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Abstract
We consider a next generation neural field model which describes the dynamics of a network of theta neurons on a ring.
For some parameters the network supports stable time-periodic solutions. Using the fact that the dynamics at each spatial
location are described by a complex-valued Riccati equation we derive a self-consistency equation that such periodic solutions
must satisfy. We determine the stability of these solutions, and present numerical results to illustrate the usefulness of this
technique. The generality of this approach is demonstrated through its application to several other systems involving delays,
two-population architecture and networks of Winfree oscillators.
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Introduction

The collective behaviour of large networks of neurons is
a topic of ongoing interest. One of the simplest forms of
behaviour is a periodic oscillation, which manifests itself
as a macroscopic rhythm created by the synchronous fir-
ing of many neurons. Such oscillations have relevance to
rhythmic movement (Lindén et al. 2022), epilepsy (Jiruska
et al. 2013; Netoff and Schiff 2002), schizophrenia (Uhlhaas
and Singer 2010) neural communication (Reyner-Parra and
Huguet 2022) and EEG/MEGmodelling (Byrne et al. 2022),
among others. In different networks, oscillations may arise
from mechanisms such as synaptic delays (Devalle et al.
2018), the interaction of excitatory and inhibitory popu-
lations (Börgers and Kopell 2005; Schmidt and Avitabile
2020), having sufficient connectivity in an inhibitory network
(di Volo and Torcini 2018), or the finite width of synaptic
pulses emitted by neurons (Ratas and Pyragas 2016). The
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modelling and simulation of such networks is essential in
order to investigate their dynamics.

Among the many types of model neurons used when
studying networks of neurons, theta neurons (Ermentrout
and Kopell 1986), Winfree oscillators (Ariaratnam and Stro-
gatz 2001) and quadratic integrate-and-fire (QIF) neurons
(Latham et al. 2000) are some of the simplest. These three
types of model neurons have the advantage that their mathe-
matical form often allows infinite networks of such neurons
to be analysed exactly using the Ott-Antonsen method (Ott
and Antonsen 2008, 2009). We continue along those lines in
this paper.

Here we largely consider a spatially-extended network of
neurons, in which the neurons can be thought of as lying
on a ring. Such ring networks have been studied in con-
nection with modelling head direction (Zhang 1996) and
working memory (Funahashi et al. 1989; Wimmer et al.
2014), for example, and been studied by others (Esnaola-
Acebes et al. 2017; Laing and Chow 2001; Kilpatrick and
Ermentrout 2013). We consider a network of theta neu-
rons. The theta neuron is a minimal model for a neuron
which undergoes a saddle-node-on-invariant-circle (SNIC)
bifurcation as a parameter is varied (Ermentrout and Kopell
1986). The theta neuron is exactly equivalent to a quadratic
integrate-and-fire (QIF) neuron, under the assumption of infi-
nite firing threshold and reset values (Montbrió et al. 2015;
Avitabile et al. 2022; Devalle et al. 2017). The coupling in the
network is nonlocal synaptic coupling, implemented using a
spatial convolution with a translationally-invariant coupling
kernel.
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We studied such a model in the past (Omel’chenko and
Laing 2022), concentrating on describing spatially-uniform
states and also stationary “bump” states in which there is a
spatially-localised group of active neurons while the remain-
der of the network is quiescent. We determined the existence
and stability of such states and also found regions of parame-
ter space in which neither of these types of states were stable.
Instead, we sometimes found solutions which were periodic
in time. In this paper we study such periodic solutions using
a recently-developed technique (Omel’chenko 2023, 2022)
which is significantly faster than the standard approach.

This technique was successfully applied to describe trav-
eling and breathing chimera states in nonlocally coupled
phase oscillators (Omel’chenko 2023, 2022). In this paper,
we generalize this technique to neural models and illustrate
its possibilities with several examples. We start with a ring
network of theta neurons and consider periodic bump states
there. We describe a continuation algorithm, perform linear
stability analysis of such states and derive some useful for-
mulas, for example, for average firing rates.We show that the
same approach works in the presence of delays and for two-
population models. Finally, we show thatWinfree oscillators
are also treatable by the proposed technique.

The structure of the paper is as follows. In Sect. 1 we
present the discrete network model and its continuum-level
description. The bulk of the paper is in Sect. 2,wherewe show
how to describe periodic states in a self-consistent way, and
show numerical results from implementing our algorithms.
Other models are considered in Sect. 3 and we end in Sect. 4.
The Appendix contains useful results regarding the complex
Riccati equation.

1 Theta neuron networkmodel

Themodelwe consider first is that inOmel’chenko andLaing
(2022), Laing (2014a) and Laing and Omel’chenko (2020),
which we briefly present here. The discrete network consists
of N synaptically coupled theta neurons described by

dθ j

dt
= 1 − cos θ j + (1 + cos θ j )(η j + κ I j ),

j = 1, . . . , N , (1)

where each θ j ∈ [0, 2π ] is an angular variable. The constant
κ is the overall strength of coupling within the network, and
the current entering the j th neuron is κ I j where

I j (t) = 2π

N

N∑

k=1

K jk Pn(θk(t)) (2)

where

Pn(θ) = an(1 − cos θ)n

is a pulsatile function with a maximum at θ = π (when the
neuron fires) and an is chosen according to the normalization
condition

∫ 2π

0
Pn(θ)dθ = 2π.

Increasing n makes Pn(θ) “sharper” and more pulse-like.
The excitability parameters η j are chosen from a Lorentzian
distribution with mean η0 and width γ > 0

g(η) = γ

π

1

(η − η0)
2 + γ 2 .

The connectivity within the network is given by the weights
K jk which are defined by K jk = K (2π( j − k)/N ) where
the coupling kernel is

K (x) = 1

2π
(1 + A cos x) (3)

for some constant A. Note that the form of coupling implies
that the neurons are equally-spaced around a ring, with
periodic boundary conditions. Such a network can support
solutions which are — at a macroscopic level — periodic
in time; see Fig. 3 in Omel’chenko and Laing (2022). Such
solutions are unlikely to be true periodic solutions of (1),
since for a typical realisation of the η j , one or more neurons
will have extreme values of this parameter, resulting in them
not frequency-locking to other neurons.

Note that the model we study here has only one neuron at
each spatial position, and for A > 0 the connections between
nearby neurons are more positive than those between distant
neurons. For A > 1 neurons on opposite sides of the domain
inhibit one another, as the connections between them are
negative, giving a “Mexican-hat” connectivity. For A < 0
connections betweenneurons onopposite sides of the domain
are more positive than those between nearby neurons. Such
a model with one population of neurons and connections
of mixed sign can be thought of as an approximation of a
network with populations of both excitatory and inhibitory
neurons (Pinto and Ermentrout 2001; Esnaola-Acebes et al.
2017).

