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Abstract

We introduce the notion of tracial amenability for actions of discrete groups on unital,
tracial C*-algebras, as a weakening of amenability where all the relevant approxi-
mations are done in the uniform trace norm. We characterize tracial amenability with
various equivalent conditions, including topological amenability of the induced action
on the trace space. Our main result concerns the structure of crossed products: for
groups containing the free group F», we show that outer, tracially amenable actions
on simple, unital, Z-stable C*-algebras always have purely infinite crossed products.
Finally, we give concrete examples of tracially amenable actions of free groups on
simple, unital AF-algebras.

1 Introduction

The theory of amenable actions on C*-algebras is an important tool for studying
approximation properties of crossed products. Already initiated in [2], this topic has
recently received a lot of attention after it gained new impetus in [9] (see also [1, 4,
8, 32]). As recently established in [32], the notion of amenability is equivalent to the
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so-called quasicentral approximation property (QAP) from [8]. The QAP is a versa-
tile tool making powerful averaging techniques accessible, with evidence being the
classification of amenable, outer actions on Kirchberg algebras [19] or the equivariant
O,-absorption theorem [40].

The motivation for this paper originates from Elliott’s classification program, a long-
time endeavour in the theory of C*-algebras aiming to classify nuclear C*-algebras
by K -theoretic and tracial data. Elliott’s program is now considered to be essentially
completed, with unital, simple, separable, nuclear, Z-stable C*-algebras satisfying the
Universal Coefficient Theorem (UCT) of Rosenberg and Schochet [38] being classified
up to isomorphism by their Elliott invariant (see [48] for an exhaustive bibliography
on the matter). In the rest of this introduction, and although this terminology is not
standard, algebras satisfying all these assumptions will be called classifiable. In view
of this recent progress, an important further step is to identify prominent classes of
C*-algebras that satisfy the assumptions of the classification theorem. This problem
has attracted considerable attention in connection to crossed products, and most of
the work in the literature has focused on actions of discrete (and usually amenable)
groups on C*-algebras that are either abelian or simple. This work deals with the latter
setting.

Ifa: G — Aut(A) is an action of a discrete group G on a simple, unital C*-algebra
A, then the crossed product A X, G is simple whenever « is outer (see [24]). If A
is moreover nuclear, then A x, G is nuclear if and only if « is amenable (see [2]).
Whether A x, G satisfies the UCT is a very subtle question: the answer is always
“yes” if A satisfies the UCT, and G is torsion-free with the Haagerup property (see
[21, 30]), but the problem is equivalent to the UCT question for torsion groups (see
[5, Example 23.15.12 (d)]. Therefore, modulo the UCT, classifiability of A x, G for
an amenable, outer action on a simple, unital, nuclear C*-algebra reduces to proving
Z-stability for A X, G.

The problem of establishing Z-stability for A X, G when A is simple and nuclear
has been largely investigated in the case where G is amenable and A is Z-stable. In
this case, Z-stability of A X, G is conjectured to always hold (see [43, Conjecture A]),
and this has been verified in full generality if A is purely infinite ([42]), and under
various degrees of generality when A is stably finite and its trace space T (A) is a Bauer
simplex with finite dimensional boundary ([15, 28, 29, 39, 49]). Further progress has
been recently obtained in [14], where Z-stability of A X, G is obtained in a number of
cases where the boundary of T (A) is compact but not necessarily finite dimensional.
On the other hand, Z-stability may fail for actions of nonamenable groups; see [16,
Theorem B].

