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Abstract
Integrate-and-fire models are an important class of phenomenological neuronal models that are frequently used in com-
putational studies of single neural activity, population activity, and recurrent neural networks. If these models are used to
understand and interpret electrophysiological data, it is important to reliably estimate the values of the model’s parameters.
However, there are no standard methods for the parameter estimation of Integrate-and-fire models. Here, we identify the
model parameters of an adaptive integrate-and-fire neuron with temporally correlated noise by analyzing membrane potential
and spike trains in response to a current step. Explicit formulas for the parameters are analytically derived by stationary and
time-dependent ensemble averaging of the model dynamics. Specifically, we give mathematical expressions for the adaptation
time constant, the adaptation strength, the membrane time constant, and the mean constant input current. These theoretical
predictions are validated by numerical simulations for a broad range of system parameters. Importantly, we demonstrate that
parameters can be extracted by using only a modest number of trials. This is particularly encouraging, as the number of trials
in experimental settings is often limited. Hence, our formulas may be useful for the extraction of effective parameters from
neurophysiological data obtained from standard current-step experiments.

Keywords Stochastic spiking · Integrate-and-fire model · Spike-frequency adaptation · Parameter extraction for neural
models

1 Introduction

Integrate-and-fire (IF) neuron models are widely used in the-
oretical studies of neural dynamics (see e.g. Johannesma
1968; Knight 1972; Treves 1993; Campbell et al. 1999;
Brunel 2000; Brunel et al. 2001; Lindner et al. 2005; de la
Rocha et al. 2007; Litwin-Kumar and Doiron 2012; Lindner
2022) and reviews (Holden 1976; Ricciardi 1977; Tuckwell
1989; Burkitt 2006a, b). These models simplify the complex
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properties of neurons into a manageable framework, making
it possible to analyze spontaneous neural activity and predict
neural responses to time-dependent stimuli. Although basic
in nature, IF models capture the timing of neuronal spikes
effectively, which is crucial for understanding how neurons
communicate and process information (Gerstner and Naud
2009).

The leaky integrate-and-fire (LIF) model (Lapicque 1907;
Stein 1967; Tuckwell 1988) combines input integration with
a fire-and-reset rule. It was previously shown, that includ-
ing mechanisms for adaptation is important to capture neural
spike process properly (Benda and Herz 2003; Brette and
Gerstner 2005). Another important addition is the incor-
poration of a noise source to account for the notorious
stochasticity of spike generation in many situations. Often,
the noise that may stem from channel fluctuations or from
synaptic inputs is low-pass filtered in time-due to slow
channel kinetics (Schwalger et al. 2010; Fisch et al. 2012)
and synaptic dynamics (Brunel and Sergi 1998; Moreno-
Bote and Parga 2010), respectively. A standard choice of a
model with Gaussian low-pass filtered noise is the stochastic
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Ornstein-Uhlenbeck process (originally introduced to model
the velocity of a Brownian particle (Uhlenbeck and Ornstein
1930). Gaussian statistics arise in many situations when an
abundance of nearly independent inputs add up - these can
be currents through many ion channels or the inputs at many
synapses. We mention in passing that other relevant noise
statistics in neurons are shot noise (when the spike character
of synaptic input cannot be neglected, see e.g. Richardson
and Swarbrick 2010; Droste and Lindner 2017; Richardson
2024) or dichotomous noise (when up/down states from a
surrounding network dominate the fluctuation input, see e.g.
Droste and Lindner 2014; Mankin and Lumi 2016).

Accurately identifying model parameters that reflect
experimental data is essential for the utility of these mod-
els in experimental and theoretical studies (Paninski et al.
2003; Huys et al. 2006; Rossant et al. 2011; Iolov et al.
2017; Ladenbauer et al. 2019; Friedrich et al. 2014). Tradi-
tional methods for parameter estimation in IF models often
rely on numerical fitting (Friedrich et al. 2014; Teeter et al.
2018). In some experiments in vitro, a noisy current (in the
form of a computer-generated Ornstein-Uhlenbeck process)
is injected into the cell, which allows to extract subthresh-
old nonlinearities and their parameters directly; see e.g. the
pioneering studies by Badel et al. (2008a, b). Other stud-
ies (Vilela and Lindner 2009a, b) have provided relations of
the firing statistics of simple IF models with white Gaussian
noise, specifically their firing rate and coefficient of variation
of the interspike interval (ISI) to the input parameters (base
current and noise intensity). Because the neural spiking pro-
cess is inherently nonlinear, and not all relevant variables are
also observable (adaptation currents are difficult to access),
the estimation of parameters of spiking neuron models based
on experimental data remains a difficult task.