Using the Ott/Antonsen ansatz (Ott and Antonsen 2008,
2009), one can show that in the limit N → ∞, the long-term
dynamics of the network (1) can be described by

∂z

∂t
= (iη0 − γ )(1 + z)2 − i(1 − z)2

2

+κ
i(1 + z)2

2
KHn(z), (4)
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where

(Kϕ)(x) =
∫ 2π

0
K (x − y)ϕ(y)dy (5)

is the convolution of K and ϕ and

Hn(z) = an

⎡

⎣C0 +
n∑

q=1

Cq
(
zq + zq

)
⎤

⎦ ,

where

Cq =
n∑

k=0

k∑

m=0

δk−2m,q(−1)kn!
2k(n − k)!m!(k − m)! .

For our computations we set n = 2, so that

H2(z) = (2/3)[3/2 − (z + z̄) + (z2 + z̄2)/4]

where overline indicates the complex conjugate. Periodic
solutions like those studied below were also found with
n = 5, for example, so the choice of n is not critical. The
wider question of the effects of pulse shape and duration is
an interesting one (Pietras 2023).

Equation (4) is an integro-differential equation for a
complex-valued function z(x, t), where x ∈ [0, 2π ] is posi-
tion on the ring. z(x, t) is a local order parameter and can be
thought of as the average of eiθ for neurons in a small neigh-
bourhood of position x . The magnitude of z is a measure
of how synchronised the neurons are, whereas its argument
gives the most likely value of θ (Laing 2014a). Using the
equivalence of theta and QIF neurons, one can also provide
a relevant biological interpretation of z. Namely, defining
W ≡ (1− z)/(1+ z), one can show (Laing 2015; Montbrió
et al. 2015) that π−1Re W is the flux through θ = π or the
instantaneous firing rate of neurons at position x and time t .
Similarly, if Vj = tan(θ j/2) is the voltage of the j th QIF
neuron, the mean voltage at position x and time t is given by
ImW . Note that physically relevant solutions of Eq. (4) must
assume values |z| ≤ 1. In other words, we are interested only
in solutions z ∈ D, where

D = {z ∈ C : |z| < 1}

is the unit disc in the complex plane.
Equations of the form (4)–(5) are sometimes referred to

as next generation neural field models (Byrne et al. 2019;
Coombes and Byrne 2019) as they have the form of a neural
field model (an integro-differential equation for a macro-
scopic quantity such as “activity” (Laing et al. 2002; Amari
1977)) but are derived exactly from a network like (1), rather
than being of a phenomenological nature.

Fig. 1 A typical periodic solution of Eq. (4). a arg (z(x, t)). b |z(x, t)|.
c A realization of this solution in a network of N = 4096 theta neurons
described by Eq. (1). θ j is shown in color. Parameters: A = −5,
η0 = −0.7, κ = 1, γ = 0.01

2 Periodic states

In this paper we focus on states with periodically oscillat-
ing macroscopic dynamics. For the mean field Eq. (4) these
correspond to periodic solutions

z = a(x, t)

where a(x, t +T ) = a(x, t) for some T > 0. The frequency
corresponding to T is denoted by ω = 2π/T . An example
of a periodic solution is shown in Fig. 1, panels (a) and (b).
Figure 1c shows a realization of the same solution in the
discrete network (1). We note that this solution has a spatio-
temporal symmetry: it is invariant under a time shift of half a
period followed by a reflection about x = π . However, we do
not make use of this symmetry in the following calculations.

The appearance of periodic solutions in this model is in
contrast with classical one-population neural field models
for which they do not seem to occur (Laing and Troy 2003).
This is another example of next generation neural field mod-
els showing more complex time-dependent behaviour than
classical ones (Laing and Omel’chenko 2020).
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A straight-forward way to study a periodic orbit like that
in Fig. 1 would be discretise Eq. (4) on a spatially-uniform
grid and approximate the convolution using matrix/vector
multiplication or otherwise, resulting in a large set of cou-
pled ordinary differential equations. The periodic solution of
these could then be studied using standard techniques (Laing
2014a), but note that the computational complexity of this
would typically scale as ∼ N 2, where N is the number of
spatial points used in the grid. Instead we propose here an
alternative method based on the ideas from Omel’chenko
(2023, 2022), which allows us to perform the same calcula-
tions with only∼ N operations. The main ingredients of this
method are explained in Sects. 2.1 and 2.2. They include the
description of the properties of complex Riccati equation and
the derivation of the self-consistency equation for periodic
solutions of Eq. (4). In Sect. 2.3 we explain how the self-
consistency equation can be solved in the case of coupling
function (3). Then in Sect. 2.4 we report some numerical
results obtained with our method. In addition, in Sect. 2.5
we perform a rigorous linear stability analysis of periodic
solutions of Eq. (4) by considering the spectrum of the corre-
spondingmonodromy operator. Finally, in Sect. 2.6, we show
how the mean field Eq. (4) can be used to predict the average
firing rate distribution in the neural network (1).

2.1 Periodic complex Riccati equation andMöbius
transformation

By the time rescaling u(x, t) = z(x, t/ω) we can rewrite
Eq. (4) in the form

ω
∂u

∂t
= (iη0 − γ )(1 + u)2 − i(1 − u)2

2

+κ
i(1 + u)2

2
KHn(u), (6)

such that the above T -periodic solution of Eq. (4) corre-
sponds to a 2π -periodic solution ofEq. (6). Then, dividing (6)
byω and reordering the termswe can see that Eq. (6) is equiv-
alent to a complex Riccati equation

∂u

∂t
= i

(
W (x, t) + ζ − 1

2ω

)
+ 2i

(
W (x, t) + ζ + 1

2ω

)
u

+i

(
W (x, t) + ζ − 1

2ω

)
u2, (7)

with the 2π -periodic in t coefficient

W (x, t) = κ

2ω
KHn(u) (8)

and

ζ = η0 + iγ

2ω
. (9)

In Omel’chenko (2023) it was shown (see also Proposition 2
and Remark 2 in the Appendix for additional details) that
independent of the choice of the real-valued periodic func-
tion W (x, t), parameters ζ ∈ Cup = {z ∈ C : Im z > 0} and
ω > 0, for every fixed x ∈ [0, 2π ] Eq. (7) has a unique sta-
ble 2π -periodic solutionU (x, t) that lies entirely in the open
unit discD. Denoting the corresponding solution operator by

U : Cper([0, 2π ];R) × Cup × (0,∞) → Cper([0, 2π ];D),

we can write the 2π -periodic solution of interest as

U (x, t) = U
(
W (x, t),

η0 + iγ

2ω
,ω

)
. (10)

Note thatCper([0, 2π ];R) here denotes the space of all real-
valued continuous 2π -periodic functions, while the notation
Cper([0, 2π ];D) stands for the space of all complex con-
tinuous 2π -periodic functions with values in the open unit
discD. Importantly, the variable x appears in formula (10) as
a parameter so that the function W (x, ·) ∈ Cper([0, 2π ];R)

with a fixed x is considered as the first argument of the oper-
ator U .

