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Abstract A simple idealized atmosphere–ocean climate

model and an ensemble Kalman filter are used to explore

different coupled ensemble data assimilation strategies.

The model is a low-dimensional analogue of the North

Atlantic climate system, involving interactions between

large-scale atmospheric circulation and ocean states driven

by the variability of the Atlantic meridional overturning

circulation (MOC). Initialization of the MOC is assessed in

a range of experiments, from the simplest configuration

consisting of forcing the ocean with a known atmosphere to

performing fully coupled ensemble data assimilation.

‘‘Daily’’ assimilation (that is, at the temporal frequency of

the atmospheric observations) is contrasted with less fre-

quent assimilation of time-averaged observations. Perfor-

mance is also evaluated under scenarios in which ocean

observations are limited to the upper ocean or are non-

existent. Results show that forcing the idealized ocean

model with atmospheric analyses is inefficient at recover-

ing the slowly evolving MOC. On the other hand, daily

assimilation rapidly leads to accurate MOC analyses, pro-

vided a comprehensive set of oceanic observations is

available for assimilation. In the absence of sufficient

observations in the ocean, the assimilation of time-aver-

aged atmospheric observations proves to be more effective

for MOC initialization, including the case where only

atmospheric observations are available.
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1 Introduction

Motivated by the need to properly address near-term (i.e.,

interannual to interdecadal) climate prediction as an initial-

value problem, the development of improved initialization

methods involving advanced data assimilation (DA)

applied to coupled atmosphere–ocean global climate

models (AOGCMs) has recently been identified as a pri-

ority (Meehl et al. 2009; Shukla et al. 2009; Mehta et al.

2011). This is supported by the findings of Sakaguchi et al.

(2012), which indicate that without proper initialization,

state-of-the-art AOGCMs are only skillful at predicting the

externally forced climate variability at continental and

larger scales over horizons of several decades and longer.

Improved initial conditions (ICs) are required for sharper

predictions of internal climate variability at regional scales.

Ideally, ICs should correspond to a coherent representation

of atmospheric and oceanic states characterizing the current

(i.e., at initial time) phase of internal variability of the climate

system. In particular, some experiments have shown that a

proper description of the low-frequency variability in the

ocean, where the main sources of predictability are found

(Collins 2002; Boer 2011), leads to more skillful predictions

(Troccoli and Palmer 2007; Smith et al. 2007; Pohlmann

et al. 2009; Branstator and Teng 2012; Garcia-Serrano and

Doblas-Reyes 2012). Accurate initialization of the Atlantic

Meridional Overturning Circulation (MOC) is of particular

interest since it is believed to be an important carrier of pre-

dictability in the North Atlantic (Rahmstorf 2002; Latif and

Keenlyside 2011; Boer 2011; Srokocz et al. 2012).
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A number of strategies have been tested to initialize

AOGCMs. The simplest technique uses global atmospheric

reanalyses (e.g., Uppala et al. 2005; Dee et al. 2011; Rie-

necker et al. 2011; Compo et al. 2011) to spin-up an ocean

model toward states consistent with the imposed atmo-

spheric forcing (e.g., Matei et al. 2012). A slightly more

comprehensive approach consists of incorporating infor-

mation about the ocean using sea surface temperature

(SST) analyses (e.g., Keenlyside et al. 2008). However in

both instances, spin-up of the slowly evolving deep ocean

and associated large-scale ocean circulations (e.g., the

MOC) solely relies on the forced solutions of an ocean

model, often plagued by large errors. Next in the hierarchy

of initialization strategies is an approach that combines

reanalyses of the atmosphere and ocean (e.g., Troccoli and

Palmer 2007; Doblas-Reyes et al. 2011; Matei et al. 2012).

Some coherence between atmospheric and oceanic states is

maintained by using common boundary conditions. Inde-

pendent SST analyses are used as a lower boundary con-

dition by atmospheric reanalyses and in turn analyzed

surface winds or atmosphere–ocean fluxes are used as

upper boundary conditions by ocean reanalyses (e.g.,

Carton and Giese 2008; Balmaseda et al. 2008; Köhl and

Stammer 2008; Masina et al. 2011). In addition, upper

ocean temperatures in reanalyses are often nudged toward

the SST analyses (Saha et al. 2010). Despite such care,

Munoz et al. (2011) found significant differences in MOC

characteristics between different ocean reanalyses, sug-

gesting a sensitivity to the DA methodology and model

error. The most comprehensive method, and the one con-

sidered here, consists of solving the fully coupled DA

problem. Zhang et al. (2007) show that joint assimilation

of atmospheric and oceanic observations can provide suc-

cessful reconstructions of ocean heat content over large

portions of the global ocean. Despite the comprehensive

character of this initialization method, important chal-

lenges remain, including initializing the low frequency

component of the MOC in the absence of comprehensive

oceanic observations (e.g., Zhang et al. 2010).

Although prior research has tested a range of initiali-

zation strategies, several fundamental questions remain for

identifying the most appropriate method used to initialize

near-term climate predictions. This investigation focuses

on the following questions:

1. Is DA needed?

2. If DA is needed, is the problem primarily an ocean DA

problem, or is coupled DA a fundamental

requirement?

