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Abstract
Flyrock is an adverse effect produced by blasting in open-pit mines and tunnelling projects. So, it seems that the precise 
estimation of flyrock is essential in minimizing environmental effects induced by blasting. In this study, an attempt has been 
made to evaluate/predict flyrock induced by blasting through applying three hybrid intelligent systems, namely imperialist 
competitive algorithm (ICA)–artificial neural network (ANN), genetic algorithm (GA)–ANN and particle swarm optimiza-
tion (PSO)–ANN. In fact, ICA, PSO and GA were used to adjust weights and biases of ANN model. To achieve the aim of 
this study, a database composed of 262 datasets with six model inputs including burden to spacing ratio, blast-hole diameter, 
powder factor, stemming length, the maximum charge per delay, and blast-hole depth and one output (flyrock distance) was 
established. Several parametric investigations were conducted to determine the most effective factors of GA, ICA and PSO 
algorithms. Then, at the end of modelling process of each hybrid model, eight models were constructed and their results were 
checked considering two performance indices, i.e., root mean square error (RMSE) and coefficient of determination (R2). The 
obtained results showed that although all predictive models are able to approximate flyrock, PSO–ANN predictive model can 
perform better compared to others. Based on R2, values of (0.943, 0.958 and 0.930) and (0.958, 0.959 and 0.932) were found 
for training and testing of ICA–ANN, PSO–ANN and GA–ANN predictive models, respectively. In addition, RMSE values 
of (0.052, 0.045 and 0.057) and (0.045, 0.044 and 0.058) were achieved for training and testing of ICA–ANN, PSO–ANN 
and GA–ANN predictive models, respectively. These results show higher efficiency of the PSO–ANN model in predicting 
flyrock distance resulting from blasting. Moreover, sensitivity analysis shows that hole diameter is more effective than others.
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1  Introduction

As a common solution to eliminate the rock mass, blasting 
operations are used in some engineering works such as tun-
nel excavation, road construction, and hydraulic channels 
[1]. Most of the explosive operations have a lot of energy 
that can have impacts on the environment and surrounding 
areas [2–6]. The common environmental issues of blasting 
are flyrock, air overpressure, back-break and ground vibra-
tion [7–11]. Flyrock can cause the most important effects 
of damages among them according to several scholars [12].

In flyrock, the parameters of charge confinement, 
mechanical strength of the rock mass, explosive energy have 
an important relationships with each other [13]. Based on 
some researches, any mistakes in designing these parameters 
will result in flyrock [13, 14]. When flyrock phenomena has 
happened, a lot of fragmented rocks will be created and fly 
a distance from the blast face [15].

Three main categories of flyrock are included: cratering, 
rifling and face bursting. Cratering will occur because of 
the too small ratio of stemming length to diameter in blast-
ing face. Rifling will happen when stemming material is 
incompetent or is insignificant. In the third case, which is 
named face bursting, flyrock may occur due to the produc-
tion of high-pressure gases in weak rocky plates. Therefore, 
the explosion near the weak stone plates causes the face 
bursting state.

According to previous researches, controlled and uncon-
trolled factors can affect flyrock. The most important 

 *	 Mohammadreza Koopialipoor 
	 Mr.koopialipoor@aut.ac.ir

 *	 Aydin Azizi 
	 Aydin.Azizi@gutech.edu.om

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s00366-018-0596-4&domain=pdf


244	 Engineering with Computers (2019) 35:243–256

1 3

controllable factors are incompetent stemming, inappropriate 
burden and spacing, inaccurate drilling, too much explosive 
energy, inadequate delay timing and unwarranted powder fac-
tor [1, 16, 17]. In the case of uncontrollable factors, the most 
effective factors are related to the rock mass properties.

Several empirical relationships are presented for the pre-
diction of flyrock from the blasting face [15, 18, 19]. These 
relationships used one or two influential factors, which lead 
to receive a low-performance prediction of this method. In 
addition, to increase the safety of the surrounding area, fly-
rock phenomena must be predicted with higher accuracy level 
before blasting [17, 20]. Therefore, to find the flyrock distance, 
more researches have to be done and models with higher per-
formance prediction have to be presented.

