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Abstract
Evolutionary models used for describing molecular sequence variation suppose that
at a non-recombining genomic segment, sequences share ancestry that can be rep-
resented as a genealogy—a rooted, binary, timed tree, with tips corresponding to
individual sequences. Under the infinitely-many-sites mutation model, mutations are
randomly superimposed along the branches of the genealogy, so that every mutation
occurs at a chromosomal site that has not previously mutated; if a mutation occurs at
an interior branch, then all individuals descending from that branch carry the muta-
tion. The implication is that observed patterns of molecular variation from this model
impose combinatorial constraints on the hidden state space of genealogies. In particu-
lar, observedmolecular variation can be represented in the form of a perfect phylogeny,
a tree structure that fully encodes the mutational differences among sequences. For
a sample of n sequences, a perfect phylogeny might not possess n distinct leaves,
and hence might be compatible with many possible binary tree structures that could
describe the evolutionary relationships among the n sequences. Here, we investigate
enumerative properties of the set of binary ranked and unranked tree shapes that are
compatible with a perfect phylogeny, and hence, the binary ranked and unranked tree
shapes conditioned on an observed pattern ofmutations under the infinitely-many-sites
mutationmodel.Weprovide a recursive enumeration of these shapes.We consider both
perfect phylogenies that can be represented as binary and those that are multifurcating.
The results have implications for computational aspects of the statistical inference of
evolutionary parameters that underlie sets of molecular sequences.
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1 Introduction

Coalescent and mutation models are used in population genetics to estimate evo-
lutionary parameters from samples of molecular sequences (Marjoram and Tavaré
2006). The central idea is that observed molecular variation is the result of a process
of mutation along the branches of the genealogy of the sample. This genealogy is a
timed tree that represents the ancestral relationships of the sample at a chromosomal
segment. Consisting of a tree topology and its branch lengths, the genealogy is a nui-
sance parameter that is modeled as a realization of the coalescent process dictated
by evolutionary parameters—which are in turn inferred by integrating over the space
of genealogies. For large sample sizes, however, this integration is computationally
challenging because the state space of tree topologies increases exponentially with the
number of sampled sequences.

Recently, a coarser coalescentmodel known as the Tajima coalescent (Tajima 1983;
Sainudiin et al. 2015), coupled with the infinitely-many-sites mutation model (Kimura
1969), has been introduced for population-genetic inference problems (Palacios et al.
2019). Whereas the standard coalescent model (Kingman 1982) induces a probability
measure on the space of ranked labeled tree topologies, the Tajima coalescent induces
a probability measure on the space of ranked unlabeled tree topologies. Removing
the labels of the tips from the tree topology, as in the Tajima coalescent, reduces the
cardinality of the space of tree topologies substantially, shrinking computation time
in inference problems.

Under infinitely-many-sites mutation, only a subset of tree topologies (labeled or
unlabeled) are compatible with an observed data set, so that the computational com-
plexity of inference varies among different data sets. Hence, Cappello et al. (2020a)
used importance sampling to approximate cardinalities of the spaces of labeled and
unlabeled ranked tree shapes conditioned on a data set ofmolecular sequences, demon-
strating a striking reduction of the cardinality of the space of ranked unlabeled tree
shapes versus the labeled counterpart when conditioning on observed data with a
sparse number of mutations. Here, we extend beyond the approximate work of Cap-
pello et al. (2020a) and obtain exact results. We provide a recursive algorithm for
exact computation of the cardinality of the spaces of labeled and unlabeled ranked tree
shapes compatible with a sequence data set. We provide a number of other enumera-
tive results relevant for inference of tree topologies in phylogenetics and population
genetics. Python code for enumeration is available at https://colab.research.google.
com/drive/1cAx2xyn7OtmG-F-9nxJ3CHRc7e7AjuCj?usp=sharing.
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Fig. 1 Different types of trees. A A ranked labeled tree shape. B A ranked unlabeled tree shape. C An
unranked unlabeled tree shape. D An unranked labeled tree shape. The ranked unlabeled tree shape in (B)
is obtained by discarding leaf labels from the ranked labeled tree shape in (A). The unranked labeled tree
shape in (D) is obtained by discarding the sequence of internal node ranks in (A). The unranked unlabeled
tree shape in (C) is obtained by discarding the sequence of internal node ranks in (B) or the leaf labels in
(D)

2 Preliminaries

2.1 Types of trees

The coalescent is a continuous-time Markov chain with values in the space Pn of
partitions of [n] = {1, 2, . . . , n} (Kingman 1982). The process starts with the trivial
partition of n singletons, labeled {1}, {2}, . . . , {n}, at time 0; at each transition, two
blocks are chosen uniformly at random to merge into a single block. The process ends
with a single block with label {1, 2, . . . , n}. In the standard coalescent, the holding
times are exponentially distributed with rate

(k
2

)
when there are k blocks. Transition

probabilities for the coalescent can be factored into two independent components, a
pure death process and a discrete jump chain. A full realization of the process can be
represented by a timed rooted binary tree: a genealogy. The tips of the genealogy are
labeled by {1, 2, . . . , n}. Figure 1A shows a realization of the jump process, a ranked
labeled tree shape.

A lumping of the standard coalescent process, called the Tajima coalescent (Sain-
udiin et al. 2015), consists in removing the labels of the tips of the genealogy. The
pure death process of the lumped process is the same as the standard coalescent. The
discrete jump chain can be described as a simple urn process (Janson and Kersting
2011). Start with an urn of n balls labeled 0; at the i th transition, draw two balls and
return one to the urn with label i . The process ends when there is a single ball with
label n − 1 in the urn. A full realization of the urn process can be represented as a
ranked unlabeled tree shape with internal nodes labeled by the transition index.

A ranked labeled tree shape of size n, denoted by T L
n , is a rooted binary labeled

tree of n leaves with a total ordering for the internal nodes. Without loss of generality,
we use label set [n] to label the n leaves. The space of ranked labeled tree shapes with
n leaves will be denoted by T L

n . Figure 1A shows an example of a ranked labeled
tree shape with n = 8 leaves. Ranked labeled tree shapes are also known as labeled
histories.

A ranked unlabeled tree shape of size n, denoted by T R
n , is a rooted binary

unlabeled tree of n leaves with a total ordering for the internal nodes. The space of
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Fig. 2 An enumeration of all possible ranked tree shapes with 3, 4, 5, and 6 leaves

ranked unlabeled tree shapes with n leaves will be denoted by T R
n . Figure 1B shows an

example of a ranked unlabeled tree shape with n = 8 leaves. We will refer to a ranked
unlabeled tree shape simply as a ranked tree shape; these ranked tree shapes are also
known as unlabeled histories, or Tajima trees. Figure 2 shows all ranked unlabeled
tree shapes with 3, 4, 5, and 6 leaves.

An unranked unlabeled tree shape of size n, denoted by Tn , is a rooted binary
unlabeled tree of n leaves with unlabeled internal nodes. The space of unranked (unla-
beled) tree shapes with n leaves will be denoted by Tn . Figure 1C shows an example
of an unranked unlabeled tree shape with n = 8 leaves. These shapes are also called
unlabeled topologies or Otter trees (Otter 1948).

An unranked labeled tree shape of size n, denoted by T X
n , is a rooted binary

labeled tree of n leaves with unlabeled internal nodes. The space of unranked labeled
tree shapes with n leaves will be denoted by T X

n . Figure 1D shows an example of
an unranked labeled tree shape with n = 8 leaves. These tree shapes are also called
labeled topologies.

2.2 Mutations on trees

Many generative models of neutral molecular evolution assume that a process of
mutation is superimposed on the genealogy as a continuous-time Markov process.
In the infinitely-many-sites mutation model, every mutation along the branches of
the tree occurs at a chromosomal site that has not previously mutated (Kimura 1969).
Therefore, if a mutation occurs at an interior branch along the genealogy, all sequences
descended from that branch carry the mutation. Because every site can mutate at most
once, the sequence of mutated sites can be encoded as a binary sequence, with 0
denoting the ancestral type and 1 denoting the mutant type at any site; we assume that
the ancestral type is known, and that it is denoted by 0.

Figure 3A shows a realization of the Tajima coalescent together with a realization
of mutations from the infinitely-many-sites mutation model with 5 individuals and 4
mutated sites. In what follows, we assume that we observe molecular data only as
binary sequences at the tips of the tree.
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(A) (B)

(C)

Fig. 3 Tajima coalescent and infinitely-many-sites generative model of binary molecular data. A A Tajima
genealogy of 5 individuals, with 4 superimposed mutations depicted as gray squares. The root is labeled by
the ancestral type 0000, and the leaves are labeled by the genetic type at each of three mutated sites. The
first two leaves from left to right are labeled 0001 because one mutation occurs in their path to the root.
The third and fourth individuals have three mutations in their path to the root and are labeled 1110; the
last individual is labeled 1000 because only one mutation occurs along its path to the root. The order and
label of the mutations is unimportant; however, it is assumed that the same position, or site, in a sequence
of 0s and 1s corresponds across individuals. For ease of exposition, we label the mutations a, b, c and d.
The first site corresponds to mutation a, the second to b, the third to c, and the fourth to d. B Left, a perfect
phylogeny representation of the observed data at the tips of (A). Data consist of 3 unique haplotypes 0001,
1110 and 1000, with frequencies 2, 2, and 1. The corresponding frequencies are the labels of tips of the
perfect phylogeny. Right, perfect phylogeny topology obtained by removing the edge labels of the perfect
phylogeny. C The only three ranked tree shapes compatible with the perfect phylogeny topology in (B)

2.3 Observed binarymolecular sequence data as a perfect phylogeny

Theperfect phylogeny algorithm, proposed byGusfield (1991), generates a graphical
representation of binary molecular sequence data that have been produced according
to the infinitely-many-sites mutation model. Label individual sequences 1, 2, . . . , n,
and label mutated or “segregating” sites a, b, . . .. The original algorithm generates a
rooted tree structure known as a perfect phylogeny, with tips labeled 1, 2, . . . , n and
with edges labeled a, b, . . ., that is in bijection with the observed “labeled data.” An
edge can have no labels, one label, or more than one label. Perfect phylogenies have
been central to coalescent-based inference algorithms, in which maximum likelihood
or Bayesian estimation of evolutionary parameters that have given rise to the partic-
ular distribution of mutations and clade sizes on the perfect phylogeny are sought
by importance sampling or Markov chain Monte Carlo (Griffiths and Tavaré 1994;
Stephens and Donnelly 2000; Palacios et al. 2019; Cappello et al. 2020b).

123



54 Page 6 of 37 J. A. Palacios et al.

In this study, we assume that individual sequences are not uniquely labeled, but
instead, are identified by their sequences of 0s and 1s, or haplotypes. Hence, the
number of tips in our perfect phylogeny is the number of unique haplotypes, and the
labels at the tips correspond to the observed frequencies of the haplotypes. For the
genealogy in Fig. 3A and B shows the perfect phylogeny of the data observed at its
tips.

The key assumption of the bijection between sequence data sets and perfect phylo-
genies is that if a site mutates once, then all descendants of the lineage on which the
mutation occurredmust also have themutation—and no other individuals will have the
mutation. That is, every unique mutation, or site, partitions the sample of haplotypes
into two groups: those with the mutation and those without the mutation. Hence, we
group sites that induce the same partition on the haplotypes, and we call each such
group of sites a mutation group.

In this study, we are not concerned with the mutation labels, and hence, we remove
the edge labels of the perfect phylogeny (right side of Fig. 3B), so that we consider
only the topology of the perfect phylogeny. In dropping the edge labels, we treat a
perfect phylogeny topology as a perfect phylogeny. Henceforth, a perfect phylogeny
is a multifurcating rooted tree with k leaves, representing k distinct haplotypes, each
labeled by a positive integer (ni )1≤i≤k , with

∑k
i=1 ni = n. We use the symbol �n to

denote the space of perfect phylogenies of size n sequences, and we use π ∈ �n to
denote a perfect phylogeny with n sequences.

