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Abstract
An instationary drift–diffusion system for the electron, hole, and oxygen vacancy
densities, coupled to the Poisson equation for the electric potential, is analyzed in a
bounded domain with mixed Dirichlet–Neumann boundary conditions. The electron
and hole densities are governed by Fermi–Dirac statistics, while the oxygen vacancy
density is governed by Blakemore statistics. The equations model the charge carrier
dynamics in memristive devices used in semiconductor technology. The global exis-
tence of weak solutions is proved in up to three space dimensions. The proof is based
on the free energy inequality, an iteration argument to improve the integrability of the
densities, and estimations of the Fermi–Dirac integral. Under a physically realistic
elliptic regularity condition, it is proved that the densities are bounded.
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1 Introduction

Memristors are nonlinear resistors with memory able to exhibit a resistive switch-
ing behavior. In neuromorphic computing, they are used to build artificial neurons
and synapses (Ielmini and Ambrogio 2020). Also perovskite solar cells may show
a memristive behavior, emulating synaptic- and neural-like dynamics (Tessler and
Vaynzof 2020). In semiconductor technology, often oxide-based memristors are used.
They consist of a thin titanium dioxide layer between two metal electrodes (Mladenov
2019). Charge carriers are the electrons, holes (defect electrons), and oxide vacan-
cies, which allow for a modulation of the layer conductance. The transport of the
carriers is usually modeled by drift–diffusion equations; see Ahmadi et al. (2021),
Greenlee et al. (2013)) for memristors and Abdel et al. (2021) for perovskite solar
cells.

Generally, the relation between the electron density and its chemical potential
(quasi-Fermi potential) is given by Fermi–Dirac statistics. In low-density regimes,
this reduces to Maxwell–Boltzmann statistics, leading to particle fluxes with lin-
ear diffusion (Jüngel 2009), while in high-density regimes, Fermi–Dirac statistics
reduce to a power-law density–chemical potential relation, leading to fluxes with
degenerate diffusion. A mathematical analysis of the associated low-density drift–
diffusion equations was performed in Jourdana et al. (2023), while high-density
models were studied in Jüngel and Vetter (2025). In this paper, we investigate for
the first time a general drift–diffusion system with Fermi–Dirac statistics for the elec-
trons and holes as well as physically motivated Blakemore statistics for the oxide
vacancies.

1.1 Model Equations

The charge transport through the semiconductor device is supposed to be governed
by the mass balance equations for the electron density n(x, t), hole density p(x, t),
and density D(x, t) of oxide vacancies, and the gradients of the associated chemical
potentials (quasi-Fermi potentials) μn , μp, and μD are the driving forces of the flow.
This leads to the (scaled) equations

∂t n − div Jn = 0, Jn = n∇μn,

∂t p + div Jp = 0, Jp = −p∇μp,

∂t D + div JD = 0, JD = −D∇μD,

where Jn , Jp, and JD are the electron, hole, and oxide vacancy current densities,
respectively. Fermi–Dirac statistics is valid for electrons in the conduction band and
for holes in the valance band in the parabolic band approximation (Jüngel 2009,
Sec. 1.6), giving the relations

n = F1/2(μn + V ), p = F1/2(μp − V ),
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where V denotes the electric potential, and the Fermi–Dirac integral is defined by:

F1/2(y) = 2√
π

∫ ∞

0

√
s

1 + es−y
ds, y ∈ R.

In the Maxwell–Boltzmann approximation, the Fermi–Dirac integral can be approx-
imated by the exponential, F1/2(y) ≈ exp(y) for y � −1, leading to the electron
flux Jn ≈ n∇(log n − V ) = ∇n − n∇V . However, the use of Fermi–Dirac statistics
is more appropriate in regimes with moderate or high densities. We expect that the
oxide vacancies cannot be accumulated excessively such that it is reasonable to use
Blakemore statistics (Blakemore 1982),

D = F−1(μD − V ), where F−1(y) = 1

1 + e−y
, y ∈ R.

Although being itself an approximation of Fermi–Dirac statistics, Blackmore statistics
have the advantage of restricting the oxide vacancy density to the interval (0, 1).
Without loss of generality, we have set the upper bound equal to one.

Introducing the inverse functions

g(z) = F−1
1/2(z) for z ∈ (0,∞),

h(z) = F−1
−1 (z) = log z − log(1 − z) for z ∈ (0, 1),

the transport equations can be written in a drift–diffusion form as:

∂t n − div Jn = 0, Jn = n∇g(n) − n∇V , (1)

∂t p + div Jp = 0, Jp = −(p∇g(p) + p∇V ), (2)

∂t D + div JD = 0, JD = −(D∇h(D) + D∇V ) in �, t > 0, (3)

where � ⊂ R
d (d ≥ 1) is a bounded domain. The electric potential is selfconsistently

coupled to the charge densities by the Poisson equation:

λ2�V = n − p − D + A(x) in �, (4)

where λ > 0 is the (scaled) Debye length and A(x) is the given dopant acceptor
density. Following Strukov et al. (2009), we neglect recombination–generation effects.
Equations (1)–(4) are supplemented with the initial and mixed Dirichlet–Neumann
boundary conditions

n(0, ·) = nI , p(0, ·) = pI , D(0, ·) = DI in �, (5)

n = n̄, p = p̄, V = V̄ on �D, t > 0, (6)

Jn · ν = Jp · ν = ∇V · ν = 0 on �N , t > 0, (7)

JD · ν = 0 on ∂�, t > 0. (8)
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Here,�D is the union of Ohmic contacts and�N models the insulating boundary parts.
Since the oxide vacancies are supposed not to leave the domain, we impose no-flux
boundary conditions for D on the whole boundary. These boundary conditions are
usually used in the literature (Greenlee et al. 2013; Strukov et al. 2009).

Although we consider general Fermi–Dirac statistics, our model contains some
simplifications. First, we consider constant mobilities to simplify the calculations.
A more general definition reads as, for instance, Jn = mnn∇μn with the space-
dependent mobility mn . Second, we neglected recombination–generation terms. They
can be included in the analysis, butwe preferred to omit them for a clearer presentation.
Third, we have chosen a constant semiconductor permittivity. It is possible to assume a
space-dependent permittivity as long as it is strictly positive and bounded. For the two-
species drift–diffusion model, the general physical situation was analyzed in Disser
and Rehberg (2019).

The aim of this paper is to prove (i) the existence of global weak solutions
(n, p, D, V ) to (1)–(8) and (ii) the regularity n, p, D ∈ L∞(0, T ; L∞(�)) for any
T > 0.

1.2 Mathematical Difficulties

The misfit of the boundary conditions for (n, p) on the one hand and for D on the
other hand gives the first main mathematical difficulty. A second difficulty comes
from the fact that we consider three species instead of two charge carriers as done
in many papers (Gajewski and Gröger 1989; Glitzky and Liero 2019; Jüngel 1996).
Indeed, the two-species case allows one to exploit a monotonicity property of the drift
term such that the quadratic nonlinearity can be handled (Gajewski and Gröger 1989).
For more than two species, one may use Gagliardo–Nirenberg estimates, but this is
possible in two space dimensions only (Glitzky and Hünlich 2005). This issue can be
overcome by W 1,r

loc (�) estimates with r > 1 (Jourdana et al. 2023), but leading to very
weak solutions and boundedness of solutions in two space dimensions only. The third
difficulty are the nonlinearities from the Fermi–Dirac statistics, which complicates the
estimates. We prove in Appendix A that

g′(z) ∼ z−11{z≤F1/2(0)} + z−1/31{z>F1/2(0)} for z > 0, (9)

where A ∼ B means that there exist constantsC1, C2 > 0 such thatC1A ≤ B ≤ C2A.
In particular, the nonlinear diffusion n∇g(n) = ng′(n)∇n can be approximated by∇n
in the low-density regime and by (3/5)∇n5/3 in the high-density regime. On the other
hand, the Blakemore statistics gives to the diffusion D∇h(D) = −∇ log(1 − D),
which exhibits a singularity at D = 1. The technical issues associated with this
singularity are overcome by using some ideas from Cancès et al. (2021), developed
for a one-species model.
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1.3 State of the Art and Key Ideas

There are only a few works dealing with the drift–diffusion equations for more than
two species. General existence results for an n-species model have been proved in
Heibig et al. (2019) for an abstract drift operator satisfying smoothing conditions.
In Choi and Lui (1995), Glitzky and Hünlich (1997, 2005) and Glitzky and Liero
(2019), the existence of global weak solutions was shown in at most two space dimen-
sions. The three-dimensional case was investigated in Bothe et al. (2014) using Robin
boundary conditions for the electric potential. In the work (Bhattacharya et al. 2022),
the function n∇g(n) = ∇(n + ηnq) with η > 0 and q ≥ 4 was chosen to regular-
ize the diffusion term, which allows for an analysis in three space dimensions. The
paper (Gajewski and Gröger 1996) studies the drift–diffusion equations with Fermi–
Dirac statistics but assuming inhomogeneous Neumann boundary conditions on ∂�.
A drift–diffusion system with Fermi–Dirac statistics for electrons and holes and with
Blakemore statistics for the ionic vacancy carriers, modeling perovskite solar cells,
was analyzed recently in Abdel et al. (2025) in two space dimensions. A free energy
inequality for this model in three space dimensions was shown in Abdel et al. (2023).

Our analysis is based, as in Abdel et al. (2023) and Gajewski and Gröger (1996),
on estimates derived from the free energy inequality. The asymptotic behavior of the
Fermi–Dirac integralF1/2 allows for an argument similar to Bhattacharya et al. (2022)
but based on physical bounds. Indeed, the behavior (9) shows that the diffusion is given
by:

n∇g(n) ∼ n(n−1 + n−1/3)∇n = ∇
(

n + 3

5
n5/3

)
.

The first term corresponds to linear diffusion, while the second term allows for higher
integrability estimates. As a by-product, we are able to weaken the condition q ≥ 4 in
Bhattacharya et al. (2022) to q ≥ 5/3. (By Jüngel and Vetter 2025, one may weaken
this condition even to q > 6/5.)

To specify the free energy inequality, we introduce the anti-derivatives of g and h,

G(s) =
∫ s

F1/2(0)
g(z)dz, H(s) =

∫ s

F−1(0)
h(z)dz, (10)

the relative energy density

G(s|s̄) = G(s) − G(s̄) − G ′(s̄)(s − s̄), s, s̄ ≥ 0,

and the free energy

E(n, p, D, V ) =
∫

�

(
G(n|n̄) + G(p| p̄) + H(D) + DV̄ + λ2

2
|∇(V − V̄ )|2

)
dx .
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A formal computation, made rigorous in Theorem 1, shows that

d E

dt
(n, p, D, V ) + 1

2

∫
�

(
n|∇(g(n) − V )|2 + p|∇(g(p) + V )|2

+ D|∇(h(D) + V )|2)dx ≤ C(n̄, p̄, D̄, T ). (11)

This yields a priori estimates for n, p in L∞(0, T ; L5/3(�)) and for V in
L∞(0, T ; H1(�)). Moreover, defining g̃ by g̃′(n) = √

ng′(n),

|∇ g̃(n)| ≤ |∇ g̃(n) − √
n∇V | + √

n|∇V | = √
n|∇(g(n) − V )| + √

n|∇V |

is uniformly bounded in L2(0, T ; L5/4(�)). Unfortunately, this regularity is not suffi-
cient to define n∇g(n) = √

n∇ g̃(n) since
√

n is bounded in L∞(0, T ; L10/3(�)) and
3/10+ 4/5 > 1. However, we are able to improve the regularity by an iteration argu-
ment to ∇ g̃(n) ∈ L2(0, T ; Lr (�)) with r < 8/5 (see Lemma 11), which is sufficient
since 3/10 + 5/8 < 1.

