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Abstract Lipid droplets are depots of neutral lipids that
exist virtually in any kind of cell. Recent studies have
revealed that the lipid droplet is not a mere lipid blob, but a
major contributor not only to lipid homeostasis but also to
diverse cellular functions. Because of the unique structure
as well as the functional importance in relation to obesity,
steatosis, and other prevailing diseases, the lipid droplet is
now reborn as a brand new organelle, attracting interests
from researchers of many disciplines.
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Introduction

Lipid droplets (LDs) are depots of neutral lipids that exist
virtually in any kind of cell, ranging from bacteria to yeasts,
plants, and higher mammals (Fig. 1a) (Murphy 2001). In
the white adipocyte, an LD occupies the major portion of the
cytoplasm and is easily observed by light microscopy. The
adipocyte LD is the energy reservoir for the whole body, and
the non-adipocyte LD has also been thought to store lipids,
which are later used for �-oxidation, membrane biogenesis,
protein lipidation, and so on. This understanding is basically
correct, but recent studies have revealed that the LD has
more diverse functions than previously thought. The LD is
not only engaged in the functions directly related to intra-
cellular lipid homeostasis, but might also be involved in

seemingly unrelated activities, including signaling, temporal
protein storage, protein degradation, and so forth (Zweytick
et al. 2000; Murphy 2001; Fujimoto and Ohsaki 2006;
Martin and Parton 2006; Welte 2007). The molecular com-
position of the LD is being actively studied, but how those
molecules collaborate to execute the diverse functions of the
LD is still far from clear.

Some of the diYculties in the study of the LD originate
from its unique architecture. In contrast to the vesicular
organelles that have the aqueous content enclosed by a
phospholipid bilayer membrane, the LD is made of a highly
hydrophobic lipid ester core and the surface of a phospho-
lipid monolayer (Fig. 2a) (Murphy and Vance 1999; Tau-
chi-Sato et al. 2002). That is, the LD and other organelles
are similar in that the cytoplasmic surface is lined by a row
of phospholipid headgroups, but, however, they do not
have much in common. Due to this fundamental diVerence,
various aspects of their structure and function, for example,
growth and involution, import and export of lipids, binding
and release of proteins, etc., may be governed by diVerent
mechanisms. The diVerence also requires critical re-evalua-
tion of the techniques used for experimental analyses.

In this review article, we Wrst overview the morphology
and molecular composition of the LD and then discuss its
possible biogenesis and involution processes, functions,
and some pathological implications. Technical issues will
be also treated in relation to the LD physiology.

Morphology of the LD

By transmission electron microscopy of conventional ultra-
thin sections, the LD appears as a spherical structure with
homogenous content (Fig. 1b). The electron density of the
LD content can vary depending on the method of sample
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preparation (Angermuller and Fahimi 1982). The LD sur-
face lacks the unit membrane structure, and does not show
clear delineation from the surrounding cytoplasm in most
cases (Fig. 1b). Notably, membranes bound to ribosomes
were observed inside the mast cell LD (Wan et al. 2007),
and lamellar membranes were seen beside the macrophage
LD (McGookey and Anderson 1983). Because lipids are
not Wxed by aldehydes, it is not always easy to preserve the
lipidic structures, but these results suggest structural hetero-
geneities among LDs (Fig. 2b).

By freeze-fracture, convex, concave, and Xat fracture
planes are made with regards to the LD. The convex and
concave fracture planes probably represent the interface
between the surface phospholipid monolayer and the inter-
nal lipid ester core, and are devoid of intramembrane parti-
cles (Robenek et al. 2005). The LD sometimes shows
multiple fracture planes of onion skin appearance (Baba
et al. 1995; Tauchi-Sato et al. 2002), which may correspond
to the multiple concentric lines seen in the isolated LD by
cryoelectron microscopy (Tauchi-Sato et al. 2002). Their
origin is not clear, but they might be generated during the
sample preparation procedure due to the heterogeneous
properties of the lipid esters in the LD core. For example,
trioleylglycerol and tripalmitoylglycerol are the Wrst and
second most abundant triacylglycerols (TG) in the adipo-
cyte LD, but their melting temperatures are ¡4 and 65.5°C,
respectively (Kaye and Laby 1995). Due to this drastic
diVerence, temperature changes during the experimental
procedure may induce artiWcial segregation of the esters.
How diVerent lipid esters are organized in the LD in living
cells is also intriguing because it may be related to the
eYciency with which respective esters are metabolized.

Close structural association of LD and other organelles
has been known for a long time (Ghadially 1997). The ER
cistern is often apposed to, and sometimes wraps around,
the LD (NovikoV et al. 1980; Blanchette-Mackie et al.
1995), and the relationship probably reXects the fact that
the ER is the site of LD formation. The structural associa-
tion appears to be stabilized by the cytoskeleton (Lucken-
bill and Cohen 1966), and the vimentin Wlament basket that
forms around the LD of diVerentiating adipocytes (Franke
et al. 1987) may also be related. In addition, the mitochon-
drion and peroxisome lie close to the LD occasionally
(NovikoV et al. 1980; Stemberger et al. 1984; Blanchette-
Mackie et al. 1995; Schrader 2001), and a special amalgam-
ation structure between the LD and peroxisome has been
reported in Saccharomyces cerevisiae (Binns et al. 2006).
Mitochondria and peroxisomes perform �-oxidation, and
their close structural linkage with the LD should serve to
eVectively mobilize fatty acids from the lipid store. Besides
these rather stable relationships, the LD may make transient
contact with other organelles to supply lipids, as exempli-
Wed by a “kiss-and-run” encounter with the phagosome in
the leukocyte (van Manen et al. 2005).

Molecules in the LD

Lipids

Besides TG, the LD core contains diacylglycerol (DG),
cholesterol ester (CE), and other esters in various propor-
tions (Zweytick et al. 2000; Murphy 2001). TG is the pre-
dominant lipid ester in white adipocytes, whereas the LD of

Fig. 1 The LD by light and electron microscopy. a Light microscopy.
By labeling of rat 3Y1 Wbroblasts loaded with oleic acid by BO-
DIPY493/503 (green), LDs are observed as many small dots by Xuo-
rescence microscopy. The diameter of these dots is generally around
1 �m, and the smallest one is no less than 200–300 nm in diameter. The

nucleus is stained by 4�,6-diamino-2-phenylindole (blue). b Electron
microscopy. In conventional ultrathin sections, the LD is observed as
a structure with a homogenous content (arrowheads). In contrast with
ER (arrow) and mitochondria (double arrows), the LD surface is not
delimited by the unit membrane
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adrenocortical cells and ovarian and testicular interstitial
cells are enriched with CE for steroid hormone synthesis.
The retinyl ester exists abundantly in the LD of vitamin A-
storing cells in the liver and several other organs. In most
non-specialized cells, such as cultured Wbroblasts, CE and
TG appear to exist in various proportions.

