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Abstract Sirtuins are a highly conserved family of his-

tone/protein deacetylases whose activity can prolong the

lifespan of model organisms such as yeast, worms and flies.

In mammalian cells, seven sirtuins (SIRT1–7) modulate

distinct metabolic and stress-response pathways, SIRT1

and SIRT3 having been most extensively investigated in

the cardiovascular system. SIRT1 and SIRT3 are mainly

located in the nuclei and mitochondria, respectively. They

participate in biological functions related to development

of heart failure, including regulation of energy production,

oxidative stress, intracellular signaling, angiogenesis,

autophagy and cell death/survival. Emerging evidence

indicates that the two sirtuins play protective roles in

failing hearts. Here, we summarize current knowledge of

sirtuin functions in the heart and discuss its translation into

therapy for heart failure.
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Introduction

Heart failure is a disease with multifactorial causes. Failing

hearts present complex phenotypes, including myocyte

loss, increased fibrosis, diminished response to stresses,

loss of myocardial energetic reserve and reduced myocardial

contractility. Accumulating evidence indicates that epige-

netic modification represents a molecular substrate for cel-

lular stresses, either suppressing or promoting disease

initiation [71]. In particular, lysine residue acetylation is one

of the important posttranslational modifications to regulate

the function of proteins. Sirtuins mediate this posttransla-

tional modification by coupling lysine deacetylation to

NAD? hydrolysis [116]. The dependence of sirtuin activity

on NAD? suggests that their enzymatic activity is directly

linked to the energy and redox status of the cell via the

NAD?/NADH ratio. Among the seven mammalian sirtuins,

SIRT1 and SIRT3 have been most intensively investigated.

Interestingly, SIRT1 and SIRT3 favorably modify cellular

functions that may underlie the above-mentioned heart

failure phenotypes. These sirtuins are crucially involved in

regulation of cardiomyocyte energy metabolism, production

of reactive oxygen species and signaling relevant to cell

death/survival. Biological functions of SIRT1/SIRT3 are

described in this review, mainly from the viewpoint of

translation into therapy for heart failure.

SIRT1 and SIRT3

Mammals express seven sirtuins, SIRT1–7, of which the

molecular weights range from 34 to 62 kDa [78]. All have

an NAD?-dependent catalytic core domain that may act as

an NAD?-dependent deacetylase and/or mono-ADP-ribo-

syl transferase. Additional N-terminal and C-terminal

sequences of variable lengths flank this core domain [78].

SIRT1 is highly expressed in mammalian hearts and reg-

ulates a wide array of cellular processes by deacetylating

histones and a number of non-histone proteins [38]. SIRT1

has been demonstrated to be localized predominantly in the
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nuclei or cytoplasm depending on the cell type. SIRT1

shuttles between the two cellular compartments in response

to cellular stress in C2C12 cells and cardiomyocytes [117,

118] (Fig. 1), and during differentiation in neural precursor

cells [50]. The nucleo-cytoplasmic shuttling is regulated by

nuclear localization signals and nuclear export signals in

the amino acid sequences of SIRT1. PI3K/Akt- and JNK1-

mediated phosphorylation of SIRT1 induces its nuclear

translocation [83, 118]. Nuclear localization of SIRT1

seems to be necessary for its protective function in

cardiomyocytes [117, 118], whereas the biological signif-

icance of cytoplasmic SIRT1 remains to be determined.

SIRT3 has been reported to be a major mitochondrial

deacetylase, although SIRT4 and SIRT5 also reside in the

mitochondria [69]. The full-length human SIRT3 is a

44-kDa protein with an N-terminal mitochondrial locali-

zation sequence [91]. Following import to mitochondria,

142 amino acids from the N-terminus of full-length SIRT3

are cleaved to generate an active 28-kDa short form [91].

Sundaresan et al. [115] reported that the endogenous long-

form SIRT3 was localized in the mitochondria, cytoplasm

and nuclei, whereas the short form of SIRT3 was detected

only in the mitochondria in hearts. Although SIRT3 has

been believed to be a ‘‘mitochondrial sirtuin’’, full-length

SIRT3 in the nucleus is also enzymatically active as indi-

cated by its ability to deacetylate H3 and H4 [101].

As opposed to these findings, a recent study demon-

strated that the endogenous SIRT3 was only evident in

mitochondria and not in the nuclear compartment in H9c2

cells and MEF cells, whereas overexpressed FLAG-tagged

A
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Fig. 1 Nucleo-cytoplasmic

shuttling of SIRT1 and its

differential distribution. a L929

cells were pre-stained with

Hoechst 33342 and then fused

with COS7 cells transfected

with SIRT1-EGFP

(heterokaryon). SIRT1-EGFP

was detected not only in COS7

nuclei but also in L929 nuclei

(arrows), indicating that SIRT1-

EGFP reached the L929 nucleus

via the heterokaryon cytoplasm.