In this paper, we study amenable actions of nonamenable groups on simple C*-
algebras, inspired by the results in [13] for commutative C*-algebras. Our original
motivation was to show that the crossed product of an outer, amenable action of a
nonamenable group on a simple, unital, nuclear, Z-stable C*-algebra is automatically
purely infinite and simple. For groups containing the free group F», this follows from
Corollary 3.15. As it turns out, the assumptions on both the algebra and the action can
be weakened significantly. For once, we do not need to assume A to be nuclear or even
Z-stable (see Corollary 3.15 for the minimal set of assumptions). More important
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for this work is the fact that amenability of « is also stronger than necessary. This
observation led us to identify and isolate the following notion:

Definition A (Definition 2.2) An action «: G — Aut(A) of a countable, discrete
group G on a separable, unital, tracial C*-algebra A is said to be tracially amenable if
there is a sequence (&), en of finitely supported functions &, : G — A with ||§,] < 1
such that

lim |§,a — a&ylla, = lim (5, &) — Lo, = lim @& — &, , =0
n—00 n—00 n—>00 ,

foralla € Aandall g € G.

In the above definition, we denote by & the diagonal action on ¢%(G, A) with left
translation on G and @ on A, and we denote by || - ||2,, the so-called uniform trace norm
on 62(G, A); see the comments before Lemma 2.1. Thanks to the characterizations
obtained in [32], the usual notion of amenability is obtained by replacing the uniform
trace norm by the usual Hilbert C*-module-norm on £%(G, A). Since | - Mo <1 -1,
it follows that any amenable action is tracially amenable.

Section 2 is devoted to obtaining several characterizations of tracial amenability,
inspired by the work done in [32, Theorem 3.2, Theorem 4,4]. We reproduce some of
them below:

Theorem B (Theorem 2.5) Let a: G — Aut(A) be an action of a countable, dis-
crete, exact group G on a separable, unital, tracial C*-algebra A. The following are
equivalent:

(1) The action « is tracially amenable.
(2) There is a sequence (§,)neN Oof finitely supported functions &,: G — A with
Exll < 1 such that

M 1. &) — Ul = lim @) = &y, =0

forall g € G.

(3) The induced action a®: G — Aut(A® N ((A)) on the tracial ultrapower is
amenable.

(4) The induced action G ~ T (A) is topologically amenable.

(5) The induced action G ~ 9, T (A) is topologically amenable.

(6) The induced action afy : G — Aut(Af}) is von Neumann-amenable.

Some of the above conditions look similar to analogous characterizations of
amenability on C*-algebras, while some do not admit a counterpart in that setting.
For example, the difference between Definition A and item (2) above is that we do
not require approximate centrality in (2). Also, (4) and (5) do not have analogues
in the setting of amenable actions, since amenability of G ~ S(A) does not imply
amenability of «.

We study the structure of crossed products in Sect. 3. For groups containing the free
group F», we show that tracially amenable actions give rise to purely infinite crossed
products:
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Theorem C (Theorem 3.15) Let G be a countable, discrete group containing the free
group F», let A be a simple, separable, unital, stably finite, nuclear, Z-stable C*-
algebra, and let o : G — Aut(A) be a tracially amenable, outer action. Then A X, G
is a unital, simple, purely infinite C*-algebra.

As mentioned before, the requirements on A can be weakened, and we in partic-
ular do not need to assume A to be either nuclear or Z-stable (see the statement of
Corollary 3.15 for the precise assumptions on A). The condition on the group can
also be relaxed, and it suffices to assume that G has what we call weak paradoxical
towers; see Definition 3.10. To obtain Theorem C, we show in Proposition 3.9 that it
suffices to prove that any action as in the statement satisfies what Bosa, Perera, Wu
and Zacharias call dynamical strict comparison (Definition 3.8). That this is the case
is shown in Theorem 3.14, by exploiting the tension between tracial amenability of «
and the existence of weak paradoxical towers in G.

Theorem C is new even if « is amenable. In this setting, A X, G is nuclear and
therefore a Kirchberg algebra, so in particular O-stable (and, therefore, also Z-
stable). If, moreover, G is torsion-free and has the Haagerup property (for example,
G = F,; see [7, Definition 12.2.1]), and A satisfies the UCT, then A x, G also
satisfies the UCT and thus is completely determined by its K-theory by [33]; see
Corollary 3.13. Thus, the assumptions of outerness and amenability on « do in fact
guarantee classifiability of the crossed product. There is, however, a drawback:

Problem D Are there any amenable actions of nonamenable groups on simple, unital,
stably finite C*-algebras?