3. What is the most efficient approach for generating ICs

suitable for climate predictions?

A significant challenge in approaching these questions

concerns the fact that suitable ICs require initializing

components with a wide range of characteristic timescales.

The fast atmospheric component is well-observed while the

slow oceanic component is the source of long-range pre-

dictability but similarly comprehensive oceanic observa-

tions are unavailable, particularly prior to the deployment

of Argo floats (Roemmich et al. 2009). Moreover, model

error can be a significant problem. This latter issue can be

dealt with by applying empirical bias corrections (Stock-

dale 1997) or by analyzing anomalies rather than full

model states (Schneider et al. 1999; Pierce et al. 2004;

Smith et al. 2007; Keenlyside et al. 2008; Pohlmann et al.

2009; Liu et al. 2012). Although we acknowledge the

importance of model error, it is not addressed in the present

study so that we may focus on the questions in coupled

atmosphere–ocean initialization identified above.

A significant challenge to working on these problems

involves choosing a tractable approach to test concepts, and

evaluate different strategies. Using complex AOGCMs is

problematic in this context due to the large computing

requirements associated with running multiple ensemble DA

experiments over long periods of time. Also, AOGCMs have

not yet converged in their ability to simulate internal climate

variability (Branstator et al. 2012). Therefore, simpler low-

order models remain useful alternatives for investigating

fundamental issues in climate variability and predictability

(e.g., Shaffer and Olsen 2001; Zickfeld et al. 2004; Long-

worth et al. 2005; Taboada and Lorenzo 2005; Lucarini and

Stone 2005; Colin de Verdière 2010; Stone and Krasovskiy

2011; Ou 2012). Here, aspects in the initialization of the low-

frequency component of the MOC are explored using a low-

order coupled atmosphere–ocean climate model with an

ensemble Kalman filter DA approach.

The remainder of the article is organized as follows.

Section 2 presents a description of the low-order model

and its variability and predictability characteristics. Sec-

tion 3 explores the importance of performing comprehen-

sive data assimilation, compared to the simpler approach of

forcing an ocean model with a known atmosphere (e.g.,

reanalyses). The impact of assimilating time-averaged

observations on analysis accuracy is investigated in

Sect. 4. Results from a comprehensive set of data denial

experiments are presented in Sect. 5 to characterize the

performance of a set of DA strategies over a wide range of

climate states. Conclusions are summarized and discussed

in Sect. 6.

2 Model characteristics

2.1 Model description

We use a modified version of the low-order coupled

atmosphere–ocean climate model described in Roebber
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(1995), characterized by a fast chaotic atmosphere and

oscillating or multiple equilibria solutions in the slowly

overturning ocean (Roebber 1995; van Veen et al. 2001;

Taboada and Lorenzo 2005). The model is fully defined in

the Appendix, and here we only provide a descriptive

summary. The model, illustrated schematically in Fig. 1,

consists of coupling the wave–mean-flow atmospheric

circulation model of Lorenz (1984, 1990) to the MOC box

model of Birchfield (1989) and Birchfield et al. (1990) as

an idealization of the midlatitude northern Atlantic Ocean.

The atmospheric model is composed of five variables:

the meridional gradient of tropospheric temperature, or

equivalently the strength of the tropospheric zonal flow, the

amplitudes of cosine and sine phases of large scale tran-

sient eddies superimposed on the mean flow, and high- and

low-latitude air temperatures. Internal flow interactions are

represented through the amplification of eddies from the

strength of the zonal flow (i.e., baroclinic eddy growth), the

displacement of the eddies by the zonal flow and

mechanical damping. The ocean model consists of a three-

box representation of the North Atlantic basin: two repre-

senting the subtropical and subpolar upper ocean and the

third the deep ocean (Fig. 1b). Upper ocean temperature is

influenced by diffusion with the atmosphere, while both

temperature and salinity within each box are determined

through advection by the MOC and through diffusion

between the upper and deep ocean. The strength of the

MOC is linearly related to the meridional gradients of

upper-ocean temperature and salinity (see Stommel, 1961).

Atmosphere–ocean interactions in the model consist of a

linear modulation of the atmospheric zonal flow by the

meridional gradient in upper ocean temperature, while

atmospheric eddy amplitudes are influenced by the temper-

ature contrast between a mid-latitude continent and the sub-

polar upper ocean. The upper ocean and the atmosphere

exchange heat through diffusion, and upper ocean salinity is

affected by a simple representation of the hydrological cycle;

e.g., evaporation over the subtropical ocean, poleward water

vapor transport by atmospheric eddies and associated influx

of freshwater by precipitation into the subpolar box.

2.2 Variability and predictability

Some perspective on variability and initial-value predict-

ability in the low-order model is gained from a

100-member 5,000-year ensemble simulation. The initial

ensemble is constructed around a reference model state, on

which small amplitude white noise is added. Initial con-

ditions of the reference member are set such that the model

solutions are in an oscillatory mode, with an initial over-

tuning circulation of 15 Sv (1Sv = 106m3 s-1) (Fig. 2).