SIRT1-EGFP, Hoechst 33342

nuclear staining, merged

images, and phase-contrast

images are shown.

b Immunofluorescence staining

reveals that embryonic (E12.5)

mouse hearts express SIRT1

predominantly in the nuclei,

whereas SIRT1 was diffusely

distributed in the cytoplasm in

adult (3-month-old) mouse

hearts. c The expression levels

of nuclear SIRT1 in the

cardiomyocytes were much

higher in severely failing hearts

from TO-2 hamsters than in

non-failing control hearts.

Produced from ref [118] with

permission

Page 2 of 14 Basic Res Cardiol (2012) 107:273

123



SIRT3 constructs were detected in sucrose gradient purified

nucleus [12]. These data raise interesting questions as to

whether biological functions of SIRT3 are actually opera-

tional in different subcellular compartment, or whether the

robust overexpression of the protein may evoke artifactual

localization.

Regulation of mitochondrial function and energy

utilization by sirtuins

The role of energy deficits in the development and pro-

gression of heart failure is well established as described

below. In physiological conditions, hearts predominantly

use free fatty acid (FFA) for ATP production (i.e.,

approximately 70 % of total ATP) [4]. In the early stage of

heart failure, the heart switches the substrate to glucose,

which produces more ATP per molecule of oxygen con-

sumed than FFA, at the expense of low energy yield

compared with the yield in FFA oxidation. In advanced

heart failure, however, insulin resistance develops in the

myocardium and glucose utilization declines, limiting ATP

production [128]. Indeed, high-energy phosphate levels

have been shown to be correlated directly with survival in

cardiomyopathy patients [85]. A number of therapies for

heart failure by modulation of myocardial metabolism have

been tested and some of them showed promising results

[8]. Administration of glucagon-like peptide 1 in a canine

pacing-induced cardiomyopathy resulted in increased

GLUT1 expression [17] and significantly improved cardiac

function [86]. Dichloroacetate, an inhibitor of pyruvate

dehydrogenase kinase, augmented glucose and pyruvate

metabolism, leading to improved ejection fraction in

patients with heart failure [16]. Etomoxir inhibits mito-

chondrial carnitine palmitoyltransferase-1 (CPT-1) and

subsequently suppresses long-chain FFA oxidation [70].

The reduction of FFA oxidation by etomoxir was associ-

ated with pyruvate dehydrogenase and phosphofructoki-

nase, leading to enhanced glycolysis and glucose oxidation

[104]. A small pilot study revealed that administration of

etomoxir significantly improved left ventricular ejection

fraction (LVEF) and cardiac output during exercise in

patients with ischemic and dilated cardiomyopathy [103].

Perhexiline, a potent inhibitor of CPT-1 and CPT-2, also

improved LVEF, symptoms of heart failure, MVO2max and

skeletal muscle energetics in a small clinical study [63].

In this context, mitochondrial dysfunction may be one of

the important factors involved in deterioration of ventric-

ular contractile functions, because mitochondria are inte-

grally involved in energy production and metabolism in the

heart [77]. SIRT1 and SIRT3 regulate mitochondrial

functions by deacetylation of nuclear proteins and mito-

chondrial proteins, respectively [73, 78], as described in

detail in the following ‘‘Increased energy production by

SIRT1: indirect modulation of mitochondrial function’’ and

‘‘Evidences arguing against the benefits afforded by SIRT1

in transgenic mice’’. A recent proteomic survey revealed

that most proteins with acetylation residues were localized

in the mitochondria and/or associated with energy metab-

olism [57], arguing for involvement of sirtuins. Functional

properties and expression of mitochondrial proteins is

controlled at both the mitochondrial and nuclear genome

levels. Among approximately 1,500 proteins in the mito-

chondrial proteome, only 13 are expressed by the mito-

chondrial genome; the other mitochondrial proteins are

encoded in the nuclei, synthesized in the cytosol as prep-

roteins that include amino-terminus mitochondrial locali-

zation signal (MLS) and then transported into the

mitochondria [51]. SIRT1 and SIRT3 play diverse roles in

regulation of energy production and oxidative stress as

shown in Fig. 2.

α

Fig. 2 Diverse roles of SIRT1 and SIRT3 in regulation of ATP

production and oxidative stress. SIRT1 shuttles between the nucleus

and cytosol. Nuclear localizing signals and nuclear export signals are

necessary for transport through the nuclear membrane, and the

shuttling is regulated by Akt, JNK-1 and/or NO. In the nucleus,

SIRT1 up-regulates ROS scavengers, Mn-SOD and catalase, and

down-regulates UCP2 and PTP1B. SIRT1 inactivates P53 and

activates PGC-1a by deacetylating the lysine residues. Nuclear-

encoded Mn-SOD translocates into the mitochondria and catabolizes

highly toxic O2
- into less toxic H2O2, which in turn is detoxified to

water. In the mitochondria, SIRT3 deacetylates and activates TCA

cycle enzymes (AceCS2 and IDH2), ETC enzymes (NDUF9 and

NDUFS1) and fatty acid oxidation enzyme (LCAD). SIRT3 also

enhances activity of MnSOD by deacetylation. MOM mitochondrial

outer membrane, MIM mitochondrial inner membrane, IMS inter-

membrane space, PTP1B protein tyrosine phosphatase 1B, UCP2
uncoupling protein 2, AceCS2 acetyl-CoA synthetase 2, LCAD
long-chain acyl co-enzyme A dehydrogenase, IDH2 isocitrate

