V | − 4. It follows that T (q) is a proper
subspace of ker R(G, q) and so (G, q) is infinitesimally flexible, a contradiction. If
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|E | > 3|V | − 4, then R(G, q) has a non-trivial row dependence ω ∈ R
E∪V . By the

structure of R(G, q), the rows of R(G, q) indexed by V are linearly independent, and
hence ωe 	= 0 for some edge e ∈ E . It follows that the removal of the edge e does not
decrease the rank of the rigidity matrix and so (G − e, q) is still infinitesimally rigid,
a contradiction.

Similarly, if there is a non-trivial subgraph G ′ = (V ′, E ′) with |E ′| > 3|V ′| − 4,
then, by the simplicity of G, |V ′| ≥ 6. Since (G, q) is completely full in �, the
subframework (G ′, qG ′) is full in �. The (|E ′| + |V ′|)× 4|V ′| submatrix of R(G, q)

corresponding to G ′ has a non-trivial row dependence with a non-zero support on one
of the edges of G ′. Thus, as above, it follows that the removal of this edge from G
leaves the framework infinitesimally rigid, a contradiction. This gives the result. ��
On the other hand we may ask if, given a (3, 4)-tight graph G, there is a placement
q of G in � such that (G, q) is minimally infinitesimally rigid. In general this is
open. However, in the following section we show this to be true whenever G is the
underlying graph of a doubly braced triangulation.

5.5 Minimal Rigidity of Doubly Braced Triangulations

We say that a placement q ∈ �V of a graph G = (V , E) in � is regular if the
function,

rG : �V → N, x �→ rank R(G, x),

achieves itsmaximumvalue at q. Note that the set of regular placements ofG in� is an
open and dense subset of�V . Moreover, if (G, q) is infinitesimally rigid (respectively,
flexible) in � for some regular placement q then every regular placement of G in �

is infinitesimally rigid (respectively, flexible). In this case, we say that the graph G is
rigid (respectively, flexible) in �.

Lemma 5.7 The graph K5 ∪K3 K5 is (minimally) rigid in the hypercylinder �.

Proof By Lemma 5.5, it suffices to find a particular placement of the graph whose
associated rigidity matrix has rank 24. Since a randomly chosen matrix will, with
probability 1, yield a rigidity matrix with maximum rank it is easy to find such a
placement. For example we have verified that the following placement yields the
required rank:

q1 = 1√
3

(1, 1, 1, 1), q2 = 1√
17

(3, 2, 2, 1), q3 = 1√
17

(2, 3, 2, 3),

q4 = 1√
11

(1, 3, 1, 1), q5 = 1√
17

(3, 2, 2, 2),

q6 = 1√
14

(2, 3, 1, 1), q7 = 1√
14

(2, 1, 3, 2),

where one K5 is induced by q1, . . . , q5 and the other is induced by q3, . . . , q7. ��
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Lemma 5.8 The graph K6 − e is (minimally) rigid in the hypercylinder �.

Proof As for Lemma 5.7, it suffices to find one placement that yields a rigidity matrix
of rank 20. In this case the placement

q1 = 1√
11

(1, 3, 1, 1), q2 = 1

3
(2, 2, 1, 1), q3 = 1√

22
(3, 2, 3, 3),

q4 = 1√
22

(3, 3, 2, 2), q5 = 1√
27

(3, 3, 3, 1), q6 = 1√
14

(1, 2, 3, 2),

where the missing edge is between q5 and q6, yields the required rank. ��
For each k ∈ N define,

Hk =
{
x = (x1, x2, x3, x4) ∈ R

4 : x21 + x22 + x23 <
1

k4
and

1

2k
< x4 <

1

k

}
.

Note that Hk is the interior of a truncated hypercylinder with radius 1/k2 and height
1/(2k).

Lemma 5.9 Let k ∈ N, x ∈ Hk, and e4 = (0, 0, 0, 1) ∈ R
4. Then

∥∥∥∥
x

‖x‖ − e4

∥∥∥∥ <
2
√
2

k
.

Proof Note that 0 < x4 ≤ ‖x‖ and 1/‖x‖ < 2k. We have,

∥∥∥∥
x

‖x‖ − e4

∥∥∥∥
2

=
∥∥∥∥
(x1, x2, x3, x4 − ‖x‖)

‖x‖
∥∥∥∥
2

<

(
1

k4
+ (x4 − ‖x‖)2

)
4k2

=
(

1

k4
+ ‖x‖2 + x24 − 2x4‖x‖

)
4k2

≤
(

1

k4
+ ‖x‖2 − x24

)
4k2 =

(
1

k4
+ x21 + x22 + x23

)
4k2 <

8

k2
.

��
Proposition 5.10 Suppose that G is (minimally) rigid in the hypercylinder � and that
G ′ is obtained from G by a 3-dimensional vertex splitting move. Then G ′ is also
(minimally) rigid in �.

Proof We adapt the proof of [18, Lem. 5.1]. Suppose G = (V , E) has n vertices
v1, v2, . . . , vn . Let G ′ = (V ′, E ′) be obtained from G by a 3-dimensional vertex
splitting move at the vertex v1 on the edges v1v2 and v1v3. Let V ′ = V ∪ {v0}. We
will show that if G ′ is flexible in � then G is also flexible in �.

Suppose G ′ is flexible in � and let q ∈ �V be a regular placement of G in �. For
convenience we will write,

q = (qv1 , qv2 , . . . , qvn ) = (q1, q2, . . . , qn).

123



1258 Discrete & Computational Geometry (2024) 71:1238–1275

Let n1 ∈ R
4 be a normal vector to the tangent plane of� at q1 and let e4 = (0, 0, 0, 1)

∈ R
4. Since the set of regular placements of G in � is open in �V we may assume

that the vectors q1 − q2, q1 − q3, n1, and e4 are linearly independent in R
4.

Define q ′
v = qv for all v ∈ V and q ′

v0
= qv1 . Then q ′ = (q ′

v)v∈V ′ is a non-regular
placement of G ′ in �. Again for convenience we write,

q ′ = (q ′
v0

, q ′
v1

, q ′
v2

, . . . , q ′
vn

) = (q1, q1, q2, . . . , qn).

