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Abstract
Objectives To develop an automatic method for identification and segmentation of clinically significant prostate cancer in low-
risk patients and to evaluate the performance in a routine clinical setting.
Methods A consecutive cohort (n = 292) from a prospective database of low-risk patients eligible for the active surveillance was
selected. A 3-T multi-parametric MRI at 3 months after inclusion was performed. Histopathology from biopsies was used as
reference standard. MRI positivity was defined as PI-RADS score ≥ 3, histopathology positivity was defined as ISUP grade ≥ 2.
The selected cohort contained four patient groups: (1) MRI-positive targeted biopsy-positive (n = 116), (2) MRI-negative sys-
tematic biopsy-negative (n = 55), (3) MRI-positive targeted biopsy-negative (n = 113), (4) MRI-negative systematic biopsy-
positive (n = 8). Group 1 was further divided into three sets and a 3D convolutional neural network was trained using different
combinations of these sets. TwoMRI sequences (T2w, b = 800 DWI) and the ADCmap were used as separate input channels for
the model. After training, the model was evaluated on the remaining group 1 patients together with the patients of groups 2 and 3
to identify and segment clinically significant prostate cancer.
Results The average sensitivity achievedwas 82–92% at an average specificity of 43–76%with an area under the curve (AUC) of
0.65 to 0.89 for different lesion volumes ranging from > 0.03 to > 0.5 cc.
Conclusions The proposed deep learning computer-aided method yields promising results in identification and segmen-
tation of clinically significant prostate cancer and in confirming low-risk cancer (ISUP grade ≤ 1) in patients on active
surveillance.
Key Points
• Clinically significant prostate cancer identification and segmentation on multi-parametric MRI is feasible in low-risk patients
using a deep neural network.

• The deep neural network for significant prostate cancer localization performs better for lesions with larger volumes sizes
(> 0.5 cc) as compared to small lesions (> 0.03 cc).

• For the evaluation of automatic prostate cancer segmentation methods in the active surveillance cohort, the large discordance
group (MRI positive, targeted biopsy negative) should be included.
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Abbreviations
AUC Area under the curve
CNN Convolution neural network
DRE Digital rectal examination
HIPAA Health Insurance Portability and

Accountability Act
ISUP International Society of Urological Pathology
MRI Magnetic resonance imaging
PCa Prostate cancer
PI-RADS Prostate Imaging Reporting and Data System
PZ Peripheral zone
ROC Receiver operating characteristic
TRUS Transrectal ultrasound
TZ Transition zone
US Ultrasound

Introduction

The standard clinical procedure for diagnosing prostate cancer
(PCa) is a systematic transrectal ultrasound-guided (TRUS)
biopsy, indicated by an elevated prostate-specific antigen
(PSA) level and/or an abnormal digital rectal examination
(DRE) [1]. However, this procedure results in low sensitivity
and specificity [2, 3] leading to underdiagnosis of clinically
significant PCa and overdiagnosis of insignificant PCa.
Recently, multi-parametric magnetic resonance imaging
(mpMRI) has been reported as a more accurate alternative
for PCa characterization and detection [4–6]. A recent
Cochrane review and meta-analysis has shown that mpMRI
before prostate biopsy can aid in the selection of patients at
risk of having clinically significant PCa [4]. In addition, MRI-
targeted biopsy improves detection of significant PCa [5].

Radiologists use the Prostate Imaging Reporting and Data
System (PI-RADS) v2 for visual lesion characterization on
mpMRI [7]. PI-RADS v2 assessment uses a 5-point Likert
scale ranging from 1 (highly unlikely to be malignant) to 5
(highly likely to be malignant) [7]. However, visual interpre-
tation of mpMRI by radiologists suffers from large inter- and
intra-observer variability [8]. Decreasing this variability is
critical to improve PCa diagnosis and monitoring [9]. A
computer-aided analysis of prostate mpMRI may improve
PCa identification and may aid in standardization of MRI
interpretation [10]. Ultimately, it may contribute in improving
the diagnostic chain [11] and thereby reducing over- and un-
derdiagnosis and treatment in prostate cancer management
[10].