The above problem has recently attracted a fair amount of attention, and to the best
of our knowledge it remains open. If one drops unitality of the algebra, an example
has been constructed in [41].

The fact that Problem D remains open highlights another advantage of focusing on
tracially amenable actions throughout: namely, we can construct several examples of
actions satisfying the assumptions of Theorem C:

Example E (Example 2.10; Example 2.11) For every n > 2, there exist outer, tra-
cially amenable actions of the free group F, on stably finite, classifiable C*-algebras,
including actions on simple, unital AF-algebras.

We do not know if the actions that we construct here are amenable.

2 Tracially amenable actions

Amenable actions of discrete groups on C*-algebras were introduced in [2] and later
extended to locally compact groups in [9]. In this section, we define a tracial ana-
logue of amenability for actions of discrete groups (Definition 2.2). The motivation to
study this notion is two-fold. On the one hand, tracial amenability allows us to obtain
strong structural results for the crossed product; see Subsection 3. On the other hand,
and unlike for amenable actions, it is possible to construct many tracially amenable
actions of nonamenable groups on unital, simple, stably finite C*-algebras, by means
of classification results (see Subsection 2.1).
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Fix a unital C*-algebra A and a discrete group G. For an action «: G — Aut(A),
we denote by £2(G, A) the completion of C.(G, A) with respect to the norm || - ||
induced by the A-valued inner product given by

(&)= &@ ()

geG

for all £,n € C.(G, A). We equip £2(G, A) with the A-bimodule structure given
by pointwise multiplication and the diagonal G-action @ given by ,(§)(h) =
ag(E(gh)), forall & € 2(G, A),and all g, h € G.

Recall that a tracial state (often called simply “trace” in this work) on A is a
continuous linear functional 7: A — C satisfying (1) = 1, t(A}) € [0, o0) and
t(ab) = t(ba) for all a, b € A. We write T (A) for the compact convex space of all
traces on A. Given a trace t € T(A) and a € A, we denote by |lall2.r = r(a*a)%
the associated 2-seminorm on A. We also denote by || - ||2,; the induced seminorm on
52(G, A), given by [|§]l2,: = T((&, E))%, forall & € EZ(G, A). In order to see that this
is indeed a seminorm, note that ||£||2 ; agrees with the norm of the element £ ® &; €
2(G, A) ®yr, Hy where (n;, Hy, &) is the GNS construction of t. The uniform 2-
seminorm on A (respectively, on 02(G, A)) is given by || - [l2.u = sup;er(a I - ll2.z-
The following observation, which is a variant of the Cauchy-Schwarz inequality, will
be used repeatedly.

Lemma 2.1 Let A be a unital C*-algebra and let Tt € T (A). Then:

(1) Foreverya € A, we have |t(a)| < |lall2.: < |la].
(2) Forevery &, n € £2(G, A) we have |[(&, n)ll2.x < I€NInll2.c < IENnll.

Part (1) is immediate. For part (2), by [25, Proposition 1.1] we have

(& m*(E n) < IE. E)I(m, m).

Applying 7 and taking the square roots gives the first inequality, while the second one
is immediate.

The following definition is inspired by the quasicentral approximation property
(QAP) from [8, Definition 3.1], which was shown to be equivalent to amenability for
actions on C*-algebras in [32, Theorem 3.2]. In view of this equivalence, we directly
present the tracial analogue of [8, Definition 3.1] under the name of tracial amenability.