dehydrogenase 2
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Increased energy production by SIRT1: indirect

modulation of mitochondrial function

SIRT1 suppresses expression of uncoupling protein 2

(UCP2), a mitochondrial inner membrane protein, in

mouse pancreatic cells [20]. Since UCP2 functions to

uncouple oxygen consumption from ATP production [53],

suppression of UCP2 expression by SIRT1 results in

increased mitochondrial ATP production [18, 31]. In

addition, SIRT1 induces a substrate shift for energy pro-

duction. SIRT1 interacts with and deacecylates PPAR

gamma coactivator-1a (PGC-1a), a master switch of

mitochondrial biogenesis, and induces gluconeogenic

genes, resulting in increased glucose output in mouse liver

and skeletal muscle [64, 97]. PPAR gamma coactivator-1a
also regulates fuel utilization in muscle cells by increasing

fatty acid oxidation and shutting down glucose oxidation

[35]. The level of PGC-1a protein in failing human hearts

was lower by approximately 30 % than that in non-failing

control hearts [34], and decreased PGC-1a mRNA levels

were associated with impairment of mitochondrial bio-

genesis and function in rodent models of heart failure [7,

126]. These findings indicate that insufficient activity of

PGC-1a may lead to mitochondrial dysfunction and heart

failure. Collectively, activation of PGC-1a by SIRT1 and

enhanced mitogenesis may restore energy metabolism in

the failing myocardium and ameliorate heart failure. Con-

sistent with this notion, resveratrol, a SIRT1 activator,

preserved mitochondrial mass and biogenesis and sup-

pressed cardiac dysfunction in Dahl salt-sensitive rat fed

with a high-salt diet, a model of hypertensive heart failure

[96].

The improved insulin sensitivity by SIRT1 is also a

potential mechanism by which SIRT1 preserves contractile

function in failing hearts. It has been demonstrated that

resveratrol, an SIRT1 activator, improves insulin sensitiv-

ity in diet-induced obesity in mice [13, 60]. Sun et al. [113]

found that SIRT1 repressed protein phosphatase 1B

(PTP1B) and thereby increased the level of insulin receptor

phosphorylation, improving insulin sensitivity both in

C2C12 myotubes and in high fat-fed mice. Resveratrol

ameliorated pathological histology, such as vacuolization,

degeneration and inflammation, in the hearts of high fat-fed

mice with impaired insulin sensitivity [13]. PPAR gamma

coactivator-1a has been shown to be decreased in aging

murine hearts [121], which may be due, at least in part, to

decreased SIRT1 expression [98]. The decrease in PGC-1a
protein in hearts may be responsible for the predisposition

of aging hearts to heart failure. Interestingly, a recent study

demonstrated that SIRT1 and PGC-1a are localized in

mitochondria and form a multiprotein complex with

mitochondrial transcription factor A in mouse liver and

HeLa cells [5], suggesting their involvement in

mitochondrial biogenesis not only by regulation of nuclear-

encoded proteins, but also by direct control of mitochon-

drial gene expression.

Evidences arguing against the benefits afforded

by SIRT1 in transgenic mice

In contrast to generally favorable effects of pharmacolog-

ical activation of SIRT1 on the heart, results from SIRT1-

overexpressing animals have been somewhat contradictory.

Alcendor et al. [2] demonstrated that moderate overex-

pression of Sirt1 up to 7.5-fold attenuated age-dependent

cardiac dysfunction and oxidative stress-induced apoptosis

in mouse hearts, whereas a higher level (12.5-fold) of

overexpression of Sirt1 increased apoptosis and hypertro-

phy and decreased cardiac function. Similarly, Kawashima

et al. [54] demonstrated that constitutive cardiac-specific

overexpression of SIRT1 at a high level (20-fold) caused

dilated cardiomyopathy and that moderate (6.8-fold)

overexpression of SIRT1 impaired cardiac diastolic func-

tion. Furthermore, fatty acid uptake was decreased,

degenerated mitochondria increased and the expression of

genes relevant to mitochondrial function decreased, in

proportion to SIRT1 gene dosage. Transgenic mice with an

even lower level of SIRT1 overexpression (3.2-fold)

developed cardiac dysfunction upon pressure overload,

although their basal cardiac function was preserved. Oka

et al. [88] also provided evidence that overexpression of

SIRT1 may deteriorate mitochondrial function and exac-

erbate cardiac dysfunction by suppressing expression of

genes regulated by estrogen-related receptors in

cardiomyocytes.

The reason for the discrepancy concerning the effects on

ventricular functions between pharmacological activation

and overexpression of SIRT1 is unclear, but there are some

plausible explanations. First, gene dosage may have been

too high even with low-level overexpression. Although a

larger amount of SIRT1 is expected to produce a higher

level of deacetylase activity, too much SIRT1 protein may

cancel the protective effect through non-specific deacety-

lation and/or deacetylase-independent detrimental effects,

e.g., interaction with other proteins and un-physiological

subcellular distribution. Second, consequences of consti-

tutive activation of SIRT1 may be different from those of

temporary or intermittent activation. In agreement with this

notion, transient transfection of SIRT1 deacetylated PGC-

1a and increased fatty acid oxidation in a skeletal myocyte

cell line [35], whereas stable transfection with SIRT1

impaired cellular respiration in PC12 cells [84]. Third,

beneficial effects afforded by SIRT1 might not be appli-

cable to myocardial damage induced by certain stressors.