As for the operator U , although it is not explicitly given,
its value can be calculated without resource-demanding iter-
ative methods by solving exactly four initial value problems
for Eq. (7). The rationale for this approach can be found in
(Omel’chenko 2023, Section 4) and is repeated for com-
pleteness in Remark 3 in Appendix. Below we describe its
concrete implementation in the case of formula (10).

We assume that the spatial domain [0, 2π ] is discretised
with N points, x j , j = 1, 2, . . . N and that the functions
U (x, t) andW (x, t) are replaced with their grid counterparts
u j (t) = U (x j , t) and w j (t) = W (x j , t), respectively. Then,
given a set of functionsw j (t), we calculate the corresponding
functions u j (t) by performing the following four steps.

(i) We (somewhat arbitrarily) choose three initial condi-
tions u1j (0) = −0.95, u2j (0) = 0, u3j (0) = 0.95 and solve

Eq. (7) with these initial conditions to obtain solutions ukj (t),
j = 1, . . . N ; k = 1, 2, 3. In Omel’chenko (2023) (see also
Proposition 2 in the Appendix) it is shown that for γ > 0
these solutions lie in the open unit disc D.

(ii) Since at each point in space the Poincaré map of
Eq. (7)with 2π -periodic coefficients coincideswith aMöbius
mapM(u) (seeOmel’chenko 2023 for detail), we can use the
relations ukj (2π) = M j (ukj (0)), k = 1, 2, 3, to reconstruct
these maps M j , j = 1, . . . N . The corresponding formulas
are given in Omel’chenko (2023, Section 4).

(iii) Now that the Möbius maps M j (u) are known, their
fixed points can be found by solving u∗

j = M j (u∗
j ) for each

j . This equation is equivalent to a complex quadratic equa-
tion, therefore in general it has two solutions in the complex
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plane. For γ > 0, only one of these solutions lies in the unit
disc D.

(iv) Using the fixed points u∗
j ∈ D of the Möbius

maps M j (u) as an initial condition in Eq. (7) (i.e. setting
u(x j , 0) = u∗

j ) and integrating (7) for a fourth time to t = 2π
we obtain the grid counterpart of a 2π -periodic solution,
U (x, t), that lies entirely in the unit disc D.

We now use this result to show how to derive a self-
consistency equation, the solution of which allows us to
determine a 2π -periodic solution of Eq. (6).

2.2 Self-consistency equation

Supposing that Eq. (6) has a 2π -periodic solution, then
using formula (8) we can calculate the corresponding func-
tion W (x, t). On the other hand, using formula (10) we can
recover u(x, t). Then the new and the old expressions of
u(x, t) will agree with each other if and only if the function
W (x, t) satisfies a self-consistency equation

W (x, t) = κ

2ω
KHn

(
U

(
W (x, t),

η0 + iγ

2ω
,ω

))
, (11)

obtained by inserting (10) into (8). In the following we con-
sider Eq. (11) as a separate equation which must be solved
with respect to W (x, t) and ω. Note that the unknown field
W (x, t) has a problem-specific meaning: It is proportional
to the current entering a neuron at position x at time t due
to the activity of all other neurons in the network. The use
of self-consistency arguments to study infinite networks of
oscillators goes back to Kuramoto (1984), Strogatz (2000)
and Shima and Kuramoto (2004), but such approaches have
always focused on steady states, whereas we consider peri-
odic solutions here.

Note that from a computational point of view, the self-
consistency Eq. (11) has many advantages. It allows us to
reduce the dimensionality of the problem at least in the case
of special coupling kernels with finite number of Fourier har-
monics (see Sect. 2.3). Moreover, its structure is convenient
for parallelization, since the computations of operator U at
different points x are performed independently. Finally, the
main efficiency is due to the fact that the computation of U
is performed in non-iterative way.

In the next proposition, we will prove some properties of
the solutions of Eq. (11), which will be used later in Sect. 2.5.

Proposition 1 Let the pair (W (x, t), ω) be a solution of the
self-consistency Eq. (11) and let U (x, t) be defined by (10).
Then

∣∣∣∣exp
(∫ 2π

0
M(x, t)dt

)∣∣∣∣ < 1

where

M(x, t) = i

ω

[
(κKHn(U ) + η0 + iγ )(1 +U (x, t))

+ 1 −U (x, t)] . (12)

Proof For every fixed x ∈ [0, 2π ], the function U (x, t)
yields a stable 2π -periodic solution of the complex Riccati
Eq. (7). The linearization of Eq. (7) around this solution reads

dv

dt
= M(x, t)v,

where

M(x, t) = 2i

(
W (x, t) + ζ + 1

2ω

)

+2i

(
W (x, t) + ζ − 1

2ω

)
U (x, t).

Moreover, using (8) and (9), we can show that the above
expression determines a function identical to the function
M(x, t) in (12). Recalling that U (x, t) is not only a sta-
ble but also an asymptotically stable solution of Eq. (7), see
Remark 1 in Appendix, we conclude that the corresponding
Floquet multiplier lies in the open unit disc D. This ends the
proof. 	


2.3 Numerical implementation

Equation (11) describes a periodic orbit, and since Eq. (7) is
autonomous we need to append a pinning condition in order
to select a specific solution of Eq. (11). For a solution of the
type shown in Fig. 1 we choose

∫ 2π

0
dx

∫ 2π

0
W (x, t) sin(2t)dt = 0. (13)

In the following we focus on the case of the cosine cou-
pling (3). It is straight-forward to show that (KHn)(x) can be
written as a linear combination of 1, cos x and sin x . How-
ever, the system is translationally invariant in x , and we can
eliminate this invariance from Eq. (11) by restricting this
equation to its invariant subspace Span{1, sin x}. Then, tak-
ing into account that the functionW (x, t) is real, we seek an
approximate solution of the system (11), (13) using a Fourier-
Galerkin ansatz

W (x, t) =
2F∑

m=0

(vm + wm sin x)ψm(t) (14)
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where vm andwm are real coefficients andψm(t) are trigono-
metric basis functions

ψ0(t) = 1,

ψm(t) = √
2 cos(nt), if m = 2n with n ∈ N,

ψm(t) = √
2 sin(nt), if m = 2n − 1 with n ∈ N.