The treatment of the diffusion D∇h(D) = −∇ log(1− D) is quite delicate because
of the singularity at D = 1. The idea is to approximate L(D) = − log(1 − D) by
regular functions Lk with k ∈ N. The identification of the limit of the sequence Lk(Dk)

of approximating solutions Dk , which converge strongly to some function D, is then
achieved by a monotonicity argument (Minty trick); see Lemma 16. These ideas allow
us to prove the existence of global weak solutions.

The second main result is the boundedness of weak solutions. The difficulty comes
from the estimate of the quadratic drift terms, which can be overcome in the case
of two species by a monotonicity argument. For more than two species, we use the
Gagliardo–Nirenberg inequality to estimate this term, similarly as in Glitzky and
Hünlich (1997) for two space dimensions. In three dimensions, we need as in Jüngel
and Vetter (2025) the elliptic regularity result V ∈ W 1,r (�) with r > 3. This is
possible even under mixed boundary conditions if �D and �N do not meet in a “too
wild” manner (Disser and Rehberg 2015, Theorem 4.8). Then, applying an Alikakos-
type iteration argument similar to Jourdana et al. (2023), Jüngel and Vetter (2025), we
obtain q-uniform estimates in L∞(0, T ; Lq(�)) for any q < ∞. The boundedness
follows after performing the limit q → ∞.

1.4 Main Results

First, we introduce some notation. We set �T = � × (0, T ) for T > 0, denote by
m(B) the measure of a set B ⊂ R

d , and set for 1 ≤ q ≤ ∞,

W 1,q
D (�) = {u ∈ W 1,q(�) : u = 0 on �D}, H1

D(�) = W 1,2
D (�).

The function V I ∈ H1
D(�) + V̄ is the unique solution to

λ2�V I = nI − pI − DI + A(x) in �, V I = V̄ on �D, ∇V I · ν = 0 on �N .
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Constants C > 0 are generic and may change their value from line to line.
We impose the following assumptions.

(A1) Domain: � ⊂ R
d (1 ≤ d ≤ 3) is a bounded domain with Lipschitz boundary,

∂� = �D ∪ �N , �D ∩ �N = ∅, m(�D) > 0, and �N is relatively open in ∂�.
(A2) Data: T > 0, λ > 0, A ∈ L∞(�).
(A3) Boundary data: n̄, p̄, V̄ ∈ W 1,∞(�) with n̄, p̄ > 0 in �.
(A4) Initial data:nI , pI , DI ∈ L2(�) satisfynI , pI , DI ≥ 0 in�, E(nI , pI , DI , V I )

< ∞. Furthermore, sup� DI ≤ 1 and

DI
� := 1

m(�)

∫
�

DIdx < 1.

(A5) Elliptic Regularity: There exists r > 3 such that for some constant C > 0 and
all f ∈ L3r/(r+3)(�) the weak solution V to the Poisson problem

�V = f in �, V = V̄ on �D, ∇V · ν = 0 on �N , (12)

satisfies the estimate

‖V ‖W 1,r (�) ≤ C‖ f ‖L3r/(r+3)(�) + C . (13)

Let us discuss the assumptions. We can assume higher space dimensions in most
of the estimates, but we restrict ourselves to d ≤ 3 because of the applications. The
boundary data in Assumption (A3) is assumed to be independent of time to simplify
the computations; time-dependent boundary data are possible, see, e.g., Degond et al.
(1997, Sec. 2). Compared to Abdel et al. (2025), we do not need pointwise positive
lower bounds of the densities and we can allow for vacuum as well as saturation of the
oxygen vacancy density. We only prevent DI

� = 1 in Assumption (A4), which would
be physically unrealistic.

The most restrictive condition is Assumption (A5). Indeed, we can only expect the
regularity V ∈ W 1,r (�) with r > 2 for the solution V to (12) with mixed boundary
conditions (Gröger 1994). The regularity r > 3 can be achieved under reasonable
conditions on �D and �N (Disser and Rehberg 2015, Theorem 4.8). These conditions
are satisfied if �D and �N intersect with an “angle” not larger than π (Disser and
Rehberg 2015, Prop. 3.4). Assumption (A5) is not needed for the existence result but
for the proof of the boundedness of solutions.

Our first main result is the existence of global weak solutions.

Theorem 1 (Global existence) Let Assumptions (A1)–(A4) hold. Then, there exists a
weak solution (n, p, D, V ) to (1)–(8) satisfying n, p ≥ 0, 0 ≤ D < 1 a.e. in �T ,

n, p ∈ L∞(0, T ; L5/3(�)) ∩ L2(0, T ; W 1,α(�)), D ∈ L∞(�T ) ∩ L2(0, T ; H1(�)),

n∇g(n), p∇g(p) ∈ L2(0, T ; L5/4(�)), D∇h(D) ∈ L2(0, T ; L2(�)),

∂t n, ∂t p ∈ L7/5(0, T ; W 1,2α/(4−α)
D (�)), ∂t D ∈ L2(0, T ; H1(�)′), V ∈ L∞(0, T ; H1(�)),
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where α < 8/5 if d = 3, α < 2 if d = 2, and α = 2 if d = 1. The fluxes are
understood in the sense

Jn = n∇(g(n) − V ) ∈ L2(0, T ; L5/4(�)),

Jp = −p∇(g(p) + pV ) ∈ L2(0, T ; L5/4(�)),

JD = −D∇(h(D) + V ) = −∇ log(1 − D) + D∇V ∈ L2(�T ).

The solution satisfies the free energy inequality

E(n, p, D, V )(t) + 1

2

∫ t

0

∫
�

(
n|∇(g(n) − V )|2 + p|∇(g(p) + V )|2

+ D|∇(h(D) + V )|2)dxds ≤ C(E I ,�, T ), (14)

where E I := E(nI , pI , DI , V I ),

� := 2
(‖∇(g(n̄) − V̄ )‖2L∞(�) + ‖∇(g( p̄) + V̄ )‖2L∞(�)

)
,

and it holds that C(E I ,�, T ) = 0 if � = 0.

The property � = 0 means that the boundary data is in thermal equilibrium. In
this situation, the free energy is a Lyapunov functional. For the proof of Theorem 1,
we first approximate the problem by truncating the nonlinearities (densities) in the
diffusion and drift terms and prove the existence of approximate solutions by using
the Leray–Schauder fixed-point theorem. The compactness of the fixed-point operator
is a consequence of the approximate free energy inequality. From this inequality,
we derive uniform bounds for the approximate solutions, allowing us to take the re-
regularizing limit. As mentioned before, the main difficulties are the derivation of
improved estimates via an iteration argument and the treatment of the singularity
D = 1.

Our second main result is the boundedness of weak solutions.

Theorem 2 (Boundedness) Let Assumptions (A1)–(A5) hold and assume that nI , pI ,
DI ∈ L∞(�). Then, the weak solution constructed in Theorem 1 satisfies

n, p, D ∈ L∞(�T ), V ∈ L∞(0, T ; W 1,r (�)) ⊂ L∞(�T ),

where r > 3 is given in Assumption (A5).

The restriction to three space dimensions comes from regularity (13). The bound-
edness result is not surprising in view of Jüngel and Vetter (2025, Theorem 2). Indeed,
since ng′(n) ∼ 1+ n2/3, the diffusion term contains the porous-medium term ∇n5/3,
and it is proved in Jüngel and Vetter (2025) that this nonlinear diffusion leads to an
improvement of the integrability of the densities up to L∞(�). The idea is first to
prove that n, p ∈ L∞(0, T ; L2(�)). This is used as the starting point of a recursion,
showing that n, p ∈ L∞(0, T ; Lq(�)) for any q < ∞, but with bounds that may
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depend on q. This allows us to use nq − n̄q , pq − p̄q as test functions in the weak
formulations to (1), (2), respectively. By an Alikakos iteration, it turns out that the
L∞(0, T ; Lq(�)) bounds are independent of q, and we can pass to the limit q → ∞
to conclude. To reduce the technicalities and since the first parts of the proof are tech-
nically similar to Jüngel and Vetter (2025, Sec. 3), we detail only the last part of the
proof (the Alikakos argument).

Remark 3 (Generalization) Our results hold for an arbitrary number of charged par-
ticles, since we use the Poisson equation only through the norm estimates for V and
∇V . In particular, we can consider the transport equations

∂t ui = div(ui∇g(ui ) + zi ui∇V ), i ∈ I ,

∂t ui = div(ui∇h(ui ) + zi ui∇V ), i ∈ I0,

λ2�V = −
∑

i∈I∪I0

zi ui + A(x) in �, t > 0,

where zi ∈ R are the particle charges, I , I0 ⊂ N are some index sets, and the initial
and boundary conditions are as in (5)–(8). ��

The paper is organized as follows: Theorems 1 and 2 are proved in Sects. 2 and 3,
respectively. Auxiliary inequalities involving Fermi–Dirac integrals are proved in
Appendix A. We also need a nonlinear version of the Poincaré–Wirtinger inequal-
ity, which is shown in Appendix B.

2 Proof of Theorem 1

We prove the existence of global weak solutions to (1)–(8). To this end, we truncate
the coefficients in the parabolic equations with parameter k ∈ N, solve the correspond-
ing approximate problem, derive uniform estimates from an approximate free energy
inequality, and pass to the limit k → ∞.

2.1 Approximate Problem

We introduce for k ∈ N and z ∈ R the truncations Tk(z) = max{0,min{k, z}} and

S1
k (z) =

⎧⎪⎨
⎪⎩
1 for z ≤ 0,

zg′(z) for 0 < z ≤ k,

k2/3z1/3g′(z) for z > k,

S2
k (z) =

⎧⎪⎨
⎪⎩
1 for z ≤ 0,

zh′(z) for 0 < z ≤ k/(k + 1),

1 + k for z > k/(k + 1).

The functions S1
k and S2

k are continuous, bounded, and strictly positive on R, noting
that zh′(z) = 1/(1 − z) for z ∈ (0, 1). The approximate problem reads as follows:

∂t nk = div
(
S1

k (nk)∇nk − Tk(nk)∇Vk
)
, (15)

∂t pk = div
(
S1

k (pk)∇ pk + Tk(pk)∇Vk
)
, (16)

123



   44 Page 10 of 37 Journal of Nonlinear Science            (2025) 35:44 

∂t Dk = div
(
S2

k (Dk)∇Dk + Tk/(k+1)(Dk)∇Vk
)
, (17)

λ2�Vk = nk − pk − Dk + A(x) in �, t > 0, (18)

with the initial and boundary conditions (5)–(8), where (n, p, D, V ) is replaced by
(nk, pk, Dk, Vk). Clearly, if k → ∞, we recover formulation (1)–(3). The truncation
Tk/(k+1)(Dk) is chosen since we expect that the limit D of Dk satisfies D < 1 a.e.

We show the existence of solutions to (15)–(18) by using afixed-point argument. For
this, let (n∗, p∗, D∗) ∈ L2(�T )3 and σ ∈ [0, 1]. We apply (Zeidler 1990, Theorem
23.A) to infer that the linearized problem

∂t n = div
(
S1

k (n∗)∇n − σ Tk(n
∗)∇V

)
, (19)

∂t p = div
(
S1

k (p∗)∇ p + σ Tk(p∗)∇V
)
, (20)

∂t D = div
(
S2

k (D∗)∇D + σ Tk/(k+1)(D∗)∇V
)
, (21)

λ2�V = n∗ − p∗ − D∗ + σ A(x) in �, t > 0, (22)

with the initial and boundary conditions

n(0, ·) = σnI , p(0, ·) = σ pI , D(0, ·) = σ DI in �,

n = σ n̄, p = σ p̄, V = σ V̄ on �D, t > 0,

∇n · ν = ∇ p · ν = ∇V · ν = 0 on �N , t > 0,(
S2

k (D∗)∇D + σ Tk/(k+1)(D∗)∇V
) · ν = 0 on ∂�, t > 0,

has a unique solution (n, p, D, V ) ∈ L2(0, T ; H1(�))4 such that n, p, D ∈
H1(0, T ; H1

D(�)′). This defines the fixed-point operator F : L2(�T )3 × [0, 1] →
L2(�T )3, (n∗, p∗, D∗; σ) �→ (n, p, D). Standard arguments show that F is con-
tinuous and satisfies F(n∗, p∗, D∗; 0) = (0, 0, 0). To apply the Leray–Schauder
fixed-point theorem,we need to find a uniformbound for all fixed points of F(·, ·, ·; σ).