A perfect phylogeny π is completely specified in a parenthetical notation, in which
every leaf is represented by its label, every binary internal node is represented by (·, ·),
and every multifurcating internal node is represented by (·, . . . , ·). For example, the
perfect phylogeny π1 on the right in Fig. 3B in parenthetical notation can be written
(2, (2, 1)) or ((2, 1), 2), indicating that there are two internal nodes, one merging
leaves (2, 1) and one merging (2, 1) with 2.

Themost extreme unresolved perfect phylogenywith n tips—the perfect phylogeny
that is compatible with all ranked tree shapes with n tips—has two representations. It
can be written as a star, in which the root has degree n and is the only internal node,
that is, π = (1, 1, . . . , 1). It can also be written as a single node π = (n). For our
purposes, with mutations discarded, the star and single-node perfect phylogenies are
indistinguishable, and they will be represented as a single-node perfect phylogeny.
Details of the algorithm for generating the perfect phylogeny from binary molecular
data can be found in Cappello et al. (2020a), which presents a slight modification to
Gusfield’s algorithm (Gusfield 1991).

We say that a binary tree T is compatible with a perfect phylogeny π if the tree can
be reduced to π by collapsing internal edges of T . The number of tree shapes, ranked
or unranked, that are compatible with a perfect phylogeny gives the cardinality of
the corresponding posterior sampling tree space in statistical inference from sequence
data sets. Given a perfect phylogeny π ∈ �n , we are interested in calculating the
number of compatible ranked tree shapes with n leaves and the number of compatible
unranked tree shapes with n leaves.
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2.4 Known enumerative results

In advance of our effort to count tree shapes compatible with a perfect phylogeny, we
state some known enumerative results for the unconstrained spaces of ranked labeled
tree shapes, unranked labeled tree shapes, ranked unlabeled tree shapes, and unranked
unlabeled tree shapes (Steel 2016).

Let Ln = |T L
n | denote the cardinality of the space of ranked labeled trees with n

leaves. Then

Ln =
n∏

i=2

(
i

2

)
= n!(n − 1)!

2n−1 . (1)

The product is obtained by noting that for each decreasing i from n to 2, there are
(i
2

)

ways of merging two labeled branches. The sequence of values of Ln begins 1, 1, 3,
18, 180, 2700, 56,700.

Let Xn = |T X
n | denote the number of unranked labeled trees with n leaves. We

have

Xn = (2n − 3)!! = (2n − 2)!
2n−1(n − 1)! . (2)

To generate trees in T X
n from trees in T X

n−1, a pendant edge connected to the nth label
can be placed along each of the 2n − 3 edges of a tree with n − 1 leaves, including an
edge above the root. Xn is obtained as the solution to the recursion Xn = (2n−3)Xn−1,
with X1 = 1. The sequence of values of Xn begins 1, 1, 3, 15, 105, 945, 10,395.

The number of ranked tree shapes with n tips is the (n−1)-th Euler zigzag number
(Stanley 2012). Let Rn = |T R

n | denote the number of ranked tree shapes with n leaves.
We have the following recursion:

R1 = 1, R2 = 1,

Rn+1 = 1

2

n−1∑

k=0

(
n − 1

k

)
Rk+1Rn−k, n ≥ 2. (3)

The sequence of values of Rn begins 1, 1, 1, 2, 5, 16, 61. For n ≥ 1, if the tree has n+1
tips, and hence n interior nodes, then the root divides the tree into two ranked subtrees
T R
1 and T R

2 , where T R
1 has k interior nodes, 0 ≤ k ≤ n − 1, and T R

2 has n − 1 − k

interior nodes. There are
(n−1

k

)
ways of interleaving the k and n− 1− k interior nodes

of T R
1 and T R

2 , such that the relative orderings of the interior nodes of T R
1 and T R

2 are
preserved in the interleaving. The number of possible ranked tree shapes with such a
configuration is

(n−1
k

)
Rk+1Rn−k . Summing over the possibilities for k from 0 to n−1,

and acknowledging that the identity of T R
1 and T R

2 can be interchanged, we get Eq. 3.
Let Sn = |Tn| denote the number of unranked tree shapes with n leaves. We have

the following recursion:

S1 = 1,
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S2n−1 =
n−1∑

k=1

Sk S2n−1−k, n ≥ 2, (4)

S2n =
( n−1∑

k=1

Sk S2n−k

)
+ 1

2
Sn(Sn + 1), n ≥ 1. (5)

Sn is the nth Wedderburn–Etherington number (Harding 1971). The sequence begins
1, 1, 1, 2, 3, 6, 11. When the number of leaves is 2n−1, the root divides the tree shape
into two subtree shapes T1 and T2 with k and 2n−1−k leaves, for k = 1, 2, . . . , n−1.
When the number of leaves is even, the root divides the tree shape into subtree shapes
with k and 2n − k leaves for k = 1, 2, . . . , n − 1 or two subtree shapes with n leaves;
these tree shapes are indistinguishable in Sn cases and distinguishable in 1

2 Sn(Sn − 1)
cases.

3 Enumeration for binary perfect phylogenies

To count ranked and unranked tree shapes compatible with a perfect phylogeny, we
first consider binary perfect phylogenies: those perfect phylogenies for which the
outdegree of any node, traversing from root to tips, is either 0 (leaves or taxa) or 2
(internal nodes). We then consider multifurcating perfect phylogenies in Sect. 4.

3.1 Lattice structure of binary perfect phylogenies

The binary perfect phylogenies for a set of n tips possess a structure that will assist
in enumerating binary ranked and unranked trees compatible with a set of sequences.
In particular, we can make the set �n of all binary perfect phylogenies of [n] into
a poset by defining π ≤ σ if either σ is the same as π , or if σ can be obtained by
sequentially collapsing pairs of pendant edges, or cherries, of π . We then say π is a
refinement of σ . For example, π = (2, 3) refines σ = (5). We say that two binary
perfect phylogenies in�n are comparable if they are equal or if one is a refinement of
the other. An example of two perfect phylogenies that are not comparable isπ = (2, 3)
and σ = (4, 1).

Given two binary perfect phylogenies π1 andπ2 in�n , their meet, denoted π1∧π2,
is the largest perfect phylogeny that refines both π1 and π2. Similarly, the join of two
binary perfect phylogenies π1 ∨ π2 is the smallest perfect phylogeny that is refined
by both π1 and π2. Formal definitions of these notions appear in Definition 1.

Under themeet and join operations, wewill see in Theorem 5 that the poset�n∪{∅}
is a lattice Ln = (�n ∪ {∅},∧,∨). As a lattice, Ln possesses a Hasse diagram with
a minimal and a maximal element. The maximal element of Ln is the single node
perfect phylogeny (n) and the minimal element is ∅. Figures 4 and 5 show the Hasse
diagrams of L2, L3, L4, L5.

Definition 1 (Binary perfect phylogeny operations). We define the binary perfect
phylogeny symmetric operations ∧,∨ : (∪n≥1�n ∪ {∅}) × (∪n≥1�n ∪ {∅}) →
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Fig. 4 Hasse diagrams of the lattices of binary perfect phylogenies with n = 2, 3, and 4 taxa

Fig. 5 Hasse diagram of the lattice of binary perfect phylogenies with n = 5 taxa

(∪n≥1�n ∪ {∅}), where �n is the space of binary perfect phylogenies of n leaves,
as follows:

1. π ∧ ∅ = ∅, for all π ∈ �n .
2. π ∨ ∅ = π , for all π ∈ �n .
3. π ∧ (n) = π , for all π ∈ �n .
4. π ∨ (n) = (n), for all π ∈ �n .
5. π1 ∧ π2 = ∅, for all π1 ∈ �n1, π2 ∈ �n2 , with n1 
= n2.
6. π1 ∨ π2 = ∅, for all π1 ∈ �n1, π2 ∈ �n2 , with n1 
= n2.

The following proposition extends properties of the meet and join operations. It is
proved in the “Appendix”.
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Proposition 2 Let∧,∨ be the two binary perfect phylogeny operations of Definition 1.
Then:

1. Let π1 = (n1, n2) and π2 = (n3, n4) be two perfect phylogenies in �n with
n1 + n2 = n3 + n4 = n. Then

π1 ∨ π2 = (n1, n2) ∨ (n3, n4) =
{

(n1, n2) if n1 = n3 or n1 = n4
(n) otherwise.

2. For all π1, π2, π3, π4 with (π1, π2) ∈ �n and (π3, π4) ∈ �n,

(π1, π2) ∧ (π3, π4) = (π1 ∧ π3, π2 ∧ π4) ∨ (π1 ∧ π4, π2 ∧ π3),

with the convention that (π,∅) = ∅. That is, the meet of two perfect phylogenies is
the join of the two perfect phylogenies formed by merging two subtrees at the root.
These four subtrees (two per newly formed perfect phylogeny) correspond to the
meets of all pairs of subtrees, one from each of the original perfect phylogenies.

3. For all π1, π2, π3, π4 with (π1, π2) ∈ �n and (π3, π4) ∈ �n, πi ∈ �ni for
i = 1, 2, 3, 4.

(π1, π2) ∨ (π3, π4)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n) if n1 
= n3 and n1 
= n4
(π1, π2 ∨ π4) if π1 = π3

(π1, π2 ∨ π3) if π1 = π4

(π2, π1 ∨ π4) if π2 = π3

(π2, π1 ∨ π3) if π2 = π4

(π1 ∨ π3, π2 ∨ π4) ∧ (π1 ∨ π4, π2 ∨ π3) otherwise,

with the convention that (π,∅) = ∅. That is, the join of two perfect phylogenies
is the meet of the two perfect phylogenies formed by merging two subtrees at the
root. These four subtrees (two per newly formed perfect phylogeny) correspond to
the joins of all pairs of subtrees, one from each of the original perfect phylogenies.
In the particular case that the two original perfect phylogenies share one of the
subtrees descending from the root, the join of the two perfect phylogenies is the
perfect phylogeny that merges, at the root, the shared subtree with the join of the
two different subtrees, one from each of the original perfect phylogenies. In the case
that no two pairs of subtrees, one from each of the original perfect phylogenies,
have the same size, the join is the maximal single node perfect phylogeny (n).

4. For all π1, π2, π3 ∈ �n,

π1 ∧ (π2 ∨ π3) = (π1 ∧ π2) ∨ (π1 ∧ π3),

and
π1 ∨ (π2 ∧ π3) = (π1 ∨ π2) ∧ (π1 ∨ π3).
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5. Let π, σ ∈ �n be two perfect phylogenies that are not comparable. There exist
unique γ, ρ ∈ (�n ∪ {∅})\{π, σ } such that

π ∧ σ = γ, π ∨ γ = π, and σ ∨ γ = σ,

and
π ∨ σ = ρ, π ∧ ρ = π, and σ ∧ ρ = σ.

Note that the meet and join operations are symmetric and that pairs (π1, π2) are
unordered; for convenience, we have expanded expressions in parts 1 and 3 of the
proposition that could potentially be simplified using the symmetry.

We illustrate the operations in Definition 1 by considering a series of examples.

Example 3 Consider π1 = ((4, 2), 6) and π2 = ((3, 3), 6) depicted in Fig. 6A. Their
meet and join are given by:

((4, 2), 6) ∧ ((3, 3), 6)

= ((4, 2) ∧ (3, 3), 6 ∧ 6) ∨ ((4, 2) ∧ 6, 6 ∧ (3, 3)) by Prop. 2 (2)

= (∅, 6) ∨ ((4, 2), (3, 3)) by Defn. 1 (3, 5) and Prop. 2 (2)

= ∅ ∨ ((4, 2), (3, 3)) by convention

= ((4, 2), (3, 3)) by Defn. 1 (2).

((4, 2), 6) ∨ ((3, 3), 6)

= (6, (4, 2) ∨ (3, 3)) by Prop. 2 (3)

= (6, 6) by Prop. 2 (1).