In our study, we introduce a new analytical method that
derives essential parameters of the adaptive leaky integrate-
and-firemodel with an (unknown) low-pass filteredGaussian
noise. We assume that we know the response of the mem-
brane voltage to a current-step for a sufficiently large number
of trials. The method provides the adaptation time constant,
adaptation strength,membrane time constant, andmean input
current. Importantly, it does not require explicit knowledge of
the time course or characteristics of the intrinsic noise, mak-
ing it applicable to a wide range of experimental conditions.
This approach can potentially facilitate the classification of
neuron types (Teeter et al. 2018) and the exploration of
fluctuation-response relationships in experimental settings
(Lindner 2022, 2002b; Puttkammer and Lindner 2024).

This paper is structured as follows: we begin by describ-
ing the adaptive integrate-and-fire model with Ornstein-
Uhlenbeck noise, explain the new method for extracting
parameters, validate this methodwith numerical simulations,
and, finally, briefly summarize our finding and give an out-
look to possible extensions of the method.

2 Model andmeasures

The adaptive integrate-and-fire model with exponentially
correlated (colored) noise describes the dynamics of a neuron
using a system of stochastic differential equations

τm
d

dt
v = −v + μ − a + η − τm(vT − vR)x(t) + s (1a)

τa
d

dt
a = −a + �aτax(t) (1b)

τη

d

dt
η = −η +

√
2σ 2τηξ(t). (1c)

Here, v(t) represents the dynamics of the membrane poten-
tial, a(t) is the adaptation variable, and η(t) corresponds to
the correlated noise. Furthermore, s(t) is an external pertur-
bation (here a step current), μ is the effective intrinsic mean
input current, and x(t) = ∑

i δ(t − ti ) is the spike train, in
which we sum over the spike times ti . The latter are deter-
mined by the fire-and-reset rule that is applied to the first Eq.
(1a) above:Whenever themembrane voltage v(t) exceeds the
threshold vT , a spike time ti is registered and the membrane
voltage is reset to vR . Note that we have already formally
incorporated the reset by the term −τm(vT − vR)x(t) in the
first Eq. (1a) and that the model, despite its apparent linearity
in the variables v(t), a(t), η(t), is highly nonlinear due to the
fire-and-reset rule.

The spike train affects the adaptationvariable in the second
Eq. (1b) via the term τa�ax(t). The jump of the adaptation
variable by �a with each generated spike is usually referred
to as a spike-triggeredadaptation and a formof negative feed-
back. Put differently, the negative-feedback effect of a(t) in
the voltage equation leads to a downregulation of the spiking
if the activity is high.

The third Eq. (1c) describes an Ornstein-Uhlenbeck pro-
cess, which serves here (via a Markovian embedding) as a
source of colored noise with vanishing mean 〈η(t)〉 = 0,
variance σ 2, correlation-time τη, and an exponential correla-
tion function 〈η(t)η(t+τ)〉 = σ 2 exp[−|τ |/τη]. This process
can be regarded as a low-pass filtered version of the Gaussian
white noise ξ(t) (correlation function 〈ξ(t)ξ(t+τ)〉 = δ(τ )),
emerging from a synaptic filtering of massive Poissonian
input spike trains in the diffusion approximation (Richard-
son and Gerstner 2005). Figure1 depicts the time courses
of the membrane potential, the adaptation variable, and the
Ornstein-Uhlenbeck noise for one trial under stationary con-
ditions (s(t) ≡ 0).

The model contains a number of parameters: The effec-
tive mean input current μ, the membrane time constant τm ,
the adaptation time constant τa , and the adaptation step �a .
All these parameters, μ, τm , τa and �a , have to be deter-
mined if the model is supposed to describe the activity of an
individual real neuron. The noise parameters σ and τη are not
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Fig. 1 Stochastic integrate-and-fire neuron with μ = 1.2, τm =
1, τa = 10,�a = 0.8, τη = 1, σ 2 = 0.1, s = 2.0,�t = 0.01

extracted as they do not influence the relations among the dif-
ferent averaged observables, which are used for the inference
of the parameters (although the strength and type of noise
will affect the averaged observables themselves). Typically,
for the model class of integrate-and-fire neurons, numerical
methods of parameter fitting are used (Teeter et al. 2018). If a
time-dependent stimulus is known, for instance, as a frozen-
noise stimulus η(t), more information about the underlying
voltage dynamics can be extracted directly from pyrami-
dal cells (Badel et al. 2008b) and fast-spiking interneurons
(Badel et al. 2008a). Here, we do not assume that the time
course of the colored intrinsic noise is known, but that we
know trials of voltage traces in response to a current step
s(t) = ε	(t − tε). We will show that all unknown param-
eters can be obtained from explicit formulas, and we will
test these formulas for broad ranges of parameter values.
We exclusively use data from model simulations to test the
method. To apply the method to experimental data is beyond
the scope of our current study, but an exciting problem for
future investigations.

The model Eqs. (1a – 1c) are integrated using the Euler-
Maruyamamethod with a time step of�t = 10−5. To reduce
the amount of data, we resample them at a coarse-grained
resolution of �ts = 102 · �t . This time step is also used for
the numerical evaluation of the Laplace transforms that play
an important role in our theory (see below). In the first trial,
we initialize the values of v(t) and a(t) at zero, leading to a
transient phase before reaching a steady state. In subsequent
simulation trials, the last values from the previous simulation
before stimulus onset are used as the new initial values, in
this way effectively sampling the steady state of the system.