This value is qualitatively in accord with the modern-era

MOC (Munoz et al. 2011; Rayner et al. 2011). Simulated

MOC variability is characterized by a superposition of

large (*10 Sv) multi-centennial oscillations and smaller

amplitude (*2–3 Sv) interdecadal fluctuations. The lower-

frequency variability has an amplitude similar to fluctua-

tions found in simulations performed with a more complex

model (Schulz et al. 2007), while the strength of inter-

decadal variability is consistent with results from

Fig. 1 Schematic representation of the low-order climate model.

a Model geometry and state variables and b cross section of the 3-box

ocean model

Fig. 2 Ensemble simulation from perturbed initial conditions, a over

the entire 5,000 years and b zoomed over the first 500 years. The

deterministic reference solution (truth) is shown by the solid black

line, the ensemble mean is the solid red line and ensemble spread is

represented by the pink shaded area. The climatological mean and

standard deviation from the deterministic simulation are shown by the

circle and gray vertical line on the extreme right of the graphs
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comprehensive climate models (e.g., Menary et al. 2012;

Medhaug et al. 2012; Wouters et al. 2012).

As noted by Murphy (1988), loss of predictability occurs

when the ensemble mean can no longer be distinguished

from the climate mean and when the ensemble variance

reaches that of randomly chosen states (i.e., climatology).

The ensemble mean gradually departs from the truth

solution, converging toward the model’s climatological

mean as the ensemble variance increases toward clima-

tology (Fig. 2a), with an e-folding time of about 350 years.

Smaller amplitude interdecadal fluctuations are more

apparent when focusing on the first 500 years, as is the lack

of skill of the ensemble mean at representing these varia-

tions (Fig. 2b).

3 Initialization of climate predictions: Is data

assimilation necessary?

The contribution of data assimilation in generating accurate

initial conditions for improved near-term climate predic-

tions remains to be established at a fundamental level. Such

a role is assessed here from the point of view of how to

effectively and efficiently constrain the low-frequency

evolution of the MOC in the low-order model. Two

approaches are contrasted. The first approach does not

involve ocean data assimilation, and reproduces the

established practice of forcing an ocean model with

atmospheric reanalyses to ‘‘spin-up’’ the ocean toward

realistic states (Gulev et al. 2003; Brodeau et al. 2010).

This approach has shown some success in the limited

context of short-term hindcasts of interannual MOC vari-

ability (Matei et al. 2012). Despite these encouraging

results, the time interval required to spin-up the ocean to

states accurate enough to act as viable initial conditions for

robust longer-term climate predictions remains an open

question. The second approach involves comprehensive

coupled atmosphere–ocean DA.

3.1 Forced–ocean experiment

Experiments are carried out reproducing the practice of

forcing an ocean model with atmospheric reanalyses. Here

we define a truth solution as the reference member of the

fully coupled ensemble model run discussed in Sect. 2.2.

An ensemble of initial ocean states is built from one hun-

dred random draws from this ‘‘truth’’ simulation. Hence

initial conditions in the ocean only reflect knowledge of the

model climatology, without any specific information about

the true initial state. Every member of the ensemble is then

integrated forward with an identical sequence of time-

dependent atmospheric states as boundary conditions taken

from the truth solution. Forcing the ocean with the

perfectly known atmosphere is performed at every time

step. Constraining the evolution of ocean variables with the

true atmosphere is expected to lead to the convergence of

ensemble members toward the true solution, resulting in a

reduction of ensemble spread over time.

Figure 3 shows the evolution of ensemble spread for the

simulated MOC, averaged over five distinct 100-member

ensemble runs each covering a period of 5,000 years. The five

runs differ in their initial conditions used to define truth. As a

reference, results from ensembles of fully interactive simu-

lations (i.e., freely evolving coupled atmospheric and oceanic

states simulated using the complete model) initialised using

concurrent atmospheric and oceanic states randomly drawn

from the truth simulation show an average e-folding time of

about 9,000 years. This reflects the slow convergence of the

solutions toward a fixed point. In comparison to this weak

intrinsic damping, ocean ensembles driven by the single true

atmosphere (i.e., forced mode) exhibit a faster decrease in

spread, but the e-folding time is still greater than 3,000 years.

These results suggest that initializing the low-frequency

component of the MOC solely by forcing it with atmospheric

reanalyses is impractical.

3.2 Coupled atmosphere–ocean data assimilation

We next consider atmosphere–ocean data assimilation in

the idealized scenario of a well-observed ocean, with

temperature and salinity observations in all three ocean

boxes. Data assimilation is performed with an ensemble

Kalman filter (EnKF) (Evensen 2003), based on a formu-

lation using perturbed observations with sequential obser-

vation processing (Houtekamer and Mitchell 1998). The

EnKF method has been chosen as it provides a natural

framework for investigating the central issue of covariance

estimation in the coupled atmosphere–ocean system and its

role toward improved initialisation of probabilistic coupled

climate forecasts. To perform ensemble DA experiments

under realistic conditions, where a compromise has to be

reached between maintaining acceptable computational

cost while limiting covariance sampling errors, all
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Fig. 3 Temporal evolution of MOC ensemble spread averaged over

five realizations of 100-member ensembles run in free (solid blue line)

and forced (solid red line) modes. Fits by exponential functions are also

shown, with the corresponding e-folding times indicated in the legend
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experiments are performed with 100-member ensembles.