Example 4 For a more complex example, consider π1 = ((3, 1), 2), 6) and π2 =
((4, 2), 6) depicted in Fig. 6B.

(((3, 1), 2), 6) ∧ ((4, 2), 6)

= (((3, 1), 2) ∧ (4, 2), 6 ∧ 6) ∨ (((3, 1), 2) ∧ 6, 6 ∧ (4, 2)) by Prop. 2 (2)

= (((3, 1), 2) ∧ (4, 2), 6) ∨ (((3, 1), 2), (4, 2)) by Defn. 1 (3)

= (((3, 1) ∧ 4, 2 ∧ 2), 6) ∨ (((3, 1), 2), (4, 2)) by Defn. 1 (2, 5) and Prop. 2 (2)

= (((3, 1), 2), 6) ∨ (((3, 1), 2), (4, 2)) by Defn. 1 (3)

= (((3, 1), 2), 6) by Defn. 1 (4) and Prop. 2 (3).

((3, 1), 2), 6) ∨ ((4, 2), 6)

= (((3, 1), 2) ∨ (4, 2), 6) by Prop. 2 (3)

= ((4, 2), 6) by Defn. 1 (4) and Prop. 2 (3).

To make use of the operations ∧ and ∨ for counting binary ranked and unranked
trees compatible with a perfect phylogeny, we need a theorem that shows that the two
operations∧ and∨ induce the same order. That is, we will show that (�n ∪{∅},∧,∨)

is a lattice.
A lattice (Nation 1998) is an algebra L(L,∧,∨) satisfying, for all x, y, z ∈ L ,
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(A) (B)

Fig. 6 Examples of perfect phylogeny operations.A For perfect phylogenies ((4, 2), 6) and ((3, 3), 6), their
meet is ((4, 2), (3, 3)), and their join is (6, 6). B For perfect phylogenies (((3, 1), 2), 6) and ((4, 2), 6), their
meet is (((3, 1), 2), 6) and their join is ((4, 2), 6)

1. x ∧ x = x and x ∨ x = x ,
2. x ∧ y = y ∧ x and x ∨ y = y ∨ x ,
3. x ∧ (y ∧ z) = (x ∧ y) ∧ z and x ∨ (y ∨ z) = (x ∨ y) ∨ z,
4. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x .

In the “Appendix,”weverify these conditions for (�n∪{∅},∧,∨), giving the following
theorem.

Theorem 5 (�n ∪ {∅},∧,∨) is a lattice.

3.2 Unranked unlabeled tree shapes compatible with a binary perfect phylogeny

With the lattice structure of the binary perfect phylogenies established, we are now
equipped to calculate the number of compatible unranked unlabeled tree shapes with n
leaves. Notice that an unranked unlabeled tree shape can be transformed into a perfect
phylogeny with the same number of tips by assigning the count 1 to all leaves. We use
P(Tn) to denote the perfect phylogeny with n tips that corresponds to the unranked
unlabeled tree shape Tn .

Definition 6 (Unranked unlabeled tree shape Tn compatible with a perfect phylogeny
π ∈ �n). An unranked unlabeled tree shape with n leaves, Tn , is compatible with a
perfect phylogeny π ∈ �n , if (1) a one-to-one correspondence exists between the k
leaves of π with leaf counts n1, n2, . . . , nk and k disjoint subtrees of Tn containing
n1, n2, . . . , nk leaves, respectively; and (2) P(Tn) ≤ π , that is, P(Tn) is a refinement
of π .

We use the symbol Gc(π) = {Tn : Tn � π} to denote the set of unranked unlabeled
tree shapes compatible with a perfect phylogeny π ∈ �n . For a perfect phylogeny
π consisting of a single leaf with leaf count n, the number of compatible unranked
unlabeled tree shapes is simply the number of unranked unlabeled tree shapes of size
n, or |Gc(π)| = Sn . Figure 7 shows an example of an unranked unlabeled tree shape
compatible with a perfect phylogeny of sample size 7.
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Fig. 7 Example of a tree shape
compatible with a perfect
phylogeny. A A perfect
phylogeny. B An unranked
unlabeled tree shape that is
compatible with the perfect
phylogeny in (A). The numbers
indicate the one-to-one
correspondence described in
Definition 6

2 32

3

2
2

(A) (B)

Proposition 7 For n1, n2 ≥ 1, the number of unranked unlabeled tree shapes compat-
ible with a cherry perfect phylogeny (n1, n2) ∈ �n is

|Gc((n1, n2))| =
{
Sn1 Sn2 if n1 
= n2
1
2 Sn1(Sn1 + 1) if n1 = n2.

(6)

Proof ByDefinition 6, an unranked unlabeled tree shape is compatible with the perfect
phylogeny π = (n1, n2) if it possesses two subtrees, one with n1 leaf descendants and
anotherwith n2 leaf descendants. Decomposing an unranked unlabeled tree shape at its
root, the number of shapes with this property is Sn1Sn2 for n1 
= n2 and 1

2 Sn1(Sn1 +1)
for n1 = n2. ��
Proposition 8 For n1, n2 ≥ 1 and π1 ∈ �n1 , π2 ∈ �n2 , the number of unranked
unlabeled tree shapes compatible with a binary perfect phylogeny π = (π1, π2) ∈ �n

is

|Gc((π1, π2))|

=
{

|Gc(π1)| |Gc(π2)| − 1
2 |Gc(π1 ∧ π2)| (|Gc(π1 ∧ π2)| − 1) if π1 ∧ π2 
= ∅

|Gc(π1)| |Gc(π2)| if π1 ∧ π2 = ∅.
(7)

Proof If π1 ∧π2 = ∅, then no tree shapes are compatible with both π1 and π2. Hence,
the number of tree shapes compatiblewith (π1, π2) is simply the product of the number
of tree shapes compatible with π1 and the number of tree shapes compatible with π2.

If π1∧π2 
= ∅, then certain tree shapes can be compatible with both π1 and π2, i.e.,
compatible with π1 ∧ π2. We sum four quantities. (1) Consider the set of tree shapes
compatible with both perfect phylogenies π1 and π2. They can either be assigned the
same tree shape, in |Gc(π1 ∧ π2)| ways, or they can be assigned different tree shapes,
in 1

2 (|Gc(π1 ∧ π2)|2 − |Gc(π1 ∧ π2)|) ways, resulting in 1
2 |Gc(π1 ∧ π2)|(|Gc(π1 ∧

π2)| + 1) tree shapes. (2) If π2 is a refinement of π1 and π1 
= π2, then there are
|Gc(π1∧π2)|(|Gc(π1)|−|Gc(π1∧π2)|) tree shapes. (3) Similarly, if π1 is a refinement
of π2 and π1 
= π2, then there are |Gc(π1 ∧ π2)|(|Gc(π2)| − |Gc(π1 ∧ π2)|). (4) If π1
and π2 are not comparable, that is, if neither is a refinement of the other, then there
are (|Gc(π1)| − |Gc(π1 ∧ π2)|)(|Gc(π2)| − |Gc(π1 ∧ π2)|) tree shapes. Scenarios (2),
(3), and (4) are mutually exclusive, and only one of the quantities in (2), (3), and (4)
is nonzero; summing the four quantities gives the result. ��
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Propositions 7 and 8 provide a recursive formula for calculating the number of tree
shapes compatible with a binary perfect phylogeny. For example, examining Fig. 6A,
the number of tree shapes compatible with (4, 2) is S4S2 = 2, and the number of tree
shapes compatible with ((4, 2), 6) is |Gc(4, 2)| |Gc(6)|− 1

2 |Gc(4, 2)| (|Gc(4, 2)|−1) =
(2)(6) − 1

2 (2)(1) = 11. Table 1 shows the number of tree shapes compatible with
certain perfect phylogenies of sample size 10.

3.3 Ranked unlabeled tree shapes compatible with a binary perfect phylogeny

Next, for a binary perfect phylogeny, we compute the number of compatible ranked
unlabeled tree shapes with n leaves.

Definition 9 (Ranked unlabeled tree shape T R
n compatible with a perfect phylogeny

π ∈ �n). A ranked unlabeled tree shapewith n leaves, T R
n , is compatiblewith a perfect

phylogeny π ∈ �n if the unranked unlabeled tree shape Tn obtained by removing the
ranking from T R

n is compatible with π .

Proposition 10 For n1, n2 ≥ 1, the number of ranked unlabeled tree shapes compat-
ible with a cherry perfect phylogeny (n1, n2) ∈ �n is

∣∣GT
c ((n1, n2))

∣∣=
⎧
⎨

⎩

(n1+n2−2
n1−1

)
Rn1Rn2 if n1 
= n2

1
2

(2n1−2
n1−1

)
R2
n1 if n1 = n2.

(8)

Proof ByDefinition 9, a ranked unlabeled tree shape T R is compatible with the perfect
phylogeny π = (n1, n2) if the associated unranked unlabeled tree shape T obtained
by removing the ranking of T R is compatible with π . By Definition 6, the unranked
unlabeled tree shape T is compatible with the perfect phylogeny π = (n1, n2) if
it possesses two subtrees, one with n1 leaf descendants and another with n2 leaf
descendants.

We decompose a ranked unlabeled tree at its root into subtrees of size n1 and n2.
If n1 
= n2, then the n1 − 1 interior nodes of the subtree with n1 leaves and the n2 − 1
interior nodes of the subtree with n2 leaves can be interleaved in

(n1+n2−2
n1−1

)
ways. If

n1 = n2, then the two ranked subtrees can be the same in Rn1 ways, eachwith
1
2

(2n1−2
n1−1

)

ways of interleaving the two ranked unlabeled subtrees; the two ranked subtrees can
differ in 1

2 (R
2
n1 − Rn1) ways, each with

(2n1−2
n1−1

)
ways of interleaving the subtrees. ��

Proposition 11 For n1, n2 ≥ 1 and π1 ∈ �n1, π2 ∈ �n2 , the number of ranked
unlabeled tree shapes compatible with a binary perfect phylogeny π = (π1, π2) ∈ �n

is

∣∣GT
c ((π1, π2))

∣∣ =
⎧
⎨

⎩

(2n1−2
n1−1

)(∣∣GT
c (π1)

∣
∣
∣
∣GT

c (π2)
∣
∣ − 1

2

∣
∣GT

c (π1 ∧ π2)
∣
∣2) if π1 ∧ π2 
= ∅

(n1+n2−2
n1−1

)∣∣GT
c (π1)

∣
∣
∣
∣GT

c (π2)
∣
∣ if π1 ∧ π2 = ∅.

(9)
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Proof Ifπ1∧π2 = ∅, then the number of ranked tree shapes compatiblewith (π1, π2) is
simply the product of the number of ranked tree shapes compatiblewithπ1, the number
of ranked tree shapes compatible with π2, and the number of ways of interleaving their
rankings.

If π1 ∧ π2 
= ∅, then certain ranked tree shapes can be compatible with both π1
and π2, i.e., compatible with π1 ∧ π2. We therefore have three cases: the two perfect
phylogenies are the same, one is a refinement of the other (two possible ways), or
neither is a refinement of the other. The cardinalities in these cases are 1

2 |GT
c (π1∧π2)|2,

|GT
c (π1∧π2)| (|GT

c (π2)|−|GT
c (π1∧π2)|)+|GT

c (π1∧π2)|(|GT
c (π1)|−|GT

c (π1∧π2)|),
and (|GT

c (π1)|−|GT
c (π1∧π2)|)(|GT

c (π2)|−|GT
c (π1∧π2)|), respectively, all multiplied

by the possible number of interleavings of the rankings
(2n1−2
n1−1

)
. ��

Propositions 10 and 11 provide a recursive formula for calculating the number of
ranked tree shapes compatiblewith a binary perfect phylogeny. For Fig. 6A, the number
of ranked tree shapes compatible with (4, 2) is (4)(2) = 8, and the number of ranked
tree shapes compatible with ((4, 2), 6) is

(10
5

)
(|GT

c (4, 2)| |GT
c (6)| − 1

2 |GT
c (4, 2)|2) =

(10
5

)[(8)(16) − 1
2 (8)

2] = 24,192.