The trials from our simulations can be averaged to obtain
estimates of the mean voltage 〈v(t)〉 and the mean adaptation
〈a(t)〉 (Ntrials = 1000 are used if not indicated otherwise).
We note that only the voltage v(t) and the spike train x(t) are
directly accessible in the experiment, whereas the adaptation

a(t) is a hidden variable. For this reason, we will seek to
eliminate 〈a(t)〉 from subsequent equations.We can estimate
the instantaneous firing rate by Gerstner et al. (2014)

r(t) = 〈x(t)〉 ≈
∑Ntrials

k=1

∑
j nk(t, t + �ts)

�ts · Ntrials
, (2)

where nk(t, t + �ts) is the count of threshold crossings
in the time interval [t, t + �ts]. If the system is in a sta-
tionary state, we can additionally average over time and use
a mixed ensemble-time average. We note that in an experi-
mental situation, the trials could be taken from a long single
experiment in which the injected current is switched back
and forth between two values. In order for the trials to be
statistically independent, we have to make sure that the time
window of the single trial is much longer than the adapta-
tion time constant τa and the correlation time constant of the
noise τη.

3 Calculation of mean values in steady state

Here, we analyze the steady state of the adaptive integrate-
and-fire model under stationary conditions, i.e. with a con-
stant input current of either μ or μ + ε. Stationarity implies
that all averaged time derivatives and the average noise are
zero, 〈dv/dt〉 = 0, 〈da/dt〉 = 0, 〈η(t)〉 = 0. An ensemble
average of Eqs. 1a and 1b for s(t) = 0 results in

〈v〉0 = μ − 〈a〉0 − τm(vT − vR)r0 (3a)

〈a〉0 = �aτar0, (3b)

which corresponds to the initial steady state, i.e. 〈v〉0, 〈a〉0,
and r0 denote the steady-state averages of voltage, adaptation
variable, and spike train, respectively, before the stimulus
onset.

After the stimulus is applied for a sufficiently long dura-
tion, a new steady state is reached and a similar calculation
yields the new steady-state averages under a constant current
of μ + ε

〈v〉ε = μ + ε − 〈a〉ε − τm(vT − vR)rε (4a)

〈a〉ε = �aτarε. (4b)

Fig. 2 illustrates the steady-state values along with the
time-dependent features of the dynamics that we have not
described yet. Here, we have used a very conservative (long)
length of the window. It is visible that we could easily choose
a shorter window without violating the assumption of inde-
pendent trials, while still capturing the necessary dynamics.
Using shorter trials would imply a larger number of trials
obtained from one long experiment.
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Fig. 2 Steady-state and time-dependent averages 〈v(t)〉, 〈a(t)〉, 〈r(t)〉
(light gray area) when the stimulation current is turned on ε = 2.0
at tε = 500. Ntrials = 1000 with μ = 1.5, τm = 1, τa = 10,�a =
0.8, τη = 1, σ 2 = 1. Integration step �t = 0.001; time series stored
with �ts = 0.1

The steady state Eqs. (3a– 4b) obtained so far relate mea-
surable mean values 〈v〉 , 〈a〉 , r with the unknown param-
eters τm, μ, τa,�a . For the differences in the steady-state
averages before and long after the onset of the stimulation
we obtain

〈δv〉 = 〈v〉ε − 〈v〉0 = ε − 〈δa〉 − τm(vT − vR)δr (5a)

〈δa〉 = 〈a〉ε − 〈a〉0 = �aτaδr , (5b)

where 〈δv〉 and 〈δa〉 represent the mean changes in mem-
brane potential and adaptation, respectively, and δr = rε −r0
denotes the change in firing rate.

These equations allow to express the adaptation difference
〈δa〉 in terms of the changes in membrane potential 〈δv〉 and
firing rate δr . Equation (5a) leads to the relationship

〈δa〉 = ε − 〈δv〉 − τm(vT − vR)δr , (6)

which also incorporates the model parameter τm . Further-
more, Eq. (5b) allows for deducing a reciprocal relationship
for the adaptation parameters �a and τa

�a = 〈δa〉
τaδr

= ε − 〈δv〉 − τm(vT − vR)δr

τaδr
. (7)

The derived relations, Eqs. (6) and (7), do not suffice to
entirely determine the unknown parameters; we will need
additional information on the system, which is obtained from
the temporal behavior, an analysis that is presented in the next
section.