Different computer-aided methods [12–15] have been pro-
posed to accurately identify PCa onmpMRI using a radiomics
approach or deep learning network. The performance, quanti-
fied by the area under the receiving operating characteristic
curve (AUC), ranges from 0.93 to 0.97 [14, 15]. The main
limitation in these studies is that the selected patient cohorts

consist of intermediate- and high-risk patients. These patients
have primarily obvious and large (volume > 0.5 cc) lesions on
MRI, and were mostly treated with a radical prostatectomy.
There is no general agreement on the definition of clinically
significant prostate cancer. According to PI-RADS v2, a clin-
ically significant PCa should have histopathology ISUP grade
≥ 2 and/or volume ≥ 0.5 cc and/or have extra prostatic exten-
sion [7]. Most studies [12–14] excluded tumor volumes
< 0.5 cc; therefore, these methods cannot be generalized to
smaller volume PCa, which can be high grade and should be
monitored in an active surveillance program. In daily diagnos-
tic workup and MRI reading, the number of obvious cases is
limited; moreover, these cases do not cause the substantial
reading variability. Furthermore, the challenging cases with
discordance between the PIRADS score and the histopatho-
logical findings were not included in these studies.

We hypothesize that the potential additional clinical
value of MRI-based computer-aided method will be
most substantial in low-risk patients who opt for active
surveillance. Active surveillance is considered a treat-
ment option for patients diagnosed with a clinically in-
significant PCa [16, 17]. These low-risk patients most
likely do not have high volume or clinically significant
tumors; however, they may benefit from a timely diag-
nosis to prohibit tumor progression to a clinically sig-
nificant PCa. Current active surveillance protocols re-
quire monitoring with regular clinical evaluations and
prostate biopsies. The mpMRI is increasingly used to
monitor non-invasively the low-risk PCa patients on ac-
tive surveillance and to enable targeted biopsies
[18–20]. Assistance in identification and segmentation
of clinically significant PCa may reduce MRI-reading
variability in active surveillance patients.

In this study, we aim to detect and segment clinically sig-
nificant PCa in a prospective clinical cohort of low-risk pa-
tients on active surveillance using an MRI-based deep learn-
ing approach and evaluate its performance in a routine clinical
setting.

Materials and methods

Patient cohort

The study was HIPAA compliant and written informed
consent with guarantee of confidentiality was obtained
from the participants. Initially, 377 patients with low-risk
PCa (defined as International Society of Urological
Pathology “ISUP,” grade 1) were prospectively enrolled
in our in-house database from 2016 to 2019 as part of the
global MRI-PRIAS protocol (www.prias-project.org), a
web-based active surveillance study with defined criteria
for inclusion and follow-up [21]. All participants received
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a multi-parametric MRI and targeted biopsies of visible
suspicious (PI-RADS ≥ 3) lesions at baseline (3 months
after diagnosis) and during every repeat standard TRUS-
guided biopsy, scheduled at 1, 4, 7, and 10 years after
diagnosis. A detailed description of the clinical workup
was recently published [22].

For each patient, two MRI sequences, i.e., a T2-weighted
imaging (T2w) and a high b-value diffusion-weighted image
(DWI) at b = 800, and the apparent diffusion coefficient
(ADC) map were selected. Histopathology data from MRI-
targeted biopsies were also extracted and considered reference
standard. Patients who refused or had no biopsy procedure or
whose MR images showed artifacts were excluded from the
study (Fig. 1).