Good performance of the DA system is ensured by proper

ensemble calibration, using inflation applied to the back-

ground ensemble to achieve overall correspondence

between background ensemble variances and mean squared

forecast errors (e.g., Houtekamer et al. 2005). Covariance

localization is not performed in this simplified low-

dimensional model.

A perfect model framework is used in this and sub-

sequent DA experiments. Observations are taken as

instantaneous states drawn daily from the truth simulation,

plus random error whose statistics are specified as follows.

For atmospheric variables, error standard deviations are

10 % of the standard deviations obtained from the 5,000-

year climatological simulation. For ocean variables, error

standard deviations are set at 0.5 K for temperature and

0.1 psu for salinity as in Zhang et al. (2007), representing

approximately 35 % of the corresponding climatological

variability in respective ocean variables. These values

reflect our inability to observe the ocean as well as the

atmosphere. A 50-year period is chosen from the long-

range reference simulation, defining truth and corre-

sponding set of observations. DA is performed over that

period, using an initial background ensemble defined using

model states randomly chosen at different times over the

entire 5,000 years of the truth solution. Analyses of the

MOC are shown against the true solution to assess the skill

in recovering this key ocean variable, which provides a

concise summary of the results (note that the MOC is not

an assimilated variable in any experiment).

For the first experiment, daily observations of atmo-

spheric variables and ocean temperature and salinity in all

three boxes are assimilated. The daily assimilation of this

complete set of observations leads to a rapid adjustment of

analyses toward the true state. Ensemble-mean analysis

errors for the assimilated atmospheric and oceanic state

variables are reduced to values within observation errors

after the first DA cycle (not shown). Furthermore, the

information from DA is propagated to the MOC, as shown

by the initial error in the ensemble mean background states

reduced by 70 % over the first three cycles (Fig. 4a). Good

agreement of analyses is subsequently maintained over the

entire DA period (Fig. 4b). Serving as a benchmark, this

experiment shows, perhaps not surprisingly, that the daily

assimilation of a comprehensive set of observations in the

atmosphere and ocean leads to accurate analyses of the

simplified coupled atmosphere–ocean system, including

the variability of the overturning circulation at the annual

and decadal time scales. However, a comprehensive set of

ocean observations available for assimilation is the

exception rather than the norm, particularly in the case of

hindcasts initialized prior to the late twentieeth century.

Data denial experiments, designed to assess DA

performance under scenarios of limited availability of

observations, are presented in the next section.

3.3 Data assimilation with limited ocean observations

A series of DA experiments are conducted in which pro-

gressively fewer observations of ocean variables are

assimilated. These were designed to broadly reflect the

historical evolution of the ocean observing system, from

the modern era back to pre-twentieth century conditions

when few ocean observations were available:

1. Atmospheric variables and upper ocean temperature

and salinity;

2. Atmospheric variables and upper ocean temperature;

3. Atmospheric variables only.

A comparison of MOC analyses resulting from these

various DA configurations is shown in Fig. 5. Accurate

analyses are still obtained when both upper ocean tem-

perature and salinity are directly constrained by DA. This

is not surprising as the MOC is driven by the meridional

gradients of these variables. When salinity is not assimi-

lated, errors in the analysis ensemble mean develop during

the first year and persist for the remainder of the DA per-

iod. Daily DA of atmospheric observations only is not

effective at constraining the ocean, leading to increasing

errors in MOC analyses. The ability of a daily-cycling

ensemble DA system to produce accurate MOC analyses,

including the representation of the low-frequency vari-

ability of the large-scale overturning ocean circulation,
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Fig. 4 Temporal evolution of ensemble-mean MOC (a) background

and analyses compared against the truth (black dots) over the first

month of data assimilation, and (b) over the entire DA period, from

the daily assimilation of observations of all atmospheric variables,

and of ocean temperature and salinity in all three boxes
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depends on the availability of observations in the ocean.

These findings are consistent with those obtained by

Dunstone and Smith (2010) and Zhang et al. (2010) using

comprehensive AOGCMs. The results also serve to rein-

force the conclusions drawn from the forced–ocean

experiment discussed earlier; i.e., assimilation of oceanic

observations is an important component in the initialization

of the low-frequency component of the MOC.

4 Assimilation of time-averaged observations

A key element in effective coupled data assimilation

involves maximizing the impact of any covariability

between the well-observed atmosphere and the more

sparsely observed ocean. Because of the difference in

characteristic time scales between the two components,

covariances between the noisy, fast, atmospheric and slow

oceanic variables sampled at a high frequency are expected

to be weak and therefore dominated by noise from other

sources such as sampling error in the EnKF. Here we

explore the use of averaging over the noise as an effective

way of increasing the signal-to-noise ratio for DA.