4 Transient analysis

With stimulus onset the system exhibits transient behavior
in membrane potential, adaptation variable, and firing rate.
The equations capturing the temporal evolution of the mean
membrane potential and mean adaptation are

τm
d

dt
〈v(t)〉 = −〈v(t)〉 + μ + ε

− 〈a(t)〉 − τm(vT − vR)r(t), (8a)

τa
d

dt
〈a(t)〉 = −〈a(t)〉 + �aτar(t). (8b)

This can be rewritten in terms of the time-dependent devia-
tions from the new steady state as follows

τm
d

dt
(〈v(t)〉 − 〈v〉ε) = − (〈v(t)〉 − 〈v〉ε) − (〈a(t)〉 − 〈a〉ε)

− τm(vT − vR)(r(t) − rε) (9a)

τa
d

dt
(〈a(t)〉−〈a〉ε) = − (〈a(t)〉−〈a〉ε)+�aτa(r(t)−rε)

(9b)

To analyze the system’s post-stimulation dynamics, we
employ the Laplace transform to convert the differential
equations into algebraic equations in the Laplace domain,
yielding

τm(〈δv〉 + λv̂(λ)) = −v̂(λ) − â(λ) − τm(vT − vR)r̂(λ)

(10a)

τa(〈δa〉 + λâ(λ)) = −â(λ) + �aτar̂(λ). (10b)

Here, v̂(λ), â(λ), and r̂(λ) denote the Laplace transforms
of the deviations from post-stimulation steady-state for mean
membrane potential,mean adaptation, and firing rate, respec-
tively (we omit averaging brackets for the ease of notation).
Numerically we compute the Laplace transforms starting
from the stimulus onset tε over a sufficiently long duration
TL as follows

v̂(λ) =
∫ tε+TL

tε
dte−λt (〈v(t)〉 − 〈v〉ε) (11a)

â(λ) =
∫ tε+TL

tε
dte−λt (〈a(t)〉 − 〈a〉ε) (11b)

r̂(λ) =
∫ tε+TL

tε
dte−λt (r(t) − rε). (11c)

In Fig. 2 it can be seen that within the chosen time window
TL (light gray area) the mean values approach their steady
state values very closely, thus the infinite limit of the true
Laplace transform can be well approximated (Fig. 3).
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Fig. 3 Laplace transformsof the time-dependent averages ofmembrane
potential, adaptation variable, and firing rate minus their steady-state
averages after stimulus onset (Eqs. (11a)–(11c)) for the data shown in
Fig. 2

Rearranging Eq. (10a) allows for the expression of the
Laplace transformof the adaptation variable, â(λ), as follows

â(λ) = −τm(〈δv〉 + λv̂(λ) + (vT − vR)r̂(λ)) − v̂(λ). (12)

Remarkably, â(λ)depends solely on the statistics of themem-
brane voltage, the firing rate, and the parameter τm . The
subsequent substitution of â(λ) and the expressions for 〈δa〉
in Eq. (6) and �a in Eq. (7) into Eq. (10b) results in

τa = τmh(λ) + δr v̂(λ) + (ε − 〈δv〉) · r̂(λ)

δr · (ε − 〈δv〉 − τmg(λ) − λv̂(λ))
. (13)

Here, h(λ) and g(λ) are defined by

h(λ) = δr 〈δv〉 + δrλv̂(λ), (14)

g(λ) = (vT − vR)δr + λ(〈δv〉 + λv̂(λ) + (vT − vR)r̂(λ)).

(15)

Wewould like to point out that we know these functions once
we have computed the Laplace transforms of the voltage and
the firing rate and their steady-state values.

In the following, we exploit the fact that this equation
holds for all λ ≥ 0. Inserting two values, λ1 and λ2, yields a
quadratic equation, which can be solved for τm :

τm1,2 = ± 1

2(g1h2 − g2h1)

[(
−4(g1h2 − g2h1)

(λ1r̂2εv̂1 − λ2r̂1εv̂2 − λ1r̂2v̂1 〈δv〉

+ λ2r̂1v̂2 〈δv〉 + λ1δr v̂1v̂2 − λ2δr v̂1v̂2

+ r̂1ε
2 − r̂2ε

2 − 2r̂1ε 〈δv〉 + 2r̂2ε 〈δv〉 + r̂1 〈δv〉2
− r̂2 〈δv〉2 + δrεv̂1 − δrεv̂2 − δr v̂1 〈δv〉 + δr v̂2 〈δv〉)
+ (−g2r̂1ε + g1r̂2ε + g2r̂1 〈δv〉 − g1r̂2 〈δv〉 − g2δr v̂1
+ g1δr v̂2 − h1λ2v̂2

+ h2λ1v̂1 + h1ε − h2ε − h1 〈δv〉 + h2 〈δv〉)2
) 1

2

+ g2r̂1ε − g1r̂2ε − g2r̂1 〈δv〉 + g1r̂2 〈δv〉
+ g2δr v̂1 − g1δr v̂2 + h1λ2v̂2

− h2λ1v̂1 − h1ε + h2ε + h1 〈δv〉 − h2 〈δv〉
]

(16)

It turns out that only one of the two solutions is positive
and therefore physically plausible:

τm = 1

2(g1h2 − g2h1)