Table 1 shows the number of ranked unlabeled tree shapes compatible with some of
the perfect phylogenies of sample size 10. We can observe that these numbers exceed
corresponding numbers of unranked unlabeled tree shapes compatible with the perfect
phylogenies, just as the numbers of ranked unlabeled tree shapes exceed the numbers
of unranked unlabeled tree shapes (Sect. 2.4).

For the ranked unlabeled tree shapes compatible with a binary perfect phylogeny,
we can examine the asymptotic growth of the number of compatible ranked unlabeled
tree shapes in particular families of binary perfect phylogenies. For a fixed integer
value x ≥ 1, consider the family of binary perfect phylogenies Bx (n) = (x, n − x) as
n increases. These are cherry phylogenies with labels x and n − x at their two leaves.
Let bx (n) be the number of ranked unlabeled tree shapes compatible with Bx (n).
Among the integer sequences b1(n), b2(n), b3(n), . . ., the next proposition shows that
b2(n) has the fastest asymptotic growth. In other words, as n grows large, the value of
x for which the number of ranked unlabeled tree shapes compatible with the perfect
phylogeny Bx (n) is asymptotically largest is x = 2.

Proposition 12 Among the integer sequences b1(n), b2(n), b3(n), . . ., the sequence
b2(n) has the fastest asymptotic growth.

Proof For a fixed integer value x ≥ 0, let βx = (x + 1, n − x + 1) be a binary perfect
phylogeny with two leaves, labeled by x + 1 (say to the left of the root) and n − x + 1
(to the right of the root). The set of ranked unlabeled tree shapes compatible with βx

corresponds to the set of ranked unlabeled tree shapes with n+1 internal nodes (n+2
leaves), x internal nodes for the left root subtree, and n− x internal nodes for the right
root subtree.

We consider an increasing sequence of values of n. Supposing n > 2x so that the
root subtrees of βx cannot have the same sample size, we apply Proposition 11, finding
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that the number of ranked unlabeled tree shapes compatible with βx is

(
n

x

)
exen−x , (10)

where ei is the number of ranked unlabeled tree shapeswith i internal nodes. Following
Eq. 3, the integer ei is the i th Euler number, ei = Ri+1.

The exponential generating function of the sequence (ei ) is (Brent and Harvey
2013)

∞∑

i=0

ei zi

i ! = sec(z) + tan(z). (11)

We can write the ratio qi = ei
i ! as (Flajolet and Sedgewick 2009, p. 269; Brent and

Harvey 2013)

qi =

⎧
⎪⎪⎨

⎪⎪⎩

2
( 2

π

)i+1 ∞∑
k=0

(−1)k

(2k+1)i+1 , if i is even

2
[( 2

π

)i+1 − ( 1
π

)i+1
] ∞∑
k=1

1
ki+1 , if i is odd.

(12)

As i becomes large, by applying singularity analysis toEq. 11, or by computing directly
from Eq. 12, we have the asymptotic relation

qi ∼ 2

(
2

π

)i+1

. (13)

With qx = ex/x !, we rewrite Eq. 10 as n! qxqn−x . Letting n → ∞ for a fixed x , we
can use Eq. 12 to rewrite qx , and because x is constant as n grows, we can use Eq. 13
for the asymptotic value of qn−x . Hence, for increasing values of n, the number of
ranked tree shapes compatible with the perfect phylogeny βx behaves asymptotically
like the product of n! and

qxqn−x ∼ 4

(
2

π

)n+2

cx , (14)

where

cx =

⎧
⎪⎪⎨

⎪⎪⎩

∞∑
k=0

(−1)k

(2k+1)x+1 , if x is even
(
1 − 1

2x+1

) ∞∑
k=1

1
kx+1 , if x is odd.

(15)

Note that ζ(s) = ∑∞
k=1

1
ks is the Riemann zeta function. If x is even, then

cx = 1 +
(

− 1

3x+1 + 1

5x+1

)
+

(
− 1

7x+1 + 1

9x+1

)
+ ... ≤ 1. (16)
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Among odd values of x , we have c1 = 3
4 ζ(2) = π2/8 ≈ 1.2337 for x = 1. For odd

x ≥ 3, we have

cx < ζ(x + 1) ≤ ζ(3) ≈ 1.2021 < c1.

Hence, c1 > 1 exceeds cx both for even x and for all odd x ≥ 3.
Because cx has its maximum at x = 1, from Eq. 14, we conclude that the product

qxqn−x grows asymptotically fastest for x = 1. In particular, as n → ∞, the value
of x for which the binary perfect phylogeny βx has the largest number of compatible
ranked unlabeled tree shapes is x = 1—that is, when βx = β1 = (2, n). ��

In Table 1, we can observe an example of Proposition 12. The value of b2(10), or
2176, exceeds the values of bx (10) for all other values of x (with the trivial exception
that b2(10) = b8(10)). The asymptotic approximation from Eq. 14 gives

b2(n) ∼ 2

(
2

π

)n−2

(n − 2)!, (17)

which, for n = 10, yields b2(10) ≈ 20, 643, 840/π8 ≈ 2175.66.
We also obtain the following corollary.

Corollary 13 Among the integer sequences b1(n), b2(n), b3(n), . . ., the sequence b1(n)

has the slowest asymptotic growth.

Proof From the proof of Proposition 12, for x ≥ 0, bx+1(n + 2) gives the number of
ranked unlabeled shapes compatible with βx = (x + 1, n − x + 1). The proof obtains
bx+1(n + 2) = n! qxqn−x , or, following Eq. 14, bx+1(n + 2) ∼ 4( 2

π
)n+2cxn!, where

cx follows Eq. 15. Hence, to show b1(n) has the slowest growth among b1(n), b2(n),
b3(n), . . ., it suffices to show that in Eq. 15, among all values of x ≥ 0, c0 is the
smallest.

We see that c0 is equal to the power series expansion of arctan(1), or π/4. For
even x ≥ 2, consider the expansion of cx in Eq. 16, and let f (x, A) = −1/Ax+1 +
1/(A + 2)x+1, so that cx = 1 + f (x, 3) + f (x, 7) + f (x, 11) + . . .. We claim that
termwise, for even x ≥ 2 and A ≥ 3, f (x, A) > f (0, A), so that summing terms in
Eq. 16, we obtain cx > c0 for even x ≥ 2.

To prove the claim, it suffices to show that for fixed A ≥ 3, f increases from x = 0,
or ∂ f (x, A)/∂x > 0 for x > 0. We have ∂ f (x, A)/∂x = (log A)/Ax+1 − [log(A +
2)]/(A + 2)x+1. To verify that ∂ f (x, A)/∂x > 0 for x > 0 and A ≥ 3, we see that
∂ f (x, A)/∂x > 0 is equivalent to ( A+2

A )x+1 >
log(A+2)
log A . Now, from the inequality

1 + y ≤ ey , we obtain 1 + 2
A ≤ e2/A and hence ( A+2

A )A ≤ e2. Because A ≥ 3,
A2 > e2. Therefore, A2 > ( A+2

A )A, from which AA+2 > (A + 2)A, (A + 2) log A >

A log(A + 2), and A+2
A >

log(A+2)
log A . We then have ( A+2

A )x+1 > A+2
A >

log(A+2)
log A , and

∂ f (x, A)/∂x > 0.
We conclude cx > c0 for all even x ≥ 2. From the proof of Proposition 12, we

know c1 = π2/8 > π/4 = c0. For odd x ≥ 3, in Eq. 15,
∑∞

k=1 1/k
x+1 > 1, so that

cx > 1 − 1/2x+1 ≥ 1 − 1/23+1 = 15
16 > π/4 = c0, completing the proof. ��
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The proof of Corollary 13 yields

b1(n) ∼ 2

(
2

π

)n−1

(n − 2)!. (18)

The approximation yields b1(10) ≈ 41,287,680/π9 ≈ 1385.07, andwe see in Table 1
that b1(10) = 1385. From Eqs. 17 and 18, we have b2(n)/b1(n) ∼ π/2, and we see
from Table 1 that b2(10)/b1(10) = 2176/1385 ≈ 1.57 ≈ π/2.

3.4 Ranked labeled tree shapes compatible with a labeled binary perfect
phylogeny

Propositions 7, 8, 10 and 11 provide recursive formulas for enumerating unranked
unlabeled tree shapes and ranked unlabeled tree shapes compatible with a binary
perfect phylogeny. In these cases, a perfect phylogeny representation does not use
individual sequence labels; the labels of the tips of the perfect phylogeny are simply
counts of numbers of sequences. We now consider labeled perfect phylogenies that
partition the set of labeled individual sequences. We still use the parenthetical notation
described in Sect. 2.3 to denote a labeled perfect phylogeny, for example π = (2, 3),
however, it must be understood that this labeled perfect phylogeny partitions the sam-
pled sequences into two different sets of labeled sequences.

Consider {x1, x2} and {x3, x4, x5} in the perfect phylogeny of Fig. 8B. We are now
interested in calculating the number of ranked labeled tree shapes compatible with a
labeled binary perfect phylogeny. Figure 8C shows all the ranked labeled tree shapes
compatible with the labeled perfect phylogeny. For ranked labeled tree shapes, the
enumeration follows a simple recursive expression.

Definition 14 (Ranked labeled tree shape T L
n compatible with a labeled perfect phy-

logeny π ∈ �L
n ). A ranked labeled tree shape with n leaves, T L

n , is compatible with
a perfect phylogeny π ∈ �L

n if the unranked unlabeled tree shape Tn obtained by
removing the ranks and the labels from T L

n is compatible with π and the one-to-one
correspondence between the k leaves ofπ and the k disjoint subtrees of T L

n correspond
to the same partition of the individual sequences.

Proposition 15 For n1, n2 ≥ 1 andπ1 ∈ �L
n1 , π2 ∈ �L

n2 the number of ranked labeled
tree shapes compatible with a labeled binary perfect phylogeny π = (π1, π2) is

|GL
c (π)| =

(
n1 + n2 − 2

n1 − 1

)∣∣GL
c (π1)

∣∣ ∣∣GL
c (π2)

∣∣. (19)

Proof We can count the number of ranked labeled tree shapes by dividing π at the
root into two subtrees, one with n1 leaves and perfect phylogeny π1, and the other
with n2 leaves and perfect phylogeny π2, both partitioning the sampled sequences.
The number of such trees is the product of the numbers of ranked labeled trees for
the two subtrees and the number of ways of interleaving the internal nodes of the two
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subtrees. In this case, the two perfect phylogenies π1 and π2 can never be identical
because they correspond to different sets of sequences. ��

Counts for the number of ranked labeled tree shapes for some of the perfect phy-
logenies of 10 taxa (with an arbitrary labeling) appear in Table 1. Given a perfect
phylogeny in the table, we can observe that the number of ranked labeled tree shapes
far exceeds the number of ranked unlabeled tree shapes.

Continuing with ((4,2),6), the number of ranked labeled tree shapes compati-
ble with this (arbitrarily labeled) perfect phylogeny is

(10
5

)|GL
c ((4, 2))| |GL

c ((6))| =
(10
5

)(4
3

) |GL
c ((4))| |GL

c ((2))| |GL
c ((6))| = (10

5

)(4
3

)
L4L2L6 = 252×4×18×1×2700 =

48,988,800.

We can obtain a result analogous to Proposition 12; we characterize, for binary
labeled perfect phylogenies Bx (n) = (x, n − x), the one compatible with the largest
number of ranked labeled tree shapes. Let b′

x (n) denote the number of ranked labeled
tree shapes compatible with Bx (n).

Proposition 16 Fix n ≥ 2. Among the values b′
1(n), b′

2(n), . . . , b′
� n
2 �(n), the largest is

b′
1(n), and the smallest is b′

� n
2 �(n).