The remaining cohort (n = 292) was divided into four
groups (Fig. 1) based on findings:

& Group 1. One hundred sixteen patients with positive le-
sions on MRI (PI-RADS score ≥ 3) who had positive
targeted biopsies (ISUP grade ≥ 2)

& Group 2. Fifty-five patients with negative MRI (PI-RADS
score ≤ 2) who had negative systematic biopsies (ISUP
grade ≤ 1)

& Group 3. One hundred thirteen patients with positive le-
sions on MRI (PI-RADS score ≥ 3) who had negative
targeted biopsies (ISUP grade ≤ 1)

& Group 4. Eight patients with negative MRI (PI-RADS
score ≤ 2) who had positive systematic biopsies (ISUP
grade ≥ 2)

Clinically non-significant and significant PCa were defined
based on histopathology-defined ISUP grade or Gleason score
[23].

& ISUP grade ≤ 1(Gleason score ≤ 3 + 3 = 6): uniform
glands that look similar to normal cells and suggest low-
risk PCa.

& ISUP grade = 2 (Gleason score 3 + 4 = 7): predominant
uniform glands look similar to normal cells with less poor-
ly formed glands which suggest intermediate-risk PCa.

& ISUPgrade = 3 (Gleason score 4 + 3 = 7): predominant poor-
ly formed glands which suggest intermediate-risk PCa with
less uniform glands that look similar to normal cells.

& ISUP grade ≥ 4 (Gleason score ≥ 8): only poorly formed
glands suggest high-risk PCa.

The patient characteristics, grouped based on the found
ISUP grade, are listed in Table 1. The total number of lesions
are divided in two zones (peripheral and transition) and also
reported in the Table 1. A sub-cohort analysis of the transi-
tional zone vs. peripheral zone was done and presented as
supplementary material.

Fig. 1 Flow diagram of patient’s exclusion and inclusion process in the study. ISUP, International Society of Urological Pathology; PI-RADS, Prostate
Imaging Reporting and Data System
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Fig. 2 a The division of patients into different ISUP grades in direct
relation to assigned PI-RADS v2 score. b–d Significant prostate cancer
lesion volume distribution for different volumes ranging from > 0.03 to

> 0.5 ml in patients on active surveillance. The volumes are presented,
based on the ISUP grade. ISUP, International Society of Urological
Pathology; PI-RADS, Prostate Imaging Reporting and Data System

Table 1 Details of the patient cohort (n = 292) included in this study (median and interquartile range)

ISUP grade
= 1

ISUP grade
= 2

ISUP grade
= 3

ISUP grade
= 4

ISUP grade
= 5

ISUP grade
= 1–5

Number of patients 155 110 18 4 5 292

Age 66 [60–72] 69 [64–72] 69 [63–73] 73 [59–77] 68 [64–72] 68 [62–72]

PSA 7.8 [5.7–11] 8.1 [6.2–12.2] 9.6 [7.7–12.7] 12.5 [7.6–17.5] 8.6 [5.9–15] 8.2 [5.9–12]

PSA density 0.18 [0.11–0.28] 0.22 [0.14–0.32] 0.25 [0.19–0.41] 0.24 [0.13–0.33] 0.15 [0.11–0.25] 0.19 [0.12–0.30]

Prostate volume (cc) 45 [31–66] 38 [30–58] 28 [23–44] 48 [37–98] 51 [32–130] 41 [30–61]

No. of lesion – 1 [1–1] 1 [1–2] 1 [1–2] 1 [1–2] 1 [1–1]

Total lesion in PZ – 92 12 3 5 112

Total lesions in TZ – 19 3 0 1 23

Lesion volume (cc) – 0.36 [0.19–0.78] 0.30 [0.21–1.25] 0.10 [0.09–6.12] 1.25 [0.28–1.90] 0.34 [0.18–0.82]

No. of positive targeted biopsies – 3 [2–4] 3 [2–4] 2 [1–4] 2 [2–5] 3 [2–4]

PIRADS score 3 [2–4] 4 [4–5] 4 [4–5] 3 [3–5] 5 [4–5] 4 [3–4]
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Magnetic resonance imaging and pre-processing