[(
−4(g1h2 − g2h1)(λ1r̂2εv̂1

− λ2r̂1εv̂2 − λ1r̂2v̂1 〈δv〉 + λ2r̂1v̂2 〈δv〉 + λ1δr v̂1v̂2

− λ2δr v̂1v̂2 + r̂1ε
2 − r̂2ε

2 − 2r̂1ε 〈δv〉
+ 2r̂2ε 〈δv〉 + r̂1 〈δv〉2 − r̂2 〈δv〉2 + δrεv̂1

− δrεv̂2 − δr v̂1 〈δv〉 + δr v̂2 〈δv〉)
+ (−g2r̂1ε + g1r̂2ε + g2r̂1 〈δv〉 − g1r̂2 〈δv〉 − g2δr v̂1

+ g1δr v̂2 − h1λ2v̂2 + h2λ1v̂1 + h1ε

− h2ε − h1 〈δv〉 + h2 〈δv〉)2
) 1

2

+ g2r̂1ε − g1r̂2ε − g2r̂1 〈δv〉 + g1r̂2 〈δv〉 + g2δr v̂1

− g1δr v̂2 + h1λ2v̂2 − h2λ1v̂1 − h1ε + h2ε

+ h1 〈δv〉 − h2 〈δv〉
]

(17)

Importantly, the determination of τm relies solely on mea-
surable quantities like membrane voltage v(t) and firing rate
r(t), along with their Laplace transforms and on the ampli-
tude ε of the controlled stimulus current.

In the next step, the calculated value of τm is used to deter-
mine the adaptation time τa via Eq. (13). The results of both
τa and τm allow the calculation of �a via Eq. (7). Finally,
the mean constant input current,μ, can be computed directly
from the steady-state Eqs. (3a and 3b) using the determined
parameters

μ = 〈v〉0 + �aτar0 + τm(vT − vR)r0. (18)

In conclusion, our analytical approach allows the deter-
mination of four key parameters of the adaptive integrate-
and-fire model: τa , �a , τm , and μ. In the next section, we
will confirm our findings through stochastic simulations of
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Fig. 4 Estimated parameters τm (Eq. 17), τa (13), �a (Eq. 7), and μ

(Eq. 18) from10 runs of Ntrials = 1000, each obtained from a simulation
of Eqs. 1a–1c for a time window of T = 1000 time units. Parameters
are varied around the default values, τm = 1, �a = 0.8, τa = 10,

τη = 1, σ 2 = 1, s = 2.0; The prescribed values are indicated by the
orange lines; the estimated values are displayed by blue lines, symbols
and error bars. The integration step for the simulation was �t = 10−5,
saved with a time step of �ts = 10−3

the model. Here we aim to recover the prescribed values of
the system parameters from a finite set of simulation trials.

5 Validation of parameter estimation
through numerical simulations

In the simulations, the four model parameters μ, τm, τa,�a

are systematically varied around a default parameter set of
μ = 1.2, τm = 1, �a = 0.8, and τa = 10. In addition,
we choose throughout a perturbation amplitude of ε = 2

and the noise parameters such that the input fluctuations are
strong (σ 2 = 1) and significantly correlated (τη = 1, see
Fig. 4) or almost uncorrelated (τη = 0.1, see Fig. 5). Testing
different combinations ofmodel parameters demonstrates the
validity of the estimations across a spectrumof conditions for
a modest number of 1000 trials.

In Fig. 4 we vary in the four columns the parameters
τm, τa,�a, and μ, respectively. These variations respect a
number of physiological boundary conditions: The adapta-
tion time constant is significantly larger than the membrane
time constant τm , the effective input current μ is varied
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Fig. 5 Estimated parameters τm (Eq. 17), τa (Eq. 13),�a (Eq. 7), andμ

(Eq. 18) from10 runs of Ntrials = 1000, each obtained from a simulation
of Eqs. 1a– 1c for a time window of T = 1000 time units. Parameters
are varied around the default values, τm = 1, �a = 0.8, τa = 10,

τη = 0.1, σ 2 = 1, s = 2.0; The prescribed values are indicated by the
orange lines; the estimated values are displayed by blue lines, symbols
and error bars. The integration step for the simulation was �t = 10−5,
saved with a time step of �ts = 10−3

such that we explore both the excitable (μ < 1) and the
mean-driven regime (μ > 1), which are both observed exper-
imentally, and the adaptation strength �a is varied such that
the difference between the steady states are physiologically
reasonable (Benda and Herz 2003). Because we vary only
one parameter at a time, the other parameters should not
change and be close to a horizontal line in the respective col-
umn, while the estimate of the changed parameter should fall
on the identity line. Indeed, for all parameter variations, the
estimated parameters are very close to the prescribed ones.