Our typical choice of the number of harmonics in (14) is
F = 10. To exactly represent W (x, t) in (14) would require
an infinite number of terms in the series, so using a finite
value of F introduces an approximation in our calculations.
However, the excellent agreement between our calculations
with F = 10 and those from full simulations of (4) (shown
below) indicate that such an approximation is justified.

Using the scalar product

〈u, v〉 = 1

(2π)2

∫ 2π

0
dx

∫ 2π

0
u(x, t)v(x, t)dt

we project Eq. (11) on different spatio-temporal Fourier
modes to obtain the system

vm = κ

2ω

〈
Hn

(
U

(
W (x, t),

η0 + iγ

2ω
,ω

))
, ψm(t)

〉
,

(15)

wm = κA

2ω

〈
Hn

(
U

(
W (x, t),

η0 + iγ

2ω
,ω

))
,

ψm(t) sin x〉 , (16)

for m = 0, 1, . . . , 2F . Equations (15) and (16), together
with (13), are a set of 2(2F +1)+1 = 4F +3 equations for
the 4F + 3 unknowns v0, v1, . . . , v2F , w0, w1, . . . , w2F , ω,
which must be solved simultaneously. We solve them using
Newton’s method and find convergence within 3 or 4 itera-
tions.

In simple terms, suppose we have somewhat accurate esti-
mates of v0, v1, . . . , v2F , w0, w1, . . . , w2F , ω. These can be
inserted into (14) to calculate the functionW (x, t). Then one
can calculate a periodic solution of Eq. (7) with the speci-
fied W (x, t) by formula (10) and finally calculate Hn(U)

and insert this into (15) and (16) and perform the projec-
tions. We want the difference between the new values of
v0, v1, . . . , v2F , w0, w1, . . . , w2F and the initial values of
them to be zero, and for (13) to hold. This determines the
4F + 3 equations we need to solve. The solutions of these
equations can be followed as a parameter is varied in the stan-
dard way (Laing 2014b). Note that these calculations involve
discretising the spatial domain with N points. However, the
number of unknowns (4F + 3) is significantly less than N .

Fig. 2 Period of the type of solution shown in Fig. 1 as a function of η0
(solid curve). The circles show valuesmeasured from direct simulations
of Eq. (4). Other parameters: A = −5, κ = 1, γ = 0.01

2.4 Results

The results of following the solution shown in Fig. 1 as η0 is
varied are shown in Fig. 2, along with values measured from
direct simulations of Eq. (4). The period seems to become
arbitrarily large as η0 approaches −2.32, and the solution
approaches a heteroclinic connection, spending more and
more time near two symmetric states which are mapped to
one another under the transformation x → −x . The solution
becomes unstable at η0 ≈ −0.5 through a subcritical torus
(or secondary Hopf) bifurcation. (This was determined by
finding the Floquet multipliers of the periodic solution in the
conventional way; results not shown.) For these calculations
we used N = 256 spatial points.

For more negative values of η0 than those shown in Fig. 2,
another type of periodic solution is stable: see Fig. 3. Such
a solution does not have the spatio-temporal symmetry of
the solution shown in Fig. 1. However, we can follow it
in just the same way as the parameter η0 is varied, and we
obtain the results shown in Fig. 4. This periodic orbit appears
to be destroyed in a supercritical Hopf bifurcation as η0 is
decreased through approximately−3.2, andbecomeunstable
to a wandering pattern at η0 is increased through approxi-
mately −2.34.

Note that the left asymptote in Fig. 2 coincides with the
right asymptote in Fig. 4. On the other hand, we note that two
patterns shown in Figs. 1 and 3 have different spatiotemporal
symmetries, therefore due to topological reasons they cannot
continuously transform into each other. Similar bifurcation
diagramswhere parameter ranges of two patterns with differ-
ent symmetries are separated by heteroclinic or homoclinic
bifurcations were found for non-locally coupled Kuramoto-
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Fig. 3 Another periodic solution of Eq. (4). a arg (z(x, t)). b |z(x, t)|.
Parameters: A = −5, η0 = −2.5, κ = 1, γ = 0.01

Fig. 4 Period of the type of solution shown in Fig. 3 as a function of η0
(solid curve). The circles show valuesmeasured from direct simulations
of Eq. (4). Other parameters: A = −5, κ = 1, γ = 0.01

type phase oscillators (Omel’chenko 2020) and seem to be a
general mechanism which, however, needs additional inves-
tigation.

2.5 Stability of breathing bumps

Given a T -periodic solution a(x, t) of Eq. (4), we can per-
form its linear stability analysis, using the approach proposed
in Omel’chenko (2022). Before doing this, we write

Hn(z) = anC0 + 2Re[Dn(z)]

where

Dn(z) = an

n∑

q=1

Cqz
q ,

to emphasise that Hn(z) is always real. Now, we insert the
ansatz z(x, t) = a(x, t)+v(x, t) intoEq. (4) and linearize the
resulting equationwith respect to small perturbations v(x, t).
Thus, we obtain a linear integro-differential equation

∂v

∂t
= μ(x, t)v + κ

i(1 + a(x, t))2

2
K

(
D′
n(a)v + D′

n(a)v
)

,

(17)

where

μ(x, t) = [i(η0 + κKHn(a)) − γ ](1 + a(x, t))

+i(1 − a(x, t)) (18)

and

D′
n(z) = d

dz
Dn(z) = an

n∑

q=1

qCqz
q−1.

Note thatEq. (17) coincideswithEq. (5.1) fromOmel’chenko
and Laing (2022), except that the coefficients a(x, t) and
μ(x, t) are now time-dependent. Since Eq. (17) contains the
complex-conjugated term v, it is convenient to consider this
equation along with its complex-conjugate

∂v

∂t
= μ(x, t)v − κ

i(1 + a(x, t))2

2
K

(
D′
n(a)v + D′

n(a)v
)

.