The previous computational techniques developed to pre-
dict flyrock distance comprising of artificial neural network 
(ANN), fuzzy inference system (FIS), Monte Carlo simulation, 
multiple regression analyses, support vector machine (SVM), 
rock engineering systems (RES), and adaptive neuro-fuzzy 
inference system (ANFIS) models [14, 21–24]. According to 
the above-mentioned methods, providing new ways to predict 
this phenomenon is necessary.

In engineering sciences, the use of ANNs (as a branch of 
artificial intelligence) has been highlighted by many inves-
tigators [25–31]. Such networks are good tools for forecast-
ing issues, however, they have several limitations such as 
low learning speed and falling into local minima [32–34]. 
As mentioned in literatures [20, 23, 35–39], using efficient 
optimization algorithms (OAs), these limitations can be 
overcome. Various OAs such as particle swarm optimization 
(PSO), imperialism competitive algorithm (ICA) and genetic 
algorithm (GA) can be applied to solve continuous and discon-
tinuous problems. Based on powerful ability of global search 
of these OAs, weights and biases of an ANN network can be 
determined to improve its performance prediction. The men-
tioned hybrid models have been widely-utilized to solve non-
linear and complicated engineering problems.

In this research, to predict flyrock phenomenon, three 
hybrid intelligent techniques, namely ICA–ANN, GA–ANN 
and PSO–ANN, are applied. These models were proposed 
based on the most important parameters influencing flyrock. In 
the following, after introducing flyrock prediction models and 
the applied models in this study, some explanations regard-
ing the established database will be given. Then, modelling 
procedures of the applied techniques are described and finally, 
the best predictive model will be selected to predict flyrock.

2 � Flyrock empirical methods

In recent years, many empirical studies have been deliv-
ered to predict flyrock in mining engineering. An empirical 
model was found by Lundborg et al. [19] according to two 
parameters as follows:

where D is the hole diameter in inches, and Tb is the size of 
the fragmented rock in metre.

Raina et  al. [40] performed a research according to 
selected parameters of rock mass and blast design for evalu-
ating the horizontal (FSH) and vertical (FSV) safety factors 
of flyrock. In another research, the parameters including 
density, explosive density hole diameter, and confinement 
state were used by McKenzie [41] for prediction of flyrock 
and particle (rock) size. A new empirical equation to assess 
flyrock was used by Trivedi et al. [42]. For the development 
of this model, 95 explosive data sets were used and an equa-
tion based on specific charge, charge concentration, rock 
strength, burden, stemming length and rock quality designa-
tion was proposed to estimate flyrock.

Two power empirical equations were introduced in the 
study carried out by Marto et al. [23] who developed two 
high-performance empirical formulations for prediction of 
flyrock. These results were obtained from 113 operations 
where each of them contained charge per delay and powder 
factor. Furthermore, Jahed Armaghani et al. [14] presented 
an empirical technique for predicting flyrock. This technique 
was based on graph shown for different values of maximum 
charge per delay in a range of (75–550 kg) and also for vari-
ous powder factor values in a range of (0.5–1.1 kg/m3).

3 � Intelligent techniques

3.1 � Artificial neural networks

Due to a structure of the human brain, artificial neural net-
work (ANN) [43] can be created and developed to process 
information. The ANN structure consists of three main parts: 
input, hidden and output layers. In each network layer, the 
binding elements, namely neurons, transmit data from one 
layer to the next. Due to the strengthening or weakening 
of this transfer, the weights in each network control this 
transfer. To calculate the output of each layer’s neuron, an 
activation function of linear or sigmoid should be used. The 
number of used neurons in each layer is specified by the total 
number of inputs. Usually, the number of neurons can be 
obtained using a complex way or trial and error procedure. 