For each k ∈ N, let Bk denote the open ball in R
4 with centre 0 and radius 1/k and

consider the following subset of R4(n+1),

Uk = Hk ×
n︷ ︸︸ ︷

Bk × · · · × Bk .

Let Nk = (q ′ + Uk) ∩ �V ′
and note that Nk is a non-empty open subset of �V ′

.
Since the set of regular placements of G ′ in � is dense in �V ′

, for each k ∈ N there
exists a regular placement qk of G ′ in � such that qk ∈ Nk . Moreover, by applying an
isometry of � to the components of qk we may assume that qkv1 = qv1 for each k ∈ N.
For convenience we write,

qk = (qkv0 , q
k
v1

, . . . , qkvn ) = (qk0 , q1, q
k
2 , . . . , q

k
n ).

Note that the sequence (qk) of regular placements of G ′ in � converges to the non-
regular placement q ′. Also note that for each k ∈ N, we have qk − q ′ ∈ Uk . In
particular, qk0 − q1 ∈ Hk and so, by Lemma 5.9,

∥∥∥∥
qk0 − q1

‖qk0 − q1‖
− e4

∥∥∥∥ <
2
√
2

k
.

It follows that the sequence of unit vectors (qk0 − q1)/‖qk0 − q1‖ converges to e4 =
(0, 0, 0, 1) ∈ R

4.

For each k ∈ N, the framework (G ′, qk) is infinitesimally flexible in � and so
there exists a unit vector mk = (mk

0,m
k
1, . . . ,m

k
n) ∈ (R4)V

′
which is a non-trivial

infinitesimal flex of (G ′, qk). We may assume, without loss of generality, that mk has
no trivial flex component, in the sense that Pqk (m

k) = 0. By passing to a subsequence
(using the Bolzano–Weierstrass Theorem), we may assume that the sequence (mk)

converges to a unit norm vector m′ = (m0,m1, . . . ,mn) ∈ (R4)V
′
. Note that for each

edge viv j in G ′, we have,

mi · (q ′
vi

− q ′
v j

) = lim
k→∞mk

i · (qkvi − qkv j
) = lim

k→∞mk
j · (qkvi − qkv j

) = m j · (q ′
vi

− q ′
v j

),

and for each vertex vi in G ′ we have,

π(mi ) · π(q ′
vi

) = lim
k→∞ π(mk

i ) · π(qkvi ) = 0.
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Moreover, by Lemma 5.4,

Pq ′(m′) = lim
k→∞ Pqk (m

k) = 0.

Thus, m′ is a non-trivial infinitesimal flex of (G ′, q ′).
We claim that m0 = m1. To see this, note that since m′ is an infinitesimal flex of

(G ′, q ′) we have, for i = 2, 3,

m1 · (q1 − qi ) = m1 · (q ′
v1

− q ′
vi

) = mi · (q ′
v1

− q ′
vi

) = mi · (q1 − qi ),

m0 · (q1 − qi ) = m0 · (q ′
v0

− q ′
vi

) = mi · (q ′
v0

− q ′
vi

) = mi · (q1 − qi ).

Thus, (m0 − m1) · (q1 − qi ) = 0 for i = 2, 3. We also have,

(m0 − m1) · n1 = π(m0) ·π(q ′
v0

) − π(m1) ·π(q ′
v1

) = 0,

and since mk is an infinitesimal flex of (G ′, qk),

(m0 − m1) · e4 = lim
k→∞ (mk

0 − mk
1) · qk0 − q1

‖qk0 − q1‖
= 0.

Thus,m0 −m1 is orthogonal to the four linearly independent vectors q1 −q2, q1 −q3,
n1, and e4, and hencem0 = m1. It now follows that the vectorm = (m1,m2, . . . ,mn)

is a non-trivial infinitesimal flex of (G, q). We conclude that G is flexible in �. ��
Theorem 5.11 Let G be the graph of a doubly braced triangulation. Then G is
(minimally) rigid in the hypercylinder �.

Proof This follows immediately from Theorem 4.1, Lemmas 5.7 and 5.8, and Pro-
position 5.10. ��

6 Application: Rigidity for Mixed Norms onR
3

The rigidity theory of bar-joint frameworks in non-Euclidean finite dimensional real
normed linear spaces was first considered in [15]. This and subsequent work has
explored special classes of norms, particularly the classical 	p-norms, polyhedral
norms, unitarily invariant matrix norms, and product norms (e.g. [5, 12, 13, 15, 16]).
In this section, we consider a new context provided by a class of mixed norms on R3.

6.1 The Normed Space �32,p

For p ∈ (1,∞), define the mixed (2, p)-norm on R
3 by,

‖(x, y, z)‖2,p = ((x2 + y2)p/2 + |z|p)1/p.
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We denote the normed spaces (R3, ‖ · ‖2,p) by 	32,p. Note that the (2, 2)-norm is the

standard Euclidean norm on R
3. Our main interest will be the non-Euclidean (2, p)-

norms (i.e., when p 	= 2). The main result in this section states that the graph of
a doubly braced triangulation is minimally rigid in 	32,p for all p ∈ (1,∞), p 	= 2
(Theorem 6.20).

Remark 6.1 We have excluded the extreme case where p = 1 as our geometric tech-
niques are not applicable in that setting. In particular, the (2, 1)-norm is neither smooth
nor strictly convex (note that the unit sphere is a double cone). For similar reasons we
will not consider the (2,∞)-norm,

‖(x, y, z)‖2,∞ = max {(x2 + y2)1/2, |z|}.

(Note that in this case the unit sphere is cylindrical.) Rigidity theory for the (2,∞)-
norm is developed in [13, Sect. 5.1] using different techniques.

Our first goal is to collect some preliminary geometric results which will be required
later on.

Lemma 6.2 Let p ∈ (1,∞). Then the dual space of 	32,p is 	32,q , where q satisfies
1/p + 1/q = 1.