4.1 Climatological correlations between the MOC

and the time-averaged atmosphere

Output from the 5,000-year truth simulation is used to

estimate correlations between the MOC and the other

model variables. Correlations with oceanic variables (not

shown) are generally important (e.g., in excess of 0.6 for

upper ocean variables) and are independent of the aver-

aging time intervals considered. In contrast, a dependence

with averaging time scales is observed for atmospheric

variables (Fig. 6). Correlations are weak at the daily time

scale, and undergo only a marginal increase for subannual

averaging intervals. The positive correlation between the

MOC and the zonal wind only reaches a maximum of 0.2

when variables are averaged over a decade. This increase

reflects an enhanced link between the frequency of strong

atmospheric zonal flow events associated with low-fre-

quency phases of strong overturning circulation as dis-

cussed in Roebber (1995). The strongest correlation is

found for the atmospheric eddy field and, in particular, the

eddy energy (sum of the squared eddy phase amplitudes).

A sharp increase in the correlation magnitude occurs for

averaging intervals approaching 1 year. The physical link

for this relationship in the low-order model is through the

eddy energy’s influence on the strength of the atmospheric

branch of the hydrological cycle (see Eq. 6 in the Appen-

dix), bringing freshwater to the subpolar ocean and weak-

ening the MOC. Although simplified, the link between

atmospheric dynamics and the MOC as represented in the

low-order model is qualitatively consistent with the

observed influence of atmospheric variability on deep-

water formation by the local forcing of ocean-atmosphere

surface heat and freshwater fluxes (Clarke and Gascard

1983; Zaucker et al. 1994; Timmermann et al. 1998; Del-

worth and Greatbatch 2000).

4.2 The assimilation algorithm for time-averaged

observations

The stronger correlation for the longer time scales suggests

that assimilation of time-averaged observations (Dirren and

Hakim 2005; Huntley and Hakim 2010), may be a useful

approach for coupled atmosphere–ocean DA. Using time-

averaged observations also increases the time between

assimilation steps, improving efficiency.

The method consists of the same steps as for canonical

ensemble Kalman filters, except that time-averaged, rather

than instantaneous, variables are assimilated. This assumes

that the observation operator is not a function of time, and

that the deviations from the time mean covary weakly with

the time-averaged observations. For a given DA cycle,

observations are collected over a predetermined time
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window and an ensemble of numerical model runs is cre-

ated over the same time interval with computing model

states projected in observation space. An averaging inter-

val of 1 year is used here as it corresponds to the shortest

time scale characterized by larger atmosphere–ocean cor-

relations. Time-mean values and deviations from the time

mean are computed for observations and model ensemble

estimates. Background covariances and innovations (dif-

ferences between observations and the corresponding

model states in observation space) are then estimated on

the basis of time-averaged values. The Kalman filter update

equation is then applied to obtain updated time-averaged

states independently from the deviations from the time

mean. These deviations, assumed uncorrelated with the

time-mean observations, are simply added to the updated

time-averaged states to recover the full updated states. DA

is otherwise performed as described in Sect. 3.2, except for

analyses being generated only once a year (yearly cycling).

Appropriately scaled observation error statistics are also

used, e.g., standard deviations reduced by a factor of
ffiffiffiffi

N
p

,

where N is the number of observations used in calculating

the time average. For more details, the reader is referred to

appendices 1 and 2 in Huntley and Hakim (2010).

4.3 Assimilation experiments with time-averaged

observations

A similar set of data denial experiments as in Sect. 3.3 is

carried out to assess the impact of assimilating yearly-

averaged observations of model state variables. The

resulting ensemble mean analyses of time-averaged MOC

(Fig. 7) are of comparable accuracy with daily DA (Fig. 5)

when time-averaged ocean observations are assimilated.

Also, a similar degradation in MOC analyses is observed

when salinity observations are not assimilated. However,

errors in time-averaged MOC analyses are smaller (by

50 %) compared to daily DA when only atmospheric

observations are assimilated, due to the enhanced

covariability with the time-averaged atmosphere. In spite

of this reduction in errors, MOC analyses generated from

atmospheric-only DA still do not accurately track with the

true MOC and its interdecadal trends.

These results show that assimilating time-averaged

observations in a coupled DA framework leads to MOC

analyses of accuracy similar to that with daily DA in a

well-observed ocean and to marginally more accurate

analyses when fewer or no oceanic observations are

assimilated. This is consistent with the fact that covari-

ability between yearly averaged atmospheric state variables

and the MOC are stronger than at the daily time scale but

nevertheless remain small.