(1)Flyrock = 260 × D2∕3,

(2)Tb = 0.1 × D2∕3,
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Among available network training algorithms, the back 
propagation (BP) training algorithm is more common in 
engineering sciences [44–46]. Briefly, two main parts of the 
ANN modelling are creation of a network construction and 
the relevant weights determination. Based on minimization 
error values, the network weights are adjusted by BP training 
algorithm. The values obtained at each stage are compared 
with the desired output values. If the errors are not desirable, 
the process should be continued to get desired values and 
reduce the system error [46–48].

3.2 � Genetic algorithm

Genetic algorithm (GA), which was first developed by 
Holland [49], is one of the well-established optimization 
methods. This OA is inspired by the theory of natural selec-
tion. This method were expanded by Goldberg [50]. GA 
has been widely-performed to optimize various problems 
in engineering and science. One of the main advantages of 
this algorithm is its ability to solve complex and highly non-
linear problems. For optimization purposes, such as linear 
or non-linear, static or dynamic (change with time), continu-
ous or discontinuous or contain a random noise, GA can 
be used to solve. In addition, GA is considered as a prob-
lematic algorithm due to its limitations such as determining 
various parameters of the algorithm (population size and 
genetic operator rates) and creating the proper function. To 
determine these values, the designer should be very careful 

while they will affect the convergence of the algorithm and 
also its results [51, 52]. In GA, chromosomes have a fixed 
length that encodes issues to linear binary strings between 
0 and 1. These chromosomes cause production of genera-
tion. As shown in Fig. 1, the chromosome is selected as a 
random characteristics and based on these characteristics, 
chromosomes are evaluated. Then, they are selected using 
genetic operators of the remaining chromosomes and start 
generating new generations. Crossover chooses between 
parents and mutation works in a range of 0–1. This process 
is repeated until creation of the best generations evaluated 
based on their performance [53, 54].

3.3 � Particle swarm optimization

Another OA used in this study is particle swarm optimiza-
tion (PSO) which was developed by Kennedy and Eberhart 
[55]. PSO is inspired by cumulative behaviour of particles. 
Among all advantages of PSO, a high learning speed and 
using less memory compared to GA should be noted. In 
PSO, to find the best position, a swarm of particles searches 
the best personal (pbest) and the best global (gbest) positions 
[35]. In other hands, in each system iteration, the particle 
moves toward finding the best positions (pbest and gbest). The 
velocity and position of particles are obtained as follows:

(3)
Vnew = w × V + C1 ⋅ r1

(

pbest − X
)

+ C2.r2(gbest − X),

Fig. 1   GA algorithm
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where V and X denote current velocity and position of par-
ticle, respectively, C1 and C2 are two positive acceleration 
constants, Vnew and Xnew denote new velocity and position of 
particle, respectively, w denotes the inertial weight, and r1 
and r2 represent the random numbers in (0, 1). More infor-
mation about the PSO algorithm description/implementation 
can be found in the other researches [45, 56]. Furthermore, 
Fig. 2 shows details of a PSO algorithm.

(4)Xnew = X + Vnew,
3.4 � Imperialist competitive algorithm

Imperialist competitive algorithm (ICA) was first introduced 
and developed by Atashpaz-Gargari and Lucas [57] as a 
global search population-based on optimization problems. 
The beginning of ICA is with a production of randomly 
initial population called countries. The process continues 
to generate N number of countries (Ncountry), and then the 
number of imperialists, i.e. Nimp should be selected as a spe-
cific number of the countries which have the lowest costs. 
The remaining countries (Ncol) are used as special functions 
(functions of the imperialist normalized costs) among other 
empires. In this algorithm, imperialists are more powerful 
when they have more colonies. Three operators including 
assimilation, revolution and competition are the main parts 
of ICA [58, 59]. The part of ICA body is related to colonies 
that are equally absorbed by the imperialists. However, the 
revolution is causing many sudden changes. In the competi-
tion part, the imperialists are struggling to get more colo-
nies, and in this competition, any empire that can achieve 
the desired criteria eventually wins. This process is repeated 
until the end of the desired benchmark. The number of dec-
ades in ICA has similar process of the number of generations 
in GA and the number of particles in PSO. To design them, 
evaluating in results of root mean square (RMSE) can be 
useful. More information/facts about ICA are available in 
several researches [33, 57, 60]. Figure 3 shows a structure 
of ICA algorithm.