Kawashima et al. [54] and Oka et al. [88] employed severe

pressure overload by transverse aortic constriction to
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induce heart failure. They demonstrated that overexpres-

sion of SIRT1 further promoted cardiac dysfunction,

whereas Alcendor showed that moderate overexpression of

SIRT1 rendered hearts resistant to oxidative stress-induced

damage by paraquat.

Increased energy production by SIRT3: direct

modulation of ATP-producing machinery

SIRT3 appears to play a role in cellular energy production at

multiple steps, i.e., up-regulation of fatty acid oxidation,

supply of intermediates for the TCA cycle and activation of

the electron transport chain (ETC). SIRT3 interacts with

acetyl-CoA synthetase 2 (AceCS2), a cardiac-enriched

mitochondrial enzyme that promotes entry of acetate into the

tricarboxylic acid cycle in the form of acetyl-CoA, in Cos-7

cells. Sirt3 deacetylates lysine 642 of AceCS2 and activates

its enzymatic activity [42]. SIRT3 also targets long-chain

acyl co-enzyme A dehydrogenase (LCAD). Mass spec-

trometry of mitochondrial proteins in liver extracts from

SIRT3-/- mice has shown that LCAD is hyperacetylated at

lysine 42. Hyperacetylation of LCAD reduces its enzymatic

activity, suggesting that deacetylation of LCAD-K42 by

SIRT3 increases fatty acid oxidation output [49]. Further-

more, exogenously transfected myc-tagged SIRT3 physi-

cally interacts with NDUF9, a subunit of complex I in the

mitochondrial ETC, and deacetylates and activates the

enzyme, thus augmenting ATP production in SIRT3-/-

mouse embryonic fibroblasts (MEFs) [1]. A recent study

demonstrated that activities of ETC complexes I, III and IV,

were decreased by approximately 30, 70 and 60 %, respec-

tively, in livers of Sirt3-/- mice fed a high-fat diet compared

with the activities in wild-type animals on the same diet [55].

Most of the above-mentioned findings were demon-

strated in the liver tissue. However, it is likely that SIRT3

is also a major regulator of ATP synthesis in cardiac

mitochondria, as indicated by the following evidences.

First, prolonged caloric restriction, an intervention known

to activate SIRT1/SIRT3 and extend lifespan in several

species, including rhesus monkeys [30, 122], decreased the

amount of acetylated forms of NDUFS1 in complex I and

Rieske subunit of cytochrome bc1 in complex III in

cardiomyocytes [107]. Second, mice lacking SIRT3, which

exhibit a striking hyperacetylation of mitochondrial pro-

teins [69], showed 50 % lower basal levels of ATP in the

heart [1].

Unexpectedly, the SIRT3-/- mice showed normal sys-

tolic function despite the substantial reduction of ATP

[114]. This apparent contradiction may be explained by at

least a few possibilities. First, diastolic function may be

more susceptible to the decline in the level of myocardial

ATP than systolic function. Indeed, there was a significant

correlation between the ATP level and pulmonary capillary

wedge pressure, but not ejection fractions in human hearts

[111]. Second, ATP levels measured in whole heart may

reflect neither ATP levels in close proximity to cytosolic

ATPases, including myosin ATPase and SERCA, nor rate

of ATP utilization by these enzymes. In this regard, the

level of phosphocreatine and creatinine kinase activity,

molecules that regulate energy transport and utilization,

may be more closely associated with the contractile func-

tion than the level of ATP [59, 85]. In contrast, Hirschey

et al. [49] demonstrated that ATP levels in the liver were

normal at baseline in SIRT3-/- mice, though 24-h fasting

resulted in significantly lower hepatic ATP levels in

SIRT3-/- mice than in wild-type mice. These findings

indicate that the cellular energy production/utilization is

maintained by redundant mechanisms. They may partly

compensate for each other when one is ablated, but the

compensation may fail when the energy demand increases

under stress conditions.

Regulation of ROS by sirtuins

Reactive oxygen species (ROS) damage macromolecules

within and outside the mitochondria. The mitochondrial

ETC is the main source of ROS in most cells [11]. Hearts

consume large amounts of O2 and yield high levels of ROS

in the mitochondria. In addition, various extracellular

factors, such as angiotensin II and tumor necrosis factor-a,

induce ROS formation and promote cardiomyocyte death

together with the mitochondrial ROS [36]. Among the

many anti-oxidant defense systems, mitochondrial man-

ganese superoxide dismutase (Mn-SOD) plays a pivotal

role in the detoxification of ROS. Mice deficient in Mn-

SOD have an enlarged heart with endocardial fibrosis and

die within the first 10 days of life [66]. Furthermore, long-

term reduction of Mn-SOD activity by heterozygous

deletion of the Mn-SOD gene impairs left ventricular

functions: MnSOD?/- mice displayed a decrease in ejec-

tion fraction and developed cardiac hypertrophy with

fibrosis and necrosis [68]. In the clinical arena, patients

with hemochromatosis, in which iron overload induces

robust oxidative stress, have a significantly higher preva-

lence of cardiomyopathy if MnSOD activity is reduced by

a mutation in the Mn-SOD gene [123].