The MRI protocol included T2-weighted imaging (T2w),
diffusion-weighted imaging (DWI) from which apparent
diffusion coefficient (ADC) maps were constructed, and
dynamic contrast-enhanced (DCE) imaging, according to
the PI-RADS v2 guidelines [7]. Detail of acquisition pa-
rameters are presented in the supplementary material
(Table S3). MRI was performed on a 3-T system
(Discovery MR750, GE Healthcare) using a 32-channel
pelvic phased-array coil. All MRIs were reviewed by
one urogenital radiologist with over 6 years of prostate
MRI experience. Individual lesions were scored according
to the PI-RADS v2 5-point Likert scale for high-grade
PCa. Visible MRI lesions with a PI-RADS score from 3
to 5 were defined as suspicious and delineated. The fusion
technique of MRI and TRUS was used (Koel is
UroStation™) to perform targeted biopsies of all

suspicious lesions, identified on MRI. The suspicious
MRI lesions, delineated on DICOM images, were targeted
with a maximum of four cores under ultrasound guidance.
Experienced operators performed the biopsy procedures.
One expert uropathologist reviewed biopsy specimens ac-
cording to the ISUP 2014 modified Gleason Score [23].

For every patient in our cohort, suspicious lesions were
evaluated according to PI-RADS v2 guidelines, with the
DWI and ADC maps as the dominant sequence for pe-
ripheral zone lesions and T2W images for the transition
zone lesions [7]. All manual delineations of suspected
lesions were translated to T2w images using AW server
2.0 (GE Healthcare). Delineated T2w images are neces-
sary in MRI/US fusion method to provide image guidance
for targeted biopsy procedure, as T2w images contain
more anatomical information as compared to DWI or
ADC maps. The manual delineation of the suspicious le-
sion on T2w images was used for reference ground truth

Fig. 3 a Schematic diagram of the proposed method to segment
significant PCa using a convolution neural network on mpMRI (T2w
image, DWI b800, ADC map) as input and considering each image as a

separate input channel. b Schematic representation of the convolutional
neural network (CNN) architecture
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(binary mask) for each lesion having ISUP grade ≥ 2. For
each patient, the DWI images with ADC values were
manually rigidly co-registered to the T2w images.
Moreover, the mpMRI images (T2w image, DWI
(b800), and ADC) with reference ground truth were
resampled to a uniform voxel spacing of 0.371 × 0.371 ×
3.3 mm. Furthermore, the 3D images were cropped to the
whole prostate region of interest having dimension 192 ×
128 × 24 voxels along x, y, and z directions.

Convolutional neural network

The developed convolution neural network (CNN) [24] takes
three MRI images; the T2-weighted (T2w) image, the
diffusion-weighted image (DWI), and the apparent diffusion
coefficient (ADC) maps as input and consider each sequence a
separate input channel to generate a PCa segmentation
(Fig. 2a).

The network contains twelve single 3D convolution
layers with 3 × 3 × 3 kernel size, followed by a Rectified
Linear Unit (ReLU). In the down-sampling and up-
sampling blocks, at the last two layers of the network,
a 3 × 3 × 1 kernel size filter was used due to the small
image size in the z-axis. Batch normalization (BN) was

added after each 3D convolution to improve conver-
gence speed during training [25]. A concatenation with
the corresponding computed featured map from the
down-sampling part was performed after up-sampling.
In the final layer, a 3D convolution having 1 × 1 × 1
kernel size was used to map computed features to the
predicted PCa segmentation. In each convolution layer,
appropriate padding was used. A schematic representa-
tion of the used CNN is shown in Fig. 2b.