3.5 � Hybrid algorithms

In engineering applications, many research have been car-
ried out to enhance the ability of ANN models through OAs 
such as GA, PSO and ICA (e.g. [51, 61–65]). Due to the 
weakness of BP in finding the accurate global minimum, the 
ANN model may achieve undesirable results [66]. Neverthe-
less, the ANN model is more likely to be caught up in local 
minima, while OAs by setting weights and biases of ANN 
could solve the mentioned ANN problem. In this study, three 
methods of hybrid systems, i.e. ICA–ANN, GA–ANN and 
PSO–ANN are constructed to predict SF of the slopes under 
static and dynamic conditions. In the created systems, ICA, 
GA and PSO search for global minimum, and then ANN 
selected it for achieving the best system results.

4 � Studied quarry sites and data collection

Data were collected to predict flyrock from six granite 
quarry mines in Johor state, Malaysia. Their names are 
Taman Bestari with latitude of 1°60′41″N and longitude 
of 103°78′32″E, Ulu Tiram with latitude of 1°36′41″N 
and longitude of 103°49′20″E, Trans Crete with latitude Fig. 2   PSO algorithm
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of 1°31ʹ21ʺN and longitude of 103°52′60″E, Putri Wangsa 
with latitude of 1°35ʹ32ʺN and longitude of 103°48′4″E, 
Ulu Choh with latitude of 1°31ʹ48ʺN and longitude of 
103°32′41″E and Masai with latitude of 1°29ʹ42ʺN and 

longitude of 103°52′28″E. The target of explosions is to 
produce 8000–24,000 tons per month. The number of explo-
sive operations in these sites is varied from 6 to 15. In the 
studied sections, the rock quality designation (RQD) and 
the values recorded by Schmidt hammer are 25–55% and 
17–42, respectively. Figure 4 shows a view of Ulu Tiram-
studied quarry.

In the mentioned sites, flyrock phenomenon was consid-
ered as one of the most important environmental issues. 262 
sets of blasting data were collected where, in each of them, 
data are included: burden to spacing ratio, blast-hole diam-
eter, powder factor, stemming length, the maximum charge 
per delay, and blast-hole depth as inputs and flyrock distance 
as output. For blast operations, ammonium nitrate and fuel 
oil (ANFO) was used as explosive. In these operations, blast-
hole diameters of 75, 89, 115 and 150 mm were utilized. The 
values of powder factor and stemming length have ranges of 
0.44–1.14 kg/m3 and 1.4 and 4.5 m, respectively.

For recording the maximum flyrock, two video cameras 
were used. To measure the distance of flyrocks, blasting 
benches were coloured, and using the mentioned cameras, 
the flyrocks could be seen separately after the operations. 
Then, the maximum horizontal distance of fragments was 
considered as the maximum flyrock distance. It should be 
noted that the data used in this study have been previously 
utilized by Shirani et al. [67]. Methods of data collection 
were used similar to previous researchers [2, 5, 15, 33, 40]. 
So, more information regarding parameters used in this 
study can be found in the mentioned study.

5 � Model development

In this section, descriptions of implementing hybrid models, 
namely ICA–ANN, PSO–ANN and GA–ANN, in predict-
ing flyrock distance are presented. Effective parameters on 
ICA, PSO and GA are determined and used to receive higher 
accuracy level for flyrock prediction.