Both SIRT1 and SIRT3 reportedly up-regulate Mn-SOD

expression, though the mechanisms are different for the

two sirtuin (i.e., HIF-2a [32] and/or FOXO4 [124] versus

FOXO3a [114]). Nuclear localization was required for

SIRT1 to up-regulate Mn-SOD [117], and this might also

be the case with SIRT3. Sundaresan et al. [115] demon-

strated that overexpression of nuclear SIRT3 that lacks the

MLS protected cardiomyocytes from genotoxic stress and

oxidant stress as did overexpression of wild-type
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mitochondrial SIRT3. Manganese superoxide dismutase is

unlikely to be the only ROS scavenger under regulation by

SIRT1. Alcendor et al. [2] recently reported that heart-

specific overexpression of SIRT1 inhibited oxidative

stress-induced damage by paraquat and that this cardio-

protection seemed to be achieved by up-regulation of the

protein level of catalase via transcriptional activation of

FOXO1a.

It is notable that SIRT3 increases ROS scavenging

activity of Mn-SOD by deacetylating K53/K68 [95] and

K122 [119] in MEFs, in addition to its effect on protein

level of Mn-SOD [114]. SIRT3 also increases activity of

other ROS-detoxifying enzymes indirectly. SIRT3 deace-

tylates and activates the TCA cycle enzyme isocitrate

dehydrogenase 2 (IDH2) and glutamate dehydrogenase in

murine liver [69, 102], both of which produce NADPH in

the mitochondria. NADPH in turn is required for gluta-

thione reductase to convert oxidized glutathione to

reduced glutathione, which is a crucial cofactor for

mitochondrial glutathione peroxidase to scavenge ROS.

Consistent with these findings, Shinmura et al. [107]

demonstrated that treatment of cardiomyocytes with res-

veratrol, an activator of SIRT1 and SIRT3, decreased ROS

production and improved cell survival after hypoxia/

reoxygenation without increasing the expression level of

MnSOD protein.

Recently, mitochondrial aldehyde dehydrogenase 2

(ALDH2) has been identified as a novel target of SIRT3

[72]. Excessive ROS in stressed hearts triggers lipid per-

oxidation and accumulation of reactive aldehydes, which in

turn impairs mitochondrial function and induces cell

damage. Aldehyde dehydrogenase 2 reduces the toxicity by

removal of the aldehydes, resulting in cardioprotection

[23]. Taken together, SIRT3-mediated ALDH2 activation

could be another mechanism that mitigates cardiomyocyte

damage induced by ROS. However, the protective mech-

anism may not operate in non-cardiac tissues, as acetami-

nophen hepatotoxicity was rather exacerbated by ALDH2

in mice [72].

Regulation of angiogenesis by sirtuins

Cardiac hypertrophy occurs as an adaptive response to

increased workload to maintain cardiac function. However,

under a prolonged stress condition, this program becomes

maladaptive, resulting in myocyte death, fibrosis, ventric-

ular dilation and eventually transition to heart failure. It has

been shown that both heart size and cardiac function are

angiogenesis dependent, and disruption of coordinated

cardiac muscle growth and angiogenesis in the heart con-

tributes to the progression from adaptive cardiac hyper-

trophy to heart failure [99, 108].

Several lines of evidence indicate that SIRT1 plays

crucial roles in compensatory angiogenesis. Potente et al.

[94] demonstrated that SIRT1 was highly expressed in the

vasculature during blood vessel growth. Knockdown of

SIRT1 by siRNA in human umbilical vein endothelial cells

(HUVECs) blocked sprouting angiogenesis with down-

regulation of genes involved in blood vessel development.

Endothelial cell-specific deletion of SIRT1 in mice blunted

ischemia-induced neovascularization in the hindlimb [94].

Conversely, activation of SIRT1 by resveratrol induced

up-regulation of vascular endothelial growth factor

(VEGF) and its tyrosine kinase receptor Flk-1, along with

nitric oxide synthase (inducible NOS and endothelial NOS)

3 weeks after myocardial infarction, resulting in increased

capillary density in rats [33]. Induction of angiogenesis by

SIRT1 seemed to be mediated by inhibition of Foxo1, an

essential negative regulator of blood vessel development,

because SIRT1 interacts and deacetylates Foxo1 in

HUVECs [94].

In addition to direct up-regulation of angiogenic factors,

inactivation of p53, an anti-angiogenetic factor, might be a

mechanism by which SIRT1 regulates angiogenesis. Sano

et al. [99] demonstrated that sustained pressure overload on

the left ventricle induces up-regulation of p53. P53 in turn

inhibits activity of hypoxia-inducible factor-1 (HIF-1), a

transcription factor that regulates the expression of genes

involved in hypoxic adaptation including VEGF [47].