The training of the network was implemented in Keras
(version 2.0.2) with Tensor Flow (version 1.0.1) as backend
in Python (version 3.5.3). The training and prediction was
performed on a GeForce GTX TITAN Xp GPU (NVIDIA).
The loss function during training was the binary cross-entropy
metric and optimized using Adam optimizer [26] with a learn-
ing rate of 0.01. As the number of annotated data was limited,
data augmentation was implemented; rotation (0–5°, along
x,y,z-axes) and shearing (along x,y,z-axes) with rigid transfor-
mation and 50% probability for all images during training.
This allows the network to learn invariance to such deforma-
tions and also helps to prevent overfitting and to generalize
better. The total number of epochs was set to 500. The output
of the trained network was a binary segmentation of clinically
significant PCa lesions.

Fig. 4 Flow diagram of patient’s selection and division into training and
testing datasets. The group 1 patients (n = 116) with positive lesions on
MRI (PI-RADS score ≥ 3) who had positive targeted biopsies (ISUP
grade ≥ 2) was divided into three sets. The network was trained in
threefold cross-validation combining two of these sets in all possible

combinations. The evaluation was performed on the left-out positive set
and the negative cases from group 2 (n = 55) and group 3 (n = 100). Since
the systematic biopsy locations were not available, patients found with
significant PCa based on systematic biopsies in group 3 (n = 13) and
group 4 (n = 8) were excluded from training and testing
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Prostate cancer segmentation

In the experiments, the MRI-positive targeted biopsy-positive
group (n = 116) was randomly divided into three sets (Fig. 3).
The CNN model was trained as described in the
“convolutional neural network” section, in threefold cross-
validation using different combinations of these sets. The
three trained networks were named model 1, model 2, and
model 3. TheMRI-negative systematic biopsy-negative group
2 (n = 55) was not used in the training because of the absence
of PCa lesions in these images. Also, group 3 (i.e., patients
with a positive MRI but negative targeted biopsy) was not
included in the training set due to the absence of ISUP ≥ 2
grade prostate cancer. After training, each trained model was
used to predict PCa on the corresponding test data. The sys-
tematic biopsy locations were not available; therefore, patients

found with significant PCa based on systematic biopsies in
group 3 and group 4 (n = 21) were excluded from testing
(Fig. 3).

Statistical analysis

To evaluate the performance of the method, the sensitivity
and the specificity were calculated and receiver operating
characteristic (ROC) curves were plotted for three differ-
ent lesion volumes (0.03 cc, 0.1 cc, and 0.5 cc) of the
segmented lesions. For each of the three lesion volumes,
the sensitivity was calculated only for the patients with
lesion volumes higher than the threshold volume. The
lesion volume thresholds were selected based on the min-
imum significant PCa lesion volume (0.031 cc) in our
data and the standard maximum lesion volume of

Fig. 5 The ROC curves of the three models generated on the test set
following threefold cross-validation and their average for different lesion
volumes: (a) volume > 0.03 cc, (b) volume > 0.1 cc, (c) volume > 0.5 cc.

The sensitivity and specificity computed at the best cutoff point are indi-
cated. ROC, receiver operator characteristics
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Fig. 6 (A) Example of a true positive case (age = 75; PSA= 7.5; prostate
volume = 61 cc; PIRADS = 3 (left) and 5 (right); ISUP grade = 5 (left)
and 3 (right)). The top row shows in overlay the ground truth (in red) as
delineated by the radiologist and proven by targeted biopsy as significant
PCa. The lower row shows the segmented significant PCa lesion (in pink)
by the model. (B) Example of a false negative case (age = 69, PSA= 4.5,
prostate volume = 47 cc, PIRADS = 4, ISUP grade = 2). The top row
shows in overlay the ground truth (in red) as delineated by the radiologist
and proven by targeted biopsy as significant PCa. The lower row shows
that no PCa lesion was segmented by the model. (C) Example of a false