Proof Given y ∈ 	32,q , define fy : 	32,p → R, x �→ x · y. Note that for every x ∈ 	32,p,
the Cauchy–Schwarz and Hölder inequalities imply that

| fy(x)| ≤
3∑

i=1

|xi yi | ≤
∥∥∥∥

[
x1
x2

]∥∥∥∥
2

∥∥∥∥

[
y1
y2

]∥∥∥∥
2
+ |x3y3| ≤

∥∥∥∥∥∥

⎡

⎣
x1
x2
x3

⎤

⎦

∥∥∥∥∥∥
2,p

∥∥∥∥∥∥

⎡

⎣
y1
y2
y3

⎤

⎦

∥∥∥∥∥∥
2,q

.

Hence it suffices to show that the contraction,

T : 	32,q → (	32,p)
∗, y �→ fy,

is an isometry. Let y ∈ 	32,q be non-zero. There exists θ ∈ [0, 2π) such that,

yθ = Rθ y =
⎡

⎣
yθ
1
0
yθ
3

⎤

⎦ ,

where Rθ is the isometry given by clockwise rotation by θ about the z-axis. Choose
xθ such that xθ

k = |yθ
k |q−1 sgn(yθ

k ). Note that fy(R−θ xθ ) = y · R−θ xθ = Rθ y · xθ =
fyθ (xθ ). Also,

‖xθ‖2,p =
(

3∑

k=1

|yθ
k |q
)1/p

.
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Hence we have,

‖ fy‖∗
2,p ≥ fy(R−θ xθ )

‖R−θ xθ‖2,p = fyθ (xθ )

‖xθ‖2,p

=
∑3

k=1 |yθ
k |q

(∑3
k=1 |yθ

k |q)1/p
=
(

3∑

k=1

|yθ
k |q
)1/q

= ‖yθ‖2,q = ‖y‖2,q ,

and so ‖ fy‖∗
2,p = ‖y‖2,q . ��

Lemma 6.3 The space 	32,p is smooth and strictly convex for every p ∈ (1,∞).

Proof By [16, Lem. 1], it suffices to show that for all non-zero (x, y, z) and (a, b, c)
in 	32,p, the function

ζ : R → R, t �→ ‖(x, y, z) + t(a, b, c)‖2,p
is differentiable at zero. Note that,

ζ = h ◦ ( f + g),

where f (t) = ((x + ta)2 + (y + tb)2)p/2, g(t) = |z + tc|p, and h(t) = t1/p, t > 0.
Applying the chain rule, it suffices to show that f , g are differentiable at 0. We shall
prove it only for f , since the same arguments will work for g. When (x, y) 	= (0, 0),
then (x + ta)2 + (y + tb)2 > 0 for t sufficiently close to zero, and hence f is
differentiable. So it remains to check the case for (x, y) = 0. Then

∣∣∣∣
((ta)2 + (tb)2)p/2

t

∣∣∣∣ = |t |p−1(a2 + b2)p/2.

Since

lim
t→0

|t |p−1(a2 + b2)p/2 = 0,

it follows that f is differentiable with f ′(0) = 0. By Lemma 6.2, for each p ∈ (1,∞)

the space 	32,p is reflexive and the dual of a smooth space. Thus 	32,p is also strictly
convex (see e.g. [2, p. 184]). ��

6.2 Isometries of �32,p

Next, we determine the identity component Isom0(	
3
2,p) of the isometry group

Isom(	32,p) for p 	= 2. It is known, by the Mazur–Ulam Theorem [20, Thm. 3.1.2],
that for every isometry φ on a real finite dimensional normed space X , there exists a
linear isometry Tφ on X and tφ ∈ X , such that

φ(x) = Tφx + tφ
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for all x ∈ X . Moreover, the map φ �→ Tφ is a group homomorphism with kernel
equal to the group of translations on X . Hence we can focus on linear isometries.
To do this, we recall John’s theorem regarding the Löwner–John ellipsoid, that
is the ellipsoid of maximal volume, inside the unit ball of X (see [10] and [20, Thm.
3.3.1]).

Theorem 6.4 (John) Each convex body K in Rn contains a unique ellipsoid of max-
imal volume, called the inner Löwner–John ellipsoid. This ellipsoid is equal to the
Euclidean unit ball Bn

2 if and only if Bn
2 is contained in K and there exist unit vectors

ui ∈ ∂K and positive numbers ci , i = 1, . . . ,m, such that:

(i)
∑m

i=1 ci ui = 0;
(ii)

∑m
i=1 ci 〈x, ui 〉2 = ‖x‖22 for all x ∈ R

n.

Corollary 6.5 Let X be a normed space that is associated with an inner Löwner–John
ellipsoid E. Then the group Isom(X) of isometries of X is a subgroup of the isometry
group of the Euclidean space with unit ball E.

Proof Given a linear isometry T on X , note that T maps BX to itself. Since T is
volume preserving, it follows by the uniqueness of the inner Löwner–John ellipsoid
that T (E) = E , so T is also an isometry of the Euclidean space associated with E . ��

Let B3
2,p denote the closed unit ball in 	32,p and let B3

2 denote the closed unit ball

in Euclidean space R3.

Lemma 6.6 Let p ∈ (2,∞). Then the inner Löwner–John ellipsoid for B3
2,p is B

3
2 .

Proof Weapply Theorem6.4with K = B3
2,p. Let {e1, e2, e3} be the standard orthonor-

mal basis in R
3. Note that for p > 2, B3

2 is contained in B3
2,p and each vector ei lies

on ∂B3
2,p, i = 1, 2, 3. Define for i = 1, 2, 3 the vectors ui = ei , ui+3 = −ei and the

scalars ci = 1/2, ci+3 = ci . Property (i) of Theorem 6.4 is evident, while property
(ii) is satisfied by Parseval’s identity. The result follows. ��

Recall that the orientation preserving isometries on the Euclidean space Rn are of
the form φ(x) = Tφx + tφ with Tφ ∈ SO(n), meaning that det Tφ = 1. Hence the
identity component Isom0(R

n) is generated by translations and rotations.

Proposition 6.7 Let p ∈ (1,∞), p 	= 2. Then Isom0(	
3
2,p) is the group generated by

rotations R about the z-axis and translations Tt , t ∈ 	32,p.