This pair of equations can be written in the operator form

dV

dt
= A(t)V + B(t)V , (19)

where V (t) = (v1(t), v2(t))T is a function with values in
Cper([0, 2π ];C2), and

A(t)V =
(

μ(x, t) 0
0 μ(x, t)

) (
v1
v2

)
,
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and

B(t)V = iκ

2

(
(1 + a(x, t))2 0

0 −(1 + a(x, t))2

)

×
( K (

D′
n(a)v1

)

K
(
D′
n(a)v2

)
)

. (20)

For every fixed t the operatorsA(t) and B(t) are linear oper-
ators from Cper([0, 2π ];C2) into itself. Moreover, they both
depend continuously on t and thus their norms are uniformly
bounded for all t ∈ [0, T ].

Recall that the question of linear stability of a(x, t) in
Eq. (4) is equivalent to the question of linear stability of the
zero solution in Eq. (17), and hence to the question of linear
stability of the zero solution in Eq. (19). Moreover, using the
general theory of periodic differential equations in Banach
spaces, see Daleckiı̆ and Kreı̆n (2002, Chapter V), the last
question can be reduced to the analysis of the spectrum of the
monodromy operator E(T ) defined by the operator exponent

E(t) = exp

(∫ t

0
(A(t ′) + B(t ′))dt ′

)
.

The analysis of Eq. (19) in the case when A(t) is a matrix
multiplication operator and B(t) is an integral operator sim-
ilar to (20) has been performed in (Omel’chenko 2022,
Section 4). Repeating the same arguments we can demon-
strate that the spectrum of the monodromy operator E(T )

is bounded and symmetric with respect to the real axis of
the complex plane. Moreover, it consists of two qualitatively
different parts:

(i) the essential spectrum, which is given by the formula

σess =
{
exp

(∫ T

0
μ(x, t)dt

)
: x ∈ [0, 2π ]

}
∪ {c.c.}

(21)

(ii) the discrete spectrum σdisc that consists of finitely
many isolated eigenvalues λ, which can be found using a
characteristic integral equation, as explained in (Omel’chenko
2022, Section 4).

Note that if a(x, t) is obtained by solving the self-
consistency Eq. (11) and hence it satisfies

a(x, t/ω) = U (x, t) = U
(
W (x, t),

η0 + iγ

2ω
,ω

)
,

where (W (x, t), ω) is a solution of Eq. (11), then we can use
Proposition 1 and formula (18) to show

∣∣∣∣exp
(∫ T

0
μ(x, t)dt

)∣∣∣∣ < 1 for all x ∈ [0, 2π ].

Fig. 5 a The essential spectrum given by (21) for the periodic solution
shown in Fig. 1. b Floquet multipliers of the same periodic solution
found using the technique explained at the start of Sect. 2. For both
calculations the spatial domain has been discretized using 512 evenly
spaced points

In this case, the essential spectrum σess lies in the open unit
disc D and therefore it cannot contribute to any linear insta-
bility of the zero solution of Eq. (19).

To illustrate the usefulness of formula (21), in Fig. 5a we
plot the essential spectrum for the periodic solution shown in
Fig. 1. In Fig. 5b we show the Floquet multipliers of the same
periodic solution, where we have found the solution and its
stability in the conventional way, of discretizing the domain
and finding a periodic solution of a large set of coupled ordi-
nary differential equations. In panel (b) we see several real
Floquet multipliers that do not appear in panel (a); these are
presumably part of the discrete spectrum. Note that calcu-
lating the discrete spectrum by the method of Omel’chenko
(2022, Section 4) is numerically difficult, so we do not do
that here.

2.6 Formula for firing rates

One quantity of interest in a network of model neurons such
as (1) is their firing rate. The firing rate of the kth neuron is
defined by

fk = 1

2π

〈
dθk
dt

〉

T
,
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where the angled brackets 〈·〉T indicate a long-time average.
In the case of large N , we can also consider the average firing
rate

f (x) = 1

#{k : |xk − x | < π/
√
N }

∑

|xk−x |<π/
√
N

fk, (22)

where xk = 2πk/N is the spatial positions of the kth neu-
ron and the averaging takes place over all neurons in the
(π/

√
N )-vicinity of the point x ∈ [0, 2π ]. Note that while

the individual firing rates fk are usually randomly distributed
due to the randomness of the excitability parameters ηk , the
average firing rate f (x) converges to a continuous (and even
smooth) function for N → ∞. Moreover, the exact predic-
tion of the limit function f (x) can be given, using only the
corresponding solution z(x, t) of Eq. (4). To show this, we
write Eq. (1) as

dθk
dt

= Re
{
1 − eiθk + (ηk + κ Ik)(1 + eiθk )

}
. (23)

We recall that in deriving (4) from (1) we introduce a
probability distribution ρ(θ, x, η, t) which satisfies a conti-
nuity equation (Laing 2015; Omel’chenko et al. 2014; Laing
2014a). At a given time t , ρ(θ, x, η, t)dθdηdx is the proba-
bility that a neuronwith a position in [x, x+dx] and intrinsic
drive in [η, η+dη] has its phase in [θ, θ +dθ ]. Moreover, in
the case of the Lorentzian distribution of parameters ηk , the
probability distribution ρ(θ, x, η, t) satisfies the relations

∫ ∞

−∞
dη

∫ 2π

0
ρ(θ, x, η, t)eiθdθ = z(x, t), (24)

∫ ∞

−∞
dη

∫ 2π

0
ηρ(θ, x, η, t)eiθdθ = (η0 + iγ )z(x, t),

(25)

which are obtained by a standard contour integration in the
complex plane (Ott and Antonsen 2008). The relation (24)
has been already used to calculate the continuum limit analog
of (2)

I (x, t) =
∫ 2π

0
K (x − y)Hn(z(y, t))dy = KHn(z).

Inserting this instead of Ik(t) into Eq. (23) and replacing
the time and index averaging in (22) with the corresponding
averaging over the probability density, we obtain

f (x) = lim
τ→∞

1

2πτ

∫ τ

0

∫ ∞

−∞

∫ 2π

0

Re
{
1 − eiθ + (η + κ I (x, t))(1 + eiθ )

}

ρ(θ, x, η, t)dθ dη dt .