Proof Applying Proposition 15, we have b′
x (n) = (n−2

x−1

)
Lx Ln−x . Simplifying with

Eq. 1, we obtain b′
x (n) = [n! (n − 2)!/2n−2](nx

)−1. As it is quickly verified that the
binomial coefficients

(n
x

)
increase monotonically from x = 1 to x = � n

2 �, b′
x decreases

monotonically from x = 1 to x = � n
2 �. ��

An example of Proposition 16 is visible in Table 1, in which b′
1(10) = 57,153,600

exceeds b′
2(10), b

′
3(10), b

′
4(10), and b

′
5(10), among which b′

5(10) = 2,268,000 is the
smallest.

3.5 Unranked labeled tree shapes compatible with a labeled binary perfect
phylogeny

Continuing with the labeled perfect phylogenies from Sect. 3.4, we now count the
unranked labeled binary perfect phylogenies compatible with a labeled binary perfect
phylogeny.

Consider {x1, x2} and {x3, x4, x5} in the perfect phylogeny of Fig. 8B.We calculate
the number of unranked labeled tree shapes compatible with a labeled binary perfect
phylogeny. Each row of Fig. 8C corresponds to one of the unranked labeled tree shapes
compatible with the labeled perfect phylogeny.

Definition 17 (Unranked labeled tree shape T X
n compatible with a labeled perfect

phylogeny π ∈ �L
n ). An unranked labeled tree shape with n leaves, T X

n , is compatible
with a perfect phylogeny π ∈ �L

n if the unranked unlabeled tree shape Tn obtained by
removing the labels from T X

n is compatible with π and the one-to-one correspondence
between the k leaves of π and the k disjoint subtrees of T X

n correspond to the same
partition of the individual sequences.
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(A) (B)

(C)

Fig. 8 Coalescent and infinitely-many-sites generative model of binary molecular data. A A genealogy of
5 individuals, with 2 superimposed mutations depicted as gray squares. The root is labeled by the ancestral
type 00, and the leaves are labeled by the genetic type at each of three mutated sites. The first two leaves
from left to right are labeled 01 because one mutation occurs in their path to the root. The third, fourth
and fifth individuals have one mutation in their path to the root and are labeled 10. The order and label
of the mutations is unimportant; however, individual labels x1, x2, x3, x4, x5 are important. For ease of
exposition, we label the mutations a, b. The first site corresponds to mutation a, and the second to b. B Left,
a labeled perfect phylogeny representation of the observed data at the tips of (A). Data consist of 2 unique
haplotypes 01 and 10, with frequencies 2 and 3, respectively. The corresponding frequencies are the labels
of tips of the perfect phylogeny; however, it is understood that the two leaves correspond to {x1, x2} and
{x3, x4, x5} respectively. Right, perfect phylogeny topology obtained by removing the edge labels of the
perfect phylogeny. C The nine ranked labeled tree shapes compatible with the labeled perfect phylogeny
topology in (B). Note that in (C), if we ignore the branching order and drop the internal node labels, in each
row, the three trees are equivalent—so that each row corresponds to one of the three unranked labeled tree
shapes compatible with the labeled perfect phylogeny topology in (B)
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Proposition 18 For n1, n2 ≥ 1 and π1 ∈ �L
n1, π2 ∈ �L

n2 , the number of unranked
labeled tree shapes compatible with a labeled binary perfect phylogeny π = (π1, π2)

is ∣∣GX
c (π)

∣∣ = ∣∣GX
c (π1)

∣∣ ∣∣GX
c (π2)

∣∣. (20)

Proof We divide π at the root into two subtrees, one with n1 leaves and perfect phy-
logeny π1, and the other with n2 leaves and perfect phylogeny π2. The subtrees must
partition the sampled sequences in the same way as π . The number of such trees is
the simply product of the numbers of unranked labeled trees for the two subtrees.
As in Proposition 15, perfect phylogenies π1 and π2 are not identical because they
correspond to different sets of sequences; with the ranking dropped, unlike in Propo-
sition 15, we need not consider the number of ways of interleaving the internal nodes
of the two subtrees. ��

For someof the perfect phylogenies of 10 taxa (with an arbitrary labeling), counts for
the number of unranked labeled tree shapes appear in Table 1. The number of unranked
labeled tree shapes far exceeds the number of unranked unlabeled tree shapes, and it
generally exceeds the number of ranked unlabeled tree shapes.

For the example ((4,2),6), the number of unranked labeled tree shapes compat-
ible with this (arbitrarily labeled) perfect phylogeny is |GX

c ((4, 2))| |GX
c ((6))| =

|GX
c ((4))| |GX

c ((2))| |GX
c ((6))| = X4X2X6 = 15 × 1 × 945 = 14,175.

For binary labeled perfect phylogenies Bx (n) = (x, n−x), the one compatible with
the largest number of unranked labeled tree shapes follows the result of Proposition 16.
Let b′′

x (n) denote the number of unranked labeled tree shapes compatible with Bx (n).

Proposition 19 Fix n ≥ 2. Among the values b′′
1(n), b′′

2(n), . . . , b′′
� n
2 �(n), the largest

is b′′
1(n), and the smallest is b′′

� n
2 �(n).

Proof Applying Proposition 18, we have b′′
x (n) = Xx Xn−x for 1 ≤ x ≤ � n

2 �. Sim-
plifying with Eq. 2, we obtain

b′′
x (n) = (n − 2)!

2n−2

(2x−2
x−1

)(2n−2x−2
n−x−1

)

(n−2
x−1

) .

Then b′′
x+1(n)/b′′

x (n) = 2x−1
2n−2x−3 ≤ 1 for 1 ≤ x ≤ n−1

2 , with equality requiring

x = n−1
2 , so that b′′

x (n) monotonically decreases from x = 1 to x = � n
2 �. ��

In Table 1, we observe that as in Proposition 19, b′′
1(10) = 2,027,025 exceeds b′′

2(10),
b′′
3(10), b

′′
4(10), and b′′

5(10), among which b′′
5(10) = 11,025 is the smallest.

4 Enumeration for multifurcating perfect phylogenies

Recall that perfect phylogenies neednot be strictly binary, and that nodes canhavemore
than two descendants. To complete the description of the numbers of trees of various
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types that are compatible with a perfect phylogeny, we must consider multifurcating
perfect phylogenies. We proceed by reducing the multifurcating case to the binary
case that has already been solved.

We now consider a multifurcating perfect phylogeny that consists of a single
internal node subtending k leaves with labels n1, n2, . . . , nk . An example is depicted
in Fig. 9. Becausemultiple leaves can each correspond to groupswith the same number
of taxa, so that the same numerical label can be assigned to many of those leaves, it
is convenient to denote the vector of unique labels by a = (a1, a2, . . . , as) and the
corresponding vector of their multiplicities by m = (m1,m2, . . . ,ms), where m j

denotes the number of leaves with label a j , 1 ≤ j ≤ s ≤ k. In the example of Fig. 9,
a = (2, 3) and m = (2, 2), as two leaves (m1 = 2) have label 2 (a1 = 2) and two
leaves (m2 = 3) have label 3 (a2 = 3).

We extend the notion of the binary perfect phylogeny poset to the multifurcat-
ing case. We define π ≤ σ for two multifurcating perfect phylogenies if σ can
be obtained by sequentially collapsing pairs of pendant edges of π . Given two
multifurcating perfect phylogeniesπ1 andπ2, theirmeetπ1∧π2 is the largestmultifur-
cating perfect phylogeny that refines both π1 and π2. For example, the meet between
π1 = (1, 2, 3, (2, 2)) and π2 = (1, 2, 2, (2, 3)) is given by:

(1, 2, 3, (2, 2)) ∧ (1, 2, 2, (2, 3)) = (1, (2, 2), (2, 3)).

Similarly, their join is the smallest multifurcating perfect phylogeny π1∨π2 for which
both π1 and π2 are refinements:

(1, 2, 3, (2, 2)) ∨ (1, 2, 2, (2, 3)) = (1, 2, 2, 2, 3).

The lattice structure enables us to count the number of ranked unlabeled tree shapes
compatible with a multifurcating perfect phylogeny π = (n1, n2, . . . , nk). We use a
recursive inclusion-exclusion principle with label vector a and multiplicities m. The
key idea is to decompose the computation into a sum over all possible binary perfect
phylogenies, applying Propositions 10 and 11 to each binary perfect phylogeny. To
recursively generate all possible binary perfect phylogenies from π , we define the
operator Bi, j (π) that collapses two leaves with labels ai and a j in π . For example
B2,3(2, 2, 3, 4) = ((2, 3), 2, 4). If

∑s
i=1 mi > 2, then

|Gc(π)| =
s∑

i=1

|Gc(Bi,i (π))| 1mi>1

︸ ︷︷ ︸
collapsing two pendant edges
with the same leaf values

+
s−1∑

i=1

s∑

j=i+1

|Gc(Bi, j (π)) |1mi>0 1m j>0

︸ ︷︷ ︸
collapsing two pendant edges
with different leaf values

−
s−1∑

i=1

s∑

j=i+1

|Gc(Bi,i (π) ∧ B j, j (π))| 1mi>1 1m j>1

︸ ︷︷ ︸
collapsing all pairs containing two distinct pairs of pendant edges,

each pair with the same leaf values
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−
s−1∑

i=1

s∑

j=i+1

s∑

k=1
k 
=i,k 
= j

|Gc(Bi, j (π) ∧ Bk,k(π))| 1mi>0 1m j>0 1mk>1

︸ ︷︷ ︸
collapsing a pair of edges with different leaf values

and collapsing a pair of edges with the same leaf values

−
s−1∑

i=1

s∑

j=i+1

s−1∑

k=1
k 
=i,k 
= j

s∑


=k+1

 
=i,
 
= j

|Gc(Bi, j (π) ∧ Bk,
(π))| 1mi>0 1m j>0 1mk>0 1m
>0

︸ ︷︷ ︸
collapsing two different pairs of pendant edges,

each pair with different leaf values

. (21)

To interpret Eq. 21 as an inclusion-exclusion formula, notice that the first two sums
that are added on the right-hand side of Eq. 21 correspond to enumerations of single
events (so that the sum is analogous to a union ∪Ai ), and the following three sums
that are subtracted correspond to intersections of pairs of these events (analogous to
intersections Ai ∩ A j ).

Equation 21 provides a recursive approach for counting the number of ranked unla-
beled tree shapes compatible with a multifurcating perfect phylogeny by expressing
the calculation in terms of binary perfect phylogenies. The recursive application of
the equation proceeds until all terms reach

∑s
i=1 mi = 2, when the binary perfect

phylogenies are reached.

Example 20 The number of ranked unlabeled tree shapes compatible with π =
(2, 2, 3, 3) is:

|GT
c (2, 2, 3, 3)| = |GT

c ((2, 2), 3, 3)| + |GT
c (2, 2, (3, 3))|

+ |GT
c ((2, 3), 2, 3)| − |GT

c ((2, 2), (3, 3))|
= [|GT

c ((2, 2), (3, 3))| + |GT
c (((2, 2), 3), 3)|]

+ [|GT
c ((2, 2), (3, 3))| + |GT

c (((3, 3), 2), 2)|]

+ [|GT
c (((2, 3), 2), 3)| + |GT

c (((2, 3), 3), 2)|
+ |GT

c ((2, 3), (2, 3))|] − |GT
c ((2, 2), (3, 3))|

= |GT
c ((2, 2), (3, 3))| + |GT

c (((2, 2), 3), 3)|
+ |GT

c (((3, 3), 2), 2)| + |GT
c (((2, 3), 2), 3)|

+ |GT
c (((2, 3), 3), 2)| + |GT

c ((2, 3), (2, 3))|
= 168 + 280 + 144 + 420 + 360 + 315 = 1687.