Lemma 4 Let (n, p, D) be a fixed point of F(·, ·, ·; σ), where σ ∈ [0, 1]. Then
(n, p, D) is bounded in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)) uniformly in σ .

Proof Since the proof is similar to that one of Jourdana et al. (2023, Lemma 2.1), we
only sketch it. Let (n∗, p∗, D∗) = (n, p, D) be a fixed point of F(·, ·, ·; σ). We use
the test function V − σ V̄ in the weak formulation of (22) and apply the Young and
Poincaré inequality to find that

∫ T

0

∫
�

|∇V |2dxdt ≤ C + C
∫ T

0

∫
�

(n2 + p2 + D2)dxdt,

where C > 0 is a constant independent of (n, p, D, σ ). Next, we use the test function
n − σ n̄ in the weak formulation of (19) and take into account that S1

k (n) ≥ c(k) > 0
and S2

k (n) ≥ 1. Then, with the Young inequality,
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1

2

∫
�

(n(t) − σ n̄)2dx − 1

2

∫
�

(nI − σ n̄)2dx +
∫ t

0

∫
�

|∇n|2dxds

≤ C + C(k)

∫ t

0

∫
�

|∇V |2dxds ≤ C + C
∫ t

0

∫
�

(n2 + p2 + D2)dxds.

We derive similar estimates when using p − σ p̄ and D in the weak formulations of
(20) and (21), respectively. Adding these estimates yields

∫
�

(
n(t)2 + p(t)2 + D(t)2

)
dx +

∫ t

0

∫
�

(|∇n|2 + |∇ p|2 + |∇D|2)dxds

≤ C + C
∫ t

0

∫
�

(n2 + p2 + D2)dxds.

We deduce from Gronwall’s lemma σ -uniform bounds for (n, p, D)

in L∞(0, T ; L2(�)) ∩ L2(0, T ; H1(�)). ��

The bounds in Lemma 4 imply uniform estimates for
(∂t n, ∂t p, ∂t D) in L2(0, T ; H1

D(�)′). By the Aubin–Lions lemma, the embedding
L2(0, T ; H1(�))∩ H1(0, T ; H1

D(�)′) ↪→ L2(�T ) is compact. Thus, F : L2(�T )3×
[0, 1] → L2(�T )3 is compact. The assumptions of the Leray–Schauder fixed-point
theorem are satisfied, and we conclude the existence of a fixed point of F(·, ·, ·; 1),
i.e. a solution to (15)–(18) and (5)–(8). We summarize:

Lemma 5 (Existence for the approximate problem) Let Assumptions (A1)–(A4) hold.
Then, there exists a weak solution to (15)–(18) with initial and boundary conditions
(5)–(8).

The solution (nk, pk, Dk) to (15)–(18) is componentwise nonnegative. Indeed,
using the test function n−

k = min{0, nk} in the weak formulation of (15), we have

1

2

∫
�

(n−
k )(t)2dx +

∫ t

0

∫
�

S1k (nk )|∇n−
k |2dxds =

∫ t

0

∫
{nk<0}

Tk (nk )∇Vk · ∇nkdxds = 0,

since Tk(nk) = 0 for nk < 0, showing that n−
k (t) = 0 and consequently nk(t) ≥ 0 for

t > 0. We note that the mass of the oxide vacancies is conserved,

∫
�

Dk(t)dx =
∫

�

DIdx for t > 0,

while this is generally not the case for the electron and hole densities because of the
Dirichlet boundary conditions.
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2.2 Approximate Energy Inequality

We derive the approximate analog of the free energy inequality (11). Similarly as in
Jourdana et al. (2023, Sec. 2.3), we define for 0 < δ < F1/2(0) the approximations

Gk,δ(s) =
∫ s

F1/2(0)

∫ y

F1/2(0)

S1
k (z)

Tk(z) + δ
dzdy, g̃k,δ(s) =

∫ s

0

S1
k (y)√

Tk(y) + δ
dy,

Hk,δ(s) =
∫ s

F−1(0)

∫ y

F−1(0)

S2
k (z)

Tk/(k+1)(z) + δ
dzdy, h̃k,δ(s) =

∫ s

0

S2
k (y)√

Tk/(k+1)(y) + δ
dy.

(23)
Recalling that S1

k (z) → zg′(z), S2
k (z) → zh′(z), and Tk(z) → z pointwise as k → ∞,

the functions Gk,δ and Hk,δ approximate the anti-derivatives of g and h, respectively
(see (10)), while g̃k,δ and h̃k,δ approximate

g̃(s) :=
∫ s

F1/2(0)

√
zg′(z)dz,

h̃(s) :=
∫ s

F−1(0)

√
zh′(z)dz = 2 tanh−1(

√
s) − 2 tanh−1(1/

√
2),

respectively, since F−1(0) = 1/2. These definitions yield the following chain rules:

S1
k (nk)∇nk = √

Tk(nk) + δ∇ g̃k,δ(nk),

S2
k (Dk)∇Dk =

√
Tk/(k+1)(Dk) + δ∇h̃k,δ(Dk),

(24)

and similarly for pk instead of nk . They are the truncated analogs of the chain rules
nk g′(nk)∇nk = √

nk∇ g̃(nk) and Dkh′(nk)∇Dk = √
Dk∇h̃(Dk). Choosing δ = 0 in

(24), we see that the approximate fluxes can be formulated as:

S1
k (nk)∇nk − Tk(nk)∇Vk = √

Tk(nk)
(∇ g̃k(nk) − √

Tk(nk)∇Vk
)
,

S1
k (pk)∇ pk + Tk(pk)∇Vk = √

Tk(pk)
(∇ g̃k(pk) + √

Tk(pk)∇Vk
)
,

S2
k (Dk)∇Dk + Tk(Dk)∇Vk = √

Tk(Dk)
(∇h̃k(Dk) + √

Tk(Dk)∇Vk
)
.

(25)

Next, we define for s, s̄ ≥ 0 the approximate relative energies

Gk,δ(s|s̄) = Gk,δ(s) − Gk,δ(s̄) − G ′
k,δ(s̄)(s − s̄), Hk,δ(s) = Hk,δ(s) + sV̄ (26)

and the approximate free energy

Ek,δ(nk , pk , Dk , Vk ) =
∫
�

(
Gk,δ(nk |n̄) + Gk,δ(pk | p̄) + Hk,δ(Dk ) + λ2

2
|∇(V − V̄ )|2

)
dx . (27)

We set

E I
k,δ := Ek,δ(n

I , pI , DI , V I ), (28)
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�k,δ := 2‖∇(G ′
k,δ(n̄) − V̄ )‖2L∞(�) + 2‖∇(G ′

k,δ( p̄) + V̄ )‖2L∞(�). (29)

For the derivation of the approximate free energy inequality, we need the following
lemma.

Lemma 6 There exists a constant C > 0 such that for any k, δ > 0 satisfying 0 <

δ < F1/2(0) < k,

Tk(s)
5/3 ≤ C(1 + Gk,δ(s)) for s > 0.

Proof Let 0 < s ≤ F1/2(0). Since s < k, we have Tk(s)5/3 = s5/3 ≤ F1/2(0)5/3 ≤ C .
Next, let F1/2(0) < s ≤ k. Then, S1

k (s) = sg(s) and, by Lemma 20,

Gk,δ(s) =
∫ s

F1/2(0)

∫ y

F1/2(0)

zg′(z)
z + δ

dzdy ≥ C
∫ s

F1/2(0)

∫ y

F1/2(0)

z(z−1 + z−1/3)

z + δ
dzdy

≥ C

2

∫ s

F1/2(0)

∫ y

F1/2(0)
z−1/3dzdy,

since δ < F1/2(0) ≤ z. An integration of the right-hand side leads to

Gk,δ(s) ≥ 3C

4

(
3

5
s5/3 − F1/2(0)

2/3s + 2

5
F1/2(0)

5/3
)

≥ CTk(s)
5/3 − C .

Finally, if s > k, we have Tk(s)5/3 = k5/3 ≤ CGk,δ(k) ≤ CGk,δ(s). This finishes the
proof. ��

Lemma 7 (Approximate free energy inequality for Ek,δ) Let Assumptions (A1)–(A4)
hold and let (nk, pk, Dk, Vk) be the weak solution constructed in Lemma 5. Then, for
all 0 < t < T ,

Ek,δ(nk, pk, Dk, Vk)(t) + 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(pk) + √
Tk(pk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇h̃k,δ(Dk) + (Tk/(k+1)(Dk) + δ)1/2∇Vk
∣∣2dxds

≤ C(E I
k,δ,�k,δ, T ). (30)

The constant C(E I
k,δ,�k,δ, T ) ≥ 0 vanishes if �k,δ = 0 and δ = 0.

Proof We use the test function G ′
k,δ(nk) − G ′

k,δ(n̄) − Vk + V̄ (see definition (23)) in
the weak formulation of (15):
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〈
∂t nk, G ′

k,δ(nk) − G ′
k,δ(n̄) − Vk + V̄

〉

= −
∫

�

(
S1

k (nk)∇nk − Tk(nk)∇Vk
) · ∇(

(G ′
k,δ(nk) − Vk) − (G ′

k,δ(n̄) − V̄ )
)
dx .

We use the identities

〈
∂t nk, G ′

k,δ(nk) − G ′
k,δ(n̄)

〉 = d

dt

∫
�

(
Gk,δ(nk) − Gk,δ(n̄) − G ′

k,δ(n̄)(nk − n̄)
)
dx,

S1
k (nk)∇nk − Tk(nk)∇Vk = √

Tk(nk) + δ
(∇ g̃k,δ(nk) − √

Tk(nk) + δ∇Vk
) + δ∇Vk,

∇(G ′
k,δ(nk) − Vk) = ∇ g̃k,δ(nk) − √

Tk(nk) + δ∇Vk√
Tk(nk) + δ

,

which follow from the chain rules (24), to obtain

d

dt

∫
�

(
Gk,δ(nk) − Gk,δ(n̄) − G ′

k,δ(n̄)(nk − n̄)
)
dx − 〈

∂t nk, Vk − V̄
〉

= −
∫

�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dx

−
∫

�

δ√
Tk(nk) + δ

∇Vk · (∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

)
dx

+
∫

�

√
Tk(nk) + δ

(∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

) · ∇(G ′
k,δ(n̄) − V̄ )dx

+ δ

∫
�

∇Vk · ∇(G ′
k,δ(n̄) − V̄ )dx

≤ −1

2

∫
�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dx + δ

2

∫
�

|∇(G ′
k,δ(n̄) − V̄ )|2dx

+ 3δ

2

∫
�

|∇Vk |2dx + ‖∇(G ′
k,δ(n̄) − V̄ )‖2L∞(�)