The phospholipid composition of the LD is similar to
that of the ER membrane in that phosphatidylcholine (PC),
phosphatidylethanolamine (PE), and phosphatidylinositol
(PI) are contained in this order (Leber et al. 1994). Lyso-PC
and lyso-PE are also found in the LD (Tauchi-Sato et al.
2002). Peculiar characteristics of the LD are the abundance
of unsaturated acyl chains in PC and lyso-PC (Tauchi-Sato
et al. 2002) and the presence of the ether-linked form of PC

and PE (Bartz et al. 2007). In addition to the phospholipids,
a signiWcant amount of free cholesterol (FC) is contained in
the LD of white adipocytes, and the cell functions as a cho-
lesterol sink for the whole body (Prattes et al. 2000).
Intense Wlipin staining of adipocyte LD suggests that FC is
contained in the surface phospholipid monolayer (Fig. 2b)
(Prattes et al. 2000), although it may also exist in the LD
core as speculated for lipoproteins (Hevonoja et al. 2000)
and/or in the membrane adjacent to the LD (Ohsaki et al.
2008). Among total lipids of non-adipocyte LDs, the molar
proportion of the FC is low due to the abundance of lipid
esters, but the phospholipid-to-FC ratio in the surface layer
has not been determined. Interestingly, an LD-associated
protein, adipocyte diVerentiation-related protein (ADRP,

Fig. 2 Basic architecture of the 
LD. a Cryoelectron microscopy 
of the isolated LD and vesicle. 
Isolated LDs from HepG2 cells 
were rapidly frozen and ob-
served by cryoelectron micros-
copy at the liquid helium 
temperature without Wxation or 
staining. The LD surface was 
seen as a single electron-dense 
line (left Wgure; two adjacent 
LDs are seen), whereas the sur-
face of a membrane vesicle was 
observed as two parallel lines 
(right Wgure). The electron den-
sity is solely derived from a row 
of phosphorus in the phospho-
lipid head group. The result 
demonstrated that the LD sur-
face is made of a phospholipid 
monolayer as depicted in the 
lower diagram. b The LD core is 
generally thought to consist of 
the lipid ester alone (left dia-
gram), whereas presence of the 
ribosome-bound membrane as 
well as several proteins in the 
core has been reported in some 
cells (right diagram)
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also called adipophilin and ADFP), was recovered in the
detergent-resistant membrane fraction when a low concen-
tration of Triton X-100 was used (Tauchi-Sato et al. 2002),
and this result might suggest that the LD surface may con-
tain a domain similar to the membrane raft. The property
that FC and lyso-PC form a tight stoichiometric complex
may also inXuence the nature of the LD surface (Rams-
ammy and BrockerhoV 1982; Martin and Parton 2005).
Although the information on the LD surface is still frag-
mentary, its unique molecular composition suggests that it
was not made by random sampling of the ER membrane
but, rather, derived from a special ER domain or formed by
an elaborate mechanism.

Proteins

PAT proteins

Although the basic LD structure may be retained without an
intervention of proteins, its formation, maintenance, modi-
Wcation, and involution should be regulated by a variety of
proteins (Fig. 3). PAT proteins, named after perilipin,
ADRP, and tail-interacting protein of 47 kDa (TIP47), are
the most well-known LD-associated proteins, and S3-12
and MLDP/OXPAT/PAT-1 also belong to this family
(Londos et al. 2005; Brasaemle 2007). Perilipin is the Wrst
mammalian protein found as an LD-speciWc protein
(Greenberg et al. 1991). Three isoforms, A, B, and C, gener-
ated by alternative splicing are known; the adipocyte
expresses perilipin A and B, whereas the steroidogenic cell
has perilipin C. Perilipin functions as a shield against cyto-
solic lipases in the resting condition, but perilipin phos-
phorylated by protein kinase A forms a docking site for
hormone-sensitive lipase (HSL) when lipolysis is activated
by �-adrenergic stimulation (Sztalryd et al. 2003). Perilipin
A also binds to an LD-associated protein, Comparative
Gene IdentiWcation-58 (CGI-58, also called as Abhd5)
(Yamaguchi et al. 2004), which is a coactivator of another
cytosolic lipase, adipose triglyceride lipase (ATGL; also
called as desnutrin, phospholipase A2�) (Lass et al. 2006).
Perilipin A releases CGI-58 when phosphorylated by pro-
tein kinase A, but where, when, and how CGI-58 activates
ATGL in the adipocyte are not established (Brasaemle
2007). Adipocytes cultured in a physiological condition
harbor a major central perilipin-poor LD and small periphe-
ral perilipin-rich LDs and lipolysis upon �-adrenergic
stimulation occurs preferentially in the latter LDs (Moore
et al. 2005). The result shows the functional importance of
perilipin as well as the heterogeneity of LDs.

ADRP is expressed in a wide range of non-adipocytes
(Brasaemle et al. 1997). During adipocyte diVerentiation,
ADRP is replaced by perilipin although the ADRP’s tran-
scription continues (Brasaemle et al. 1997). In the perilipin-

null mouse, however, the adipocyte LD is coated by ADRP
(Tansey et al. 2001). Likewise, TIP47, which exists largely
as a soluble cytosolic protein, becomes the major non-adi-
pocyte LD protein in the ADRP-null cell (Sztalryd et al.
2006). These results suggest the presence of a hierarchy in
the PAT proteins in regards to LD binding, but the molecu-
lar basis for this is not clear.

ADRP has been shown to help preserve the cellular TG
content, and this may result from its protective function
against lipolysis (Listenberger et al. 2007). In the adipo-
cyte, however, ADRP cannot substitute the perilipin’s func-
tion as exempliWed by the high basal lipolytic rate and low
adiposity of the perilipin-null mouse (Tansey et al. 2001).
An increase in TG in the microsome of the ADRP-null
mouse liver compared to the normal counterpart suggested
that the major function of ADRP is related to partitioning of
TG between the LD and the membrane (Chang et al. 2006).
The physiological role of TIP47 is even more elusive than
ADRP. Because knockdown of TIP47 in the ADRP-null
Wbroblast decreased the number of LDs further (Sztalryd
et al. 2006), TIP47 is also likely to have a protective function
against lipolysis. TIP47 facilitates the recycling of the
mannose-6-phosphate receptor from late endosomes to the
trans-Golgi network by forming a ternary complex with
the receptor and Rab9 (Carroll et al. 2001), but the question
as to whether the function is related to its presence in the
LD has not been addressed.