5.1 � ICA–ANN

To obtain the best ICA–ANN model, its important factors/
parameters should be investigated. Prior to investigation 
of ICA parameters, ANN architecture should be deter-
mined. This was accomplished by considering a trial and 
error process and it was found that an architecture of 6 × 
9 × 1 (or a model with nine hidden neurons) receives better 
results. Therefore, the mentioned architecture was used for 
all hybrid intelligent systems in this study. As mentioned 
earlier, Ncountry, Ndecade, and Nimp are considered as the most 
influential parameters on ICA. To determine Nimp, many 
models were designed using different values of Nimp, i.e., 
5, 10, 15, 20, 25 and 30. In these models, Ncountry = 300 

Fig. 3   ICA algorithm
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and Ndecade = 100 were utilized. Results of this parametric 
study showed that Nimp = 5 can obtain higher performance 
system capacity. To select the best value for Ndecade, as dis-
played in Fig. 5, various models with Ncountry values of 50, 
100, 150, 200, 250, 300, 350 and 400 were constructed and 
evaluated based on their RMSE. As a result, RMSE results 
are not changed after Ndecade equal to 500. In the last step 

of modelling, using Nimp = 5 and Ndecade = 500, a various 
number of countries were considered and their ICA–ANN 
models were built. These models were evaluated based on 
performance indices (PIs), i.e., coefficient of determination 
(R2) and RMSE values as presented in Table 1. A ranking 
method introduced by Zorlu et al. [68] was used to choose 
the best hybrid models in this study.

Fig. 4   A view of Ulu Tiram-
studied quarry

Fig. 5   ICA–ANN models with various Ncountry values
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A complete version of this technique can be found 
in Zorlu et al. [68] and according to it, a rank value was 
assigned for each PI in its group (training and testing). For 
example, values of 0.923, 0.938, 0.945, 0.938, 0.942, 0.943, 
0.953 and 0.947 were achieved for R2 of training datasets 
of models 1–8, respectively, and values of 2, 3, 6, 3, 4, 5, 8 
and 7 were assigned for their ranks, respectively. This has 
accomplished for RMSE results as well. Then, a summation 
value of rating of R2 train, RMSE train, R2 test and RMSE 
test was calculated and assigned to each model and, based 
on them, model 6 (Ncountry = 300) with total rank of 27 is 
the best ICA–ANN model. Evaluation of the best ICA–ANN 
result will be given later. It should be noted that all models 

were built using 80% of whole data as training and 20% of 
them as testing.

5.2 � PSO–ANN

As pointed out before, several parameters such as coef-
ficients of velocity equation, number of particle, number 
of iteration and inertia weight have a deep impact on PSO 
algorithm. According to literatures [55, 69], coefficients 
of velocity equation equal to 2 and inertia weight of 0.25 
showed an acceptable results in other implemented PSO 
works. Therefore, these values were used in all PSO–ANN 
models. To select the best value for number of iteration, as 
displayed in Fig. 6, various models with swarm size values 

Table 1   Different Ncountry effects 
in estimating flyrock distance

TR training, TS testing

Model No. Ncountry Network Result Ranking Total rank

TR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 50 0.923 0.063 0.782 0.079 2 3 2 2 9
2 100 0.938 0.053 0.934 0.059 3 5 7 5 20
3 150 0.945 0.051 0.920 0.059 6 7 4 5 22
4 200 0.938 0.055 0.923 0.057 3 4 5 6 18
5 250 0.942 0.051 0.934 0.060 4 7 7 4 22
6 300 0.943 0.052 0.958 0.045 5 6 8 8 27
7 350 0.953 0.047 0.915 0.061 8 8 3 3 22
8 400 0.947 0.052 0.933 0.046 7 6 6 7 26

Fig. 6   PSO–ANN models with various swarm sizes
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of 50, 100, 150, 200, 250, 300, 350 and 400 were built and 
evaluated based on their RMSE. As a result, RMSE results 
are not changed after swarm size of 500 for all models. To 
identify the optimum value for swarm size, a total number of 
eight PSO–ANN models were constructed to predict flyrock 
distance as tabulated in Table 2. Similar to previous section, 
ranking system proposed by Zorlu et al. [68] was performed 
and based on total rank values (Table 2), model 7 with 
swarm size of 350 and total rank of 29 shows the best system 
results. For this model, R2 of 0.958 and 0.959 were obtained 
for training and testing datasets, respectively. Evaluation of 
the selected PSO–ANN model will be discussed later.