Proof Let T be a linear isometry that lies in Isom0(	
3
2,p). We consider first the case

p > 2. It follows by Corollary 6.5 and Lemma 6.6 that the linear isometries of 	32,p

are a subgroup of the group of linear isometries of Euclidean space 	32. Hence T leaves
invariant the set

∂B3
2 ∩ ∂B3

2,p = {(x, y, 0) : x2 + y2 = 1} ∪ {(0, 0,±1)}.
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Since T fixes both poles (0, 0,±1) it also fixes the z-axis. Thus, T is a rotation operator
about the z-axis.

Now suppose p ∈ (1, 2). Note that in this case the dual operator T ∗ is a linear
isometry on 	32,q , where 1/p + 1/q = 1. Moreover, T ∗ lies in the identity component

Isom0(	
3
2,q). Since q = 1 + 1/(p − 1) > 2, the above argument shows that T ∗ is a

rotation operator about the z-axis. It follows that T is also a rotation operator about
the z-axis. ��

6.3 Rigid Motions of �32,p

Let X be a finite dimensional real normed linear space. A rigid motion of X is a
collection α = {αx : [−1, 1] → X}x∈X with the properties that:

• αx is a continuous path, for all x ∈ X ;
• αx (0) = x for any x ∈ X ;
• ‖αx (t) − αy(t)‖ = ‖x − y‖ for all x, y ∈ X and all t ∈ [−1, 1].

Proposition 6.8 Let X be a finite dimensional real normed linear space and let α =
{αx }x∈X be a rigid motion of X. For each t ∈ [−1, 1], define

βt : X → X , βt (x) = αx (t) − α0(t).

Then,

• βt ∈ Isom0(X) for each t ∈ [−1, 1];
• the map β : [−1, 1] → Isom0(X), t �→ βt , is continuous.

Proof Note that, for each t ∈ [−1, 1], βt is isometric and βt (0) = 0. It follows, by the
Mazur–Ulam Theorem, that βt is a linear isometry. Let t0 ∈ [−1, 1] and let ε > 0.
Since the unit ball BX is compact, we can choose x1, x2, . . . , xn ∈ BX , such that

BX ⊆
n⋃

i=1

B

(
xi ,

ε

4

)
and 0 ∈ {xi }ni=1.

Since the paths αx1, . . . , αxn are continuous we can choose δ > 0 such that for all
t ∈ [−1, 1],

|t − t0| < δ �⇒ max
1≤i≤n

‖αxi (t) − αxi (t0)‖ <
ε

4
.

Let x ∈ BX . Then there exists i0 ∈ {1, 2, . . . , n} such that ‖x − xi0‖X ≤ ε/4. For
each t ∈ [−1, 1] we have
‖αx (t) − αx (t0)‖ ≤ ‖αx (t) − αxi0

(t)‖ + ‖αxi0
(t) − αxi0

(t0)‖ + ‖αxi0
(t0) − αx (t0)‖

≤ 2‖x − xi0‖ + ε

4
≤ 3ε

4
.

Hence for all t ∈ (t0 − δ, t0 + δ) we have

‖βt (x) − βt0(x)‖ = ‖(αx (t) − α0(t)) − (αx (t0) − α0(t0))‖
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≤ ‖αx (t) − αx (t0)‖ + ‖α0(t) − α0(t0)‖ ≤ 3ε

4
+ ε

4
= ε.

Since δ is independent of x ∈ BX , it follows that for all t ∈ [−1, 1],

|t − t0| < δ �⇒ ‖βt − βt0‖op < ε.

Thus the map β : [−1, 1] → Isom(X), t �→ βt , is continuous. Finally, note that
β([−1, 1]) is a connected subset of Isom(X) which contains the identity on X . Hence
βt lies in Isom0(X) for all t ∈ [−1, 1]. ��
Corollary 6.9 Let p∈(1,∞), p 	= 2. A collection α = {αx : [−1, 1] → 	32,p}x∈	32,p

of maps is a rigid motion of 	32,p if and only if there exists a continuous map

θ : [−1, 1] → R which satisfies θ(0) = 0 such that for each x = (x1, x2, x3) ∈ 	32,p
and t ∈ [−1, 1],

αx (t) =
⎡

⎣
cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+ α0(t). (6)

Proof Suppose α is a rigid motion of 	32,p. Then (6) follows directly from Propositions
6.7 and 6.8. Moreover, since αx (t) is continuous on [−1, 1], the same also holds for
the map t �→ θ(t). Note also that we can take θ(0) = 0. The converse direction is
clear. ��

Let α = {αx }x∈X be a rigid motion of a normed space X . If each αx is differentiable
at t = 0 then the map η : X → X , η(x) = α′

x (0), is called an infinitesimal rigid
motion of X . The collection of all infinitesimal rigid motions of X is a real vector
space, denoted T (X).

Theorem 6.10 Let p ∈ (1,∞), p 	= 2, and let η : 	32,p → 	32,p be an affine map. Then

η ∈ T (	32,p) if and only if there exists a scalar λ ∈ R and a vector c ∈ R
3 such that,

η(x1, x2, x3) = λ(−x2, x1, 0) + c,

for all (x1, x2, x3) ∈ R
3. In particular, dim T (	32,p) = 4.

Proof By Corollary 6.9, if η is an infinitesimal rigid motion of 	32,p then there exists

θ such that, for each x ∈ R
3, η(x) is given by

η(x) = d

dt

⎛

⎝

⎡

⎣
cos θ(t) − sin θ(t) 0
sin θ(t) cos θ(t) 0

0 0 1

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+ α0(t)

⎞

⎠
∣∣∣∣
t=0

= θ ′(0)

⎡

⎣
−x2
x1
0

⎤

⎦+ α′
0(0).

For the converse, suppose η is an affine map of the form

η(x1, x2, x3) = λ(−x2, x1, 0) + c,
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for some scalar λ ∈ R and some vector c ∈ R
3. Consider the collection of continuous

paths,

αx (t) =
⎡

⎣
cos λt − sin λt 0
sin λt cos λt 0
0 0 1

⎤

⎦

⎡

⎣
x1
x2
x3

⎤

⎦+ tc.