In obtaining this sum, in intermediate steps, we use the fact that the values of GT
c for

(2), (3), (2,2), (3,3), (2,3), ((2,2),3), ((3,3),2), ((2,3),2)), and (2,3),3) are 1, 1, 1, 3, 3,
10, 18, 15, and 45, respectively.

For counting the number of unranked unlabeled tree shapes compatible with π =
(n1, n2, . . . , nk), we simply replace GT

c with Gc in Eq. 21.We use Propositions 7 and 8
in place of Propositions 10 and 11.
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Example 21 The number of unranked unlabeled tree shapes compatible with π =
(2, 2, 3, 3) is:

|Gc(2, 2, 3, 3)| = |Gc((2, 2), (3, 3))| + |Gc(((2, 2), 3), 3)| + |Gc(((3, 3), 2), 2)|
+ |Gc(((2, 3), 2), 3)| + |Gc(((2, 3), 3), 2)| + |Gc((2, 3), (2, 3))|

= 1 + 1 + 1 + 1 + 1 + 1 = 6.

This example is quite straightforward; the values of Gc for the perfect phylogenies that
appear in intermediate steps—(2), (3), (2,2), (3,3), (2,3), ((2,2),3), ((3,3),2), ((2,3),2)),
and ((2,3),3)—all equal 1.

To count the number of ranked labeled tree shapes compatible with a labeled mul-
tifurcating perfect phylogeny π = (n1, n2, . . . , nk), we assume that although any leaf
in the perfect phylogeny can have multiplicity larger than one, each leaf is uniquely
defined by its associated taxa, all of which are all assumed to have different labels.
Therefore, we take a = (n1, n2, . . . , nk) and m = (1, 1, . . . , 1). Equation 21 reduces
to

|GL
c (π)| =

s−1∑

i=1

s∑

j=i+1

|GL
c (Bi, j (π))| 1mi>0 1m j>0

︸ ︷︷ ︸
collapsing two pendant edges

−
s−1∑

i=1

s∑

j=i+1

s−1∑

k=1
k 
=i,k 
= j

s∑


=k+1

 
=i,
 
= j

|GL
c (Bi, j (π) ∧ Bk,
(π))| 1mi>0 1m j>0 1mk>0 1m
>0

︸ ︷︷ ︸
collapsing two pairs of pendant edges

. (22)

The enumeration makes use of Proposition 15.

Example 22 Consider a labeled multifurcating perfect phylogeny that groups 2, 2, 3,
and 3 taxa at the root. We assume that a = (a1, a2, a3, a4) = (2, 2, 3, 3). Applying
the recursion formula in Eq. 22, we get

|GL
c (a1, a2, a3, a4)|

= |GL
c ((a1, a2), a3, a4)| + |GL

c ((a1, a3), a2, a4)| + |GL
c ((a1, a4), a2, a3)|

+ |GL
c ((a2, a3), a1, a4)| + |GL

c ((a2, a4), a1, a3)| + |GL
c ((a3, a4), a1, a2)|

− |GL
c ((a1, a2), (a3, a4))| − |GL

c ((a1, a3), (a2, a4))| − |GL
c ((a1, a4), (a2, a3))|

= |GL
c ((2, 2), 3, 3)| + 4|GL

c ((2, 3), 2, 3)| + |GL
c ((3, 3), 2, 2)|

− |GL
c ((2, 2), (3, 3))| − 2|GL

c ((2, 3), (2, 3))|.

Now, because

|GL
c (a1, a2, a3)| = |GL

c ((a1, a2), a3)| + |GL
c ((a1, a3), a2)| + |GL

c ((a2, a3), a1)|,
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we have

|GL
c ((2, 2), 3, 3)| = 2|GL

c (((2, 2), 3), 3)| + |GL
c ((2, 2), (3, 3))|

|GL
c ((2, 3), 2, 3)| = |GL

c (((2, 3), 2), 3)| + |GL
c (((2, 3), 3), 2)| + |GL

c ((2, 3), (2, 3))|
|GL

c ((3, 3), 2, 2)| = 2|GL
c (((3, 3), 2), 2)| + |GL

c ((2, 2), (3, 3))|.

Summing all terms, we get

|GL
c (a1, a2, a3, a4)|

= 2|GL
c (((2, 2), 3), 3)| + 2|GL

c (((3, 3), 2), 2)| + |GL
c ((2, 2), (3, 3))|

+ 4|GL
c (((2, 3), 2), 3)| + 4|GL

c (((2, 3), 3), 2)| + 2|GL
c ((2, 3), (2, 3))|

= 2 × 5040 + 2 × 2592 + 6048 + 4 × 3780 + 4 × 3240 + 2 × 5670 = 60,732.

In obtaining this sum, we use the fact that the values of GL
c for (2), (3), (2,2), (3,3),

(2,3), ((2,2),3), ((3,3),2), ((2,3),2)), and ((2,3),3), and are 1, 3, 2, 54, 9, 60, 324, 45,
and 405, respectively.

The number of unranked labeled tree shapes compatible with π = (n1, n2, . . . , nk)
is obtained by replacing GL

c with GX
c in Eq. 22. We use Proposition 18 in place of

Proposition 15.

Example 23 The number of unranked labeled tree shapes compatible with a labeled
multifurcating perfect phylogeny that groups 2, 2, 3, and 3 taxa at the root, with
a = (a1, a2, a3, a4) = (2, 2, 3, 3) is:

|GX
c (a1, a2, a3, a4)|

= 2|GX
c (((2, 2), 3), 3)| + 2|GX

c (((3, 3), 2), 2)| + |GX
c ((2, 2), (3, 3))|

+ 4|GX
c (((2, 3), 2), 3)| + 4|GX

c (((2, 3), 3), 2)| + 2|GX
c ((2, 3), (2, 3))|

= 2 × 9 + 2 × 9 + 9 + 4 × 9 + 4 × 9 + 2 × 9 = 135.

The sum uses values of GX
c for (2), (3), (2,2), (3,3), (2,3), ((2,2),3), ((3,3),2), ((2,3),2)),

and ((2,3),3), equal to 1, 3, 1, 9, 3, 3, 9, 3, and 9, respectively.

The entries in the table are obtained by repeated use of Propositions 7 and 8 for
unranked unlabeled tree shapes, Propositions 10 and 11 for ranked unlabeled tree
shapes, Proposition 15 for ranked labeled tree shapes, and Proposition 18 for unranked
labeled tree shapes. An arbitrary labeling of the perfect phylogeny is assumed for
counting the associated ranked and unranked labeled tree shapes. Figure 10 shows the
corresponding partial Hasse diagram of the lattice of binary perfect phylogenies with
10 taxa.
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(A)

(B)

Fig. 9 Example of all possible binary perfect phylogeny topologies for a given multifurcating perfect
phylogeny topology. The binary perfect phylogenies are obtained from a multifurcating perfect phylogeny
by resolving multifurcating nodes into sequences of bifurcations

Table 1 Number of trees compatible with example perfect phylogenies of 10 taxa

Perfect phylogeny Unranked unlabeled
tree shapes

Ranked unlabeled
tree shapes

Ranked labeled
tree shapes

Unranked labeled
tree shapes

(9,1) 46 1385 57,153,600 2,027,025

(8,2) 23 2176 12,700,800 135,135

(7,3) 11 1708 4,762,800 31,185

(6,4) 12 1792 2,721,600 14,175

(5,5) 6 875 2,268,000 11,025

((8,1),1) 23 272 1,587,600 135,135

((7,2),1) 11 427 396,900 10,395

((6,3),1) 6 336 170,100 2835

((5,4),1) 6 350 113,400 1575

((7,1),2) 11 488 453,600 10,395

((6,2),2) 6 768 129,600 945

((5,3),2) 3 600 64,800 315

((4,4),2) 3 320 51,840 225

((6,1),3) 6 448 226,800 2835

((5,2),3) 3 700 75,600 315

((4,3),3) 2 560 45,360 135

((5,1),4) 6 560 181,440 1575

((4,2),4) 4 896 72,576 225

((3,3),4) 2 336 54,432 135

((4,1),5) 5 560 226,800 1575

((3,2),5) 3 735 113,400 315
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Fig. 10 Partial Hasse diagram of
the lattice of binary perfect
phylogenies with n = 10 taxa.
Only those perfect phylogenies
appearing in Table 1 are shown

5 Conclusion

The infinitely-many-sites mutations model is a popular model of molecular variation
for problems of population genetics (Wakeley 2008) and related areas (Jones et al.
2020), in which constraints are imposed on the space of trees that can explain the
observed patterns of molecular variation. A realization of the coalescent model on
a genealogy and a superimposed infinitely-many-sites mutation model can be sum-
marized as a perfect phylogeny. Here, we have examined combinatorial properties of
the genealogical tree structures that are compatible with a perfect phylogeny, demon-
strating that the binary perfect phylogenies possess a lattice structure (Theorem 5).
We have used this lattice structure to provide recursive enumerative results count-
ing the trees—unranked unlabeled trees, ranked unlabeled trees, ranked labeled trees,
and unranked labeled trees—compatible with binary perfect phylogenies. Further, for
multifurcating perfect phylogenies, we have exploited a recursive inclusion-exclusion
principle to decompose a multifurcating perfect phylogeny into all possible binary
perfect phylogenies, extending the utility of our lattice approach from bifurcating
structures to more general structures.

In our enumerative results, the count of the number of trees of a specified type that
are compatible with a perfect phylogeny is obtained by a decomposition of the perfect
phylogeny at its root. The number of associated trees is obtained by counting trees
for each subtree immediately descended from the root of the perfect phylogeny—and
where appropriate, counting interleavings of nodes within those trees, taking care to
consider cases that avoid double-counting, or both. This same techniquewas applicable
for each of the types of trees we considered, appearing in Sects. 3.2, 3.3, 3.4, 3.5,
and 4. We have provided examples for relatively small cases with n = 10 taxa (Table
1, Fig. 10). Owing to the recursive structure of the computation, the decomposition
itself proceeds rapidly from the root through the internal nodes, so that a count can be
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quickly obtained even if the number itself is large. Our algorithmic implementation in
python does have a computational precision limitation, but it accommodates numbers
up to the order of 10290.

We obtained results concerning the cherry perfect phylogenies with the largest
numbers of rankedunlabeled, unranked labeled, and ranked labeled tree shapes (Propo-
sitions 12, 16, and 19), and itwill be informative to seek a similar result for the unranked
unlabeled case. The result in Proposition 12 on asymptotic growth of the number of
ranked unlabeled tree shapes compatible with a binary perfect phylogeny is reminis-
cent of a result concerning “lodgepole” trees. A number of studies have examined
another combinatorial structure for evolutionary trees, the number of “coalescent his-
tories” associated with a labeled species tree and its matching labeled gene tree. These
coalescent histories encode different evolutionary scenarios possible for the coales-
cence of gene lineages on a species tree. Disanto and Rosenberg (2015) found that
the lodgepole trees, a class of trees in which cherry nodes with 2 descendants succes-
sively branch from a single species tree edge, possesses a particularly large number of
coalescent histories. Similarly, in Proposition 12, as n increases, the number of ranked
unlabeled tree shapes compatible with a cherry perfect phylogeny is largest when the
perfect phylogeny has one subtree with sample size 2.

Perfect phylogenies have beenwidely studied in varied estimation problems, for the
“perfect phylogeny problem” asking whether a perfect phylogeny can be constructed
from data given on a set of characters (Agarwala and Fernández-Baca 1993; Kannan
and Warnow 1997; Felsenstein 2004; Gusfield 2014; Steel 2016), statistical inference
of evolutionary parameters under the coalescent (Griffiths and Tavaré 1994; Stephens
and Donnelly 2000; Tavaré 2004; Palacios et al. 2019; Cappello et al. 2020b), and
algorithmic estimation of haplotype phase from diploid data (Gusfield 2002; Bafna
et al. 2004; Gusfield 2014). However, the literature on perfect phylogenies has largely
focused on such applications and on algorithmic problems of obtaining perfect phy-
logenies from data under various constraints, with little emphasis on the enumerative
combinatorics of the perfect phylogenies themselves, and of their associated refine-
ments. In describing a lattice for the binary perfect phylogenies with sample size n,
this study suggests that the mathematical properties of sets of perfect phylogenies as
combinatorial structures per se can be informative. The link to coalescent histories
suggests possible connections to related concepts such as “ancestral configurations”
(Wu 2012; Disanto and Rosenberg 2017), which also can be described in terms of lat-
tices (Alimpiev and Rosenberg 2022); it will be useful to consider perfect phylogenies
alongside such structures arising in the combinatorics of evolutionary trees.