Indeed, the inactivation of HIF-1 was causally related to

down-regulation of angiogenic factors, reduction in capil-

lary density and transition from adaptive hypertrophy to

heart failure [99]. SIRT1 deacetylates and reduces tran-

scriptional activity of p53 in cardiomyocytes [3], and HIF-

1 increases the expression level of SIRT1 protein [24].

Thus, fine-tuned balance between activities of SIRT1 and

p53 may determine the extent of angiogenesis in the

pressure-overloaded heart and transition from compensated

hypertrophy to decompensated heart failure. So far,

involvement of SIRT3 in angiogenesis has not been

reported.

Modulation of cardiomyocyte Ca21 handling by sirtuins

During excitation–contraction coupling, Ca2? entry

through L-type Ca2? channels triggers Ca2? release from

the sarcoplasmic reticulum (SR) through ryanodine recep-

tors, raising free intracellular Ca2? concentration from the

nanomolar range in the diastole to the micromolar range in

the systole. The increase of the concentration allows Ca2?

to associate with troponin C, a myofilament protein,

resulting in sarcomere shortening and muscle contraction.

Subsequent muscle relaxation is initiated by Ca2? disso-

ciation from the troponin complex, when Ca2? is removed

Page 6 of 14 Basic Res Cardiol (2012) 107:273

123



from the cytoplasm by Ca2? handling machinery. In

humans, SERCA2a is responsible for 70 % of the removal

by taking up Ca2? into the SR, and the rest is extruded by

the Na2?/Ca2? exchanger (28 %) and plasma-membrane

Ca2? ATPase (2 %) [40]. Earlier studies demonstrated that

intracellular Ca2? handling was abnormal in the failing

human myocardium, and this abnormality appears to be

one of the mechanisms responsible for systolic and dia-

stolic dysfunction [39]. Particularly, impaired Ca2? uptake

into the SR through SERCA2a has been demonstrated to be

associated with heart failure; SERCA2a mRNA was

decreased in patients with dilated or ischemic cardiomy-

opathy [6] and aging rat hearts [75], and down-regulation

of SERCA2A protein and/or impaired SERCA2a function

was observed in animal model of diabetic cardiomyopathy

[15, 26] and human dilated cardiomyopathy [67].

Knowledge of the role of sirtuins in intracellular Ca2?

regulation in cardiomyocyte is limited. However, a study

has shown that reduced SERCA2a protein level, ventricular

dysfunction, ventricular dilatation and mortality in a mouse

model of type-1 diabetes were nearly normalized by

treatment with resveratrol [112]. They also demonstrated

that in cultured cardiomyocytes, SERCA2a promoter

activity that was highly repressed by high-glucose media

was significantly improved by resveratrol in an SIRT1-

dependent manner [112]. In light of the universal nature of

down-regulation of SERCA2a protein/mRNA and its dys-

function in heart failure, whether activation of SIRT1

ameliorates heart failure irrespective of the etiology war-

rants investigation.

Regulation of cell death/survival by sirtuins

Loss of cardiomyocytes and their replacement with reac-

tive fibrosis are important causative factors in the devel-

opment of heart failure. Cardiomyocyte death in failing

hearts is induced by multiple mechanisms: apoptosis,

necrosis, and autophagic cell death [58]. SIRT1 and SIRT3

have been demonstrated to modify these types of cell death

via diverse mechanisms as described below.

Modulation of apoptotic machinery

Ku70 has been recognized as a subunit of the Ku protein

complex, which plays an important role in DNA damage

repair. Ku70 is associated with Bax, a pro-apoptotic Bcl-2

family protein, in its deacetylated form. However, acety-

lation of Ku70 induced by cellular stress facilitates the

release of Bax from Ku70 and induces its mitochondrial

translocation, resulting in apoptosis [28, 100]. Caloric

restriction up-regulates SIRT1 and maintains residues

K539 and K542 of Ku70 in a deacetylated form, keeping

Bax sequestered away from mitochondria, thereby inhib-

iting stress-induced apoptosis in 293 cells [29]. Recently,

Nagalingam et al. showed that SIRT3 is catalytically active

outside the mitochondria and also targets Ku70. They

demonstrated that deacetylation of Ku70 by SIRT3 pro-

motes Ku70/Bax interaction in Hela cells, and this makes

cells resistant to Bax-mediated cell damage [115], as was

the case with SIRT1-induced Ku70 deacetylation. Full-

length SIRT3-expressing cells were resistant to cell death

induced by MNNG (N-methyl-N0-nitro-N-nitrosoguani-

dine) even when SIRT1 was knocked out, indicating that

SIRT1 and SIRT3 have redundant functions to protect cells

from apoptosis [115].

p53 is the first non-histone substrate found to be

deacetylated by SIRT1 [74]. Acetylation of p53 is required

for recruitment of transcription co-factors of PUMA and

Bax, proapoptotic genes, to their promoter regions and

activation of the promoter [21]. SIRT1 deacetylates p53

and silences the pro-apoptotic activity of p53 [110].