∫
�

(Tk(nk) + δ)dx, (31)

where we used the inequality δ/(
√

Tk(nk) + δ) ≤ √
δ and Young’s inequality in the

last step. Similarly, the test function G ′
k,δ(pk) − G ′

k,δ( p̄) + Vk − V̄ in the weak
formulation of (16) leads to

d

dt

∫
�

(
Gk,δ(pk) − Gk,δ( p̄) − G ′

k,δ( p̄)(pk − p̄)
)
dx + 〈

∂t pk, Vk − V̄
〉

≤ −1

2

∫
�

∣∣∇ g̃k,δ(pk) + √
Tk(pk) + δ∇Vk

∣∣2dx + δ

2

∫
�

|∇(G ′
k,δ( p̄) + V̄ )|2dx

+ 3δ

2

∫
�

|∇Vk |2dx + ‖∇(G ′
k,δ( p̄) + V̄ )‖2L∞(�)

∫
�

(Tk(pk) + δ)dx .
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Similarly, with the test function H ′
k,δ(Dk) + Vk in the weak formulation of (17),

d

dt

∫
�

Hk,δ(Dk)dx + 〈∂t Dk, Vk − V̄ 〉 = 〈∂t Dk, H ′
k,δ(Dk) + Vk〉

≤ −1

2

∫
�

∣∣∇h̃k,δ(Dk) + (Tk/(k+1)(Dk) + δ)1/2∇Vk
∣∣2dx + δ

2

∫
�

|∇Vk |2dx . (32)

We add (31)–(32) and take into account definition (26) of the relative energies and
definition (29) of �k,δ:

d

dt

∫
�

(Gk,δ(nk |n̄) + Gk,δ(pk | p̄) + Hk,δ(Dk)
)
dx − 〈

∂t (nk − pk − Dk), Vk − V̄
〉

+ 1

2

∫
�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dx

+ 1

2

∫
�

∣∣∇ g̃k,δ(pk) + √
Tk(pk) + δ∇Vk

∣∣2dx

+ 1

2

∫
�

∣∣∇h̃k,δ(Dk) + (Tk/(k+1)(Dk) + δ)1/2∇Vk
∣∣2dx

≤ �k,δ

∫
�

(Tk(nk) + Tk(pk) + 2δ)dx + 7δ

2

∫
�

|∇Vk |2dx + δ

2
|�|�k,δ. (33)

In view of Poisson’s equation (18), the last term in the first line of (33) can be written
as:

−〈
∂t (nk − pk − Dk), Vk − V̄

〉 = −λ2〈∂t�Vk, Vk − V̄ 〉 = λ2

2

d

dt

∫
�

|∇(Vk − V̄ )|2dx .

Integrating (33) over (0, t) and taking into account

∫
�

|∇Vk |2dx ≤ 2
∫

�

|∇(Vk − V̄ )|2dx + 2
∫

�

|∇ V̄ |2dx

as well as definitions (27) for Ek,δ and (28) for E I
k,δ , we arrive at

Ek,δ(nk, pk, Dk, Vk)(t) + 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(pk) + √
Tk(pk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇h̃k,δ(Dk) + (Tk/(k+1)(Dk) + δ)1/2∇Vk
∣∣2dxds

≤ E I
k,δ + �k,δ

∫ t

0

∫
�

(Tk(nk) + Tk(pk) + 2δ)dxds

+ 7δ
∫ t

0

∫
�

|∇(Vk − V̄ )|2dxds + 7δ
∫ t

0

∫
�

|∇ V̄ |2dxds + δ

2
|�|�k,δt .
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We conclude from Young’s inequality and Lemma 6 that

Tk(nk) ≤ C + Tk(nk)
5/3 ≤ C + CGk,δ(nk),

and consequently, the second term on the right-hand side can be replaced by:

C1�k,δ

∫ t

0
Ek,δ(nk, pk, Dk, Vk)ds + C(�)(δ + 1)�k,δt .

Thus, applying Gronwall’s lemma,

Ek,δ(nk, pk, Dk, Vk)(t) + 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇ g̃k,δ(pk) + √
Tk(pk) + δ∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇h̃k,δ(Dk) + (Tk/(k+1)(Dk) + δ)1/2∇Vk
∣∣2dxds

≤ (
E I

k,δ + C(�)(δ + 1)�k,δt
)
exp(C1�k,δt).

This proves the lemma. ��

2.3 Limit ı → 0

We set

g̃k(s) = g̃k,0(s), Gk(s) = Gk,0(s), h̃k(s) = h̃k,0(s), Hk(s) = Hk,0(s),

Gk(s|s̄) = Gk,0(s|s̄), Hk(s|s̄) = Hk,0(s|s̄)

and introduce

Ek(nk, pk, Dk, Vk) =
∫

�

(
Gk(nk |n̄) + Gk(pk | p̄) + Hk(Vk) + λ2

2
|∇(Vk − V̄ )|2

)
dx,

E I
k = Ek(n

I , pI , DI , V I ), �k = �k,0.

Lemma 8 (Approximate free energy inequality for Ek) Under the assumptions of
Lemma 7, it holds for all 0 < t < T that

Ek(nk, pk, Dk, Vk)(t) + 1

2

∫ t

0

∫
�

∣∣∇ g̃k(nk) − √
Tk(nk)∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇ g̃k(pk) + √
Tk(pk)∇Vk

∣∣2dxds

+ 1

2

∫ t

0

∫
�

∣∣∇h̃k(Dk) + Tk/(k+1)(Dk)
1/2∇Vk

∣∣2dxds ≤ C(E I
k ,�k, T ), (34)
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and the constant C(E I
k ,�k, T ) ≥ 0 vanishes if �k = 0.

Proof The proof essentially follows from the monotone and dominated convergence
theorems as in the proof of Lemma 2.3 of Jourdana et al. (2023). The only difference
is the treatment of the functions g̃k,δ , Gk,δ , h̃k,δ , and Hk,δ . In fact, by the monotone
convergence theorem, g̃k,δ(nk) → g̃k(nk),Gk,δ(nk) → Gk(nk), h̃k,δ(Dk) → h̃k(Dk),
and Hk,δ(Dk) → Hk(Dk) a.e. in �T as δ → 0. We derive upper bounds for the limit
functions. Let s > k. Then, using Lemma 20,

g̃k(s) =
∫ s

0
g̃′

k(z)dz =
∫ k

0

√
zg′(z)dz +

∫ s

k
k1/6z1/3g′(z)dz

≤ C
∫ k

0
(z1/6 + z−1/2)dz + Ck1/6

∫ s

k
(1 + z−2/3)dz ≤ C(k)(s + 1),

and this inequality also holds for any s ≥ 0. We obtain for s > k/(k + 1):

h̃k(s) =
∫ k/(k+1)

0

dz√
z(1 − z)

+
∫ s

k/(k+1)
(k + 1)

√
k + 1

k
dz ≤ C(k)(s + 1),

and this bound holds in fact for all s ≥ 0. Similar arguments lead to

Gk,δ(s) ≤ C(k)(s2 + 1), Hk,δ(s) ≤ C(k)(s2 + 1) for s ≥ 0.

The approximate free energy inequality (30) implies that nk, pk, Dk are bounded in
L2(�T ) uniformly in δ. Hence, we can apply the dominated convergence theorem to
find that

g̃k,δ(nk) → g̃k(nk), h̃k,δ(Dk) → h̃k(Dk) strongly in L2(�T ),

Gk,δ(nk) → Gk(nk), Hk,δ(Dk) → Hk(Dk) strongly in L1(�T ).

The sequence (∇ g̃k,δ(nk) − √
Tk(nk) + δ∇Vk)δ is uniformly bounded in L2(�T ).

Therefore, there exists a subsequence that converges weakly in L2(�T ) as δ → 0.
The previous arguments allow us to identify the weak limit, showing the claim. The
other terms in (30) can be treated in a similar way. The limit δ → 0 in (30) then proves
(34). ��

2.4 Uniform Estimates

We first show some inequalities relating g, Gk , Tk , and g̃.

Lemma 9 There exists C > 0 such that for all k > 1 and s > 0,

g′(s) ≤ G ′′
k (s), s5/3 ≤ C(Gk(s) + 1), Tk(s)

7/6 ≤ Cg̃k(s),

g̃k(s)
10/7 ≤ C(Gk(s) + 1), Tk(s)

5/3 ≤ C(Gk(s) + 1),

h̃k(s) ≥ s−1/2, h̃′
k(s) ≥ 1.
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Proof The first inequality follows from G ′′
k (s) = g′(s) for 0 < s ≤ k and G ′′

k (s) =
(s/k)1/3g′(s) ≥ g′(s) for s > k. Since g′(s) ∼ s−1 + s−1/3 by Lemma 20,

Gk(s) ≥ C
∫ s

F1/2(0)

∫ y

F1/2(0)
(z−1 + z−1/3)dzdy ≥ C(s5/3 − 1),

which proves the second inequality. For the third one, let 0 < s ≤ k. Then, again by
Lemma 20,

g̃′
k(z) = √

zg′(z) ≥ C(z−1/2 + z1/6) ≥ Cz1/6.

We integrate this inequality over z ∈ (0, s) to find that g̃k(s) = g̃k(s) − g̃k(0) ≥
Cs7/6 = CTk(s)7/6. If s > k, we compute

g̃k(s) ≥
∫ k

0

yg′(y)√
Tk(y)

dy =
∫ k

0

√
yg′(y)dy ≥ C

∫ k

0
y1/6dy = Ck7/6 = CTk(s)

7/6.

We turn to the fourth inequality. By Lemma 20, we have for 0 < s ≤ k,

g̃k(s) =
∫ s

0

√
yg′(y)dy ≤ C

∫ s

0
(y−1/2 + y1/6)dy ≤ C(s7/6 + 1).

Furthermore, if s > k,

g̃k(s) =
∫ k

0

√
yg′(y)dy +

∫ s

k
k1/6y1/3g′(y)dy

≤ C(k1/2 + k7/6) + Ck1/6(s1/3 + s) ≤ C(s7/6 + 1),

and the conclusion follows after raising the inequality to the power 10/7 and using
the second inequality. The fifth inequality follows from the third and fourth ones since
Tk(s)5/3 ≤ Cg̃k(s)10/7 ≤ C(Gk(s) + 1).

To estimate h̃′, we observe that h′(s) = 1/(s(1−s)) and hence h̃′
k(s) = 1/(

√
s(1−

s)) ≥ s−1/2 for s < k/(k + 1) and h̃′
k(s) = (1+ k)/k ≥ s−1 ≥ s−1/2 for k/(k + 1) ≤

s < 1. Moreover, in both cases, h̃′(s) ≥ 1. This proves the inequalities for h̃′
k . ��

The previous lemma and the approximate energy inequality (34) lead to the follow-
ing a priori estimates.

Lemma 10 (Uniform estimates I) There exists a constant C > 0 such that for all
k ∈ N,

‖Tk(nk)‖L∞(0,T ;L5/3(�)) + ‖Tk(pk)‖L∞(0,T ;L5/3(�)) ≤ C,

‖nk‖L∞(0,T ;L5/3(�)) + ‖pk‖L∞(0,T ;L5/3(�)) ≤ C,

‖g̃k(nk)‖L∞(0,T ;L10/7(�)) + ‖g̃k(pk)‖L∞(0,T ;L10/7(�)) ≤ C,

‖√Tk(nk)∇Vk‖L∞(0,T ;L5/4(�)) + ‖√Tk(pk)∇Vk‖L∞(0,T ;L5/4(�)) ≤ C,
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‖∇ g̃k(nk)‖L2(0,T ;L5/4(�)) + ‖∇ g̃k(pk)‖L2(0,T ;L5/4(�)) ≤ C,

‖∇nk‖L2(0,T ;L5/4(�)) + ‖∇ pk‖L2(0,T ;L5/4(�)) ≤ C,

‖∇h̃k(Dk)‖L2(�T ) + ‖(Tk/(k+1)(Dk))
1/2∇Vk‖L∞(0,T ;L2(�)) ≤ C,

‖∇Dk‖L2(�T ) + ‖∇√
Dk‖L2(�T ) ≤ C .