Finally, returning to considerations of coalescent-based inference from sequences,
recall that inference of evolutionary parameters from a given perfect phylogeny is per-
formed by integrating over the space of genealogies. A standard approach to inference
integrates over the space of ranked labeled tree shapes generated by the Kingman coa-
lescent (Drummond et al. 2012).However, this inference is computationally intractable
for large sample sizes. We have observed a striking reduction in the cardinality of the
set of ranked (and unranked) unlabeled tree shapes compatible with an observed per-
fect phylogeny, relative to the number of ranked (and unranked) labeled tree shapes
compatible with an observed perfect phylogeny (Tables 1 and 2). This observation
contributes to a growing branch of the area of coalescent-based inference (Sainudiin
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Table 2 Ratio of the number of unranked labeled and unranked unlabeled tree shapes and ratio of the
number of ranked labeled and ranked unlabeled tree shapes compatible with three perfect phylogenies of
10, 20 and 50 taxa

Perfect phylogeny Ratio for unranked tree shapes Ratio for ranked tree shapes

(5,5) 1837.5 2592

(15,5) ∼ 1.54 × 1012 ∼ 1.26 × 1012

(45,5) ∼ 2.17 × 1053 ∼ 8.18 × 1052

et al. 2015; Palacios et al. 2015, 2019; Cappello et al. 2020a) that can make use of
ranked unlabeled trees to estimate the evolutionary parameters.

Acknowledgements J.A.P. and N.A.R. acknowledge support fromNational Institutes of Health Grant R01-
GM-131404. J.A.P. acknowledges support from the Alfred P. Sloan Foundation.

Appendix: Proof of Theorem 5

To prove Theorem 5, we must verify four pairs of conditions concerning perfect
phylogenies π ∈ �n ∪ {∅}. Note that any binary perfect phylogeny π ∈ �n ∪ {∅} is
equal to ∅, (n), or (π1, π2) for two non-empty binary perfect phylogenies π1 ∈ �n1
and π2 ∈ �n2 , where 1 ≤ n1, n2 < n and n1 + n2 = n. Hence, we must demonstrate
the four pairs of conditions for perfect phylogeny pairs that include ∅, (n), or both,
and for perfect phylogeny pairs that include neither ∅ nor (n).

Because perfect phylogenies can be decomposed into smaller perfect phylogenies,
we proceed by induction on n, with a base case of n = 1. In the inductive step we
assume that (�k ∪ {∅},∧,∨) is a lattice for all k, 1 ≤ k < n. We then verify that it
follows that (�n ∪ {∅},∧,∨) is a lattice. We start with Condition 2, which is trivial.

Condition 2:� ∧ � = � ∧ � and� ∨ � = � ∨ �

For all n, condition 2 of the definition of a lattice is trivially satisfied, as the operations
∧ and ∨ are symmetric by definition. In subsequent derivations, we frequently apply
Condition 2 without always noting its application.

The n = 1 case for conditions 1, 3, and 4

Consider n = 1, for which �1 contains only the perfect phylogeny (1), and �1 ∪ {∅}
contains only (1) and ∅. For �1 ∪{∅}, demonstrating Condition 1 of the requirements
for a lattice requires that we show (1) ∧ (1) = (1), ∅ ∧ ∅ = ∅, (1) ∨ (1) = (1), and
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∅ ∨ ∅ = ∅. These four relations are true by parts (3), (1), (4), and (2) of Definition 1,
respectively.

Demonstrating Condition 3 requires that we verify a pair of conditions for each
of the eight choices of (x, y, z) for x, y, z ∈ �1 ∪ {∅}. Demonstrating Condition 4
requires that we verify a pair of conditions for each of the four choices of (x, y). The
16 verifications for Condition 3 and eight verifications for Condition 4 all quickly
follow by Definition 1 (1–4). Hence, (�1 ∪ {∅},∧,∨) is a lattice.

Condition 1:� ∧ � = � and� ∨ � = �

First, we demonstrate the first part of the condition. We see ∅ ∧ ∅ = ∅ by Definition 1
(1) and (n) ∧ (n) = (n) by Definition 1 (3).

Consider π = (π1, π2) for π1 ∈ �n1 and π2 ∈ �n2 , where 1 ≤ n1, n2 < n and
n1 + n2 = n.

π ∧ π = (π1, π2) ∧ (π1, π2)

= (π1 ∧ π1, π2 ∧ π2) ∨ (π1 ∧ π2, π2 ∧ π1) by Prop. 2 (2)

= (π1, π2) ∨ (π1 ∧ π2, π1 ∧ π2) by the inductive hypothesis.

If n1 
= n2, then we apply Definition 1 (5), the convention (π,∅) = ∅, and Definition 1
(2), and we obtain π ∧ π = (π1, π2) ∨ (∅,∅) = (π1, π2) ∨ ∅ = (π1, π2) = π . If
n1 = n2, then we have two cases: π1 ≤ π2 (without loss of generality), and π1, π2
are not comparable.

If π1 ≤ π2, then π1 ∧π2 = π1 and π1 ∨π2 = π2. By Proposition 2 (3), (π1, π2)∨
(π1, π1) = (π1, π2 ∨ π1) = (π1, π2) = π , so that π ∧ π = π .

If π1 and π2 are not comparable, then by Definition 1 (11), π1 ∧ π2 = δ for some
δ ∈ (�n1 ∪ {∅})\{π1, π2}, with δ ∨ π1 = π1 and δ ∨ π2 = π2. We then have by
Proposition 2 (3),

(π1, π2) ∨ (π1 ∧ π2, π1 ∧ π2) = (π1, π2) ∨ (δ, δ).

But (δ, δ) refines (π1, π2), as δ refines π1 and δ refines π2, so that (π1, π2) can
be obtained by collapsing cherries separately in the two subtrees of (δ, δ). Hence,
π ∧ π = (π1, π2) ∨ (δ, δ) = (π1, π2) = π .

For the second part of the condition, we have ∅ ∨ ∅ = ∅ by Definition 1 (2) and
(n) ∨ (n) = (n) by Definition 1 (4). Consider π = (π1, π2) for π1 ∈ �n1 and
π2 ∈ �n2 , where 1 ≤ n1, n2 < n and n1 + n2 = n.

π ∨ π = (π1, π2) ∨ (π1, π2)

= (π1, π2 ∨ π2) by Prop. 2 (3)

= (π1, π2) by the inductive hypothesis

= π.
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Condition 4:� ∧ (� ∨ �) = � and� ∨ (� ∧ �) = �

First, we see that both parts of the condition hold if at least one of π, σ is in {∅, (n)},
by Definition 1 (1–4). Next, we have the following 3 cases:

i. If π ≤ σ , then π ∧ σ = π and π ∨ σ = σ . Hence, π ∧ (π ∨ σ) = π ∧ σ = π .
By Condition 1, π ∨ (π ∧ σ) = π ∨ π = π .

ii. If σ ≤ π , then π ∧σ = σ and π ∨σ = π . Hence, by Condition 1, π ∧ (π ∨σ) =
π ∧ π = π . We also have π ∨ (π ∧ σ) = π ∨ σ = π .

iii. If π and σ are not comparable, then by Proposition 2 (5), there exists a perfect
phylogeny γ such thatπ∨σ = γ ,π∧γ = π , and σ ∧γ = σ . Henceπ∧(π∨σ) =
π ∧ γ = π . By Proposition 2 (5), there exists a perfect phylogeny ρ such that
π ∧ σ = ρ, π ∨ ρ = π , and σ ∨ ρ = σ . We have π ∨ (π ∧ σ) = π ∨ ρ = π .

Condition 3:� ∧ (� ∧ �) = (� ∧ �) ∧ � and� ∨ (� ∨ �) = (� ∨ �) ∨ �

First, we see that both parts of the condition hold if at least one of π, σ, ρ is in {∅, (n)},
byDefinition 1 (1–4). Assume now thatπ = (π1, π2), σ = (σ1, σ2), andρ = (ρ1, ρ2).
Then

π ∧ (σ ∧ ρ)

= (π1, π2) ∧ ((σ1, σ2) ∧ (ρ1, ρ2))

= (π1, π2) ∧ [(σ1 ∧ ρ1, σ2 ∧ ρ2) ∨ (σ1 ∧ ρ2, σ2 ∧ ρ1)] by Prop. 2 (2)
= [(π1, π2) ∧ (σ1 ∧ ρ1, σ2 ∧ ρ2)] ∨ [(π1, π2) ∧ (σ1 ∧ ρ2, σ2 ∧ ρ1)] by Prop. 2 (4)

= [(π1 ∧ (σ1 ∧ ρ1), π2 ∧ (σ2 ∧ ρ2)) ∨ (π1 ∧ (σ2 ∧ ρ2), π2 ∧ (σ1 ∧ ρ1))]
∨ [(π1∧(σ1∧ρ2), π2 ∧ (σ2∧ρ1)) ∨ (π1∧(σ2 ∧ ρ1), π2∧(σ1 ∧ ρ2))] by Prop. 2 (2)

By the inductive hypothesis for both parts of the condition, πi ∧ (σ j ∧ ρk) = (πi ∧
σ j ) ∧ ρk and πi ∨ (σ j ∨ ρk) = (πi ∨ σ j ) ∨ ρk for all i, j, k ∈ {1, 2}. We then get

π ∧ (σ ∧ ρ)=[((π1∧σ1)∧ρ1, (π2 ∧ σ2) ∧ ρ2) ∨ ((π1 ∧ σ2) ∧ ρ2, (π2 ∧ σ1) ∧ ρ1)]
∨ [((π1∧σ1)∧ρ2, (π2 ∧ σ2) ∧ ρ1) ∨ ((π1∧σ2) ∧ ρ1, (π2 ∧ σ1) ∧ ρ2)].

By the inductive hypothesis for operator ∨ and by Condition 2, we can rearrange
parentheses and swap the order of terms to obtain:

π ∧ (σ ∧ ρ) = ((π1 ∧ σ1) ∧ ρ1, (π2 ∧ σ2) ∧ ρ2) ∨ [(π1 ∧ σ1) ∧ ρ2, (π2 ∧ σ2) ∧ ρ1)

∨ ((π1 ∧ σ2) ∧ ρ2, (π2 ∧ σ1)∧ρ1] ∨ ((π1 ∧ σ2) ∧ ρ1, (π2∧σ1)∧ρ2).

Dropping the brackets and viewing this expression as having four perfect phylogenies
separated by the∨ operator, we group the first two and the last two perfect phylogenies
together and apply Proposition 2 (2) to each group. We get
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π ∧ (σ ∧ ρ) = [(π1 ∧ σ1, π2 ∧ σ2) ∧ (ρ1, ρ2)]
∨ [(π1 ∧ σ2, π2 ∧ σ1) ∧ (ρ1, ρ2)] by Prop. 2 (2)

= [(π1 ∧ σ1, π2 ∧ σ2) ∨ (π1 ∧ σ2, π2 ∧ σ1)] ∧ (ρ1, ρ2) by Prop. 2 (4)

= (π ∧ σ) ∧ ρ by Prop. 2 (2).