Of course, since we deal with a finite number of trials,
the estimates exhibit somemeasurement noise. Interestingly,
the random deviations in the estimates of τa and �a obey
an inverse relationship (Fig. 4b, c best visible in the first
and last columns), arising from their reciprocal relationship
in Eq. (7). On the contrary, the base current μ displays a
particularly small measurement error across all parameter
variations (Fig. 4d). When we decrease the correlation time
of the noise by one order of magnitude (Fig. 5), our formulas
for the extraction of the parameters still work, and the numer-
ical error seems to be for most parameter variations even
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Fig. 6 Estimated parameters τm (Eq. 17), τa (Eq. 13), �a (Eq. 7), and
μ (Eq. 18) from top to bottom versus inverse of the simulation time
step �t (left) and versus the total number of simulation trials (right).
Simulations were conducted with standard parameters (τm = 1, τa =
10,�a = 0.8,μ = 1.2, τη = 1,σ 2 = 1, ε = 2) and Ntrials = 1000 (left)
and simulation time step �t = 10−5 (right). Yellow line: prescribed
parameters

smaller than before. Similarly, we find that when the noise
variance σ 2 is decreased the method of parameter extraction
still works very well (not shown).

Because we use a finite number of stochastic simulations
performed with a non-vanishing time step, we may expect
systematic and random deviations from the true values of the
parameters. How sensitive is our method to a change of the
time step �t and the number of trials? These problems are
inspected in Fig. 6. On the left we change the inverse of the
simulation time step �t and find indeed systematic devia-
tions for almost all parameters if the time step is too large
(�t > 10−4). Starting with values around �t = 10−4 we

find a convergence to the prescribed values, i.e. the systematic
errors become significantly smaller than the random devia-
tions (indicated by the error bars). Increasing the number of
trials (Fig. 6, right) entails the predictable consequence, that
all error bars are drastically reduced. There are no systematic
deviations visible as we have used a sufficiently small time
step.

6 Summary

We have successfully derived explicit analytical formulas to
extract parameters from a stochastic integrate-and-firemodel
with adaptation, using ensemble averages of membrane volt-
age and spike trains in response to a current step. We have
determined four key parameters: the mean input current, the
membrane time constant, the adaptation time constant, and
the adaptation strength.

Unlike previous methods of parameter extraction that
require the knowledge of the noisy input current (Badel et al.
2008a) or fit procedures (see e.g. Brette and Gerstner 2005;
Teeter et al. 2018), our approach only needs the voltage
trace in response to a current step to estimate parameters.
Importantly, it works well even when only a few data sets
are available, making it very suitable for experiments where
data may be sparse. The formulas we have developed could
be directly applied to experimental data to determine if the
adaptive integrate-and-fire model accurately reflects actual
neural dynamics. This method could also help identifying
neuron types based on their firing and adaptation character-
istics (Teeter et al. 2018).

For the estimation of the membrane time constant but also
for the extraction of the noise parameters σ and τη (a problem
that we did not address here) a simple alternative approach
exists that is also often applied in experiments. A strongly
hyperpolarizing current will prevent firing, thus eliminating
spike-triggered adaptation, and hence analysis of the tempo-
ral correlations of the spike-free voltage trace will betray the
membrane time constant and the parameters of the intrin-
sic noise. Unfortunately, all these parameters may also be
effectively changed upon strong hyperpolarization because
for instance the kinetics of channel noise depends strongly
on the holding potential of the cell. It would be neverthe-
less instructive to see how the membrane time constant and
mean input determined by our and by the hyperpolarization
methods compare. We also note that without hyperpolariza-
tion information on hidden parameters may be extracted by
the voltage trace following a spike: the change in slope of
the voltage over time may provide estimates of the hidden
adaptation variable, and also themean time course of the volt-
age is certainly affected by both the membrane time constant
and the adaptation time constant. A future study providing
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a quantitative comparison of the different ways to extract
parameters from limited data is certainly desirable.

Our approach may also help to experimentally test
the fluctuation-response relations put forward by Lindner
(2022). Exactly for the model inspected in our paper, the
following relation should hold true:

χx =
(
vT − vR + �aτa

1+iωτa

)
Sxx + (1 + iωτm)Sxv

Sηη

(19)

Here we have on the left hand side the susceptibility,
which is the Fourier transformof the linear-response function
relating the time-dependent modulation of the instantaneous
firing rate to a weak current stimulus (see e.g. Knight 1972;
Lindner 2002; Fourcaud and Brunel 2002). On the right hand
side we have stationary statistics without stimulus in the
numerator and the intrinsic noise spectrum in the denom-
inator. The latter is generally unknown, whereas both the
spontaneous spike statistics and the response to an external
stimulus can be measured. Knowing by our method all the
parameters of the neuron (appearing in the numerator on the
right-hand side of Eq. (19), we can now use Eq. (19) to deter-
mine the noise spectrum. We would like to emphasize that
the noise process does not have to be an Ornstein-Uhlenbeck
process - any Gaussian noise with vanishing mean value will
do. This was already tested in Lindner (2022) for a noise
consisting of the superposition of two independent Ornstein-
Uhlenbeck processes with distinct correlation times and a
narrow-band noise. Assuming the parameters of the hidden
adaptation variable as known, the intrinsic noise spectrum
could be successfully recovered (see Fig. 2b in Lindner
(2022)). The contribution of our paper is to make the param-
eters needed in the above relation available from step-current
experiments.