Fig. 6 Average firing rate for a pattern like that shown in Fig. 1. The
curve shows f (x) as given by (26). The dots showvaluesmeasured from
direct simulations of Eq. (1). For the discrete simulation, N = 214 neu-
rons were used and the average frequency profile, { f j }, j = 1, 2 . . . N ,
was convolved with a spatial Gaussian filter of standard deviation 0.01
before plotting. For clarity, not all points are shown. Other parameters:
A = −5, η0 = −0.9, κ = 1, γ = 0.01

The two inner integrals in the above formula can be simplified
using the relations (24), (25) and the standard normalization
condition for ρ(θ, x, η, t). Thus we obtain

f (x) = lim
τ→∞

1

2πτ

∫ τ

0
Re {1 − z(x, t)

+(η0 + iγ + κ I (x, t))(1 + z(x, t))} dt .

Moreover, if z = a(x, t) is a T -periodic solution of Eq. (4),
then the long-time average is the same as an average over one
period. So, in the periodic case, the continuum limit average
firing rate equals

f (x) = 1

2πT

∫ T

0
Re {1 − a(x, t)

+(η0 + iγ + κ I (x, t))(1 + a(x, t))} dt . (26)

(Note that with simple time rescaling formula (26) can be
rewritten in terms of a 2π -periodic solution of the complex
Riccati Eq. (7), u(x, t) = a(x, t/ω).) The expression (26)
is different from the firing rate expression given in Sect. 1,
but both are equally valid.

Results for a pattern like that shown in Fig. 1 are given
in Fig. 6, where we show both f (x) (from (26)) and values
extracted from a long simulation of Eq. (1). The agreement
is very good.

3 Other models

We now demonstrate how the approach presented above can
be applied to various other neural models.
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3.1 Delays

Delays in neural systems are ubiquitous due to the finite
velocity at which action potentials propagate as well as to
both dendritic and synaptic processing (Roxin et al. 2005;
Coombes and Laing 2009; Atay and Hutt 2006; Devalle et al.
2018). Here we assume that all I j (t) are delayed by a fixed
amount τ , i.e. we have Eq. (1) but we replace (2) by

I j (t) = 2π

N

N∑

k=1

K jk Pn(θk(t − τ)). (27)

The mean field equation is now

∂z

∂t
= (iη0 − γ )(1 + z)2 − i(1 − z)2

2

+κ
i(1 + z)2

2
KHn(z(x, t − τ)). (28)

We can write this equation in the same form as Eq. (7) but
now

W (x, t) = κ

2ω
KHn(u(x, t − ωτ)), (29)

and the corresponding self-consistency equation is also time-
delayed

W (x, t) = κ

2ω
KHn

(
U

(
W (x, t − ωτ),

η0 + iγ

2ω
,ω

))
.

We expandW (x, t) as in (14), and givenW (x, t), we find the
relevant 2π -periodic solution of Eq. (7) as above. The only
difference comes in evaluating the projections (15) and (16).
Instead of using Hn(U (x, t)) in the scalar products, we need
to use Hn(U (x, t − ωτ)).

SinceU (x, t) is 2π -periodic in time, we can evaluate it at
any time using just its values for t ∈ [0, 2π ]. Specifically,

U (x, t − ωτ) =
{
U (x, 2π + t − ωτ), 0 ≤ t ≤ ωτ,

U (x, t − ωτ), ωτ < t ≤ 2π.

(30)

Note that this approach would also be applicable if one had
a distribution of delays (Lee et al. 2009; Laing and Longtin
2003) or even state-dependent delays (Keane et al. 2019).

As an example, we show in Fig. 7 the results of varying the
delay τ on a solution of the form shown in Fig. 3. Increasing τ

leads to the destruction of the periodic solution in an apparent
supercritical Hopf bifurcation.

Fig. 7 The vertical axis relates to averaging W (x, t) over x . For a
periodic solution, the maximum and minimum over one period of this
quantity is plotted. The black horizontal line corresponds to the steady
state which is stable at τ = 2.5. Circles: measured from direct simula-
tions of Eq. (28). Other parameters: A = −5, η0 = −2, κ = 1, γ = 0.1

3.2 Two populations

Neurons fall into two major categories: excitatory and
inhibitory. A model consisting of a single population with a
coupling function of the form (3) is often used as an approx-
imation to a two-population model (Esnaola-Acebes et al.
2017). Here we consider a two population model which sup-
ports a travelling wave. The mean field equations are

∂u

∂t
= (iηu − γ )(1 + u)2 − i(1 − u)2

2

+ i(1 + u)2

2
[weeKHn(u) − weiKHn(v)] , (31)

∂v

∂t
= (iηv − γ )(1 + v)2 − i(1 − v)2

2

+ i(1 + v)2

2
[wieKHn(u) − wiiKHn(v)] (32)

where u(x, t) is the complex-valued order parameter for the
excitatory population and v(x, t) is that for the inhibitory
population. The non-negative connectivity kernel between
and within populations is the same:

K (x) = 1

2π
(1 + cos x)

and there are four connection strengths within and between
populations:wee,wei,wie andwii. Similar models have been
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Fig. 8 A modulated travelling wave solution of Eqs. (31)–(32). a |u|;
b |v|. Other parameters: η0 = 0.1, ηv = 0.1, ε = 0.01, γ = 0.03,
wee = 1, wei = 0.7, wie = 0.3, wii = 0.1

studied in Blomquist et al. (2005), Pinto and Ermentrout
(2001).

For some parameter values, such a system supports a trav-
elling wave with a constant profile. Such a wave can be found
very efficiently using the techniques discussed here, and that
was done for a travelling chimera in Omel’chenko (2023).
However, here we consider a slightly different case: that
where the mean drive to the excitatory population, ηu , is
spatially modulated. We thus write

ηu = η0 + ε sin x .

For small |ε| the travelling wave persists, but not with a con-
stant profile. An example is shown in Fig. 8. Note that such
a solution is periodic in time.

By rescaling time we can write Eqs. (31)–(32) as

∂ ũ

∂t
= i

(
weeWu − weiWv + ζu − 1

2ω

)

+2i

(
weeWu − weiWv + ζu + 1

2ω

)
ũ

+i

(
weeWu − weiWv + ζu − 1

2ω

)
ũ2, (33)

∂ṽ

∂t
= i

(
wieWu − wiiWv + ζv − 1

2ω

)

+2i

(
wieWu − wiiWv + ζv + 1

2ω

)
ṽ

+i

(
wieWu − wiiWv + ζv − 1

2ω

)
ṽ2, (34)

where ũ(x, t) ≡ u(x, t/ω), ṽ(x, t) ≡ v(x, t/ω),

Wu(x, t) = 1

2ω
KHn(u), (35)

Wv(x, t) = 1

2ω
KHn(v) (36)

and

ζu = ηu + iγ

2ω
= η0 + ε sin x + iγ

2ω
, ζv = ηv + iγ

2ω
.