Proof The approximate energy inequality (34) shows that (Gk(nk)) and (Gk(pk))

are bounded in L∞(0, T ; L1(�)). By Lemma 9, this yields a uniform bound
for Tk(nk), Tk(pk) and nk , pk in L∞(0, T ; L5/3(�)) and for g̃k(nk), g̃k(pk) in
L∞(0, T ; L10/7(�)). The energy estimate (34) implies a uniform bound for ∇Vk

in L∞(0, T ; L2(�)). Consequently, using Hölder’s inequality,

‖√Tk(nk)∇Vk‖L∞(0,T ;L5/4(�)) ≤‖√Tk(nk)‖L∞(0,T ;L10/3(�))‖∇Vk‖L∞(0,T ;L2(�)) ≤C,

and similarly for
√

Tk(pk)∇Vk . Then we deduce from the L2(�T ) bound for
∇ g̃k(nk)−√

Tk(nk)∇Vk that ∇ g̃k(nk) is uniformly bounded in L2(0, T ; L5/4(�)). It
follows from Lemma 20 that g̃′

k(s) = √
sg′(s) ≥ C(s1/6 + s−1/2) ≥ C for 0 < s ≤ k

and g̃′
k(s) = k1/6s1/3g′(s) ≥ k1/6(1 + s−2/3) ≥ 1 for s > k. Thus, g̃′

k is bounded
from below by a positive constant. Then, the bounds for ∇ g̃k(nk) and ∇ g̃k(pk) imply
the same bounds for ∇nk and ∇ pk .

We turn to the estimates for Dk . Since Tk/(k+1)(Dk) < 1, we infer from the energy
inequality (34) that (Tk/(k+1)(Dk)

1/2∇Vk) is bounded in L∞(0, T ; L2(�)) and con-
sequently,∇h̃k(Dk) is uniformly bounded in L2(�T ). We deduce from h̃′

k(s) ≥ s−1/2

and h̃′
k(s) ≥ 1 for s > 0 (see Lemma 9) that ∇√

Dk and ∇Dk are uniformly bounded
in L2(�T ). ��

We can improve the regularity stated in Lemma 10 by using the inequality
Tk(s)7/6 ≤ Cg̃k(s) and an iteration argument.

Lemma 11 (Uniform estimates II) Let q, r ≤ ∞ if d = 1, q, r < ∞ if d = 2, and
q < 8, r < 24/7 if d = 3. There exists a constant C > 0 such that for all k ∈ N,

‖√Tk(nk)‖L14/3(0,T ;Lq (�)) + ‖√Tk(nk)‖L14/3(0,T ;Lq (�)) ≤ C,

‖√Tk(nk)∇Vk‖L14/3(0,T ;Lr (�)) + ‖√Tk(nk)∇Vk‖L14/3(0,T ;Lr (�)) ≤ C,

‖g̃k(nk)‖L2(0,T ;Lr (�)) + ‖g̃k(pk)‖L2(0,T ;Lr (�)) ≤ C,

‖∇ g̃k(nk)‖L2(0,T ;L2q/(2+q)(�)) + ‖∇ g̃k(pk)‖L2(0,T ;L2q/(2+q)(�)) ≤ C,

‖∇nk‖L2(0,T ;L2q/(2+q)(�)) + ‖∇ pk‖L2(0,T ;L2q/(2+q)(�)) ≤ C

Observe that 2q/(2 + q) < 8/5 if d = 3.

Proof We assume that (
√

Tk(nk)) is bounded in L14/3(0, T ; Lqm (�)) and (g̃k(nk))

is bounded in L2(0, T ; Lrm (�)) for some numbers qm , rm ≥ 1 with m ∈ N. By
Lemma 10, we have q1 = 10/3 and r1 = 10/7. We estimate

‖√Tk (nk )∇Vk‖L14/3(0,T ;La (�)) ≤ ‖√Tk (nk )‖L14/3(0,T ;Lqm (�))‖∇Vk‖L∞(0,T ;L2(�)) ≤ C, (35)
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where 1/a = 1/qm + 1/2. This shows that

‖∇ g̃k(nk)‖L2(0,T ;La(�)) ≤ ‖∇ g̃k(nk) − √
Tk(nk)∇Vk‖L2(0,T ;La(�))

+ ‖√Tk(nk)∇Vk‖L2(0,T ;La(�)) ≤ C . (36)

Then, the continuous embedding W 1,a(�) ↪→ Lrm+1(�)with 1/rm+1 = 1/a−1/d =
1/qm +1/2−1/d implies that g̃k(nk) is uniformly bounded in L2(0, T ; Lrm+1(�)).We
deduce from

√
Tk(s) ≤ Cg̃k(s)3/7 (see Lemma 9) that

√
Tk(nk) is uniformly bounded

in L14/3(0, T ; Lqm+1(�)), where qm+1 = 7rm+1/3. This leads to the recursion

1

qm+1
= 3

7

1

rm+1
= 3

7

(
1

qm
+ 1

2
− 1

d

)
.

The sequence (1/qm) is nonincreasing (if d ≤ 4) and bounded from below. Thus, it
possesses the limit q∗ that satisfies

1

q∗ = 3

7

(
1

q∗ + 1

2
− 1

d

)
and hence q∗ = 8d

3(d − 2)
.

We can perform this recursion only a finite number of times as otherwise the powers of
the embedding constant may diverge. Thus, q < q∗ = 8 if d = 3 and, since qm+1 =
7qm/3 → ∞ as m → ∞, q < ∞ if d = 2. Furthermore, 1/r = 1/q + 1/2 − 1/d,
which gives r < 24/7 if d = 3 and r < ∞ if d = 2.

The uniform bound for
√

Tk(nk)∇Vk follows from (35) because of 1/a = 1/q +
1/2 = (2+q)/(2q). Estimate (36) then implies the bound for∇ g̃k(nk).Wehave shown
in the proof of Lemma 10 that g̃′

k is bounded from below by a positive constant such
that C |∇nk | ≤ |̃g′

k(nk)∇nk | = |∇ g̃k(nk)|, proving the last uniform bound. Finally,
the estimates for pk are proved analogously. ��

The following bounds are needed for the Aubin–Lions lemma.

Lemma 12 (Uniform estimates III) Under the assumptions of Lemma 11, there exists
a constant C > 0 such that for all k ∈ N,

‖nk‖L2(0,T ;W 1,2q/(2+q)(�)) + ‖pk‖L2(0,T ;W 1,2q/(2+q)(�)) ≤ C,

‖∂t nk‖L7/5(0,T ;W 1,2q/(q+4)
D (�)′) + ‖∂t pk‖L7/5(0,T ;W 1,2q/(q+4)

D (�)′) ≤ C,

‖Dk‖L2(0,T ;H1(�)) + ‖∂t Dk‖L2(0,T ;H1(�)′) ≤ C .

Proof The bound for nk follows from the gradient bounds in Lemma 11 and the bound
for nk in L∞(0, T ; L5/3(�)), which is a consequence of the energy inequality (34)
and the inequality s5/3 ≤ C(Gk(s) + 1) from Lemma 9. By the chain rule (24) (for
δ = 0), the evolution equation for nk reads as:

∂t nk = div
[√

Tk(nk)
(∇ g̃k(nk) − √

Tk(nk)∇Vk
)]

.
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The term
√

Tk(nk) is uniformly bounded in L14/3(0, T ; Lq(�)), while ∇ g̃k(nk) −√
Tk(nk)∇Vk is uniformly bounded in L2(0, T ; L2q/(2+q)(�)). Hence, (∂t nk) is

bounded in L7/5(0, T ; L2q/(4+q)(�)) (we chooseq ≥ 4 to guarantee that 2q/(4+q) ≥
1). The estimates for pk are shown in a similar way.

We turn to the bounds for Dk . We know from the energy inequality (34) that
(Hk(Dk)) is bounded in L∞(0, T ; L1(�)) and fromLemma 10 that (∇Dk) is bounded
in L2(�T ). Proceeding as in the proof of Lemma 9, we infer that S2

k /Tk/(k+1) is
bounded from below by a positive constant. This implies that Hk(Dk) ≥ C D2

k , which
yields a bound for (Dk) in L∞(0, T ; L2(�)). This shows that (Dk) is bounded in
L2(0, T ; H1(�)). Finally, since (Tk/(k+1)(Dk)) is bounded in L∞(�T ), the sequence

(∇h̃k(Dk) + Tk/(k+1)(Dk)
1/2∇Vk)

is bounded in L2(�T ). Therefore,

∂t Dk = div
[
Tk/(k+1)(Dk)

1/2(∇h̃k(Dk) + Tk/(k+1)(Dk)
1/2∇Vk

)]

is uniformly bounded in L2(0, T ; H1(�)′), finishing the proof. ��

2.5 Limit k → ∞ in the Equations for nk and pk

Lemma 12 and the compact embedding W 1,2q/(2+q)(�) ↪→ Lr (�) for r < 24/7
(if d ≤ 3) allow us to apply the Aubin–Lions lemma to infer the existence of a
subsequence that is not relabeled such that, as k → ∞,

(nk, pk) → (n, p) strongly in L2(0, T ; Lr (�))2,

Dk → D strongly in L2(�T ),

(∇nk,∇ pk)⇀(∇n,∇ p) weakly in L2(0, T ; L2q/(2+q)(�)),

(∂t nk, ∂t pk)⇀(∂t n, ∂t p) weakly in L7/5(0, T ; W 1,2q/(q+4)
D (�)′)2,

∂t Dk⇀∂t D weakly in L2(0, T ; H1(�)′).

The L∞(0, T ; L5/3(�)) bound for nk from Lemma 10 implies that

‖Tk(nk) − nk‖L1(�T ) =
∫ T

0

∫
{nk>k}

|k − nk |dxdt ≤
∫ T

0

∫
�

n5/3
k

k2/3
dxdt ≤ C

k2/3
→ 0.

This shows that
√

Tk(nk)−√
nk → 0 strongly in L2(�T ) and in particular

√
Tk(nk) →√

n strongly in L2(�T ). In fact, in view of the L∞(0, T ; L5/3(�)) bound for nk , we
even have strong convergence for

√
Tk(nk) in Ls(�T ) for any s < 10/3. The L2(�T )

bound for ∇Vk shows that ∇Vk⇀∇V weakly in L2(�T ). Hence,

√
Tk(nk)∇Vk⇀

√
n∇V weakly in L1(�T ).
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Thanks toLemma11, this convergence also holds in L14/3(0, T ; Lr (�))with r < 8/5.
Then, since s < 10/3 and q < 8 can be chosen in such away that 1/s+(2+q)/(2q) <

1,

Tk(nk)∇Vk = √
Tk(nk) · √

Tk(nk)∇Vk⇀n∇V weakly in L1(�T ). (37)

Similarly, we have Tk(pk)∇Vk⇀Tk(pk)∇Vk weakly in L1(�T ).
Next, we prove the weak convergence of (

√
Tk(nk)∇ g̃k(nk)).

Lemma 13 It holds that, up to a subsequence,

√
Tk(nk)

(∇ g̃k(nk) − √
Tk(nk)∇Vk

)
⇀n∇g(n) − n∇V weakly in L1(�T ),√

Tk(pk)
(∇ g̃k(pk) + √

Tk(pk)∇Vk
)
⇀p∇g(p) + p∇V weakly in L1(�T ).

Proof First, we show that
√

Tk(nk)g̃′
k(nk) converges strongly. To this end, we estimate

∥∥√
Tk(nk)g̃

′
k(nk) − ng′(n)

∥∥
L2(0,T ;L5(�))

≤ ∥∥√
Tk(nk)g̃

′
k(nk) − nk g′(nk)

∥∥
L2(0,T ;L5(�))

+ ‖nk g′(nk) − ng′(n)‖L2(0,T ;L5(�)).