Then α is a rigid motion of 	32,p that satisfies η(x) = α′
x (0) for each x ∈ 	32,p. ��

6.4 Full Sets in �32,p

Let X be a normed linear space and let S ⊆ X be a non-empty set. We say that S is
isometrically full in X if the only isometry in Isom0(X) which fixes every point in S
is the identity map.

Lemma 6.11 If S has full affine span in X then S is isometrically full in X.

Proof Suppose that there exists φ ∈ Isom0(X) such that φ(s) = s for every s ∈ S.
Note that φ is of the form φ(x) = Ax + b, for some linear operator A and b ∈ X . Fix
some element s0 ∈ S. Then the operator A also lies in Isom0(X) and it is the identity
on the linear span of the set {s − s0 : s ∈ S}. Since S has full affine span, it follows
that A is the identity. Since b = φ(s) − s = 0 we see that φ is the identity map. ��

Define the restriction map,

ρS : T (X) → XS, η �→ (η(s))s∈S .

We say that S is full in X if ρS is injective (see [13]).

Proposition 6.12 Let p ∈ (1,∞), p 	= 2, and let S be a non-empty subset of 	32,p. The
following statements are equivalent.

(i) S is full in 	32,p.

(ii) S is isometrically full in 	32,p.
(iii) The orthogonal projection of S onto the xy-plane contains at least two points.

Proof Let Pxy denote the projection of 	32,p onto the xy-plane along the z-axis.

(i)⇔ (iii) Suppose that Pxy(S) = {s}. Say s = (s1, s2, 0) and define

η : 	32,p → 	32,p, x �→
⎡

⎣
−x2
x1
0

⎤

⎦+
⎡

⎣
s2

−s1
0

⎤

⎦ .

By Theorem 6.10, η is an infinitesimal rigid motion of 	32,p. Note that ρS(η) = 0

and so S is not full in 	32,p. Let us now assume that there exist s, r ∈ S such that

Pxy(s) 	= Pxy(r). If S is not full, then there exists a non-zero η ∈ T (	32,p) that
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satisfies η(s) = η(r) = 0. Write s = (s1, s2, s3) and r = (r1, r2, r3). Then, by
Theorem 6.10, it follows that (−s2, s1, 0) = (−r2, r1, 0). Hence Pxy(s) = Pxy(r), a
contradiction.

(ii)⇔ (iii) Suppose first that S is isometrically full and that the set Pxy(S) = {Pxy(s) :
s ∈ S} is a singleton {a}. Then for every rotation R about the z-axis we have

Ta RT−as = Ta R(s − a) = Ta(s − a) = s, ∀ s ∈ S,

a contradiction. For the converse, suppose there exists s1, s2 ∈ S such that Pxy(s1) 	=
Pxy(s2). Note that, by Proposition 6.7, it follows that every isometry in Isom0(	

3
2,p) can

bewritten in the form Tt R for some rotation R about the z-axis and some translation Tt .
Suppose Tt R(s) = s for each s ∈ S and let s1, s2 ∈ S be such that Pxy(s1) 	= Pxy(s2).
Then s1 − s2 = Tt R(s1) − Tt R(s2) = R(s1 − s2) and so,

Pxy(s1 − s2) = Pxy R(s1 − s2) = RPxy(s1 − s2).

If R is not the identity map then Pxy(s1 − s2) = 0, a contradiction. It follows that Tt R
is the identity map and so S is full. ��
Remark 6.13 Weexpect that in any finite dimensional real normed linear space a subset
S is full if and only if it is isometrically full, but we are currently unaware of such a
proof.

6.5 Frameworks in �32,p

Let G = (V , E) be a finite simple graph. A (bar-joint) framework in X is a pair
(G, q) where q = (qv)v∈V ∈ XV and qv 	= qw whenever vw ∈ E . A subframework
of (G, q) is a framework (H , qH ) where H = (V (H), E(H)) is a subgraph of G and
qH (v) = q(v) for all v ∈ V (H).

A framework (G, q) is said to be full in X if the set S = {qv : v ∈ V } is full in X .
A framework (G, q) is completely full in X if it is full in X and every subframework
of (G, q) containing at least 2 dim X vertices is also full in X .

The rigiditymap forG and X is defined by fG : XV → R
E , x �→ (‖xv−xw‖)vw∈E .

An infinitesimal flex of a bar-joint framework (G, q) in X is a vector m ∈ XV such
that, for each edge vw ∈ E , the directional derivative of the rigidity map fG in the
direction of m vanishes,

lim
t→0

fG(q + tm) − fG(q)

t
= 0.

An infinitesimal flex m ∈ XV is said to be trivial if there exists an infinitesimal rigid
motion η ∈ T (X) such that mv = η(qv) for all v ∈ V . A bar-joint framework (G, q)

in X is infinitesimally rigid if and only if every infinitesimal flex of (G, q) is trivial.

Lemma 6.14 Let (G, q) be a bar-joint framework in 	32,p, where p ∈ (1,∞). Then a

vector m ∈ XV is an infinitesimal flex of (G, q) if and only if for each edge vw ∈ E
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we have,

⎧
⎨

⎩

(
x, y,

sgn(z)|z|p−1

d p−2

)
· (a, b, c) = 0, if d 	= 0,

c = 0, otherwise,

where qv − qw = (x, y, z), mv − mw = (a, b, c) and d = (x2 + y2)1/2.

Proof For each edge vw ∈ E , consider the function

ζvw : R → R, t �→ ‖(qv + tmv) − (qw + tmw)‖2,p.

Note that m is an infinitesimal flex for (G, q) if and only if ζ ′
vw(0) = 0 for each edge

vw ∈ E .As in the proof ofLemma6.3, by expressing ζvw in the form ζvw = h ◦ ( f +g)
we can show that ζvw is differentiable at 0. If d 	= 0 then using the chain rule we
compute,

ζ ′
vw(0) = (d p + |z|p)1/p−1(d p−2(xa + yb) + sgn(z)|z|p−1c

)
,

Rearranging the above we obtain the desired equation. If d = 0, then z 	= 0, so we
have,

ζ ′
vw(0) = h′( f (0) + g(0))( f ′(0) + g′(0)) = (|z|p)(1−p)/p sgn(z)|z|p−1c = sgn(z)c.