4.4 Assimilation of atmospheric eddy energy

The use of alternative atmospheric variables is tested by

carrying out the same set of data denial DA experiments

but with the assimilation of eddy energy rather than the

individual eddy phase amplitudes. As previously shown,

this nonlinear variable covaries more strongly with the

MOC. Pseudo-observations and observation error statistics

for eddy energy are determined using the same methodol-

ogy as for other variables in the earlier experiments. Not

surprisingly, MOC analyses generated by including the

assimilation of comprehensive ocean observations are

comparable to those resulting from the assimilation of

individual eddy amplitudes (not shown). However, the

stronger covariability between eddy energy and the MOC

is evident when DA is performed only in the atmosphere

(Fig. 8). Despite the absence of oceanic observations, the

enhanced covariability between the MOC and atmospheric

eddy energy leads to a gradual reduction in MOC analysis

errors. Good agreement with the truth is obtained after

about 10 years, illustrating the cumulative effect of a

stronger constraint on the MOC provided by the cycled

assimilation of eddy energy observations.
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Fig. 7 Same as Fig. 5 but for experiments with the yearly assimi-

lation of time-averaged observations
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coupled assimilation of atmospheric observations only, with the
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eddy energy. The truth is shown by the solid black dots
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5 Solution convergence over a large sample of climate

states

The results from a single case above serve to illustrate

some of the fundamental aspects in the performance of

various coupled DA configurations. A more robust

assessment is obtained by characterizing the evolution of

the mean absolute error (MAE) in MOC ensemble-mean

analyses from 100 realizations of each DA experiment

described in the previous sections. Each realization has a

distinct truth time sequence (e.g., different climate regime)

defined by randomly choosing a different 50-year segment

within the truth simulation. Initial ensembles are again

composed of 100 randomly chosen model states from the

truth simulation.

MAE values from MOC analyses obtained from the

different DA configurations are presented in Fig. 9. Error

statistics from 100 realizations of 100-member ensemble

mean forecasts (no DA performed) are also shown as a

baseline estimate of MOC errors in the absence DA. Mean

forecast errors are shown to have a magnitude of about

2.5 Sv over the entire 50-year forecast horizon. With ocean

DA (Fig. 9a, b), MAE values are reduced by about

40–50 % after the first year of assimilation (i.e., a single

cycle in the case of time-averaged DA), and subsequently

continue decreasing over several cycles until a minimum is

reached. Not surprisingly, the most accurate MOC analyses

are obtained when both ocean temperature and salinity

observations are assimilated (Fig. 9a). MOC analyses are

accurate to within 0.2 Sv after approximately 20–30 years

of DA when instantaneous daily and yearly time-averaged

observations are assimilated. Under this scenario of a well-

observed upper ocean, the assimilation of atmospheric

eddy energy does not provide significant advantages.

When upper ocean salinity is not assimilated (Fig. 9b),

slightly lower levels of accuracy are obtained. In this

scenario, the least accurate analyses and slowest rates of

error reduction are obtained with daily DA. The assimila-

tion of yearly averaged observations leads to faster con-

vergence and more accurate analyses by 40 %. Moreover,

the assimilation of eddy energy leads to accurate MOC

analyses more rapidly. Minimum error is reached between

10 and 15 years of cycling when eddy phase amplitudes are

assimilated, compared to 5–10 years when eddy energy is

assimilated. The largest errors are obtained in the absence

of DA in the ocean (Fig. 9c). In particular, daily assimi-

lation of atmospheric observations fails at generating MOC

analyses converging toward the truth. After an initial

decrease in errors during the first year of DA, errors

increase again toward an upper limit corresponding to the

errors obtained without DA altogether. The assimilation of

time-averaged atmospheric observations is much more

effective as evidenced by the gradually decreasing MOC

errors. These results also confirm the important advantage

provided by the assimilation of time-averaged atmospheric

eddy energy observations over any other DA configuration.

MOC errors are reduced by 60 % compared to analyses

obtained as a result of the assimilation of individual eddy

phase amplitudes.

6 Summary and discussion

Experiments are performed with a simple low-order cou-

pled climate model and an ensemble Kalman filter to gain

insights on fundamental issues in the initialization of the

coupled atmosphere–ocean system. Specific overarching

questions are investigated in a simplified idealized scenario

involving the meridional overturning circulation (MOC) as

the key oceanic component driving the interannual to

interdecadal climate variability. Various initialization
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Fig. 9 Temporal evolution of the mean absolute ensemble-mean

analysis error for the MOC, from 100 realizations of DA experiments

using different assimilation configurations. Results obtained from

model ensemble predictions (no assimilation) are also shown for

reference. The shaded areas indicate 95 % confidence intervals
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strategies are considered, ranging from a simple approach

requiring no specific data assimilation (DA) to fully cou-

pled DA. DA is also considered in its traditional form (e.g.,

performed at the daily time scale) and a more recently

developed approach involving time-averaged observations.

Question [1] asks whether data assimilation (DA) pro-

vides value for the initialization of the MOC, compared to

the simpler approach of spinning–up an ocean model with

known atmospheric states (e.g., reanalyses). An idealized

experiment mimicking this simpler approach reveals that

convergence of MOC solutions toward the true low-fre-

quency variability occurs over very long time scales. This

approach is therefore impractical for obtaining timely

analyses of the coupled atmosphere–ocean system. In

contrast, daily DA rapidly leads to accurate MOC estimates

provided that a comprehensive set of observations is

available for assimilation.