SIRT1-deficiency was associated with hyperacetylation of

p53 and increased sensitivity to apoptosis induced by

ionizing radiation in thymocytes [25]. Inhibition of SIRT1

by nicotinamide (NAM), an SIRT1 inhibitor, elevated the

acetylation level and activity of p53, resulting in cardio-

myocyte death. Conversely, expression of dominant nega-

tive p53 prevented NAM-induced cardiomyocyte death [3].

In failing hearts, the increased activity of poly(ADP-ribose)

polymerase-1, which induces NAD? depletion, was asso-

ciated with reduced SIRT1 activity and increased acetyla-

tion of p53 at K373/K382 [90]. Collectively, these findings

support the notion that p53 deacetylation by SIRT1 is

crucial for cardiomyocyte survival.

It has also been reported that SIRT1 suppressed apop-

tosis via mechanisms that were independent of the deace-

tylase activity. The protective effect of SIRT1 in neurons

against low potassium-induced apoptosis was observed

even after pharmacological inhibition of SIRT1 by nico-

tinamide and sirtinol, or transfection of mutant SIRT1 that

lacks deacetylase activity [89]. These observations indicate

that non-catalytic mechanisms may also play a role in

SIRT1-mediated cell survival under certain stresses in

some types of cells.

SIRT3 was also found to interact with p53. SIRT3

directly deacetylates p53, thereby abrogating its activity to

execute growth arrest and senescence in bladder carcinoma

cells [65]. However, the role of SIRT3 in regulation of p53-

mediated apoptosis in cardiomyocytes has not yet been

clarified.

Suppression of mPTP opening

The mitochondrial permeability transition pore (mPTP) is a

large conductance channel in the mitochondrial inner
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membrane that non-selectively passes molecules\1.5 kDa

in response to its opening stimuli. Mitochondrial perme-

ability transition pore opening has been shown to be

involved in cell necrosis by a variety of causes including

ischemia/reperfusion and anti-cancer agents [48, 129].

While acute robust irreversible opening of the mPTP can

lead to cell necrosis, chronic low-level opening of the

mPTP induces swelling and membrane depolarization of

mitochondria and removal of defective mitochondria by

autophagy [56]. Indeed, mitochondria of young animals are

relatively small and bioenergetically efficient, but with

aging they become swollen and less numerous, and

chronically depolarized [127], leading to decreased mito-

chondrial function, decreased tolerance to stress and

increased susceptibility to cell death [19].

Accumulating evidence indicates that sirtuins are

involved in the regulation of stimuli for mPTP opening and

the mPTP itself. The levels of intracellular ATP and ROS

and intramitochondrial Ca2? are major determinants of the

threshold of mPTP opening, and these factors are critically

regulated by SIRT1 and/or SIRT3 as discussed above.

Contribution of p53 to mPTP-mediated necrosis is indi-

cated by the findings that an inhibitor of p53, pifithrin-a,

sensitized the myocardium to cardioprotection afforded by

isoflurane and that this beneficial effect of pifithrin-a was

abolished by atractyloside, an activator of mPTP [125].

The impact of sirtuin-mediated regulation of p53 on mPTP

opening remains to be determined.

As for direct modulation of the mPTP by sirtuins, inter-

action of SIRT3 with cyclophilin D (CyPD) has been

recently reported. Cyclophilin D is one of the cyclophilin

family proteins with peptidylprolyl isomerase (PPIase)

activity and localizes primarily in the mitochondrial matrix

under baseline conditions. In response to cellular stress such

as ischemia/reperfusion, CyPD interacts with inorganic

phosphate carrier and adenine nucleotide translocase on the

mitochondrial inner membrane in cardiomyocytes, leading

to sensitization of the mPTP to opening stimuli [79]. In fact,

genetic ablation of CyPD or treatment with cyclosporine A,

an inhibitor of CyPD, elevates the threshold for opening of

the mPTP and affords tolerance against ischemia/reperfu-

sion-induced necrosis [9, 10, 27, 81, 93]. Shulga et al. [109]

showed that SIRT3 deacetylates CyPD and inhibits its PPI-

ase activity in HeLa cells. Furthermore, Hafner et al. [41]

confirmed that CyPD was deacetylated at Lys166 by SIRT3

in cardiac tissue. They also demonstrated that an increase in

Ca2? sensitivity of the mPTP by aging was significantly

enhanced in cardiac mitochondria isolated from SIRT3-

knockout mice. These findings indicate that SIRT3 coun-

teracts increased sensitivity of the mPTP in response to

cellular stress in failing and aging hearts.