(38)

The first integrand vanishes on {nk ≤ k}. Therefore, on the set {nk > k}, using
Lemma 20,

∣∣√Tk(nk)g̃
′
k(nk) − nk g′(nk)

∣∣5 = |(n2/3
k − k2/3)n1/3

k g′(nk)|5

≤ |nk g′(nk)|5 ≤ C |nk(n
−1
k + n−1/3

k )|5 ≤ C(1 + n10/3
k ) ≤ C

(
nk

k
+ n10/3+ε

k

kε

)

for ε > 0 such that 10/3 + ε ≤ r < 24/7, which shows that

∥∥√
Tk (nk )g̃′

k (nk ) − nk g′(nk )
∥∥2

L2(0,T ;L5(�))
≤ C

k2ε

∫ T

0

(‖nk‖L1(�) + ‖nk‖r
Lr (�)

)2/5dt → 0,

since (nk) is bounded in L2(0, T ; Lr (�)). We show in Lemma 21 that |(zg′(z))′| =
|g′(z) + zg′′(z)| is bounded for z > 0. Hence,

|nk g′(nk) − ng′(n)|r =
∣∣∣∣
∫ n

nk

d

dz
(zg′(z))dz

∣∣∣∣
r

≤ C |nk − n|r .

Then, the strong convergence nk → n in L2(0, T ; Lr (�)) implies that

‖nk g′(nk) − ng′(n)‖L2(0,T ;Lr (�)) → 0.

We conclude from (38) that

√
Tk(nk)g̃

′
k(nk) → ng′(n) strongly in L2(0, T ; Lr (�)).
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Consequently, the weak convergence ∇nk⇀∇n in L2(0, T ; L2q/(2+q)(�)) gives

√
Tk(nk)∇ g̃k(nk) = √

Tk(nk)g̃
′
k(nk)∇nk⇀ng′(n)∇n = n∇g(n)

weakly in L1(�T ). Combining this result with (37) shows that

√
Tk(nk)

(∇ g̃k(nk) − √
Tk(nk)∇Vk

)
⇀n∇g(n) − n∇V weakly in L1(�T ).

The limit for the term (
√

Tk(pk)∇ g̃k(pk)) is shown analogously, which ends the proof.
��

We need the convergence of (∇ g̃(nk)) and (∇ g̃(pk)) to pass to the limit in the
energy inequality.

Lemma 14 It holds that

(∇√
nk,∇√

pk)⇀(∇√
n,∇√

p) weakly in L2(0, T ; L2q/(2+q)(�))2,

(∇ g̃k(nk),∇ g̃k(pk))⇀(
√

n∇g(n),
√

p∇g(p)) weakly in L1(�T )2.

Proof It follows from Lemma 20 that g̃′
k(s) = √

sg′(s) ≥ C(s−1/2 + s1/6) ≥ Cs−1/2

for s < k and g̃′
k(s) = k−1/6s1/3g′(s) ≥ CC(s/k)1/6(s−5/6 + s−1/2) ≥ Cs−1/2

for s > k. Then, the uniform bound for ∇ g̃k(nk) in Lemma 11 implies directly the
bound for∇√

nk in L2(0, T ; L2q/(2+q)(�)), showing the first statement. The limit for
∇√

pk is shown analogously. Repeating the proof of Lemma 13 with
√

nk instead of√
Tk(nk), we obtain the convergence

√
nk g̃′

k(nk) → ng′(n) strongly in L2(0, T ; Lr (�)).

We combine this result with the weak convergence of (∇√
nk) to conclude that

∇ g̃k(nk) = 2
√

nk g̃′
k(nk)∇√

nk⇀2ng′(n)∇√
n = √

n∇g(n) weakly in L1(�T ),

using that (2 + q)/(2q) + 1/r < 1 if we choose q < 8 and r < 24/7 sufficiently
large. ��

2.6 Limit k → ∞ in the Equation for Dk

We prove the convergence of the terms in the equation for Dk . First, we consider
Tk/(k+1)(Dk)

1/2∇h̃k(Dk) = Tk/(k+1)(Dk)
1/2h̃′

k(Dk)∇Dk . We introduce the functions

L(s) = − log(1 − s) for 0 ≤ s < 1,

Lk(s) =
{

− log(1 − s) for 0 ≤ s ≤ k/(k + 1),

(k + 1)s − k + log(k + 1) for s > k/(k + 1).
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They satisfy the property L ′
k(Dk) = Tk/(k+1)(Dk)

1/2h̃′
k(Dk) for all 0 ≤ s < 1.

Moreover, Lk is nondecreasing, Lk ≤ Lk+1 on [0, 1), and Lk converges to L locally
uniformly on [0, 1). The aim is to derive uniform bounds for Lk(Dk) and to identify
its weak limit.

Lemma 15 There exists a constant C > 0 such that

‖Lk(Dk)‖L2(0,T ;H1(�)) ≤ C .

Proof The gradient bound follow immediately from L ′
k(s) < h̃′

k(s) for 0 < s <

1 and |∇Lk(Dk)| = L ′
k(Dk)|∇Dk | ≤ h̃′

k(Dk)|∇Dk | = |∇h̃k(Dk)|, showing that
(∇Lk(Dk)) is bounded in L2(�T ). By mass conservation and Assumption (A4), we
have

1

m(�)

∫
�

Dkdx = 1

m(�)

∫
�

DIdx = DI
� < 1.

Thus, the conditions of Lemma 22 in Appendix B are satisfied, and we infer from the
gradient bound that Lk(Dk) is bounded in L2(�T ). Lemma 22 now finishes the proof.

��
The uniform bound in Lemma 15 implies the existence of a subsequence such that

Lk(Dk)⇀L∗ weakly in L2(�T ) as k → ∞.

The next aim is to identify L∗ = L(D), where we recall that D is the strong L2(�T )

limit of (Dk).
First, we claim that L(D) ∈ L2(�T ) and D < 1 a.e. in �T . Indeed, we have

D� → D a.e. in �T as � → ∞, up to a subsequence. Hence, since Lk is continuous
and Lk ≤ Lk+1, for any k ∈ N,

∫ T

0

∫
�

Lk(D)2dxdt =
∫ T

0

∫
�

lim
�→∞ Lk(D�)

2dxdt =
∫ T

0

∫
�

lim inf
�→∞ Lk(D�)

2dxdt

≤
∫ T

0

∫
�

lim inf
�→∞ L�(D�)

2dxdt ≤ lim inf
�→∞

∫ T

0

∫
�

L�(D�)
2dxdt,

where the last step follows fromFatou’s lemma. The last integral is uniformly bounded.
Therefore, (Lk(D)) is bounded in L2(�T ), and again by Fatou’s lemma,

∫ T

0

∫
�

L(D)2dxdt ≤ lim inf
k→∞

∫ T

0

∫
�

Lk(D)2dxdt ≤ C .

The L2(�T )-bound for L(D) = − log(1 − D) implies that D < 1 a.e.
To identify L∗ with L(D), we set

Dη := (1 − η)D + η, Dk,η := (1 − η)Dk + η for 0 < η < 1.
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Because of the strong convergence of Dk , we clearly have Dk,η → Dη strongly in
L2(�T ) for any fixed 0 < η < 1. The proof of Lemma 15 shows that (Lk(Dk,η))

is bounded in L2(0, T ; H1(�)), and the previous arguments imply that L(Dη) ∈
L2(�T ). Furthermore, let ψ : �T → [0, 1] be a smooth function and set

Dη,ψ := (1 − ηψ)D + ηψ = D + (1 − D)ηψ, for 0 < η < 1.

Since Dη,ψ ≤ Dη, the monotonicity of L implies that L(Dη,ψ) ∈ L2(�T ). With these
preparations, we can prove that L∗ = L(D).

Lemma 16 It holds that L∗ = L(D) and

Lk(Dk)⇀L(D) weakly in L2(0, T ; H1(�)).

Proof The proof is based on the monotonicity of Lk (Minty trick). We pass to the limit
k → ∞ in

0 ≤
∫ T

0

∫
�

(Lk(Dη,ψ) − Lk(Dk))(Dη,ψ − Dk)dxdt,

leading to

0 ≤ 1

η

∫ T

0

∫
�

(L(Dη,ψ ) − L∗)(Dη,ψ − D)dxdt =
∫ T

0

∫
�

(L(Dη,ψ ) − L∗)(1 − D)ψdxdt .

By dominated convergence, the limit η → 0 gives

0 ≤
∫ T

0

∫
�

(L(D) − L∗)(1 − D)ψdxdt . (39)

Next, we show the inverse inequality. The monotonicity Lk ≤ Lk+1, the weak
convergence of (Lk(Dk)), and Fatou’s lemma yield the following inequalities:

∫ T

0

∫
�

(1 − D)ψ Lk(D)dxdt =
∫ T

0

∫
�

(1 − D)ψ lim
�→∞ Lk(D�)dxdt

≤
∫ T

0

∫
�

(1 − D)ψ lim inf
�→∞ L�(D�)dxdt ≤ lim inf

�→∞

∫ T

0

∫
�

(1 − D)ψ L�(D�)dxdt

≤
∫ T

0

∫
�

(1 − D)ψ L∗dxdt .

It follows from dominated convergence that

∫ T

0

∫
�

(1 − D)ψ L(D)dxdt ≤
∫ T

0

∫
�

(1 − D)ψ L∗dxdt,
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or equivalently,

∫ T

0

∫
�

(L(D) − L∗)(1 − D)ψdxdt ≤ 0.

Together with (39), this shows that

∫ T

0

∫
�

(L(D) − L∗)(1 − D)ψdxdt = 0.

Since ψ is arbitrary, we find that (L(D) − L∗)(1 − D) = 0 a.e. It follows from
D < 1 a.e. that L(D) = L∗ a.e. Hence, by Lemma 15, Lk(Dk)⇀L(D) weakly in
L2(0, T ; H1(�)). ��

The previous lemma implies that

Tk/(k+1)(Dk)
1/2∇h̃k(Dk) = Tk/(k+1)(Dk)

1/2h̃′
k(Dk)∇Dk = L ′

k(Dk)∇Dk

= ∇Lk(Dk)⇀∇L(D) = −∇ log(1 − D) = D∇h(D) weakly in L2(�T ).

(40)

The next step is the convergence of (Tk/(k+1)(Dk)∇Vk) and the identification of the
limit.

Set T1(s) = max{0,min{1, s}}. We deduce from

|Tk/(k+1)(Dk) − T1(D)| = |Tk/(k+1)(Dk) − Tk/(k+1)(D)| + |Tk/(k+1)(D) − T1(D)|
≤ |Dk − D| + 1

k + 1

and the strong convergence of (Dk) that

∫ T

0

∫
�

|Tk/(k+1)(Dk) − T1(D)|2dxdt ≤ 2
∫ T

0

∫
�

|Dk − D|2dxdt + C

(k + 1)2
→ 0.

The property D < 1 a.e. implies that T1(D) = D and thus Tk/(k+1)(Dk) → D
strongly in L2(�T ).We deduce from the convergence of∇Vk⇀∇V weakly in L2(�T )

that Tk/(k+1)(Dk)∇Vk⇀D∇V weakly in L1(�T ). We know from Lemma 10 that
Tk/(k+1)(Dk)∇Vk = Tk/(k+1)(Dk)

1/2 · Tk/(k+1)(Dk)
1/2∇VK ) is uniformly bounded in

L∞(0, T ; L2(�)). This yields the convergence

Tk/(k+1)(Dk)∇Vk⇀D∇V weakly in L2(�T ).