positive case (age = 69, PSA= 4.1, prostate volume = 48 cc, PIRADS =
4, ISUP grade = 1). The top row shows no ground truth, the region delin-
eated by the radiologist (not shown) proved by targeted biopsy as insig-
nificant PCa. The lower row shows the false segmented significant PCa
lesion (in pink) by the model. This matched the radiologist delineation.
All images show the same axial slice as 2D view of mpMRI images (a, e
T2w images; b, f DWI b800; c, g ADC map) of the prostate with the
reference ground truth (d) and the segmented false PCa lesion by model
(h)
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clinically significant PCa based on the PI-RADS v2 def-
inition. The lesions volume was calculated by multiplying
the total number of voxels in the lesion with the voxel
size (0.371 mm × 0.371 mm × 3.3 mm).The lesion seg-
mentation was considered true positive when the overlap
lesion volume between the reference ground truth and
segmented lesion is larger than 0.01 cc.

Results

Patient cohort analysis

The division of patients into the different ISUP grade groups
and their relation with the assigned PIRADS score (Fig. 4a)
show that many patients (n = 101) were scored PI-RADS ≥ 3
by the radiologist but these patients had no significant PCa
based on targeted biopsies (specificity = 33%). Also, some
patients (n = 8) were assigned PI-RADS score ≤ 2 and had
significant PCa based on the systematic biopsies procedure
(sensitivity = 94%). The lesion volume distribution (Fig. 4b,
c, d) of the significant PCa from > 0.03 to > 0.5 cc showed that
the study data contained a wide range of lesion volumes
(0.031–12.06 cc) and approximately 81% of them have
ISUP grade = 2.

Prostate cancer segmentation

For patients with tumor volumes > 0.03 cc (number of
lesions = 135), the average sensitivity was 82% at an av-
erage specificity of 43% with AUC 0.65. For patients with
tumor volume > 0.1 cc images (number of lesions = 123),
the average sensitivity was 85% at an average specificity
of 52% with AUC 0.73. It further improves to 94% sen-
sitivity and 74% specificity with AUC 0.89 for patients
with tumor volumes > 0.5 cc (number of lesions = 51).
The cutoff points used to calculate above-stated sensitiv-
ity and specificity for the three ROC curves are shown in
Fig. 5d.

To illustrate the performance of the method visually,
three examples (a true positive, a false negative, and a
false positive) of PCa segmentation are shown Fig. 6(A–
C). In the true positive example (Fig. 6), the model suc-
cessfully segmented the large and the small lesions as
delineated by the radiologist and proven by targeted biop-
sy as significant PCa. In some cases, PCa segmentation
was unsuccessful leading to a false negative (Fig. 6B).In
the false positive example (Fig. 6C), the model segments
a lesion in the peripheral zone that matches with the ra-
diologist’s delineation; however, the targeted biopsy
found no significant PCa.

Discussion

The use of mpMRI has increased in the early diagnosis of PCa
because of its ability to identify suspicious lesions for image-
guided biopsy. The MRI-targeted biopsies can improve PCa
detection as compared to the random TRUS biopsies [4, 27].
However, to exploit the full benefits of the MRI pathway in
the PCa diagnostic process, it is important to increase work
efficiency and optimization of the mpMRI analysis, resulting
in reduction of under- and overdiagnosis. Optimization of the
diagnostic and monitoring process is particularly necessary in
low-risk patients on active surveillance, where fear of
undergrading is present. An objective qualification and quan-
tification of suspicious lesions onmpMRI may have a positive
influence on the monitoring protocol and the (redundant)
number of repeated biopsies. Therefore, an automatic ap-
proach in monitoring MRI suspicious lesions over time in
low-risk patients on active surveillance is indispensable.

In this study, a computer-aided method based on deep
learning convolutional neural network to identify PCa in pa-
tients on active surveillance was presented. The method used
mpMRI (T2w, DWI, ADC map) to segment the PCa with
ISUP grade ≥ 2. The performance of the method was evaluat-
ed by calculating sensitivity, specificity, and AUC in the total
prostate. The average sensitivity achieved by the method was
82–92% at the average specificity of 43–76% by considering
different lesion volumes ranging from > 0.03 to > 0.5 cc. The
AUC for the average models varied from 0.65 to 0.89. The
results showed that the large lesions (> 0.5 cc) can be relative-
ly easily detected and segmented as compared to the smallest
lesion volume threshold (≥ 0.03 cc).