For the second part of the condition, suppose π = (π1, π2) ∈ �n , σ = (σ1, σ2) ∈
�n , and ρ = (ρ1, ρ2) ∈ �n are three perfect phylogenies of size n. We consider four
cases. First, suppose the three perfect phylogenies have mutually different subtree
sizes—that is, {|π1|, |π2|}, {|σ1|, |σ2|}, and {|ρ1|, |ρ2|} are mutually distinct. Then
π ∨ σ = π ∨ ρ = σ ∨ ρ = (n) by Proposition 2 (3). We then have π ∨ (σ ∨ ρ) =
π ∨ (n) = (n) = (n) ∨ ρ = (π ∨ σ) ∨ ρ by Definition 1 (4).

The same argument applies if it ismerely assumed thatσ andρ have pairs of subtrees
whose sizes differ, {|σ1|, |σ2|} 
= {|ρ1|, |ρ2|}). Then π ∨ (σ ∨ ρ) = π ∨ (n) = (n) =
(π ∨ σ) ∨ ρ by Definition 1 (4) and Prop. 2 (3), where we have used the fact that
σ ∨ ρ = (n) and σ ≤ π ∨ σ , so that (π ∨ σ) ∨ ρ = (n).

If {|σ1|, |σ2|} = {|ρ1|, |ρ2|}) but {|π1|, |π2|} 
= {|σ1|, |σ2|}) and {|π1|, |π2|} 
=
{|ρ1|, |ρ2|}), thenπ∨σ = (n). Because σ ≤ σ ∨ρ andπ∨σ = (n),π∨(σ ∨ρ) = (n).
Similarly, (π ∨ σ) ∨ ρ = (n) ∨ ρ = (n) by Definition 1 (4) and Prop. 2 (3).

It remains to consider the case in which at least a pair of subtrees, one each from π ,
σ and ρ, have the same size, or {|π1|, |π2|} = {|σ1|, |σ2|}) = {|ρ1|, |ρ2|}). We have

π ∨ (σ ∨ ρ) = (π1, π2) ∨ ((σ1, σ2) ∨ (ρ1, ρ2))

= (π1, π2) ∨ [(σ1 ∨ ρ1, σ2 ∨ ρ2) ∧ (σ1 ∨ ρ2, σ2 ∨ ρ1)] by Prop. 2 (3)

= [(π1, π2) ∨ (σ1 ∨ ρ1, σ2 ∨ ρ2)]
∧ [(π1, π2) ∨ (σ1 ∨ ρ2, σ2 ∨ ρ1)] by Prop. 2 (4)

= [(π1∨(σ1 ∨ ρ1), π2 ∨ (σ2 ∨ ρ2))∧(π1 ∨ (σ2 ∨ ρ2), π2∨(σ1 ∨ ρ1))]
∧ [(π1 ∨ (σ1 ∨ ρ2), π2 ∨ (σ2 ∨ ρ1)) ∧ (π1 ∨ (σ2 ∨ ρ1),

π2 ∨ (σ1 ∨ ρ2))] by Prop. 2 (3)

= ((π1 ∨ σ1) ∨ ρ1, (π2 ∨ σ2) ∨ ρ2) ∧ ((π1 ∨ σ1) ∨ ρ2, (π2 ∨ σ2) ∨ ρ1)

∧ ((π1 ∨ σ2) ∨ ρ2, (π2 ∨ σ1) ∨ ρ1) ∧ ((π1 ∨ σ2) ∨ ρ1,

(π2 ∨ σ1) ∨ ρ2) by ind. hypothesis

= [(π1 ∨ σ1, π2 ∨ σ2) ∨ (ρ1, ρ2)] ∧ [(π1 ∨ σ2,

π2 ∨ σ1) ∨ (ρ1, ρ2)] by Prop. 2 (3)
= [(π1 ∨ σ1, π2 ∨ σ2) ∧ (π1 ∨ σ2, π2 ∨ σ1)] ∨ (ρ1, ρ2) by Prop. 2 (4)

= (π ∨ σ) ∨ ρ by Prop. 2 (3). (23)

Note that this derivation includes the case of shared subtrees at the root, in which it is
not only the sizes of the subtrees that are the same, but the subtrees themselves. For
example, suppose π = (π1, π2) and σ = (π1, σ1). By Proposition 2 (3), we have

π ∨ σ = (π1, π2) ∨ (π1, σ1) = (π1, π2 ∨ σ1).
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However, we will show that we can replace the previous equality by the extended
expression:

π ∨ σ = (π1 ∨ π1, π2 ∨ σ1) ∧ (π1 ∨ σ1, π1 ∨ π2), (24)

and then the previous derivation remains unchanged. To prove this assertion, we have:

π2 ∨ σ1 = (π2 ∨ (π1 ∧ π2)) ∨ σ1 by Condition 4

= (π2 ∨ σ1) ∨ (π1 ∧ π2) by the inductive hypothesis and Condition 2

= π2 ∨ [(σ1 ∧ π1) ∨ σ1] ∨ (π1 ∧ π2) by Conditions 2 and 4

= [π2 ∨ (σ1 ∧ π1)] ∨ [σ1 ∨ (π1 ∧ π2)] by the inductive hypothesis.

Then

π ∨ σ = (π1, π2 ∨ σ1)

= (π1, [π2 ∨ (σ1 ∧ π1)] ∨ [σ1 ∨ (π1 ∧ π2)])
= (π1, π2 ∨ (σ1 ∧ π1)) ∨ (π1, σ1 ∨ (π1 ∧ π2)) by Prop. 2 (3)

= (π1, (π2 ∨ σ1) ∧ (π2 ∨ π1)) ∨ (π1, (σ1 ∨ π1) ∧ (σ1 ∨ π2)) by Prop. 2 (4).
(25)

By Condition 4 and Proposition 2 (3) we have

π1 = π1 ∨ (π1 ∧ σ1) = (π1 ∨ π1) ∧ (π1 ∨ σ1),

and

π1 = π1 ∨ (π1 ∧ π2) = (π1 ∨ π1) ∧ (π1 ∨ π2).

Replacing the first π1 in the first pair of Eq. 25 by (π1 ∨ π1) ∧ (π1 ∨ σ1), and the first
π1 in the second pair of Eq. 25 by (π1 ∨ π1) ∧ (π1 ∨ π2), we get

π ∨ σ = ((π1 ∨ π1) ∧ (π1 ∨ σ1), (π2 ∨ σ1) ∧ (π2 ∨ π1)) ∨ ((π1 ∨ π1)

∧ (π1 ∨ π2), (σ1 ∨ π1) ∧ (σ1 ∨ π2))

= (π1 ∨ π1, π2 ∨ σ1) ∧ (π1 ∨ σ1, π1 ∨ π2) by Prop. 2 (2).

Thus, Eq. 24 holds, so that Eq. 23 holds for the case in which subtrees are shared at
the root.

Appendix: Proof of Proposition 2

1. Let π1 = (n1, n2) and π2 = (n3, n4) be two perfect phylogenies in �n with
n1 + n2 = n3 + n4 = n. Then
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π1 ∨ π2 = (n1, n2) ∨ (n3, n4) =
{

(n1, n2) if n1 = n3 or n1 = n4
(n) otherwise.

Proof (a) If n1 = n3 (or n1 = n4), then n2 = n4 (or n2 = n3) since n1+n2 = n3+n4
hence π1 = π2. This in turn implies that π1 ≤ π2 and therefore π1 ∨ π2 = π2 = π1.

(b) If n1 
= n3 and n1 
= n4, then by definition π1 ∨ π2 is the smallest perfect
phylogeny that is refined by both π1 and π2. Clearly (n) is refined by both π1 and π2
and this is the smallest since (n) is directly obtained by collapsing the pair of pendant
edges of π1 and π2. ��

2. For all π1, π2, π3, π4 with (π1, π2) ∈ �n and (π3, π4) ∈ �n ,

(π1, π2) ∧ (π3, π4) = (π1 ∧ π3, π2 ∧ π4) ∨ (π1 ∧ π4, π2 ∧ π3),

with the convention that (π,∅) = ∅.

Proof The meet of the two perfect phylogenies is the largest perfect phylogeny that
refines both (π1, π2) and (π3, π4), that is, the largest among (π1 ∧ π3, π2 ∧ π4) and
(π1 ∧ π4, π2 ∧ π3), and the largest corresponds to their join. ��

3. For all π1, π2, π3, π4 with (π1, π2) ∈ �n and (π3, π4) ∈ �n , πi ∈ �ni for
i = 1, 2, 3, 4,

(π1, π2) ∨ (π3, π4)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(n) if n1 
= n3 and n1 
= n4
(π1, π2 ∨ π4) if π1 = π3

(π1, π2 ∨ π3) if π1 = π4

(π2, π1 ∨ π4) if π2 = π3

(π2, π1 ∨ π3) if π2 = π4

(π1 ∨ π3, π2 ∨ π4) ∧ (π1 ∨ π4, π2 ∨ π3) otherwise,

with the convention that (π,∅) = ∅.

Proof The join of two perfect phylogenies is the smallest perfect phylogeny that is
refined by both (π1, π2) and (π3, π4). (a) If n1 
= n3 and n1 
= n4, then no subtree of
πi , i = 1, . . . , 4 can be refined from any other by Definition 1 (6), therefore the join
corresponds to the perfect phylogeny obtained by collapsing the pair of pendant edges
of (π1, π2) and (π3, π4) which in both cases correspond to (n). (b) If one cross-pair
of subtrees is identical, for example, π1 = π3, then clearly π1 ∨ π3 = π1 since π1
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is refined by both π1 and π3, therefore the perfect phylogeny that is refined by both
(π1, π2) and (π1, π4) is (π1, π2 ∨π4). (c) Otherwise, the join corresponds to the meet
of the two perfect phylogenies that join two different cross-pairs from (π1, π2) and
(π3, π4). ��

4. For all π1, π2, π3 ∈ �n,

π1 ∧ (π2 ∨ π3) = (π1 ∧ π2) ∨ (π1 ∧ π3),

and
π1 ∨ (π2 ∧ π3) = (π1 ∨ π2) ∧ (π1 ∨ π3).

Proof In the first case, π1 ∧ (π2 ∨ π3) is the largest perfect phylogeny that refines
both π1 and (π2, π3). This perfect phylogeny then refines both π1 and π2 or both π1
and π3, that is, the largest of (π1, π2) and (π1, π3) and this largest perfect phylogeny
corresponds to their join. In the second case, π1 ∨ (π2 ∧ π3) is the smallest perfect
phylogeny that is refined by both π1 and (π2 ∨ π3), that is, refined by both π1 and
π2, and by π1 and π3 and this corresponds to the meet of the perfect phylogeny that
is refined by π1 and π2 and the perfect phylogeny that is refined by π1 and π3. ��

5. Let π, σ ∈ �n be two perfect phylogenies that are not comparable. There exist
unique γ, ρ ∈ (�n ∪ {∅})\{π, σ } such that

π ∧ σ = γ, π ∨ γ = π, and σ ∨ γ = σ,

and
π ∨ σ = ρ, π ∧ ρ = π, and σ ∧ ρ = σ.

Proof The meet of two incomparable perfect phylogenies is the largest perfect phy-
logeny that refines both π and σ . If π or σ or both are perfect phylogenies with all
tips labeled 1, for example ((1, 1), 1) then the only refinement of π and σ is ∅ and the
result holds by Definition 1. Otherwise a refinement of each perfect phylogeny can be
obtained sequentially by branching any tip with label greater than 1, until a common
perfect phylogeny is reached or until two perfect phylogenies with all tips labeled 1
are reached. If a common perfect phylogeny γ is reached we then have γ ∨π = π and
γ ∨σ = σ and the result holds. If no common perfect phylogeny is reached then γ = ∅
and the result holds. Similarly, the join of two incomparable perfect phylogenies is the
smallest perfect phylogeny refined by both π and σ . Since π and σ are not comparable
then π nor σ are (n), therefore we can sequentially collapse pairs of pendant edges of
π and σ until a common perfect phylogeny is reached or (n) is reached. In both cases,
the result holds. ��
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