MLDP/OXPAT/PAT-1 also inhibits lipolysis in the LD
and is present in oxidative tissues, such as cardiac muscle,

Fig. 3 Proteins are transported and localized in the LD by diVerent
mechanisms. Proteins in the LD may be classiWed into at least Wve cat-
egories according to their transport and localization mechanism. a Per-
ilipin and ADRP are constitutively localized in the LD. b TIP47, S3-
12, and MLDP/OXPAT/PAT-1 exchange between the LD and the
cytosol. c Caveolins and oleosins translocate from the ER membrane
to the LD by lateral diVusion. d Caveolin-1 is endocytosed from cave-
olae and reaches the LD by an unknown mechanism. e The mechanism
that causes some proteins to locate in the LD core is not known
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red skeletal muscle, and the liver (Wolins et al. 2006b;
Yamaguchi et al. 2006; Dalen et al. 2007). These tissues
also express ADRP and TIP47, but how they cooperate in
the LD is not known. Yet, a study has suggested that
MLDP/OXPAT/PAT-1 may have a stronger protective
eVect against lipolysis than ADRP, and its expression pro-
motes both �-oxidation and TG accumulation (Dalen et al.
2007). S3-12 protein is the most divergent member among
PAT proteins and is expressed almost exclusively in the
adipocyte (Miura et al. 2002). Its function may be related to
lipid storage, but this remains to be clariWed. For further
discussion on the function of PAT proteins, readers can refer
to recent excellent articles (Brasaemle 2007; Ducharme and
Bickel 2008).

PAT proteins are thought to be translated in the free
ribosome and are recruited to the LD post-translationally
(Londos et al. 1999). Perilipin and ADRP are constitu-
tively localized to the LD and rapidly degraded by protea-
somes upon detachment (Fig. 3a), whereas S3-12, TIP47,
and MLDP/OXPAT/PAT-1 are also stable as a soluble
protein and translocated to the LD only under certain con-
ditions (Fig. 3b) (Wolins et al. 2006a). Studies using dele-
tion mutants of perilipin and ADRP did not specify any
amino acid sequence as a targeting motif, but they did
imply the engagement of several diVerent hydrophobic
domains redundantly (Garcia et al. 2003; McManaman
et al. 2003; Nakamura and Fujimoto 2003; Targett-Adams
et al. 2003). Acylation (Heid et al. 1996) and the 11-mer
repeat that is also found in synucleins and apolipoproteins
and predicted to form amphipathic helices (Bussell and
Eliezer 2003) may be involved in the binding of PAT pro-
teins to LDs. The 3D structure of TIP47 showed that its
carboxy-terminal portion takes a structure similar to the
four-helix bundle of apolipoprotein E, which mediates
binding to lipoproteins (Hickenbottom et al. 2004).
Although ADRP shows a signiWcant sequence similarity
with TIP47 in that region and is likely to adopt an analo-
gous structure, only TIP47 can exist stably in a soluble
form, probably by Xexibly changing the shape of the puta-
tive hydrophobic pocket, whereas ADRP cannot do so and
is degraded once it is released from the LD (Hickenbottom
et al. 2004; Brasaemle 2007).

Caveolins

Caveolins, caveolin-1, 2, and 3, were discovered as
scaVolding proteins to make the plasmalemmal caveolae,
and were later found to localize in the LD under some cir-
cumstances (Fig. 3c, d) (Fujimoto et al. 2001; Ostermeyer
et al. 2001; Pol et al. 2001; Martin and Parton 2005).
Caveolin-1 binds free cholesterol (FC), glycolipids, and
fatty acids (Fra et al. 1995; Murata et al. 1995; Trigatti
et al. 1999), and is thought to be engaged in the intracellu-

lar lipid transport (Martin and Parton 2005). Caveolin-1
distributes in the caveolae and Golgi membrane under nor-
mal culture conditions, but, when cells are loaded with lip-
ids, caveolin-1 is endocytosed by a dynamin- and protein
kinase C-dependent pathway and translocates to the LD
(Fig. 3d) (Sharma et al. 2004; Le Lay et al. 2006). How
caveolin-1 translocates from the endocytic vesicular car-
rier to the LD has not been determined, but the caveolin-1-
dependent transport appears indispensable in maintaining
the high FC content of the adipocyte LD (Le Lay et al.
2006). Caveolin-1-null mice show low adiposity but other-
wise present a relatively mild phenotype under normal
conditions (Drab et al. 2001; Razani et al. 2002). Upon
partial hepatectomy, hepatocytes in normal mice accumu-
late a large number of LDs, whereas those of caveolin-1-
null mice do not show disturbances in cell cycle progression,
with the animal failing to survive the injury unless supple-
mented with glucose (Fernandez et al. 2006). Because the
serum lipid levels and the cellular lipid uptake appear nor-
mal in caveolin-1-null mice, the result suggests critical
roles for caveolin-1 in the LD formation process in some
circumstances.

Immunoelectron microscopy showed that caveolin-1 as
well as several membrane and soluble proteins are located
inside the LD (Fig. 3e) (Dvorak et al. 1992; Bozza et al.
1997; Robenek et al. 2005, 2006), a result that is not readily
compatible with the general view that the LD core is a sim-
ple mass of lipid esters (Fig. 2b). Because caveolins are
thought to reach the LD surface either by lateral diVusion
from the ER membrane (Fig. 3c) or by the endocytic route
(Fig. 3d) (Fujimoto et al. 2001; Ostermeyer et al. 2001,
2004; Pol et al. 2001; Le Lay et al. 2006), the presence of
caveolin-1 in the LD core is enigmatic. Combined with the
observation of ribosome-bound membranes (Wan et al.
2007), however, the result suggests that LD core might con-
tain some structures other than the lipid ester mass.