The result follows. ��

6.6 The Rigidity Matrix

We define the rigidity matrix R(G, q) for a graph G and a vector q ∈ (	32,p)
V to

be the |E | × 3|V | matrix with rows indexed by E , columns indexed by V ×{1, 2, 3}
and entries defined as follows: Let vw ∈ E . Write qv − qw = (x, y, z) and d =
(x2 + y2)1/2. When d 	= 0 then the entries of the row indexed by vw are given by,

[ (v,1) (v,2) (v,3) (w,1) (w,2) (w,3)

vw 0 · · · 0 x y
sgn(z)|z|p−1

d p−2 0 · · · 0 −x −y − sgn(z)|z|p−1

d p−2 0 · · · 0

]
.

When d = 0, then the entries of the row indexed by vw are given by,

[ (v,1) (v,2) (v,3) (w,1) (w,2) (w,3)

vw 0 · · · 0 0 0 z 0 · · · 0 0 0 −z 0 · · · 0
]
.

Lemma 6.15 Let p ∈ (1,∞), p 	= 2. A full bar-joint framework (G, q) in 	32,p is
infinitesimally rigid if and only if rank R(G, q) = 3|V | − 4.
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Proof By Lemma 6.14, the kernel of R(G, q) is the linear space of infinitesimal flexes
of (G, q). Also, rank R(G, q) = 3|V | − dim ker R(G, q). Since (G, q) is full, by
Theorem 6.10 the infinitesimal rigid motions of 	32,p induce a 4-dimensional space of
trivial infinitesimal flexes on (G, q). The result now follows. ��

This gives the following analogue of Theorem 5.6.

Theorem 6.16 Let p ∈ (1,∞), p 	= 2. Suppose that G = (V , E) has at least six
vertices and that (G, q) is an infinitesimally rigid and completely full framework
in 	32,p. Furthermore, suppose that for any e ∈ E, (G − e, q) is not infinitesimally
rigid. Then G is (3, 4)-tight.

Proof If |E | < 3|V |−4, then the rigidity matrix R(G, q) has rank less than 3|V |−4.
Hence, byLemma6.15, (G, q) is infinitesimallyflexible, a contradiction.Nowsuppose
|E | > 3|V |−4. By Lemma 6.15, R(G, q) has a non-trivial row dependence and hence
there is an edge whose removal does not decrease the rank of the rigidity matrix. Thus
G − e is still infinitesimally rigid, a contradiction.

Similarly, if there is a non-trivial subgraph G ′ = (V ′, E ′) with |E ′| > 3|V ′| − 4,
then, by the simplicity of G, |V ′| ≥ 6. Since (G, q) is completely full, the sub-
framework (G ′, qG ′) is full in 	32,p. Thus, by Lemma 6.15, the |E ′| × 3|V ′| submatrix
of R(G, q) corresponding to G ′ has a non-trivial row dependence. Thus, there is
an edge of G ′ whose removal from G leaves the framework infinitesimally rigid, a
contradiction. ��
It is open as towhether every (3, 4)-tight graph can be realised as aminimally infinites-
imally rigid framework in 	32,p, when p ∈ (1,∞) and p 	= 2. However, we will now
show that if G is the graph of a doubly braced triangulation, then such a realisation of
G always exists.

6.7 Minimal Rigidity of Doubly Braced Triangulations in �32,p

We first show that the irreducible base graphs given in Theorem 4.1 can be realised
as minimally infinitesimally rigid bar-joint frameworks in 	32,p whenever p ∈ (1,∞)

and p 	= 2.

Example 6.17 Consider the base graph K6 −e. Let V (K4 −e) = {s1, s2, s3, s4}where
e = s2s4 is the deleted edge. To obtain K6−e we cone K4−e with a vertex v0 and the
resulting graph with another vertex v1. Note that K6 − e is the underlying graph of the
irreducible doubly braced triangulations given in Figs. 3, 4, and 5 (see also Fig. 10).
Let q be the following placement:

s1 = (1, 0, 0), s2 = (0, 1, 0), s3 = (−1, 0, 0), s4 = (0,−1, 0),

v0 = (1, 1, 1), v1 = (0, 0,−1).

Then the rigidity matrix is of the form

R(K6 − e, q) =
[
A 0
∗ D

]
,
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v

v

Fig. 10 The base graph K6 − e

where the submatrix A contains the entries arising from the x and y coordinates of the
edges of K4 − e and is of the form

A =

⎡

⎢⎢⎢⎢⎣

(s1,1) (s1,2) (s2,1) (s2,2) (s3,1) (s3,2) (s4,1) (s4,2)

s1s2 1 −1 −1 1 0 0 0 0
s1s3 2 0 0 0 −2 0 0 0
s1s4 1 1 0 0 0 0 1 1
s2s3 0 0 1 1 −1 −1 0 0
s3s4 0 0 0 0 −1 1 1 −1

⎤

⎥⎥⎥⎥⎦

and D, which lies in M9×10(R), is given below:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1,3) (s2,3) (s3,3) (s4,3) (v0,1) (v0,2) (v0,3) (v1,1) (v1,2) (v1,3)

s1v0 −1 0 0 0 0 1 1 0 0 0
s2v0 0 −1 0 0 1 0 1 0 0 0

s3v0 0 0 −√
5
2−p

0 2 1
√
5
2−p

0 0 0

s4v0 0 0 0 −√
5
2−p

1 2
√
5
2−p

0 0 0
s1v1 1 0 0 0 0 0 0 −1 0 −1
s2v1 0 1 0 0 0 0 0 0 −1 −1
s3v1 0 0 1 0 0 0 0 1 0 −1
s4v1 0 0 0 1 0 0 0 0 1 −1
v0v1 0 0 0 0 1 1

√
2
p −1 −1 −√

2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Since the rows of the matrix A are evidently linearly independent, it suffices to show
that the rows of the matrix D are also linearly independent. In the remaining argument,
the row operations will be indicated with the standard notation. For example, the fifth
row of the matrix D1 below is the sum of the first and the fifth row of the matrix D,
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so we write R5 = r5 + r1.