Regulation of cell-protective signaling

Sensing intracellular energy balance, AMP-activated pro-

tein kinase (AMPK) is activated to reserve cellular energy

content. Activated AMPK can promote the metabolic

pathways relevant to ATP production such as cellular

glucose uptake and fatty acid oxidation, while it switches

off ATP-consuming anabolic pathways. AMP-activated

protein kinase also serves as a key regulator of cell survival

in response to pathological stress, such as ischemia/reper-

fusion, endoplasmic reticulum stress and hypoxia [46, 87,

120]. SIRT1 and SIRT3 activate serine–threonine liver

kinase B1 (LKB1), one of the many upstream kinases of

AMPK, in human embryonic kidney 293 cells [61] and in

cardiomyocytes [92], respectively. Furthermore, the inter-

play between sirtuins and AMPK might be reciprocal,

because AMPK enhances activity of SIRT1 by enhancing

the intracellular NAD?/NADH ratio in C2C12 myocytes

[22]. Cardioprotective effects afforded by exogenous

NAD? were mediated by SIRT3-induced LKB1 activation

and subsequent AMPK phosphorylation [92]. There are

many downstream targets of AMPK [14], among which

inhibitory phosphorylation of GSK3b [92, 105] and

up-regulation of GLUT4 protein [87] appear to play a role

in cardioprotection.

Nuclear localization of SIRT1 was necessary for

up-regulation of Mn-SOD protein and cell protection against

necrosis under oxidant stress in C2C12 myoblast cells

[117]. In this context, signals that facilitate nuclear import

of SIRT1 should be important for SIRT1 to protect cells

from death. Nuclear localization of SIRT1 in cardiomyo-

cytes was inhibited by use of the PI3K/Akt inhibitor

LY294002, suggesting a role of Akt-mediated phosphory-

lation in the nuclear translocation of SIRT1 [118]. Simi-

larly, human SIRT1 was phosphorylated by JNK1 on

Ser27, Ser47 and Thr530 under oxidative stress, and this

phosphorylation of SIRT1 increased its nuclear localization

and enzymatic activity. Interestingly, JNK1-induced

phosphorylation of SIRT1 showed substrate specificity

resulting in deacetylation of histone H3 but not that of p53

[83]. Six-month calorie restriction in rats significantly

increased the protein level of SIRT1 in the nucleus,

deacetylation of histone H3 and myocardial tolerance

against ischemia/reperfusion injury. Treatment with

N-nitro-L-arginine methyl ester, an inhibitor of nitric oxide

(NO) synthase, prevented the increase in nuclear Sirt1 and

cardioprotection in calorie-restricted animals [106]. These

findings indicate a role of NO in nuclear translocation of

SIRT1 (Fig. 2), but relationships of NO with Akt and JNK

in the regulation of intracellular localization of SIRT1

remain to be determined.
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Regulation of autophagy by sirtuins

Autophagy is a dynamic process of intracellular bulk deg-

radation in which cytosolic proteins and organelles are

sequestered into double-membrane vesicles called auto-

phagosomes to be fused with lysosomes for degradation. In

nutrient-deprived cells, autophagy serves as a cell survival

mechanism by degrading intracellular proteins and lipids to

recycle them for generation of ATP [76, 80]. Under stressed

conditions, autophagy selectively removes damaged mito-

chondria [56]. Since damaged mitochondria release

pro-apoptotic factors such as cytochrome c, autophagy can

prevent activation of apoptotic machinery [44]. In cardiac

tissues, autophagy has been demonstrated to play a protective

role [37]. Enhancing autophagy by beclin1 overexpression

reduces Bax activation and protects cardiac HL-1 cells

against ischemia/reperfusion injury [43]. Tamoxifen-

induced temporal and cardiac-specific knockout of Atg5, a

protein involved in autophagosome formation, led to left

ventricular dilatation and contractile dysfunction with

misalignment and aggregation of mitochondria in mice

[82]. Akt overexpression in mice suppressed autophagy,

which was associated with cardiac hypertrophy, interstitial

fibrosis and contractile dysfunction [52].

SIRT1 regulates autophagy by interacting with and deace-

tylating autophagy-related proteins Atg5, Atg7 and Atg8

[62]. Recently, Hariharan et al. [45] demonstrated that

SIRT1 was required for starvation-induced autophagy in

cardiomyocytes, in which SIRT1-mediated deacetylation

of FOXO1 and subsequent activation of Rab7 play a role.

Furthermore, FOXO1 was indispensable for maintenance

of cardiac function after starvation. Thus, it is plausible that

autophagy induced by activation of the SIRT1-FOXO1 axis

is an important adaptive mechanism in the failing heart,

which is potentially starved of energy.

Conclusion

Sirtuins are a unique class of proteins that link acetylation

status of proteins to a wide variety of physiological func-

tions and diseases. Our understanding of the biology of

SIRT1 and SIRT3 has expanded considerably over the past

decade, with numerous novel targets being identified. The

bulk of emerging evidence indicates that these sirtuins are

involved in numerous biological functions including reg-

ulation of energy production, detoxification of oxidative

stress, promotion of angiogenesis, intracellular Ca2? han-

dling, suppression of cell death and induction of autoph-

agy. Since derangement of these physiological processes

underlies the development/progression of heart failure,

pharmacologic activation of SIRT1 and/or SIRT3 poten-

tially ameliorates the disease. In agreement with this

notion, oral administration of resveratrol preserved cardiac

function and improved survival in various animal models

of heart failure (Fig. 3). Although more work is needed to

fully understand the role of sirtuins in cardiac cell biology,

a sirtuin-activating compound could be one of the prom-

ising future therapeutic approaches for heart failure.
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