Other proteins

Besides the PAT proteins and caveolins, mass spectromet-
ric analyses of isolated LDs identiWed a large number of
proteins (Brasaemle et al. 2004; Fujimoto et al. 2004; Liu
et al. 2004; Umlauf et al. 2004; Ozeki et al. 2005; Sato
et al. 2006; Turro et al. 2006). The list contained many
enzymes related to lipid metabolism, suggesting that some
lipids are synthesized locally in the LD. The list also
included proteins related to signaling, cytoskeletal proteins,
and chaperones, but it was surprising that more than 10 Rab
proteins were detected. Among these, Rab18 is probably
the only Rab that was conWrmed to exist in the LD by
microscopic methods (Martin et al. 2005; Ozeki et al.
2005). Rab18 is thought to be involved in the process of LD
involution (Martin et al. 2005), and overexpression of
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Rab18 expels ADRP from the LD and induces close appo-
sition of the LD and ER (Ozeki et al. 2005). Except for
Rab18, presence of Rabs in the LD has not been conWrmed
microscopically even by overexpression of tagged proteins
(Ozeki et al. 2005; Liu et al. 2007). We speculated that dis-
ruption of LDs upon homogenization is likely to expose the
hydrophobic lipid ester, which may adhere irrelevant mole-
cules non-speciWcally (Fujimoto and Ohsaki 2006). It may
not be the sole cause of this discrepancy, but the above pos-
sibility needs to be excluded by microscopic methods
before concluding that a protein in the LD fraction really
exists in the LD in situ.

Several LD-associated proteins have been shown to
inXuence the process of LD formation. Prp19p is known as
a nuclear protein involved in DNA repair (Mahajan and
Mitchell 2003), but is also located in the LD and appears to
enhance LD biogenesis in the adipocyte by aVecting the TG
synthetic pathway (Cho et al. 2007). Fat-speciWc protein
(FSP)27/Cidec is also highly expressed during adipogene-
sis and augments TG accumulation by down-regulating
lipolysis (Puri et al. 2007). Seipin has been reported to
localize at the LD–ER junction (Szymanski et al. 2007),
and the absence of its yeast homolog induces aberrant LDs
in yeast (Fei et al. 2008); the function of the protein has yet
to be deWned. Still other proteins that do not localize to the
LD were shown to aVect some aspects of the formation pro-
cess, but the molecular mechanism is not necessarily clear,
as discussed below.

Other molecules in the LD

Dvorak and colleagues have shown the presence of RNAs
in the leukocyte LD (for a review, see Dvorak et al. 2003).
In those cells, they also observed membrane-bound ribo-
somes inside the LD by electron microscopy, and hypoth-
esized that some proteins are translated in the LD (Wan
et al. 2007). A similar morphology has not been reported
in the LD of other cell types, but RNA-binding proteins
and ribosomal subunits were detected by proteomic stud-
ies (Cermelli et al. 2006; Sato et al. 2006; Wan et al.
2007), and inosine monophosphate dehydrogenase that
binds to nucleic acids was also shown to localize in the
LD (Whitehead et al. 2004). The meaning of these Wnd-
ings needs to be elucidated in future studies. Besides
physiological molecules, some extraneous substances
may concentrate in the LD. One example is polynuclear
aromatic hydrocarbons derived from combustion (Murphy
et al. 2008). They adsorb to the respiratory tract epithe-
lium along with butadiene soot particles and then accumu-
late in the LD of the epithelial cell, alveolar macrophage,
and adipocyte. The LD may serve as the reservoir of the
toxicants and prolong their eVect by releasing them
slowly.

Techniques to study the LD

Microscopic imaging

The large LD of the white adipocyte is observed as a
vacancy in histological paraYn sections stained by hema-
toxylin and eosin. This is because the lipid ester is not Wxed
by formalin and extracted by organic solvents during dehy-
dration. The protein-rich cytoplasm around the LD is Wxed
and remains as a scaVold so that the overall shape of the LD
can be recognized, but the lipid ester core is not retained.
The inability of the aldehyde Wxatives to Wx lipids causes a
similar problem when the LD is stained for Xuorescence
microscopy. Alcohols used to dissolve classical histological
dyes (e.g., Sudan III and Oil Red O) induce artiWcial defor-
mation of LDs (Fig. 4) (Fukumoto and Fujimoto 2002).
Even when Xuorescence dyes dissolved in aqueous buVers,
such as BODIPY593/603 (Gocze and Freeman 1994) and
Nile red (Greenspan et al. 1985), are used, glycerol in the
specimen mounting causes a similar deformation. A similar
artifact can occur in electron microscopy when aldehydes
are used as the only Wxative. Osmium tetroxide reacts with
lipids and makes them insoluble (Riemersma 1968), but it
is empirically known that most antigenicities are lost after
osmium Wxation.

LDs can be observed in live cells by several diVerent
techniques. GFP-tagged LD proteins have been used in
many studies (e.g., Pol et al. 2001; Targett-Adams et al.
2003; Bostrom et al. 2005; Turro et al. 2006), but as the
function of the proteins used for visualization is not always

Fig. 4 Deformation of LD by staining and embedding procedures.
Staining by alcoholic dyes and embedding cause gross deformation of
LDs. In this example, human Wbroblasts cultured with oleic acid were
Wxed by formaldehyde, stained by Nile Red dissolved in phosphate-bu-
Vered saline (PBS) and was photographed in PBS (left Wgure). The
same cell was further stained by Sudan III dissolved in 70% ethanol,
mounted in a medium containing about 25% (w/v) glycerol, and pho-
tographed again (right Wgure). Although the overall distribution of the
LD remained the same, LDs observed as a cluster of small LDs by Nile
Red were grossly transformed to large LDs (often >5 �m in diameter)
after the Sudan III staining, and the total area of the LD decreased by
about 30–50%. A similar deformation was observed by the Oil Red O
staining

Nile red Sudan III

Deformation of LD
staining in 70% ethanol
embedding in glycerol

10 µm 
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deWned, their expression itself might modify the behavior
of the LD in unpredictable ways. Fluorescence lipophilic
dyes and lipids tagged with Xuorescence groups might also
have adverse eVects on physiological processes (Greenspan
et al. 1985; Gocze and Freeman 1994). More recently,
polyene-lipids that behave similar to natural lipids became
utilized as a probe and showed that they are incorporated
into the pre-existing LDs as DG and TG, shortly after appli-
cation (Kuerschner et al. 2008).

A new generation of microscopic techniques, such as
third-harmonic generation microscopy (Debarre et al.
2006), coherence anti-stokes Raman spectroscopy (Nan
et al. 2006), and Raman microspectroscopy (van Manen
et al. 2005) as well as classical diVerential interference con-
trast microscopy (Nagayama et al. 2007), are non-invasive
methods that can visualize LDs without any pretreatment or
expression of exogenous proteins, and they should bring
about non-biased information on the LD behavior in live
cells. Yet, the space resolution of these techniques is no
better than that of the Xuorescence-based methods, and only
LDs larger than 200–300 nm in diameter can be pursued
(Fig. 1a).