Question [2] asks if MOC initialization is primarily an

ocean DA problem or whether a fully coupled approach

provides value. Data denial experiments indicate that

answers lie along a continuum characterized by a strong

dependence on the set of oceanic observations available for

assimilation. For a well-observed ocean, assimilation of

oceanic observations has a dominating effect on the accu-

racy of the resulting MOC analyses. When the ocean is

only partially observed or not observed at all, the value of

coupled DA increases significantly, particularly in a con-

figuration assimilating time-averaged observations. Fully

coupled time-averaged DA is essential when only the

atmosphere is observed. The positive impact of assimilat-

ing a higher-order atmospheric variable that projects more

strongly on ocean states (e.g., eddy energy in this simple

model) is also demonstrated. This is especially important to

consider when generating hindcasts initialized at times

predating the availability of comprehensive oceanic

observations.

Question [3] is concerned with the identification of effi-

cient DA approaches for generating timely and accurate

analyses of the coupled atmosphere–ocean system. Simply

stated, how long into the assimilation does it take before

accurate MOC analyses are obtained? Daily DA in the ocean

and/or atmosphere is compared against the more efficient

alternative involving less frequent assimilation of time-

averaged observations. Results show that time-averaged DA

is more efficient, with significant gains in convergence rates

in MOC analysis errors. This advantage becomes more

important as less oceanic observations are assimilated, par-

ticularly when atmospheric eddy energy is assimilated.

These results indicate that averaging over high-fre-

quency atmospheric states is an efficient way of exploiting

the stronger atmosphere–ocean covariances characterizing

the longer time scales. These enhanced covariabilities

originate from integration of the atmospheric white noise

by the ocean (Hasselmann 1976), leading to low-frequency

covariability between the ocean and atmosphere (e.g.,

Farnetti and Vallis 2011). In ensemble DA, stronger

covariances are a distinct advantage as they can be esti-

mated with greater confidence using a reasonable ensemble

size (e.g., 100 in the present experiments). On the other

hand, sampling errors associated with such an ensemble

size may hinder the estimation of weak atmosphere-MOC

covariability characterizing short time scales. This is likely

a factor in the ineffectiveness of daily atmospheric DA at

producing accurate MOC analyses.

Greater insight into the role of sampling errors is gained

by estimating minimum ensemble sizes required for reli-

able estimation of correlations between the MOC and other

model variables (Fig. 10). Very large ensembles are

required to estimate with high confidence the weak daily

atmosphere-MOC correlations. Sampling errors become

less important when yearly-averaged variables are consid-

ered, allowing the use of smaller ensembles, particularly

when eddy energy is considered. On the other hand, sam-

pling errors are not as significant for oceanic variables as

stronger covariabilities characterize the link between the

MOC and oceanic temperature and salinity. Hence, very

large ensembles are needed if one hopes to initialize the

slow component of the MOC using daily DA without
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and every assimilated variable. X is the zonal wind, Y and Z are the

eddy phase amplitudes and Ee is eddy energy. T and S represent

temperature and salinity with subscripts 1, 2, 3 indicating high-
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Values are obtained from Monte Carlo experiments composed of

10,000 realizations of N random draws of model states. For each time

scale and each variable, the minimum ensemble size corresponds to

the smallest N value at which the sample correlation is equal to the

corresponding value shown in Fig. 6 with a corresponding p-value

\0.05 among at least 95 % of the 10,000 realizations. The ensemble

size used in DA experiments is shown by the dashed gray line
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comprehensive oceanic observations. This requirement is

curtailed when appropriate time-averaged observations are

assimilated or if sufficient oceanic observations are avail-

able for assimilation.

This investigation has yielded a clearer characterization

of some fundamental aspects of coupled atmosphere–ocean

DA. Better defined guidelines for the development of ini-

tialization capabilities of next-generation climate predic-

tion systems are emerging. It is acknowledged however

that these were obtained on the basis of idealized, perfect-

model experiments, which typically lead to optimistic

results. Further work with comprehensive coupled models

is required for assessing the generality of the results. A

study aimed at this question, based on data from the

Coupled Model Intercomparison Project Phase 5 (CMIP5)

(Taylor et al. 2012), will be reported elsewhere.
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Appendix: Model equations

The atmospheric component of the coupled low-order

model is composed of the following three ordinary differ-

ential equations (ODEs) (Roebber 1995; Lorenz 1984):

dX

dt
¼ �ðY2 þ Z2Þ � aX þ aF; ð1aÞ

dY

dt
¼ XY � bXZ � Y þ G; ð1bÞ

dZ

dt
¼ XZ þ bXY � Z; ð1cÞ

where X is the zonal wind and Y and Z are the amplitudes

of cosine and sine phases of large scale eddies, respec-

tively. Interactions between the mean flow and eddies are

represented by the amplification of eddies at the expense of

the zonal flow intensity (first terms on the right-hand side

of (1)), displacement of the eddies by the zonal flow

(second terms in (1b) and (1c)), as well as mechanical

damping (second term in (1a) and third terms in (1b) and

(1c)). F and G terms represent diabatic heating contrasts

between the low- and high-latitude ocean (F term) and

seasonally varying zonal heating zonal difference between

the land and ocean in the mid-latitudes (G term). Formu-

lations for F and G are detailed later.