5.3 � GA–ANN

As stated earlier, to design a GA–ANN model, influence 
of the effective GA factors should be investigated. Muta-
tion probability values, percentage of recombination were 
set as 25, and 9%, respectively. As a cross-over operation, 
a single point with 70% possibility is used. A parametric 
study was conducted for determination of the maximum 
number of generation (Gmax) effects on network perfor-
mance. To obtain the best Gmax, as shown in Fig. 7, a 
value of 1000 generation was assigned as stopping criteria 
considering RMSE values. As a result, like two previous 

Table 2   Different swarm size in 
estimating flyrock distance

TR training, TS testing

Model no. Swarm size Network result Ranking Total rank

TR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 50 0.926 0.060 0.937 0.052 1 2 4 4 11
2 100 0.940 0.055 0.902 0.059 2 3 1 3 9
3 150 0.949 0.052 0.932 0.044 4 4 3 7 18
4 200 0.953 0.047 0.956 0.044 6 6 7 7 26
5 250 0.946 0.050 0.955 0.049 3 5 6 6 20
6 300 0.951 0.050 0.944 0.040 5 5 5 8 23
7 350 0.958 0.045 0.959 0.044 7 7 8 7 29
8 400 0.961 0.044 0.924 0.051 8 8 2 5 23

Fig. 7   GA–ANN models with various population sizes
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hybrid models, after generation No. 500, the network per-
formance is unchanged. Therefore, the optimum genera-
tion No. 500 was used in this study. In the final step, a 
series of hybrid GA–ANN models (Table 3) were created 
to determine the best population size (among size values 
of 50, 100, 150, 200, 250, 300, 350 and 400). Results 
showed that population size of 350 with total rank of 30 
can provide higher performance prediction in terms of 
both R2 and RMSE indices. The obtained results of model 
number 5 (the best one) will be discussed in detail later.

6 � Results and discussion

Prediction of flyrock distance due to blasting is the aim 
of the present study. Hence, the most influential param-
eters on flyrock were identified and used. Three hybrid 
intelligent systems, namely ICA–ANN, PSO–ANN and 
GA–ANN were applied to select the best predictive fly-
rock model among them. Many hybrid models were con-
structed for each predictive technique and the best of them 
was chosen. Results of the selected models of ICA–ANN, 
PSO–ANN and GA–ANN based on RMSE and R2 indices 
in predicting flyrock are presented in Table 4. Equations 
of RMSE and R2 can be found in other studies [70, 71]. 
High performances of the training datasets prove that the 
learning process of these predictive models is successful. 

While, a high accuracy level of testing datasets shows that 
the developed model is well-generalized. Although all pre-
dictive models are capable to predict flyrock, as a result, 
PSO–ANN predictive model can provide higher perfor-
mance capacity in terms of R2 values of both training 
and testing phases. Additionally, RMSE values of (0.052, 
0.045 and 0.057) and (0.045, 0.044 and 0.058) were 
achieved for training and testing of ICA–ANN, PSO–ANN 
and GA–ANN predictive models, respectively. These 
results indicated that lower system error can be obtained 
by developing PSO–ANN model among all implemented 
models. Predicted flyrock values together with their actual 
values for ICA–ANN, PSO–ANN and GA–ANN predic-
tive models are displayed in Figs. 8, 9 and 10, respectively. 
In these figures, predicted results are presented for both 
training and testing datasets. According to these figures, 
although all models have acceptable prediction capacity in 
prediction flyrock distance, PSO–ANN model can intro-
duce as a new hybrid model in this field.