The smallest LD in cells is smaller than that dimension.
By electron microscopy of ultrathin sections, LDs as small
as 50 nm in diameter can be observed under favorable con-
ditions (Cheng JL, Fujimoto T, manuscript in preparation).
The 1H-NMR analysis showed that the lipid ester in living
cells exists as a globule of about 25 nm in diameter (Lacey
et al. 1999), although the origin of the signal has been
debated (Mountford and Wright 1988; Hakumaki and
Kauppinen 2000). Finally, in an in vitro model system,
atomic force microscopy visualized small wax ester globules
formed on mica sheets, whose average size was 50 nm in
diameter and 15 nm in height (Waltermann and Steinbuchel
2005). These results suggest that the LD in living cells
could be far smaller than the resolution limit of light
microscopy. Those small “invisible” LDs might contribute
to the growth and involution of larger “visible” LDs as
conjectured below.

Biochemical analysis

Biochemical puriWcation of LDs has been performed by
density-gradient ultracentrifugation (Leber et al. 1994; Yu
et al. 2000). After disruption of cells and tissues, isolated
LDs can be collected in a reasonable purity because the low
density of lipid esters makes LDs to Xoat to the top surface
of the gradient, whereas soluble proteins and membranes
remain in fractions of higher densities. Markers of other
organelles are scarcely detected in the LD fraction, but
some ER proteins are occasionally included. The latter
result may reXect the real presence of the ER components
in the LD itself, but is not always easy to exclude an artiW-

cial inclusion of adjacent structures in the isolated prepara-
tion. For example, the yeast vacuole adheres to LDs in situ
and is recovered in the LD fraction unless an additional
procedure to separate them is carried out (Leber et al.
1994).

Another concern for LD isolation by density-gradient
centrifugation is that small LDs may be recovered in the
top-Xoating fraction only with a limited eYciency com-
pared to larger LDs. This is likely because lipoproteins also
have widely variable densities, from »0.96 g/ml for chylo-
micron to »1.063 g/ml for high density lipoprotein. The
lipoproteins are thought to have a common basic structure
made of the lipid ester core and a phospholipid monolayer
(Hevonoja et al. 2000), but the phospholipid-to-lipid ester
ratio should be larger as the particle size is smaller, which
may result in the varied densities. In fact, the LD of non-
adipocytes is recovered in the top-Xoating fraction only
with a low eYciency if the cells are not cultured with fatty
acids (Listenberger et al. 2007). The results suggest that the
LD preparation obtained by centrifugation may be biased
toward relatively large LDs and may not represent LDs
smaller than a certain limit.

The biogenesis of the LD

Birth of the LD

The mechanism by which the LD is produced in the cell has
attracted much interest, and several diVerent models have
been proposed (Fig. 5) (Zweytick et al. 2000; Wanner et al.
1981; Waltermann et al. 2005; Ploegh 2007; Murphy and
Vance 1999). The prevailing hypothesis supposes the fol-
lowing sequence of events for LD formation: the newly
synthesized lipid ester is deposited in the membrane, and,
as the amount exceeds the molar proportion that can be
assimilated in the phospholipid bilayer, the lipid ester
begins to segregate between the two membrane leaXets by
phase separation. As such, the lipid ester mass gradually
bulges toward the cytoplasm and Wnally separates from the
mother membrane as a nascent LD (Fig. 5a). This hypothe-
sis gives a reasonable explanation on how the lipid ester
globule covered by a phospholipid monolayer is formed
from a phospholipid bilayer. Experimental evidence for
each step, however, has been rather scarce.

The enzymes that catalyze the last step of the TG and CE
synthesis in mammalian cells are two isoforms of acyl-
coenzyme A:diacylglycerol acyltransferases (DGAT1 and
DGAT2) and two isoforms of acyl-coenzyme A:cholesterol
acyltransferases (ACAT1 and ACAT2), respectively, and
some, if not all, were shown to exist in the ER (Smith et al.
2000; Chang et al. 2001; Stone et al. 2006). In contrast,
Dga1p, the yeast homolog of mammalian DGAT2, distributes
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mainly in the LD (Sorger and Daum 2002), and overexpres-
sed DGAT2 was also found around LD in mammalian culture
cells (Kuerschner et al. 2008). The results suggest that
some TG may be synthesized in the LD or in an ER sub-
compartment adjacent to the LD. Nonetheless, because the
major synthetic activities for TG and CE are recovered in
the microsome fraction (Lehner and Kuksis 1996; Buhman
et al. 2000), the ER membrane is a probable site where a
new LD begins to form.

If the newly produced lipid ester accumulates between
the two membrane leaXets, it is expected to be observed as
a globule in the ER membrane, and the cytoplasmic and
lumenal membrane leaXets of the ER should be continuous
with the LD surface. Yet, a structure corresponding to the
globule has hardly been observed. A notable example is a
direct continuity between an LD and a thick trilaminar
appendage in the cotyledon of some plants (Wanner and
Theimer 1978). Although the appendage may be derived

from the ER membrane, it is far thicker than the usual
membrane, that is, 20–23 nm, and the identity is not deWned
clearly. In a freeze-fracture study, a continuity of the cyto-
plasmic leaXet of the ER membrane to a putative LD sur-
face was reported, but the latter structure may not be the
usual LD because the fractured concave plane contained
many intramembrane particles (Blanchette-Mackie et al.
1995). We recently identiWed a structure that topologically
corresponds to the lipid ester globule between the two
membrane leaXets of the ER in cultured hepatocytes
(Fig. 6) (Ohsaki et al. 2008). The structure was induced by
anomalous binding of lipidated apolipoprotein B to the ER
membrane, and probably corresponds to the LD arrested at
an intermediate stage of formation.

However, a similar structure has never been observed in
normal cells, probably because the nascent LD separates
from the ER before reaching a detectable size. The results
of 1H-NMR (Lacey et al. 1999; Hakumaki and Kauppinen
2000) and atomic force microscopy (Waltermann and
Steinbuchel 2005), as well as the thickness of the ER mem-
brane, that is, 5–7 nm, suggest that the nascent LD may be
very small and may be diYcult to capture even by electron
microscopy. In other words, the LD observed by conven-
tional methods may only be made after the “growth” of the
smaller nascent LD.