An interesting challenge is to extend our approach to neu-
ron models that incorporate more realistic features, such as
subthreshold nonlinearities as in the exponential integrate-
and-fire model (Fourcaud-Trocmé et al. 2003), the neural
refractory period (Berry and Meister 1998; Puttkammer and
Lindner 2024), power-law adaptation (Pozzorini et al. 2013),
or conductance noise (Richardson and Gerstner 2005; Lind-
ner and Longtin 2006; Wolff and Lindner 2008; Richardson
2024). In many if not all of these cases, the formal linearity
of the problem that allowed for a simple solution of the prob-
lem is, unfortunately, gone. It remains to be seenwhat kind of
approximations can be worked out in these cases in order to
still reliably determine the neural parameters. In conclusion,
there are still a number of exciting research problems left
to extend the approach for analytical parameter extraction in
various directions.

Acknowledgements We would like to thank Sabine Klapp (Technical
University Berlin, Germany) for her support of this project.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Badel L, Lefort S, Brette R, Petersen CC, Gerstner W, Richardson
MJ (2008a) Extracting non-linear integrate-and-fire models from
experimental data using dynamic I-V curves. J Neurophysiol
99:656

Badel L, Lefort S, Berger TK, Petersen CCH, Gerstner W, Richardson
MJE (2008b) Extracting non-linear integrate-and-firemodels from
experimental data using dynamic I-V curves. Biol Cybern 99:361

Benda J, Herz AVM (2003) A universal model for spike-frequency
adaptation. Neural Comput 15:2523

Berry M, Meister M (1998) Refractoriness and neural precision. J Neu-
rosci 18:2200

Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire
model as an effective description of neuronal activity. J Neuro-
physiol 94:3637

BrunelN (2000)Dynamics of sparsely connected networks of excitatory
and inhibitory spiking neurons. J Comput Neurosci 8:183

Brunel N, Sergi S (1998) Firing frequency of leaky integrate-and-fire
neurons with synaptic current dynamics. J Theor Biol 195:87

BrunelN,Chance FS, FourcaudN,Abbott LF (2001) Effects of synaptic
noise and filtering on the frequency response of spiking neurons.
Phys Rev Lett 86:2186

Burkitt AN (2006) A review of the integrate-and-fire neuron model: II.
Inhomogeneous synaptic input and network properties. Biol Cyber
95:97

Burkitt AN (2006) A Review of the Integrate-and-fire Neuron Model:
I. Homogeneous Synaptic Input. Biol Cyber 95:1

Campbell SR, Wang DL, Jayaprakash C (1999) Synchrony and desyn-
chrony in integrate-and-fire oscillators. Neural Comput 11:1595

de la Rocha J, Doiron B, Shea-Brown E, Josic K, Reyes A (2007)
Correlation between neural spike trains increases with firing rate.
Nature 448:802

Droste F, Lindner B (2014) Integrate-and-fire neurons driven by asym-
metric dichotomous noise. Biol Cybern 108:825

Droste F, LindnerB (2017)Exact analytical results for integrate-and-fire
neurons driven by excitatory shot noise. J Comp Neurosci 43:81

FischK, Schwalger T, Lindner B,HerzA,Benda J (2012)Channel noise
from both slow adaptation currents and fast currents is required to
explain spike-response variability in a sensory neuron. J Neurosci
32:17332

Fourcaud N, Brunel N (2002) Dynamics of the firing probability of
noisy integrate-and-fire neurons. Neural Comput 14:2057

Fourcaud-TrocméN, Hansel D, vanVreeswijk C, Brunel N (2003) How
spike generation mechanisms determine the neuronal response to
fluctuating inputs. J Neurosci 23:11628

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


2 Page 10 of 10 Biological Cybernetics (2025) 119 :2

Friedrich P, Vella M, Gulyás AI, Freund TF, Káli S (2014) A flexi-
ble, interactive software tool for fitting the parameters of neuronal
models. Front Neuroinform 8:63

Gerstner W, Naud R (2009) How good are neuron models? Science
326:379

GerstnerW,KistlerWM,NaudR,PaninskiL (2014)Neuronal dynamics
from single neurons to networks and models of cognition. Cam-
bridge University Press, Cambridge

Holden AV (1976) Models Stochastic Activity Neurones. Springer-
Verlag, Berlin

HuysQJ, AhrensMB, Paninski L (2006) Efficient estimation of detailed
single-neuron models. J Neurophysiol 96:872

Iolov A, Ditlevsen S, Longtin A (2017) Optimal design for estima-
tion in diffusion processes from first hitting times. SIAM-ASA J
Uncertain 5:88

Johannesma PIM (1968) Neural Networks. Springer, Berlin
Knight BW (1972) Relationship between firing rate of a single neuron

and level of activity in a population of neurons - experimental
evidence for resonant enhancement in population response. J Gen
Physiol 59:767