It follows from (40) that

Tk/(k+1)(Dk)
1/2(∇h̃k(Dk) + Tk/(k+1)(Dk)

1/2∇VK
)
⇀D∇h(D) + D∇V

weakly in L2(�T ).
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Performing the limit k → ∞ in the weak formulation (15)–(18), using for-
mulation (25) of the fluxes, leads to the weak formulation of (1)–(4). The limit
(n, p, V ) satisfies the Dirichlet boundary conditions (6) since nk = n̄, pk = p̄, and
Vk = V̄ on �D . Finally, the limit nk⇀n weakly in W 1,7/5(0, T ; W 1,2q/(q+4)

D (�)′) ↪→
C0([0, T ]; W 1,2q/(q+4)

D (�)′) and the property nk(·, 0) = nI in the sense of

W 1,2q/(q+4)
D (�)′ show that n satisfies the initial condition in (5) in a weak sense.

Similarly, p and D also satisfy the initial conditions.

2.7 Energy Inequality

We identify the weak limit of ∇h̃k(Dk), which is needed in the limit of the energy
inequality (34), leading to (14).

Lemma 17 Recall that h̃(s) = 2 tanh−1 √
s − 2 tanh−1 √

1/2. It holds that

∇h̃k(Dk)⇀∇h̃(D) weakly in L2(�T ).

Proof The function h̃k is written explicitly as

h̃k(s) =
{
2 tanh−1 √

s − 2 tanh−1 √
1/2 for 0 ≤ s ≤ k

k+1 ,√
k+1

k ((k + 1)s − k) + 2 tanh−1
√

k
k+1 for s > k

k+1 .

By Lemma 10, the sequence (∇h̃k(Dk)) is bounded in L2(�T ). Proceeding as in the
proof of Lemma 15, we can show that (̃hk(Dk)) is bounded in L2(0, T ; H1(�)). We
deduce from

|∇h̃k(Dk,η)| ≤
{

|∇h̃k(Dk)| for Dk,η ≤ k/(k + 1),√
2|∇Lk(Dk,η)| for Dk,η > k/(k + 1)

a uniform bound for ∇h̃k(Dk,η) in L2(�T ). The bound for (̃hk(Dk)) implies a bound
for (̃hk(Dk,η)) in L2(�T ), and we have h̃(Dη) ∈ L2(�T ). Finally, the proof of
Lemma 16 shows that

h̃k(Dk)⇀2 tanh−1
√

D − 2 tanh−1
√
1/2 weakly in L2(�T ),

∇h̃k(Dk)⇀2∇ tanh−1
√

D weakly in L2(�T ),

ending the proof. ��

3 Proof of Theorem 2

Since the proof is similar to that one of Jüngel and Vetter (2025, Theorem 2), we
present only the key ideas, proceeding formally. First, we notice that Assumption
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(A5) with r = 3 + ε > 3 yields

‖V ‖L∞(0,T ;W 1,r (�)) ≤ C‖n − p − D + A‖L∞(0,T ;L3r/(r+3)(�)) + C ≤ C, (41)

by Lemma 10, since 3r/(r + 3) ≤ 5/3 if ε > 0 is sufficiently small. To simplify,
we assume that n̄ = 0. The proof can be extended in a straightforward way to gen-
eral boundary data n̄, but at the price of more elaborate technical estimations (see,
e.g., Jüngel and Vetter 2025, Section 3). We wish to use nq for q ∈ N as a test
function in the weak formulation of (1). To justify this step, we need to show that
n ∈ L∞(0, T ; Lq(�)). This property is proved in Jüngel and Vetter (2025, Sec. 3) in
a similar context, and therefore, we do not present the quite technical proof here. With
this test function, we obtain

1

q + 1

d

dt

∫
�

nq+1dx + q
∫

�

ng′(n)nq−1|∇n|2dx = q
∫

�

nq∇V · ∇ndx .

We deduce from Lemma 20 that ng′(n) ≥ c(1 + n2/3) and hence, using Hölder’s
inequality for the drift term, integrating over (0, t), and possibly lowering the constant
c > 0,

1

q + 1

∫
�

(n(t)q+1 − n(0)q+1)dx + c

q + 1

∫ t

0

∫
�

(|∇n(q+1)/2|2 + |∇n(3q+5)/6|2)dxds

≤ 6q

3q + 5

∫
�

n(3q+1)/6∇V · ∇n(3q+5)/6dx

≤ C
∫ t

0
‖n(3q+1)/6‖L(6+2ε)/(1+ε)(�)

‖∇V ‖L3+ε(�)‖∇n(3q+5)/6‖L2(�)ds

≤ C
∫ t

0
‖n(3q+1)/6‖L(6+2ε)/(1+ε)(�)

‖∇n(3q+5)/6‖L2(�)ds, (42)

where in the last step we have taken into account (41). We apply the Gagliardo–
Nirenberg inequality with θ = (15 + 3ε)/(15 + 5ε) < 1 (at this point we need the
regularity in W 1,r (�)with r = 3+ε > 3; ε = 0 would not be sufficient) and Young’s
inequality:

‖n(3q+1)/6‖L(6+2ε)/(1+ε)(�) = ‖n(3q+5)/6‖(3q+1)/(3q+5)
L(3q+1)(6+2ε)/((3q+5)(1+ε))(�)

≤ C + C‖n(3q+5)/6‖L(3q+1)(6+2ε)/((3q+5)(1+ε))(�)

≤ C + C‖∇n(3q+5)/6‖θ
L2(�)

‖n(3q+5)/6‖1−θ

L1(�)
.

We insert this expression into (42), multiply by q + 1, and use the Young inequality
(q + 1)a1+θ b1−θ ≤ a2 + Cθ (q + 1)2/(1−θ)b2, with Cθ > 0 depending solely on θ :

‖n(t)‖q+1
Lq+1(�)

+ c
∫ t

0
‖∇n(3q+5)/6‖2L2(�)

ds

≤ ‖nI ‖q+1
L∞(�) + C(q + 1)

∫ t

0

(
1 + ‖∇n(3q+5)/6‖1+θ

L2(�)
‖n(3q+5)/6‖1−θ

L1(�)

)
ds
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≤ ‖nI ‖q+1
L∞(�) + CT (q + 1) + c

2

∫ t

0
‖∇n(3q+5)/6‖2L2(�)

ds

+ C(q + 1)2/(1−θ)

∫ t

0
‖n(3q+5)/6‖2L1(�)

ds.

The third termon the right-hand side canbe absorbedby the left-hand side.Then, taking
the supremum over (0, T ) and observing that ‖n(3q+5)/6‖2

L1(�)
= ‖n‖(3q+5)/3

L(3q+5)/6(�)
:

‖n‖q+1
L∞(0,T ;Lq+1(�))

≤ ‖nI ‖q+1
L∞(�)

+ C(q + 1) + C(q + 1)2/(1−θ)‖n‖(3q+5)/3
L∞(0,T ;L(3q+5)/6(�))

. (43)

We set qk := q + 1 and qk−1 := (3q + 5)/6, which defines the recursion qk−1 =
(3qk + 2)/6 or qk = 2qk−1 − 2/3 with the explicit solution

qk = 2k 3q0 − 2

3
+ 2

3
, k ∈ N,

where the initialization q0 > 2/3 is arbitrary. Setting

bk = ‖n‖qk
L∞(0,T ;Lqk (�))

+ ‖nI ‖qk
L∞(�) + 1,

an elementary computation shows that (43) can be written as

bk ≤ Ckq2/(1−θ)
k b2k−1, k ∈ N.

This inequality can be solved as in Jüngel and Vetter (2025, Sec. 3):

‖n‖L∞(0,T ;Lqk (�)) ≤ (C32/(1−θ))(2
k+1−k−2)/qk

(‖n‖q0
L∞(0,T ;Lq0 (�))

+ ‖nI ‖q0
L∞(�)

+ 1
)2k/qk .

It is shown in Jüngel and Vetter (2025, Sec. 3) that the exponents on the right-hand side
are bounded uniformly in k. Choosing q0 ≤ 5/3, it follows from Lemma 10 that N :=
‖n‖L∞(0,T ;Lq0 (�)) is bounded. Then, the limit k → ∞ shows that ‖n‖L∞(0,T ;L∞(�)) ≤
C(nI , N ).

Appendix A. Fermi–Dirac Integrals

The Fermi–Dirac integral of order j > −1 is defined by:

F j (z) = 1

�( j + 1)

∫ ∞

0

s j

1 + es−z
ds, z ∈ R,

where �( j +1) = ∫ ∞
0 s j e−sds is the Gamma function. This function has the property

F ′
j = F j−1 for j > 0. In the following, we write A ∼ B if there exist constants

C1, C2 > 0 such that A ≤ C1B ≤ C2A.
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Lemma 18 It holds for any j > −1 and z ∈ R that

F j (z) ∼ ez1{z≤0} + (z j+1 + 1)1{z>0}.

Proof Let first z ≤ 0. Then es−z < 1 + es−z ≤ 2es−z and

F j (z) ≥ 1

�( j + 1)

∫ ∞

0

s j

2es−z
ds = ez

2
, F j (z) ≤ 1

�( j + 1)

∫ ∞

0

s j

es−z
ds = ez .

This shows that F j (z) ∼ ez for z ≤ 0. For z > 0, we write F j (z) = I1 + I2, where

I1 = 1

�( j + 1)

∫ z

0

s j

1 + es−z
ds, I2 = 1

�( j + 1)

∫ ∞

z

s j

1 + es−z
ds.

We infer from s ≤ z and hence es−z ≤ 1 that

I1 ≥ 1

2�( j + 1)

∫ z

0
s jds = z j+1

2( j + 1)�( j + 1)
= z j+1

2�( j + 2)
,

I1 ≤ 1

�( j + 1)

∫ z

0
s jds = z j+1

�( j + 2)
,

To estimate I2, we assume first that j ≥ 0 and substitute y = s − z ≥ 0:

I2 = 1

�( j + 1)

∫ ∞

0

(y + z) j

1 + ey
dy ≥ 1

�( j + 1)

∫ ∞

0

y j

2ey
dy = 1

2
,

I2 ≤ 1

�( j + 1)

( ∫ z

0
+

∫ ∞

z

)
(y + z) j

1 + ey
dy

≤ 1

�( j + 1)

∫ z

0

(2z) j

1 + ey
dy + 1

�( j + 1)

∫ ∞

z

(2y) j

1 + ey
dy

≤ (2z) j

�( j + 1)

∫ z

0
e−ydy + 2 j

�( j + 1)

∫ ∞

z

y j

ey
dy ≤ (2z) j

�( j + 1)
+ 2 j .

We conclude that

F j (z) ≤ z j+1

�( j + 2)
+ (2z) j

�( j + 1)
+ 2 j , F j (z) ≥ z j+1

2�( j + 2)
+ 1

2
,

proving that F j (z) ∼ z j+1 + 1 for z > 0 and j ≥ 0.
Finally, let −1 < j < 0. Then, arguing as before, I1 ≤ z j+1/�( j + 2),

I2 = 1

�( j + 1)

∫ ∞

0

(y + z) j

1 + ey
dy ≤ 1

�( j + 1)

∫ ∞

0

y j

ey
dy = 1,
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and hence F j (z) ≤ z j+1/�( j + 2) + 1. The estimate from below requires a more
careful computation. As the function F j is continuous and strictly increasing, its
minimum on [0, 1] equals F j (0). Thus, for z ∈ [0, 1],

F j (z) ≥ F j (0) = 1

�( j + 1)

∫ ∞

0

s j

1 + es
ds >

1

�( j + 1)

∫ ∞

0

s j

2es
ds = 1

2
.