The separation of the nascent LD from the ER mem-
brane is generally presumed to occur by budding and
Wssion so that the surface of the LD originates from the
cytoplasmic leaXet of the ER (Fig. 5a). The mechanism of
the vesicular budding have been characterized [for reviews,
see (McMahon and Mills 2004; Praefcke and McMahon
2004; Corda et al. 2006)], but a completely diVerent mecha-
nism may be needed for the LD because the content and
surface of the LD have vastly diVerent properties from that
of vesicles. An alternative mechanism for LD formation
was proposed recently: the nascent LD is hypothesized to
form by “hatching”, in which the lipid ester globule
detaches from the ER together with the two membrane
leaXets (Fig. 5b) (Ploegh 2007). By this scenario, a tran-
sient pore is made in the membrane, and this may be impor-
tant for misfolded proteins in the ER lumen to be
translocated to the cytoplasm for proteasomal degradation.
This hypothesis can explain the presence of ER proteins,
especially for some transmembrane ones, in the LD (Dvo-
rak et al. 1992; Bozza et al. 1997; Robenek et al. 2004,
2005) because the intact membrane fragment can remain
attached to the LD as a wrinkle.

Growth of the LD

There are several possible ways for the pre-existing LD to
grow larger (Fig. 7). As demonstrated by live imaging,
mutual fusion of LDs is one probable mechanism (Fig. 7a)

Fig. 5 Possible mechanisms of the LD birth. The lipid ester accumu-
lating in the ER membrane is assumed to leave there either by budding
(a) or by “hatching” (b). The surface phospholipid of the nascent LD
should be derived from the cytoplasmic leaXet of the ER membrane in
the budding process, whereas it comes from both the leaXets in the
hatching process. For budding, the lipid ester mass needs to bulge to-
ward the cytoplasm and to be constricted for Wssion. For hatching, the
ER membrane needs to be disrupted on both the sides of the lipid ester
mass

a b

budding ‘hatching’

ER lumen

cytosol

transmembrane protein

‘membrane wrinkle’
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(Bostrom et al. 2005). The presence of SNARE proteins in
the LD suggested that the fusion occurs by a mechanism
similar to that of vesicular fusion (Bostrom et al. 2007), but
the fusion between the LDs that are Wlled with lipid esters
should give rise to an important diVerence from the fusion
of vesicles enclosing the aqueous content. That is, in the
vesicular fusion, the shape and volume of the fused vesicle
can change in a Xexible manner in accordance with the total
membrane area. On the other hand, in the LD fusion,
because the total volume of lipid esters appears to remain
constant and the resultant LD regains the spherical shape
immediately (Bostrom et al. 2005), the surface-to-volume
ratio decreases, which then should cause surplus phospho-
lipids (and proteins). Simple calculation says that, to make
a large LD of 1 �m in diameter only by fusion, 125 small
LDs of 200 nm in diameter are needed for the lipid ester,
but the surface of the large LD can be covered by the phos-
pholipids derived from 25 small LDs, and that equivalent to
100 small LDs will become excess (Fig. 8a). If we start
from LDs of 25 nm in diameter to make the 1 �m LD,
64,000 LDs are required to collect suYcient lipid esters,
and phospholipids from 62,400 LDs need to be processed
in some way. There are several presuppositions for this cal-
culation: the total volume and packing density of the lipid
ester are the same, the lateral density of the surface phos-
pholipid is the same, and so forth. Although they may not

be valid always, it is likely that large surplus phospholipids
and proteins should arise by LD fusion (Fig. 8a). The
excess phospholipids and proteins may be simply released
and utilized elsewhere; alternatively, they may be degraded
by phospholipases (Marchesan et al. 2003), proteasomes
(Xu et al. 2005), or other processes. There is also a possibility
that the excess phospholipids and proteins may form some
structures in or around the enlarged LD, which could
explain the internal immunolabeling and membranous mor-
phology in the core (Dvorak et al. 1992; Bozza et al. 1997;
Robenek et al. 2004, 2005; Wan et al. 2007).

The existing LD may become larger by acquiring addi-
tional lipid esters by mechanisms other than mutual fusion.
One possible way is the infusion of lipid esters via direct
structural continuity between the ER and LD (Fig. 7b). The
diagram on LD formation depicts that nascent LDs become
independent, but whether the LD completely separated
from the ER can exist has never been shown. The LD
closely associated with the cytosolic surface of the ADRP-
enriched ER membrane was reported by immunoelectron
microscopy (Robenek et al. 2006). The observed LD
>0.5 �m in diameter, may be too large as a nascent one, but
the result may suggest that the special ER domain is
involved in the continuous ER–LD association. Alterna-
tively, the ER and LD may undergo a cycle of fusion and
Wssion for the lipid transfer (Fig. 7c). This mechanism was

Fig. 6 The LD arrested in the 
ER membrane. a The LDs har-
boring ADRP (red) on a hemi-
sphere and apolipoprotein B-100 
(green; arrowheads) on the 
complementary hemisphere. 
This structure was named as 
“ApoB-crescent”. The ApoB-
crescent increased drastically 
when degradation of apolipopro-
tein B-100 is perturbed in the 
hepatoma-derived Huh7 cell. b 
Electron microscopy showed 
that the ApoB-crescent consists 
of an LD and a thin ER cistern 
(arrows) fusing each other. The 
LD of the ApoB-crescent is 
topologically equivalent to the 
lipid ester globule between the 
two membrane leaXets (see dia-
gram in Fig. 5). c The structure 
shown in a and b probably repre-
sents the LD arrested at an inter-
mediate stage of biogenesis, 
which is caused by tight binding 
of lipidated apolipoprotein B-
100 to the ER membrane

ca

b

LD

ER

500 nm
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Fig. 7 Possible mechanisms of LD growth. The pre-existing LD may
grow by accretion of the lipid ester by one or several of possible mech-
anisms. a The LD is shown to fuse with other LDs; for the net increase
of the total lipid ester, nascent LDs, too small to be detected by con-
ventional methods, may ferry the lipid ester to the pre-existing large
LDs. b The LD may remain continuous to the mother ER membrane

and thus obtain the additional lipid ester through the conduit. c The LD
may be connected to the ER transiently, while the two organelles
undergo a cycle of fusion and Wssion. d Soluble complexes may carry
the lipid ester to the LD. e The lipid ester may be synthesized locally
in the LD