The evolution of ocean temperature (T, in Kelvin) and

salinity (S, in practical salinity unit or psu) is calculated in

the three boxes using the following set of ODEs (Roebber

1995; Birchfield et al. 1990):

V1

dT1

dt
¼ 1

2
qðT2 � T3Þ þ KTðTA1 � T1Þ � KZðT1 � T3Þ; ð2aÞ

V2

dT2

dt
¼ 1

2
qðT3 � T1Þ þ KTðTA2 � T2Þ � KZðT2 � T3Þ; ð2bÞ

V3

dT3

dt
¼ 1

2
qðT1 � T2Þ þ KZðT1 � T3Þ þ KZðT2 � T3Þ; ð2cÞ

V1

dS1

dt
¼ 1

2
qðS2 � S3Þ � KZðS1 � S3Þ � Qs; ð2dÞ

V2

dS2

dt
¼ 1

2
qðS3 � S1Þ � KZðS2 � S3Þ þ Qs; ð2eÞ

V3

dS3

dt
¼ 1

2
qðS1 � S2Þ þ KZðS1 � S3Þ þ KZðS2 � S3Þ: ð2fÞ

Subscripts 1, 2 and 3 in (2) respectively denote the high-,

low-latitude and deep ocean boxes of respective volumes

V1, V2 and V3. KZ is a vertical eddy diffusion coefficient

between the upper and deep ocean while KT is the coeffi-

cient of heat exchange between the ocean and an atmo-

sphere with an air temperature TA. Qs is the volume

averaged equivalent salt flux, representing the net surface

evaporation over the subtropical ocean, poleward transport

of water vapor and influx of freshwater in the high latitude

ocean, e.g., a simplified representation of the hydrological

cycle.

The MOC (q) has positive values for an overturning

circulation characterized by a poleward upper ocean flow,

sinking at high latitudes, an equatorward return flow in the

deep ocean and upwelling at low latitudes. Following

Stommel (1961) and Birchfield et al. (1990), a highly

parameterized thermohaline circulation is formulated as a

linear relation with the density difference between the two

upper-ocean boxes. By assuming a linear relation to

describe ocean water density with respect to temperature

and salinity as in Stommel (1961) and Birchfield et al.

(1990), a simple relation for the MOC is obtained:

q ¼ l½aðT2 � T1Þ � bðS2 � S1Þ�; ð3Þ

where a and b are coefficients for thermal and haline

expansion of seawater respectively, and l is a proportion-

ality constant to be determined.

Coupling between the atmosphere and ocean occurs

through the meridional and zonal diabatic heating terms

F and G in the atmospheric model and through the

equivalent salt flux (Qs) term influencing ocean salinity.

The diabatic heating terms are expressed as:

F ¼ F0 þ F1 cos xt þ F2

ðT2 � T1Þ
T0

; ð4aÞ

G ¼ G0 þ G1 cos xt þ G2

T1

T0

; ð4bÞ
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where x is the annual frequency and T0, F0, F1, F2, G0, G1

and G2 are constants. Both terms are composed of

background values (F0 and G0), a seasonal cycle and a

dependence on ocean state. The equivalent salt flux

represents the sum of the influx of freshwater into the

ocean from continental runoff (Qrunoff) and contributions

from the mean (Qwv) and transient eddy (Q0wv) components

of the atmospheric water vapor meridional transport:

Qs ¼ Qrunoff þ Qwv þ Q0wv; ð5Þ

A simple parameterization for Qs is devised by assuming

that runoff and mean transport terms are constant and by

postulating that the eddy water vapor transport depends

linearly on the eddy energy (Y2 ? Z2) as in Stone and Yao

(1990):

Qs ¼ c1 þ c2ðY2 þ Z2Þ; ð6Þ

where c1 ¼ Qrunoff þ Qwv and c2 are constants to be

determined. Firstly, runoff is roughly equal to two-thirds of

the total flux of freshwater in the northern part of the

Atlantic (Broecker et al. 1990), secondly, the total atmo-

spheric water vapor transport at 45�N is estimated to be

between 0.3 Sv (1 Sv = 106m3 s-1) and 0.7 Sv (Wijffels

et al. 1992; Zaucker et al. 1994), with roughly half of this

transport taking place through the effect of the transient

eddies (Chen 1985). Assuming a total atmospheric water

vapor transport corresponding to the midpoint within the

range of realistic estimates, values for c1 and c2 can be

readily derived.

Finally, a linear relationship is used as an analog to the

thermal wind balance, linking the large-scale meridional

air temperature gradient and the strength of the zonal flow:

TA1 ¼ TA2 � cX; ð7Þ

where TA2 is taken as constant (=25 oC).

The values of model constants are provided in Table 1.

The chosen KT value corresponds to a temperature restor-

ing time scale of approximately 25–75 years for the upper

ocean boxes, values consistent with those used by Titz

et al. (2002) and the upper ocean temperature restoring

time scale estimated by Liu (2012). The chosen value for

KZ corresponds to a diffusivity & 0.25 cm2 s-1, an order

of magnitude consistent with available estimates (Gregg

1987; Wüest et al. 1996). The associated diffusive time

scale is O(250–850 years) for the upper-ocean boxes.

The model is integrated numerically using a second-

order Runge-Kutta scheme with a time step of 3 h.
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