It is worth mentioning that the same data used in this study 
have been utilized by Shirani et al. [67]. They developed and 
introduced a genetic programming (GP) model with R2 values 
of 0.908 and 0.819 for training and testing datasets, respec-
tively. Comparing their results with the results obtained from 
this study revealed that all developed hybrid predictive models 
can apply better than GP model for the same database and 
could introduce as trustable models in the field of blasting 
operations.

7 � Sensitivity analysis

A sensitivity analysis was performed on the data to determine 
the impact of each data on the output. Therefore, the method 
introduced by Yang and Zang in this study was used. All data 
pairs were utilized to construct a data array X as follows:

(5)X = {x1, x2, x3,… xi,… , xn}.

Table 3   Different population 
size in estimating flyrock 
distance

TR training, TS testing

Model no. Swarm size Network Result Ranking Total rank

TR TS TR TS

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 50 0.904 0.069 0.842 0.075 5 3 1 1 10
2 100 0.894 0.073 0.867 0.069 3 1 2 3 9
3 150 0.902 0.068 0.892 0.070 4 4 3 2 13
4 200 0.907 0.067 0.897 0.068 6 5 4 4 19
5 250 0.891 0.072 0.916 0.062 2 2 5 5 14
6 300 0.907 0.066 0.948 0.048 6 6 8 8 28
7 350 0.930 0.057 0.932 0.058 8 8 7 7 30
8 400 0.917 0.062 0.922 0.060 7 7 6 6 26

Table 4   Results of the selected hybrid models in predicting flyrock 
distance

Model Training Testing

R2 RMSE R2 RMSE

ICA–ANN 0.943 0.052 0.958 0.045
PSO–ANN 0.958 0.045 0.959 0.044
GA–ANN 0.930 0.057 0.932 0.058
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Variable xi in array X is a length vector of m as:

The strength of the relationship (rij) between datasets Xi and 
Xj can be expressed as follows:

(6)xi = {xi1, xi2, xi3,… xim}.

(7)rij =

∑m

k=1
xikxjk

�

∑m

k=1
xik

2
∑m

k=1
xik

2

.

Figure 11 shows the relationship between input data and 
output. As can be seen, among all data, the hole diameter 
and hole depth have the highest and lowest relation with the 
output, respectively.

Fig. 8   Results of ICA–ANN model in estimating flyrock

Fig. 9   Results of PSO–ANN model in estimating flyrock
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8 � Conclusions

In this study, three hybrid models, i.e., ICA–ANN, 
PSO–ANN and GA–ANN were considered and developed 
to predict flyrock. To achieve this aim, the most influential 
parameters on OAs, i.e., ICA, PSO and GA, were identified 
based on background of these techniques and also available 

literatures. Then, these parameters were carefully designed 
using several rounds of parametric studies. At the end of 
each model designing, eight models were constructed and 
their related results were achieved based on RMSE and R2. 
In this step, evaluation of the obtained results was performed 
using the ranking technique and it was found that all hybrid 
models can offer a high level of accuracy in estimating 

Fig. 10   Results of GA–ANN model in estimating flyrock

Fig. 11   Sensitivity analysis to determine the impact of each data on the output
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flyrock distance. Nevertheless, a slightly higher performance 
prediction (lower error and higher coefficient of determina-
tion) was observed when a PSO–ANN model is developed. 
RMSE values of (0.052, 0.045 and 0.057) and (0.045, 0.044 
and 0.058) were found for training and testing of ICA–ANN, 
PSO–ANN and GA–ANN predictive models, respectively, 
which show higher efficiency of the PSO–ANN model com-
pared to other implemented models. Furthermore, in terms 
of R2, a similar trend was obtained. It can be concluded that 
if a predictive model with lowest error is needed, a hybrid 
PSO–ANN model is introduced as a superior one to predict 
flyrock distance. Additionally, results of sensitivity analysis 
showed that the effect of hole diameter on flyrock is slightly 
higher than the effect of others.
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