Continuous 
contact

Fusion/fission
cycle

Mutual fusion
of LDs

LD

Transport by
soluble carriers

ER

b c da e

Synthesis 
in LDs

Fig. 8 The LD growth may 
cause changes in opposite direc-
tions. When the LD growth oc-
curs solely by mutual fusion (a), 
a large surplus surface phospho-
lipids and proteins should arise. 
This condition is likely to cause 
exchangeable proteins to leave 
the LD, whereas the constitutive 
proteins remain in the LD. The 
excess phospholipids and pro-
teins might give rise to membra-
nous structures in and/or out of 
the LD. On the contrary, when 
the LD grows by accretion of 
lipid esters in processes other 
than the mutual fusion (b), a 
deWciency of the surface phos-
pholipids and proteins may 
occur, which may then recruit 
exchangeable proteins to the LD. 
Thus, the ratio of exchangeable 
and constitutive proteins in the 
LD could change to opposite 
directions depending on how the 
growth occurs

a

b
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proposed to occur in the hepatocyte to supply lipids from
the LD to the ER for lipoprotein synthesis (Gibbons et al.
2000), but whether functional coupling/decoupling is
accompanied with LD movements is not known. The sup-
ply of the lipid ester may also occur by a soluble complex
using speciWc carrier proteins as shown in a transport from
caveolae (Fig. 7d) (Uittenbogaard et al. 2002). Finally, the
lipid ester may be synthesized locally by enzymes distrib-
uted to the LD (Fig. 7e). When LD growth occurs by one of
these mechanisms, the corresponding amount of phospho-
lipids and proteins needs to be supplied independently and
exchangeable proteins may be recruited to rather than
released from the LD (Fig. 8b).

The above conjecture suggests that changes of the surface-
to-volume ratio in the LD are likely to modify the composi-
tion of LD-associated proteins. Some proteins can exist both
in LD-bound and soluble forms, for example, TIP47 and S3-
12, and they may be easily recruited to the LD when the
available surface increases, whereas they may be released
from the LD when the surface decreases. On the contrary, the
proteins that can exist only in the LD, for example, perilipin
and ADRP, are unlikely to undergo drastic changes. The
rapid recruitment of TIP47 upon oleic acid loading (Wolins
et al. 2001; Ohsaki et al. 2006b) suggests that the LD growth
in this condition may occur largely by non-fusion mecha-
nisms. The heterogeneity of the LD-associated proteins in a
cell (Fig. 9) (Moore et al. 2005; Wolins et al. 2005; Ohsaki
et al. 2006b) may be generated as an LD goes through
changes of the surface-to-volume ratio after its birth and the
resulting diVerence in the protein composition should bring
about the functional diVerences among the LDs.

Using several experimental systems, proteins facilitating
LD formation have been reported. The readouts of the
experiments are basically the total LD volume by
microscopy and the lipid ester amount in the isolated LD
fraction (Marchesan et al. 2003; Andersson et al. 2006;
Magnusson et al. 2006). In view of technical limitations
and possible multiple steps necessary for “visible” LD
formation, it is not easy to specify where in the process a
particular factor(s) is involved. It would be a future chal-
lenge to characterize which factors are necessary for which
step of LD formation.

Involution of the LD

Involution of the LD occurs when the lipid ester is hydro-
lyzed by lipases. PAT proteins probably play a major role
in the regulation of this event (Londos et al. 2005). In addi-
tion to the protective and docking functions as discussed
above, phosphorylation of perilipin induces fragmentation
of LDs in the adipocyte (Marcinkiewicz et al. 2006). This
phenomenon should facilitate lipolysis because the surface-
to-volume ratio of the LD increases and the access of
lipases to the lipid ester should be easier. Mechanical frag-
mentation of LDs that occurs upon cell homogenization
should also induce exposure of the hydrophobic ester
(Fujimoto and Ohsaki 2006).

Motility of the LD

The fusion and Wssion of the LD are inevitably accompa-
nied by motility. The large LD in the adipocyte may not
have much motility, but smaller LDs in non-adipocytes
often show directional movements that occur along the
microtubule mediated by dynein and it cofactor, dynactin
(Welte et al. 1998; Targett-Adams et al. 2003; Bostrom
et al. 2005). In the Drosophila embryo, the LD shows
diVerent patterns of movement in diVerent stages, which is
coordinated by an LD protein called Klar. A signaling pro-
tein Halo is thought to promote phosphorylation of lipid
storage droplet-2 (LSD2), a perilipin homolog, in a develop-
mentally regulated manner (Welte et al. 2005). The phos-
phorylated LSD2 then binds to Klar, and this interaction
appears indispensable for coordination of LD motion
(Welte et al. 2005). In this way, LSD2 may be the organizer
that links LD motility and lipid homeostasis. It remains to
be shown whether mammalian PAT proteins share the
motility-related function.

Functions of lipid droplets

The canonical function of the LD is to store lipids as esters.
Lipids stored in the LD are hydrolyzed and may be used for
�-oxidation, membrane synthesis, protein modiWcation, and

Fig. 9 Heterogeneity of LD-associated proteins in a cell. Huh7 cells
were multiple-labeled by BODIPY493/503 (green) and by anti-TIP47
(red) and anti-ADRP (blue) antibodies. The LDs marked by BO-

DIPY493/503 are mostly positive for ADRP alone (arrows), although
the intensity of the ADRP labeling is varied among LDs. On the other
hand, TIP47 is seen only in a limited population (arrowheads)
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generation of signaling molecules and other lipid products.
A large amount of TG in the white adipocyte LD is used as
the energy reserve of the whole body. CE in the steroido-
genic cell LD is for steroid synthesis and arachidonic acid
esters of the mast cell LD is for eicosanoid synthesis. In the
hepatocyte, the lipid ester in the LD is utilized for lipopro-
tein formation, and, importantly, fatty acids generated by
hydrolysis of the lipid ester are used for lipoprotein synthe-
sis preferentially over those that are imported from the
extracellular milieu or newly synthesized in the cell (Gib-
bons et al. 2000). This suggests that lipids derived from the
LD may be channeled into speciWc metabolic pathways
more eYciently than those from other sources.

The lipid storage itself is important for cellular defense.
Excess free fatty acids (FAs) are toxic to cells (“lipotoxic-
ity”) and induction of cellular dysfunction and/or apoptosis
have been reported in many cell types (SchaVer 2003).
Unsaturated FAs can protect cells from the toxicity of satu-
rated FAs in normal cells, whereas they are equally toxic in
Dgat¡/¡ Wbroblasts (Listenberger et al. 2003). The protec-
tive function of unsaturated FAs can be explained by their
ability to promote TG accumulation by functioning as
ligands for peroxisome proliferator-acitivated receptor �
and/or by serving as a favorable substrate for DGATs (Lis-
tenberger et al. 2003). The result shows that esteriWcation
of FAs and storage in the LD as inert esters are an impor-
tant defense mechanism against lipotoxicity in non-adipo-
cytes.