D1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1,3) (s2,3) (s3,3) (s4,3) (v0,1) (v0,2) (v0,3) (v1,1) (v1,2) (v1,3)

r1 −1 0 0 0 0 1 1 0 0 0
r2 0 −1 0 0 1 0 1 0 0 0

r3 0 0 −√
5
2−p

0 2 1
√
5
2−p

0 0 0

r4 0 0 0 −√
5
2−p

1 2
√
5
2−p

0 0 0
R5=r5+r1 0 0 0 0 0 1 1 −1 0 −1
R6=r6+r2 0 0 0 0 1 0 1 0 −1 −1

R7=
√
5
2−p

r7+r3 0 0 0 0 2 1
√
5
2−p √

5
2−p

0 −√
5
2−p

R8=
√
5
2−p

r8+r4 0 0 0 0 1 2
√
5
2−p

0
√
5
2−p −√

5
2−p

r9 0 0 0 0 1 1
√
2
p −1 −1 −√

2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It is evident now that the first four rows of this matrix are linearly independent, so we
may focus on the submatrix:

D2 =

⎡

⎢⎢⎢⎢⎢⎣

(v0,1) (v0,2) (v0,3) (v1,1) (v1,2) (v1,3)

r1 0 1 1 −1 0 −1
r2 1 0 1 0 −1 −1

r3 2 1
√
5
2−p √

5
2−p

0 −√
5
2−p

r4 1 2
√
5
2−p

0
√
5
2−p −√

5
2−p

r5 1 1
√
2
p −1 −1 −√

2
p

⎤

⎥⎥⎥⎥⎥⎦
.

Next, we eliminate the matrix elements below the first entry in the main diagonal of
the above matrix, and get the equivalent matrix

D3 =

⎡

⎢⎢⎢⎢⎢⎣

(v0,1) (v0,2) (v0,3) (v1,1) (v1,2) (v1,3)

R1=r2 1 0 1 0 −1 −1
R2=r1 0 1 1 −1 0 −1

R3=r3−2r2 0 1 −2 + √
5
2−p √

5
2−p

2 2 − √
5
2−p

R4=r4−r2 0 2 −1 + √
5
2−p

0 1 + √
5
2−p

1 − √
5
2−p

R5=r5−r2 0 1 −1 + √
2
p −1 0 1 − √

2
p

⎤

⎥⎥⎥⎥⎥⎦
.

Thus, we can remove the first row and the first column. Working in a similar manner
we obtain

D4 =

⎡

⎢⎢⎢⎣

(v0,2) (v0,3) (v1,1) (v1,2) (v1,3)

r1 1 1 −1 0 −1

R2=r2+r1 0 3 − √
5
2−p −1 − √

5
2−p −2 −3 + √

5
2−p

R3=r3+2r1 0 3 − √
5
2−p −2 −1 − √

5
2−p −3 + √

5
2−p

R4=r4−r1 0 −2 + √
2
p

0 0 2 − √
2
p

⎤

⎥⎥⎥⎦.
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v

v

v

Fig. 11 The base graph K5 ∪K3 K5

Note that the last row of the matrix D4 becomes zero for p = 2. For p 	= 2, we remove
again the first row and the first column and rearrange

D5 =
⎡

⎢⎣

(v0,3) (v1,1) (v1,2) (v1,3)

R1=r3 −2 + √
2
p

0 0 2 − √
2
p

R2=r1−xr3 0 −1 − √
5
2−p −2 0

R3=r2−xr3 0 −2 −1 − √
5
2−p

0

⎤

⎥⎦

where x = (3 − √
5
2−p

)/(−2 + √
2
p
). Thus, it suffices to show that the matrix

D6 =
[ (v1,1) (v1,2)

R1=r2 −1 − √
5
2−p −2

R2=r3 −2 −1 − √
5
2−p

]

has linearly independent rows, which is true for every p 	= 2.

Example 6.18 Consider the base graph K5 ∪K3 K5. This graph can be obtained from
K4−e by repeatedly adding three degree 4 vertices (see Fig. 11).We denote V (K4−e)
= {s1, s2, s3, s4} and the extra vertices by v1, v2, v3. Note that K5 ∪K3 K5 is the
underlying graph of the irreducible doubly braced triangulations given in Figs. 6 and 7.
The two K5 subgraphswill be described by the respective vertex sets {s1, s2, s3, v1, v2}
and {s1, s3, s4, v1, v3}. The intersection of those subgraphs is the graph K3 indicated
by the dashed edges in Fig. 11.

The placement q of V (K4 − e) is the same as in Example 6.17, while the vertices
v1, v2, v3 are placed at the respective points (0, 0, 1), (−1, 1,−1), (−1,−1,−1).
Following the same procedure as in the previous example, the rigidity matrix of the
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framework (K5 ∪K3 K5, q) is a lower triangular block matrix

R(K5 ∪K3 K5, q) =
[
A 0
∗ D

]
,

where the submatrix A contains the entries arising from the x and y coordinates of the
edges of K4 − e, and D is the following matrix:

D =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(s1,3) (s2,3) (s3,3) (s4,3) (v1,1) (v1,2) (v1,3) (v2,1) (v2,2) (v2,3) (v3,1) (v3,2) (v3,3)

s1v1 −1 0 0 0 −1 0 1 0 0 0 0 0 0
s2v1 0 −1 0 0 0 −1 1 0 0 0 0 0 0
s3v1 0 0 −1 0 1 0 1 0 0 0 0 0 0
s4v1 0 0 0 −1 0 1 1 0 0 0 0 0 0

s1v2
√
5
2−p

0 0 0 0 0 0 −2 1 −√
5
2−p

0 0 0
s2v2 0 1 0 0 0 0 0 −1 0 −1 0 0 0
s3v2 0 0 1 0 0 0 0 0 1 −1 0 0 0
v1v2 0 0 0 0 1 −1

√
2
p −1 1 −√

2
p

0 0 0

s1v3
√
5
2−p

0 0 0 0 0 0 0 0 0 −2 −1 −√
5
2−p

s3v3 0 0 1 0 0 0 0 0 0 0 0 −1 −1
s4v3 0 0 0 1 0 0 0 0 0 0 −1 0 −1
v1v3 0 0 0 0 1 1