In the same way as above, we can derive self-consistency
equations of the form (11) for Wu(x, t) and Wv(x, t). Doing
so, we obtain a system of two coupled equations

Wu(x, t) = κ

2ω
KHn

(
U

(
weeWu(x, t) − weiWv(x, t),

η0 + ε sin x + iγ

2ω
,ω

))
,

Wu(x, t) = κ

2ω
KHn

(
U

(
wieWu(x, t) − wiiWv(x, t),

ηv + iγ

2ω
,ω

))
.

One difference between this model and the ones studied
above is that the solution cannot be shifted by a constant
amount in x to ensure that it is always even (or odd) about a
particular point in the domain. Thus we need to write

Wu(x, t) =
2F∑

m=0

(vum + wu
m sin x + zum cos x)ψm(t) (37)

Wv(x, t) =
2F∑

m=0

(vv
m + wv

m sin x + zvm cos x)ψm(t) (38)

These equations contain 6(2F + 1) unknowns and we find
them (and ω) in the same way as above, by projecting the
self-consistency equations forWu(x, t) andWv(x, t)onto the
different spatio-temporal Fourier modes to obtain equations
similar to (15)–(16).

The results of varying the heterogeneity strength ε are
shown in Fig. 9. Increasing heterogeneity decreases the
period of oscillation, and eventually the travelling wave
appears to be destroyed in a saddle-node bifurcation.

We conclude this section by noting that for some param-
eter values the model (31)–(32) can show periodic solutions
which do not travel, like those shown in Sect. 2. Likewise,
the model in Sect. 1 can support travelling waves for κ = 2.

3.3 Winfree oscillators

One of the first models of interacting oscillators studied is the
Winfree model (Ariaratnam and Strogatz 2001; Laing et al.
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Fig. 9 Period, T , of a modulated travelling wave solution of Eqs. (31)–
(32) as a function of heterogeneity strength ε. Circles are from direct
simulation of Eqs. (31)–(32). Other parameters are as in Fig. 8

2021; Pazó and Montbrió 2014; Gallego et al. 2017). We
consider a spatially-extended network of Winfree oscillators
whose dynamics are given by

dθ j

dt
= ω j + ε

2πQ(θ j )

N

N∑

k=1

K jk P(θk)

where K jk = K (2π | j − k|/N ) for some 2π -periodic
coupling function K , Q(θ) = − sin θ/

√
π and P(θ) =

(2/3)(1+cos θ)2 is a pulsatile functionwith its peak at θ = 0.
The ω j are randomly chosen from a Lorentzian with centre
ω0 and width � and ε is the overall coupling strength.

In the limit N → ∞, using the Ott/Antonsen ansatz, one
finds that the network is described by the equation (Laing
2017)

∂z

∂t
= ε

2
√

π
KĤ(z) + (iω0 − �)z − ε

2
√

π
z2KĤ(z), (39)

where the integral operator K is again defined by (5) and

Ĥ(z) = (2/3)[3/2 + z + z̄ + (z2 + z̄2)/4].

A typical periodic solution of Eq. (39) for the choice

K (x) = 0.1 + 0.3 cos x,

is shown in Fig. 10.
If we rescale time by the frequency of periodic solution

ω > 0, defining u(x, t) = z(x, t/ω), and denote

W (x, t) = ε

2
√

πω
KĤ(u),

Fig. 10 A periodic solution of Eq. (39). a arg (z(x, t)). b |z(x, t)|.
Parameters: ω0 = 1, � = 0.1, ε = 2.1

then Eq. (39) can be recast as a complex Riccati equation

∂u

∂t
= W (x, t) + i

ω0 + i�

ω
u − W (x, t)u2. (40)

From the Proposition 2 in Omel’chenko (2023), it follows
that for every ω,� > 0, ω0 ∈ R and for every real-valued,
2π -periodic in t functionW (x, t), Eq. (40) has a 2π -periodic
solution lying in the open unit disc D. Denoting the corre-
sponding solution operator

Û : Cper([0, 2π ];R) × Cup → Cper([0, 2π ];D),

weeasily obtain a self-consistency equation for periodic solu-
tions of Eq. (40)

W (x, t) = ε

2
√

πω
KĤ

(
Û

(
W (x, t),

ω0 + i�

ω

))
. (41)

Since the Poincarémap of Eq. (40) coincideswith theMöbius
transformation, we can again use the calculation scheme of
Sect. 2.1 to find the value of operator Û . Thus we can solve
Eq. (41) numerically for the real-valued field W (x, t) and
frequency ω.

Following the periodic solution shown in Fig. 10 as ε is
variedwe obtain Fig. 11. As shown by the circles (from direct
simulations of Eq. (39)) this solution is not always stable.
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Fig. 11 Period, T , of periodic solutions of Eq. (39) of the form shown
in Fig. 10. Circles are from direct simulations of Eq. (39). Parameters:
ω0 = 1, � = 0.1

As ε is decreased the solution loses stability to a uniformly
travelling wave, and the period of this wave is not plotted.

4 Discussion

We considered time-periodic solutions of the Eqs. (4)–(5),
which exactly describe the asymptotic dynamics of the net-
work (1) in the limit of N → ∞. At every point in space,
Eq. (4) is a Riccati equation and we used this to derive a self-
consistency equation that every periodic solution of Eq. (4)
must satisfy. The Poincaré map of the Riccati equation is a
Möbius map and we can determine this map at every point
in space using just three numerical solutions of the Riccati
equation. Knowing the Möbius map enables us to numeri-
cally solve the self-consistency equation in a computationally
efficient manner. We showed the results of numerically con-
tinuing several types of periodic solutions as a parameter was
varied.

We derived equations governing the stability of such peri-
odic solutions, but solving these equations is numerically
challenging. We also derived the expression for the mean
firing rate of neurons in a network in terms of the quanti-
ties already calculated in the self-consistency equation. We
finished in Sect. 3 by demonstrating the application of our
approach to several other models involving delays, two pop-
ulations of neurons, and a network of Winfree oscillators.