In literature, different computer-aidedmethods are presented
to localize PCa [4, 7, 8, 13]. The database used in these studies
mostly contained patients, who underwent radical prostatecto-
my (i.e., high grade and large tumor sizes). Therefore, the usage
and advantage of these developed methods is limited in active
surveillance population, as these methods cannot deal with the
daily reading difficulties of low-risk and small-size PCa.
Algohary et al [13] showed that radiomics features from bi-
parametric MRI (T2w and ADC map) could accurately detect
clinically significant PCa in an active surveillance cohort.
However, a limited number of patients (n = 56) were included.
Furthermore, patients with lesions assigned to PI-RADS suspi-
cion score 3 and with lesions of volume size ≤ 0.5 cc were
excluded from the study. The authors showed in two different
patients groups that 80% of the positive cases correctly identi-
fied as having clinically significant PCa and that 60% of the
negative cases were correctly identified as not having clinically
significant PCa. In our proposed method, we achieved a higher
average sensitivity of 92% at a specificity of 76% by including
this subgroup (Fig. 5).

Our study has some limitations. First, our model was spe-
cifically trained on an active surveillance cohort; therefore, the
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results on other patient cohorts (e.g., cohorts of initial diagno-
sis) may be different. Second, we had access to 116 positive
cases, sufficient for algorithm development; however, an in-
crement in the number of training data may improve results.
Third, in our data, most of the patient’s PCa lesions (81%)
have ISUP grade = 2 (Gleason score = 3 + 4, where 3 repre-
sent the most predominant pattern in the biopsy). During train-
ing, the network learned features from the dominant non-
significant part of the PCa (Gleason score 3) and will segment
it in the test data, most particularly in the discordance group 3,
which led to a limited specificity. By providing more patient
data of high-grade PCa (ISUP grade ≥ 3), the number of false
positive segmentations might decrease. Furthermore, the ref-
erence ground truth is limited by two factors. First, the accu-
racy of the MRI-Ultrasound fusion technique (Koelis
UroStation™) is reported to range from 3.8 to 5.6 mm [28],
with a mean of 4.5 mm. Second, the mean needle placement
error is reported to be 2.1 mm [29]. The average combined
error will therefore be in the range of 5 mm (0.13 cc). This
could affect the localization accuracy of the reference ground
truth, and may also influence the results as can be seen for the
lower volume thresholds (Fig. 5a, b).

Implementing the proposedmethod in daily clinical routine
has the potential to improve the diagnostic accuracy and mon-
itoring process of prostate cancer. The proposed method can
be utilized as second reading, confirming, adding, modifying,
or even changing the original decision. Furthermore, the au-
tomatic identification and segmentation of the lesions during
surveillance will provide consistent quantitative analysis over
time, alerting significant changes in volume or conspicuity.
The eventual real value will need to be established in prospec-
tive clinical use.

Conclusion

This study presents a deep learning–based computer-aided
diagnostic method with acceptable diagnostic accuracy to
identify and segment significant (ISUP grade ≥ 2) prostate
cancer in patients on active surveillance. The evaluation of
the method showed that an average sensitivity of 92% can
be achieved with specificity of 76% at the lesion volume
threshold > 0.5 cc. The proposed deep learning computer-
aided method yields promising results in the automatic iden-
tification and segmentation of significant (ISUP grade ≥ 2)
prostate cancer in low-risk patients. Low-risk patients may
benefit from this objective qualification and quantification of
MR images by computer-aided methods, since MRI readings
are most difficult in low-volume and low-grade tumors.
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