The above-mentioned functions are connected to the
lipid traYcking, storage, and metabolism, and, altogether,
they indicate that the LD is not a static organelle at all but
a dynamic organelle that plays active roles in lipid homeo-
stasis. Furthermore, recent studies indicated that the LD
has functions that are not related to lipids directly. In the
hepatocyte, lipidated apolipoprotein B-100 accumulates
on the LD when the proteasomal or autophagic process is
inhibited (Fig. 6a) (Fujimoto and Ohsaki 2006; Ohsaki
et al. 2006a). The result suggested that the LD is a tempo-
ral storage site for lipidated ApoB to be degraded. Interest-
ingly, �-synuclein, a major protein of Lewy bodies found
in the Parkinson’s disease as well as other synucleinopa-
thies, also has an aYnity to the LD (Cole et al. 2002) and
is degraded both by the proteasome and autophagy (Webb
et al. 2003). Both apolipoprotein B-100 and �-synuclein
have hydrophobic segments (Giasson et al. 2001; Segrest
et al. 2001) and are likely to form aggregates when left
free in the aqueous environment. The LD may provide a
surface that these proteins can bind through hydrophobic
interactions, and thereby help disposal of the potentially
toxic aggregate-prone proteins (Fujimoto and Ohsaki
2006). In a more physiological setting, a massive amount
of histones are temporarily stored on the LD of the Dro-
sophila embryo (Cermelli et al. 2006). In this case, the LD

binding is likely to occur by electrostatic interactions, and
histones are later released to exert their function in the
nucleus. These results led to the hypothesis that the LD
functions as a general sequestration site (Welte 2007), but
the signiWcance and the regulatory mechanisms may be
diversiWed among proteins.

The isolated LD contains many proteins related to sig-
naling and membrane traYcking (Brasaemle et al. 2004;
Liu et al. 2004; Umlauf et al. 2004; Ozeki et al. 2005; Sato
et al. 2006; Turro et al. 2006), and the result may imply the
engagement of LDs in those activities. In fact, an in vitro
experiment showed that Rab5, one of the many Rab pro-
teins in the LD preparation, regulates the interaction
between the LD and the early endosome (Liu et al. 2007).
Considering potential artifacts that may arise during the LD
isolation, the function of those proteins may need to be
deWned in the cellular context.

Diseases related to lipid droplets

Obesity, diabetes mellitus, and atherosclerosis are pan-
demic in many countries and eVective prevention and treat-
ment measures are urgently required from the social and
economic standpoints. The LD can be an important target
to cure these abnormalities, as exempliWed by the reported
association of polymorphisms at the perilipin locus (PLIN)
and the risk of obesity in females of some ethnic groups
(Tai and Ordovas 2007). The above association, however,
was not found in other populations, suggesting the com-
plexity behind obesity.

Diseases more directly related to the LD function are the
neutral lipid storage disease and lipodystrophy. The neutral
lipid storage disease is known as Chanarin–Dorfman syn-
drome (CDS), and it shows ichthyosis and heavy TG depo-
sition in many tissues, though not in adipose tissue. CDS is
caused by loss-of-function mutations of CGI-58 (Lefevre
et al. 2001), and the function of CGI-58 as a strong activa-
tor of adipose triglyceride lipase (ATGL) appears to largely
explain TG accumulation in non-adipocytes (Lass et al.
2006). The normal adiposity of the CDS patient is not read-
ily understood by the above scheme, but the binding of per-
ilipin A and CGI-58 in basal conditions and their separation
upon �-adrenergic stimulation may be related to this enig-
matic phenomenon (Subramanian et al. 2004). Lipodystro-
phy is the disorder characterized by the complete or partial
lack of adipose tissue (Agarwal and Garg 2006). Human
genetic lipodystrophy has been linked to several loci,
including Berardinelli-Seip congenital lipodystrophy 2
(BSCL2) (Magre et al. 2001) and caveolin-1 (CAV1) (Kim
et al. 2008). BSCL2 encodes seipin, and its yeast homolog,
Fld1p, was shown to be important for the biogenesis and
maintenance of the LD (Szymanski et al. 2007; Fei et al.
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2008). The result suggests that the mechanism of the LD
formation is conserved in a wide range of species and criti-
cal for normal adipogenesis. However, the fact that patients
deWcient in BSCL2/seipin develop steatosis may suggest a
critical diVerence in the LD formation mechanism among
cells (Agarwal and Garg 2006).

The non-adipocyte LD is also a target of pathogens.
Chlamydia trachomatis, a causative agent of trachoma and
sexually transmitted diseases, induces accumulation of LDs
around the intracellular vacuole where it inhabits, and it
probably exploits the stored lipid for its growth (Kumar
et al. 2006). Hepatitis C virus (HCV) appears to use the LD
for proliferation (Miyanari et al. 2007). The single strand
HCV RNA encodes three structural and seven non-struc-
tural proteins. Among these, a structural capsid protein
(Core) (Barba et al. 1997) and a non-structural NS5A pro-
tein (Shi et al. 2002) are targeted to the LD when cDNAs
encoding the proteins are transfected alone. The HCV parti-
cle assembles in the vicinity of the LD in cultured hepa-
toma cells, and deletion or mutations of Core to disturb its
LD targeting suppressed HCV production (Boulant et al.
2007; Miyanari et al. 2007). The result indicates that the
LD is critical for HCV reproduction, and the molecular
linkage may be also related to the pathogenesis of hepatic
steatosis caused by viral infection. The HCV infection is a
world-wide health problem because it causes chronic
hepatitis, liver cirrhosis, and hepatocellular carcinoma. The
LD is becoming a target of active research from this
perspective.

Concluding remarks

The presence of LD has been known for many years using
classical lipid staining methods on histological sections, but
it is only recently that the LD is regarded as an independent
organelle. The LD plays a major role in lipid homeostasis,
but is also engaged in functions that are seemingly unre-
lated to lipids. The unique architecture of the LD and the
mechanism of its birth, growth, and modulation may be
critical for all the activities. Given its importance related to
various prevailing diseases, the LD poses many interesting
questions to clinical researchers as well as basic biologists.
With so many things to be studied, the next few years
should Wnd many new developments and surprises in this
slippery sphere.
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