Our approach relies critically on the mathematical form
of the continuum-level equations (they can be written as a
Riccati equation) which are derived using the Ott/Antonsen

ansatz, valid only for phase oscillators whose dynamics and
coupling involve sinusoidal functions of phases or phase dif-
ferences. Other systems for which our approach should be
applicable include two-dimensional networks which support
moving or “breathing” solutions (Bataille-Gonzalez et al.
2021); however the coupling functionwould have to be of the
form such that the integral equivalent to (5) could be written
exactly using a small set of spatial basis functions. Another
application would be to any system which is periodically
forced in time and responds in a periodic way (Segneri et al.
2020; Reyner-Parra and Huguet 2022; Schmidt et al. 2018).
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Appendix

Let us consider a complex Riccati equation

dz

dt
= c0(t) + c1(t)z + c2(t)z

2 (42)

with 2π -periodic complex-valued coefficients c0(t), c1(t)
and c2(t). In this section we prove a statement which is a
modified version of Proposition 3 fromOmel’chenko (2023).
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Proposition 2 Suppose that there is c∗ > 0 such that

Re (c0(t)z + c1(t) + c2(t)z) ≤ −c∗Re (z + 1) (43)

for all z ∈ D and 0 ≤ t ≤ 2π , and that z = −1 is not a
fixed point of Eq. (42). Then, the Poincaré map of Eq. (42)
is described by a hyperbolic or loxodromic Möbius transfor-
mation. Moreover, the stable fixed point of this map lies in
the open unit disc D, while the unstable fixed point lies in
the complementary domain Ĉ\D, where Ĉ = C ∪ {∞} is
the extended complex plane. For Eq. (42) this means that it
has exactly one stable 2π -periodic solution and this solution
satisfies |z(t)| < 1 for all 0 ≤ t ≤ 2π .

Proof The fact that the Poincaré map of Eq. (42) is described
by a Möbius transformation was shown elsewhere (Campos
1997;Wilczyński 2008). So we only need to show that such a
Möbius transformationM(z) maps all points of the unit cir-
cle |z| = 1 into the open unit discD (but not on its boundary).
Then we can repeat the arguments of the proof of Proposi-
tion 2 from Omel’chenko (2023).

Suppose the opposite. Then Eq. (42) has a solution z∗(t)
such that |z∗(0)| = |z∗(2π)| = 1. Due to the inequality (43)
and the Proposition 1 fromOmel’chenko (2023) this solution
satisfies |z∗(t)| ≤ 1 for all t ∈ [0, 2π ]. Moreover, since
z = −1 is not a fixed point of Eq. (42), we can always
choose t∗ ∈ (0, 2π) such that z∗(t) �= −1 for t ∈ [t∗, 2π).
Then the Mean Value Theorem implies

0 ≤ |z∗(2π)|2 − |z∗(t∗)|2 = 2π
d|z∗|2
dt

(t∗∗) (44)

for some t∗∗ ∈ (t∗, 2π). On the other hand, due to our
assumptions, we have

d|z∗|2
dt

= 2Re
(
c0(t)z∗(t) + c1(t) + c2(t)z∗(t)

)

≤ −2c∗Re (z∗(t) + 1)

and therefore

d|z∗|2
dt

(t∗∗) ≤ −2c∗Re (z∗(t∗∗) + 1) < 0.

This is a contradiction to (44), which completes the proof. 	

Remark 1 If the conditions of Proposition 2 are fulfilled, then
the stable solution of Eq. (42) is also asymptotically stable.
This result follows from the properties of stable fixed points
of hyperbolic and loxodromic Möbius transformations.

Remark 2 For every fixed x Eq. (7) from the main text is
equivalent to Eq. (42) with

c0(t) = c2(t) = i

(
W (x, t) + ζ − 1

2ω

)

and

c1(t) = 2i

(
W (x, t) + ζ + 1

2ω

)
,

where W (x, t) is a real-valued function, ω is a positive con-
stant, and ζ = (η0 + iγ )/(2ω) with η0 ∈ R and γ > 0. In
this case, we have

Re (c0(t)z + c1(t) + c2(t)z) = −γ

ω
Re (z + 1)

and therefore inequality (43) is satisfied. On the other hand,
we have

c0(t) + c1(t)(−1) + c2(t)(−1)2 = −2i/ω �= 0

and therefore z = −1 is not a fixed point of the corresponding
Riccati equation. Thus, all of the conclusions of Proposition 2
hold true for Eq. (7).

Remark 3 If the conditions of Proposition 2 are fulfilled, then
the stable solution of Eq. (42) can be computed in the fol-
lowing way.

(i) One solves Eq. (42) on the interval t ∈ (0, 2π ] with
three different initial conditions z(0) = zk ∈ D, k = 1, 2, 3,
and obtains three solutions Zk(t). Since each zk lies in the
open unit disc D this automatically implies |Zk(t)| < 1 for
all t ∈ (0, 2π ].

(ii) One denotes wk = Zk(2π). Then, due to the prop-
erties of Poincaré map one has wk = M(zk), k = 1, 2, 3,
where M(z) is a Möbius transformation representing this
map. The above three relations can be used to reconstruct the
map M(z), namely

M(z) = az + b

cz + d

where

a = det

⎛

⎝
z1w1 w1 1
z2w2 w2 1
z3w3 w3 1

⎞

⎠ , b = det

⎛

⎝
z1w1 z1 w1

z2w2 z2 w2

z3w3 z3 w3

⎞

⎠ ,

c = det

⎛

⎝
z1 w1 1
z2 w2 1
z3 w3 1

⎞

⎠ , d = det

⎛

⎝
z1w1 z1 1
z2w2 z2 1
z3w3 z3 1

⎞

⎠ .

(iii) Once the map M(z) is known, one can find its fixed
points by solving the quadratic equation

cz2 + dz − az − b = 0.

This yields two roots

z± = a − d ±
√

(a − d)2 + 4bc

2c
.
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(iv) Choosing from the roots z+ and z− the one that lies
in the unit discD, one obtains the initial condition that deter-
mines the periodic solution of interest. The latter can be
computed by solving Eq. (42) with this initial condition.

(v) Sometime it may happen that the Poincaré mapM(z)
is strongly contracting so that

|w1 − w2| + |w3 − w2| < 10−8,

where the value 10−8 is chosen through experience. In this
case, the calculations in steps (ii) and (iii) become inaccurate.
Then the initial condition of the periodic solution of interest
is approximately given by the average (w1 + w2 + w3)/3.

The above steps (i)–(v) can be understood as a constructive
definition of the solution operator of Eq. (42),which for every
admissible choice of 2π -periodic coefficients c1(t), c2(t) and
c3(t) yields the corresponding stable 2π -periodic solution of
Eq. (42). More detailed justification of this definition can be
found in Omel’chenko (2023, Section 4). The algorithm in
Sect. 2.1 consists of applying the procedure above at every
point on the spatial grid (in parallel).
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