Let z > 1. We always have I2 ≥ 0. The inequality s j ≥ 1 ≥ z−1 for 1 ≤ s ≤ z
implies that s j ≥ 1

2 (s
j + z−1) and hence,

I1 = 1

�( j + 1)

(∫ 1

0
+

∫ z

1

)
s j

1 + es−z
ds

≥ 1

2�( j + 1)

∫ 1

0
s jds + 1

2�( j + 1)

∫ z

1

1

2
(s j + z−1)ds

= 1

4�( j + 1)

∫ z

0
s jds + 1

4�( j + 1)

∫ 1

0
s jds + 1

4�( j + 1)

∫ z

1
z−1ds

= z j+1

4�( j + 2)
+ 1

4�( j + 1)

(
1

j + 1
+ 1 − 1

z

)
≥ z j+1

4�( j + 2)
+ 1

4�( j + 2)
.

Combining the estimates for z ∈ [0, 1] and z > 1 yields F j (z) ≥ C(z j+1 + 1) for all
z ≥ 0. This is the desired lower bound, which concludes the proof. ��
Corollary 19 Let j > 0. Then for z ∈ R,

F ′
j (z) = F j−1(z) ∼ F j (z)1{z≤0} + F j (z)

j/( j+1)1{z>0}.

Proof If z ≤ 0, then, by Lemma 18, F j−1(z) ∼ ez ∼ F j (z). Furthermore, by the
same lemma, if z > 0, we have F j−1(z) ∼ z j = (z j+1) j/( j+1) ∼ F j (z) j/( j+1). ��
Lemma 20 Recall that g = F−1

1/2. It holds for z > 0 that

g′(z) ∼ z−1 + z−1/3.

Proof Let z > 0 and y = F−1
1/2(z). Then, by Corollary 19,

g′(z) = 1

F ′
1/2(y)

= 1

F−1/2(y)
∼ 1

F1/2(y)1{y≤0} + F1/2(y)1/31{y>0}

= 1

z1{y≤0} + z1/31{y>0}
= z−11{y≤0} + z−1/31{y>0},

which shows that g′(z) ≤ C(z−1 + z−1/3) for z > 0. For the lower bound, we
distinguish the cases 0 < z ≤ F1/2(0) (or y ≤ 0) and z > F1/2(0) (or y > 0). The
case z ≤ F1/2(0) implies that z < 1 (since 1/2 < F1/2(0) < 1). Then, the inequality
z−1 > z−1/3 yields z−11{y≤0} > (z−1 + z−1/3)/2 and g′(z) ≤ C(z−1 + z−1/3).
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Let z > F1/2(0). If z ≥ 1, we have z−1/31{y>0} ≥ z−11{y>0} and g′(z) ≥ C(z−1 +
z−1/3). If F1/2(0) < z < 1, we observe that F1/2(0) < z yields F1/2(0)z−1 < 1 <

z−1/3, showing that

z−1/31{y>0} >
F1/2(0)

2
(z−1 + z−1/3)1{y>0}

and again g′(z) ≥ C(z−1 + z−1/3). Summarizing these estimates, we conclude the
proof. ��

Our final result is used in the proof of Lemma 13.

Lemma 21 There exists a constant C > 0 such that for z > 0,

d

dz
(zg′(z)) ≤ C

(
1{z<F1/2(0)} + z−1/31{z≥F1/2(0)}

)
.

Proof Let z < F1/2(0) and set y = F−1
1/2(z) < 0. Then

d

dz
(zg′(z)) = g′(z) + zg′′(z) = F ′

1/2(y)2 − F1/2(y)F ′′
1/2(y)

F ′
1/2(y)3

. (44)

Let N (y) := F ′
1/2(y)2 − F1/2(y)F ′′

1/2(y). We compute the derivatives

F ′
1/2(z) = 2√

π

∫ ∞

0

√
ses−z

(1 + es−z)2
ds, F ′′

1/2(z) = 2√
π

∫ ∞

0

√
ses−z(es−z − 1)

(1 + es−z)3
ds,

yielding

N (y) = 4

π

∫ ∞
0

∫ ∞
0

√
stes−yet−ydsdt

(1 + es−y)2(1 + et−y)2
− 4

π

∫ ∞
0

∫ ∞
0

√
stes−y(es−y − 1)dsdt

(1 + es−y)3(1 + et−y)

= 4

π

∫ ∞
0

∫ ∞
0

√
stes−y 2et−y − es−y + 1

(1 + es−y)3(1 + et−y)2
dsdt

= 4

π

∫ ∞
0

∫ ∞
0

√
stes−y

(
2

(1 + es−y)3(1 + et−y)
− 1

(1 + es−y)2(1 + et−y)2

)
dsdt

= 2√
π
F1/2(y)

∫ ∞
0

2
√

ses−y

(1 + es−y)3
ds − 2√

π
F ′
1/2(y)

∫ ∞
0

√
t

(1 + et−y)2
dt

≤ 2√
π
F1/2(y)

∫ ∞
0

2
√

ses−y

(1 + es−y)3
ds.

We estimate the remaining integral:

2√
π

∫ ∞

0

√
ses−y

(1 + es−y)3
ds ≤ 2√

π
ey

∫ ∞

0

√
ses−y

(1 + es−y)2
ds = eyF ′

1/2(y).
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Therefore, using Lemma 18 for y = F−1
1/2(z) < 0,

N (y) ≤ 2eyF1/2(y)F ′
1/2(y) ≤ C1e3y, F ′

1/2(y)3 = F−1/2(y)3 ≥ C2e3y .

We conclude from (44) for z < F1/2(0) that

d

dz
(zg′(z)) = N (y)

F ′
1/2(y)3

≤ C1

C2
.

Next, let z ≥ F1/2(0) (or y ≥ 0). We know from the proof of Lemma 20 that in
this case g′(z) ≤ Cz−1/3. According to (44), it remains to show that

zg′′(z) = −F1/2(y)F ′′
1/2(y)

F ′
1/2(y)3

≤ Cz−1/3 for z ≥ F1/2(0).

To this end, we fix some y0 > F1/2(0) and choose 0 < ε < y0. For y > y0, we split
the integral −F ′′

1/2 into two parts, −F ′′
1/2(y) = I3 + I4, where

I3 = − 2√
π

∫ ε

0

√
ses−y(es−y − 1)

(1 + es−y)3
ds, I4 = − 2√

π

∫ ∞

ε

√
ses−y(es−y − 1)

(1 + es−y)3
ds.

The estimate of I3 is straightforward:

I3 ≤ 2√
π

eε−y
∫ ε

0

√
sds = 4

3
√

π
eε−yε3/2.

We integrate by parts in I4 twice and split the resulting integral into two parts:

I4 = 2√
π

( √
ses−y

(1 + es−y)2

∣∣∣∣
∞

ε

+
∫ ∞

ε

s−1/2es−y

2(1 + es−y)2
ds

)

= 2√
π

{
−

√
εeε−y

(1 + eε−y)2
+

(
s−1/2

2(1 + es−y)

∣∣∣∣
∞

ε

+
∫ ∞

ε

s−3/2

4(1 + es−y)
ds

)}

= − 2√
π

( √
εeε−y

(1 + eε−y)2
+ ε−1/2

2(1 + es−y)

)
+ 2√

π
(I5 + I6),

where

I5 =
∫ y

ε

s−3/2

4(1 + es−y)
ds ≤ 1

4(1 + eε−y)

∫ y

ε

s−3/2ds = ε−1/2 − y−1/2

2(1 + eε−y)
,

I6 =
∫ ∞

y

s−3/2

4(1 + es−y)
ds ≤ 1

2

∫ ∞

y
s−3/2ds = y−1/2.
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Summarizing these estimates, we observe that the contributions that are singular for
ε → 0 cancel, and we end up with

−F ′′
1/2(y) ≤ 2√

π

{
2

3
eε−yε3/2 −

( √
εeε−y

(1 + eε−y)2
+ ε−1/2

2(1 + es−y)

)
+ ε−1/2 − y−1/2

2(1 + eε−y)
+ y−1/2

}

= 2√
π

(
2

3
eε−yε3/2 −

√
εeε−y

(1 + eε−y)2
+ 1 + 2eε−y

2(1 + eε−y)
y−1/2

)
.

Since ε > 0 is arbitrary, we can pass to the limit ε → 0 to find that for all y ≥ 0,

−F ′′
1/2(y) ≤ 2√

π

1 + 2e−y

2(1 + e−y)
y−1/2 ≤ Cy−1/2.

We use the previous inequality to estimate the nominator and Corollary 19 to estimate
the denominator in (44):

zg′′(z) = −F1/2(y)F ′′
1/2(y)

F ′
1/2(y)3

≤ C
F1/2(y)y−1/2

F1/2(y)
≤ C

y1/2
for y > y0.

For 0 ≤ y ≤ y0, the expression zg′′(z) is bounded since F1/2 and its derivatives are
bounded in [0, y0]. In case y > y0, we wish to have an upper bound in terms of z.
For this, we notice that, by Lemma 18, z = F1/2(y) ≤ C1(y3/2 + 1). It follows from

y > y0 that z ≤ C1(1 + y−3/2
0 )y3/2 =: C2y3/2 and

zg′′(z) ≤ Cy−1/2 ≤ CC1/3
2 z−1/3.

This concludes the proof. ��

Appendix B. A Nonlinear Poincaré–Wirtinger-Type Lemma

We show a nonlinear version of the Poincaré–Wirtinger inequality.

Lemma 22 Let � ⊂ R
d (d ≥ 1) be a bounded domain, let f : [0, b) → [0,∞) with

b ∈ R∪{+∞}, be a strictly increasing function, let u ∈ L1(�) satisfy f (u) ∈ H1(�)

and u� := m(�)−1
∫
�

udx < b. Then for any û ∈ (u�, b) one has

‖ f (u)‖2L2(�)
≤ 2m(�) f (̂u)2 + 4CP

(
1 + û

û − u�

)
‖∇ f (u)‖2L2(�)

,

where CP > 0 is the square of the constant of the Poincaré–Wirtinger inequality.

Notice that the function f may be singular at b. Therefore, we need the condition
u� < b to ensure that the right-hand side is finite. We apply this lemma in the proof
of Lemma 15 with f (u) = − log(1 − u), u ∈ [0, 1).
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Proof The proof is based on the arguments of (Cancès et al. 2021, Lemma 4.1). We
set A := ( f (u) − f (̂u))+ and A� = m(�)−1

∫
�

Adx . Since f (u)2 ≤ 2 f (̂u)2 +
2[( f (u) − f (̂u))+]2 = 2 f (̂u)2 + 2A2, we have

∫
�

f (u)2dx ≤ 4
∫

�

(A − A�)2dx + 4
∫

�

A2
�dx + 2m(�) f (̂u)2. (45)

We set C1 := 2m(�) f (̂u)2 for the last term. The first term is estimated according to
the Poincaré–Wirtinger inequality as

∫
�

(A − A�)2dx ≤ CP‖∇ A‖2L2(�)
≤ CP‖∇ f (u)‖2L2(�)

. (46)

Furthermore,

∫
�

(A − A�)2dx =
∫

{A=0}
A2

�dx +
∫

{A>0}
(A − A�)2dx ≥ m({A = 0})A2

�.

The previous two inequalities yield

A2
� ≤ CP

m({A = 0})‖∇ f (u)‖2L2(�)
. (47)

We need to derive a lower bound for m({A = 0}). To this end, we observe that
A > 0 if and only if u > û since f is assumed to be strictly increasing. Then,

(
m(�) − m({A = 0}))̂u = m({A > 0})̂u =

∫
{u>û}

ûdx ≤
∫

�

udx = m(�)u�.

It follows that

m({A = 0}) ≥ m(�)
û − u�

û
> 0,

and we infer from (47) that

A2
� ≤ û

û − u�

CP

m(�)
‖∇ f (u)‖2L2(�)

.

Combining this inequality with (45) and (46), we obtain the result. ��
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