√
2
p

0 0 0 −1 −1 −√
2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

It suffices to show again that the rows of the matrix D are linearly independent.
Performing row operations in order to eliminate the subdiagonal elements of the first
four columns, we obtain the equivalent matrix

[
D1 D2
0 E

]

where the blocks D1, D2 form the first four rows of the matrix D and E is given by

E =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,1) (v2,2) (v2,3) (v3,1) (v3,2) (v3,3)

r1 −√
5
2−p

0
√
5
2−p −2 1 −√

5
2−p

0 0 0
r2 0 −1 1 −1 0 −1 0 0 0
r3 1 0 1 0 1 −1 0 0 0
r4 1 −1

√
2
p −1 1 −√

2
p

0 0 0

r5 −√
5
2−p

0
√
5
2−p

0 0 0 −2 −1 −√
5
2−p

r6 1 0 1 0 0 0 0 −1 −1
r7 0 1 1 0 0 0 −1 0 −1
r8 1 1

√
2
p

0 0 0 −1 −1 −√
2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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We work now simultaneously on two different blocks of E , the first one is formed by
the first four rows of E and the second one is given from the remaining rows.

E1 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,1) (v2,2) (v2,3) (v3,1) (v3,2) (v3,3)

R1=−r2 0 1 −1 1 0 1 0 0 0

R2=r1−2r2 −√
5
2−p

2 −2 + √
5
2−p

0 1 2 − √
5
2−p

0 0 0
r3 1 0 1 0 1 −1 0 0 0

R4=r4−r2 1 0 −1 + √
2
p

0 1 1 − √
2
p

0 0 0
R5=−r7 0 −1 −1 0 0 0 1 0 1
R6=r6 1 0 1 0 0 0 0 −1 −1

R7=r5−2r7 −√
5
2−p −2 −2 + √

5
2−p

0 0 0 0 −1 2 − √
5
2−p

R8=r8−r7 1 0 −1 + √
2
p

0 0 0 0 −1 1 − √
2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Hence we may remove the first and the fifth row and the columns (v2, 1) and (v3, 1)
to obtain the matrix E2,

E2 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,2) (v2,3) (v3,2) (v3,3)

r1 −√
5
2−p

2 −2 + √
5
2−p

1 2 − √
5
2−p

0 0
r2 1 0 1 1 −1 0 0
r3 1 0 −1 + √

2
p

1 1 − √
2
p

0 0
r4 1 0 1 0 0 −1 −1

r5 −√
5
2−p −2 −2 + √

5
2−p

0 0 −1 2 − √
5
2−p

r6 1 0 −1 + √
2
p

0 0 −1 1 − √
2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

We continue with the following row operations:

E3 =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,2) (v2,3) (v3,2) (v3,3)

R1=r2 1 0 1 1 −1 0 0

R2=r1−r2 −1 − √
5
2−p

2 −3 + √
5
2−p

0 3 − √
5
2−p

0 0
R3=r3−r2 0 0 −2 + √

2
p

0 2 − √
2
p

0 0
R4=r4 1 0 1 0 0 −1 −1

R5=r5−r4 −1 − √
5
2−p −2 −3 + √

5
2−p

0 0 0 3 − √
5
2−p

R6=r6−r4 0 0 −2 + √
2
p

0 0 0 2 − √
2
p

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

.

Again note that for p = 2 all the entries of the rows R3 and R6 of E3 are equal to
zero, so the matrix fails to have independent rows. For p 	= 2, it suffices to show that
the rows of the matrix E4, given below, are linearly independent.

E4 =

⎡

⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,3) (v3,3)

r1 −1 − √
5
2−p

2 −3 + √
5
2−p

3 − √
5
2−p

0
r2 0 0 −2 + √

2
p

2 − √
2
p

0

r3 −1 − √
5
2−p −2 −3 + √

5
2−p

0 3 − √
5
2−p

r4 0 0 −2 + √
2
p

0 2 − √
2
p

⎤

⎥⎥⎥⎦.
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Define again x = (3 − √
5
2−p

)/(−2 + √
2
p
). Since the equivalent matrix

E5 =

⎡

⎢⎢⎢⎣

(v1,1) (v1,2) (v1,3) (v2,3) (v3,3)

R1=r1+xr2 −1 − √
5
2−p

2 0 0 0
r2 0 0 −2 + √

2
p
2 − √

2
p

0

R3=r3+xr4 −1 − √
5
2−p −2 0 0 0

r4 0 0 −2 + √
2
p

0 2 − √
2
p

⎤

⎥⎥⎥⎦

has evidently linearly independent rows, it follows that the framework (K5∪K3 K5, q)

is infinitesimally rigid.

We now recall the following result.

Proposition 6.19 [5, Prop. 4.7] Let X be a strictly convex and smooth finite dimen-
sional real normed linear space with dimension d. Suppose G ′ is a graph which is
obtained from G by a d-dimensional vertex splitting move. If there exists q such that
(G, q) is (minimally) infinitesimally rigid in X then there exists q ′ such that (G ′, q ′)
is (minimally) infinitesimally rigid in X.

A framework (G, q) in 	32,p is said to be regular if the function

rG : (	32,p
)V → N, x �→ rank R(G, x),

achieves its maximum value at q. Note that if (G, q) is infinitesimally rigid in 	32,p for

some regular placement q then every regular placement of G in 	32,p is infinitesimally

rigid. In this case, we say that the graph G is rigid in 	32,p.

Theorem 6.20 Let G be the graph of a doubly braced triangulation and let p ∈ (1,∞),
p 	= 2. Then G is (minimally) rigid in 	32,p.

Proof Let G be the graph of a doubly braced triangulation. By Theorem 4.1, G can be
constructed from the graph of one of the irreducible doubly braced triangulations by a
sequence of 3-dimensional vertex splitting moves. Examples 6.17 and 6.18 show that
the graphs of these irreducible doubly braced triangulations have an infinitesimally
rigid placement in 	32,p. (In fact these placements are minimally infinitesimally rigid

since they have exactly 3|V | − 4 edges.) By Lemma 6.3, 	32,p is strictly convex and
smooth for all p ∈ (1,∞). Thus the result follows from Proposition 6.19. ��
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