Ladenbauer J, McKenzie S, English DF, Hagens O, Ostojic S (2019)
Inferring and validating mechanistic models of neural microcir-
cuits based on spike-train data. Nat Commun 10:4933

Lapicque L (1907) Recherches quantitatives sur l’excitation électrique
des nerfs traitéecomme une polarization. J Physiol Pathol Gen
9:620

Lindner B (2022b) arXiv2304.07027 [physics.bio-ph]
Lindner B (2002) Coherence and stochastic resonance in nonlinear

dynamical systems. Logos-Verlag, Berlin
Lindner B (2022) A self-consistent analytical theory for rotator net-

works under stochastic forcing: effects of intrinsic noise and
common input. Phys Rev Lett 129:198101

Lindner B, Longtin A (2006) Comment on “Characterization of Sub-
threshold Voltage Fluctuations in Neuronal Membranes” by M.
Rudolph and A. Destexhe. Neural Comput 18:1896

Lindner B, Doiron B, Longtin A (2005) Theory of oscillatory firing
induced by spatially correlated noise and delayed inhibitory feed-
back. Phys Rev E 72:061919

Litwin-Kumar A, Doiron B (2012) Slow dynamics and high variabil-
ity in balanced cortical networks with clustered connections. Nat
Neurosci 15:1498

Mankin R, Lumi N (2016) Statistics of a leaky integrate-and-fire model
of neurons driven by dichotomous noise. Phys Rev E 93:052143

Moreno-Bote R, Parga N (2010) Response of integrate-and-fire neurons
to noisy inputs filtered by synapseswith arbitrary timescales: firing
rate and correlations. Neural Comput 22:1528

Paninski L, Simoncelli E, Pillow J (2003) Maximum likelihood estima-
tion of a stochastic integrate-and-fire neural model. Adv Neural
Inf Process Syst 16:1

Pozzorini C, Naud R, Mensi S, Gerstner W (2013) Temporal whiten-
ing by power-law adaptation in neocortical neurons. Nat Neurosci
16:942

Puttkammer F, Lindner B (2024) Fluctuation-response relations for
integrate-and-fire models with an absolute refractory period. Biol
Cybern 118:1–13

Ricciardi LM (1977) Diffusion Processes and Related Topics on Biol-
ogy. Springer-Verlag, Berlin

RichardsonMJE (2024)Linear and nonlinear integrate-and-fire neurons
driven by synaptic shot noise with reversal potentials. Phys Rev E
109:024407

Richardson MJE, Gerstner W (2005) Synaptic shot noise and con-
ductance fluctuations affect the membrane voltage with equal
significance. Neural Comput 17:923

Richardson MJE, Swarbrick R (2010) Firing-rate response of a neuron
receiving excitatory and inhibitory synaptic shot noise. Phys Rev
Lett 105:178102

RossantC,GoodmanD,FontaineB,Platkiewicz J,MagnussonA,Brette
R (2011) Fitting neuron models to spike trains. Front Neurosci 5:9

Schwalger T, Fisch K, Benda J, Lindner B (2010) How noisy adaptation
of neurons shapes interspike interval histograms and correlations.
PLoS Comp Biol 6:e1001026

Stein RB (1967) Some models of neuronal variability. Biophys J 7:37
Teeter C, IyernR,MenonV,GouwensN, FengD, Berg J, SzaferA, Cain

N, Zeng H, Hawrylycz M (2018) Generalized leaky integrate-and-
fire models classify multiple neuron types. Nat Commun 9:709

Teeter C, Iyer R, Menon V, Gouwens N, Feng D, Berg J, Szafer A, Cain
N, Zeng H, HawrylyczM et al (2018) Generalized leaky integrate-
and-firemodels classifymultiple neuron types.NatCommun9:709

Treves A (1993) Mean-field analysis of neuronal spike dynamics. Netw
Comput Neural Syst 4:259

Tuckwell HC (1988) Introduction to Theoretical Neurobiology. Cam-
bridge University Press, Cambridge

Tuckwell HC (1989) Stochastic Processes in the Neuroscience. SIAM,
Philadelphia

Uhlenbeck GE, Ornstein LS (1930) On the theory of the Brownian
motion. Phys Rev 36:823

Vilela RD, Lindner B (2009) Are the input parameters of white-noise-
driven integrate & fire neurons uniquely determined by rate and
CV? J Theor Biol 257:90

Vilela RD, Lindner B (2009) A comparative study of three differ-
ent integrate-and-fire neurons: spontaneous activity, dynamical
response, and stimulus-induced correlation. PhysRevE80:031909

Wolff L, Lindner B (2008) A method to calculate the moments of the
membrane voltage in a model neuron driven by multiplicative fil-
tered shot noise. Phys Rev E 77:041913

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123


	Extraction of parameters of a stochastic integrate-and-fire model with adaptation from voltage recordings
	Abstract
	1 Introduction
	2 Model and measures
	3 Calculation of mean values in steady state
	4 Transient analysis
	5 Validation of parameter estimation through numerical simulations
	6 Summary
	Acknowledgements
	References