Definition 2.2 An action «: G — Aut(A) of a discrete group G on a unital, C*-
algebra A with T (A) # @ is called tracially amenable if for all finite subsets F C A
and K C G, and for every ¢ > 0, there exists £ € C.(G, A) satisfying

(1) [|€]l < 1 (in the Hilbert C*-module-norm of £%(G, A));
(2) llsa —aélly, < e, foralla € F,

(3) (5. &) = Ul <&
@ @& —&|,, <& foralgeK.
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Remark 2.3 Note that conditions (3) and (4) in Definition 2.2 can be equivalently
replaced by the condition || (&, &, (§)) — 1l|2,. < € forall g € K.If G is countable and
discrete, and A is separable, Definition 2.2 is furthermore equivalent to the existence
of a sequence (&,),en in C.(G, A) such that the terms in items (2)-(4) converge to
zero along n — oo, foreverya € Aand g € G.

The definition of the QAP in [8, Definition 3.1] differs from Definition 2.2 in that
all estimates are formulated in the C*-norm, rather than in the tracial seminorm. Since
the C*-norm dominates || - |2, it follows from [32, Theorem 3.2] that every amenable
action is tracially amenable.

Our next goal is to obtain several characterizations of tracial amenability; see The-
orem 2.5. For this, we need some preparation. Given an action «: G — Aut(A), a
function 6: G — A is said to be of positive type with respect to « if for every finite set
K C G, the matrix (ag(Q(g_lh)))g’heK € M|k |(A) is positive. We reproduce here
two results from [2] in a way that will be more convenient for us later. The center of
a C*-algebra A is denoted Z(A).

Theorem 2.4 [2, Theorem 3.3, Theorem 4.9] Let «: G — Aut(A) be an action of a
discrete group G on a unital C*-algebra A. Suppose that for every finite subset K € G
and every ¢ > 0, there exists a finitely supported positive type function0: G — Z(A)
(with respect to «) satisfying 6(e) < 1 and ||6(g) — 1|| < e forall g € K. Then o is
amenable. If A is commutative, the converse holds as well.

Given a unital C*-algebra A, its tracial state space T (A) is a convex compact
topological space, and we denote by 9,7 (A) the set of its extremal points.

For a fixed free ultrafilter w € BN \ N, we denote by A the quotient of £°°(N, A)
by the ideal of sequences (a,),eN satisfying lim,_, ||a,|l2,, = 0. This is the tracial
ultrapower of A. There exists a natural unital homomorphism ¢: A — A®, which
maps each element in A to the class of the corresponding constant sequence. Note
that the map ¢ is not necessarily injective, unless traces separate positive elements
(which is always the case if A is simple and tracial). We denote by A® N ((A)’ the
C*-algebra consisting of all elements in A® that commute with (the images of) all
constant sequences. Any action «: G — Aut(A) canonically induces an action on
A® and also on A® N¢(A)’, by acting coordinatewise. With a slight abuse of notation,
we shall denote both actions by a®.

The finite part Ag} of the bidual A** of a C*-algebra A can be identified with the
weak closure of A with respect to the sum of all GNS-representations for all traces.
Namely,

Afin = (@reT(A) ﬂf) A" cB (@IET(A) HI) '

Every action « on A canonically extends to an action o on AE*.

An action «: G — Aut(M) of a discrete group G on a von Neumann algebra M
is called von Neumann-amenable if there exists a net (&;),ea in C.(G, Z(M)) such
that (&), &) = 1, forall A € A, and the net ((£),, @4(£))))5ea convergesto 1 € Z(M)
pointwise on G in the ultraweak topology (see [4, Theorem 1.1]).
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In the following result we give several conditions that are equivalent to tracial
amenability of an action. Some of the conditions below look similar to analogous
characterizations of amenability obtained in (and, indeed, motivated by) [32, Theo-
rem 3.2, Theorem 4,4]. Others do not have a counterpart in that setting and reveal
phenomena that are very special to tracial amenability. We discuss this in more detail
after the proof of Theorem 2.5; see also Remark 2.8.

Theorem 2.5 Let o: G — Aut(A) be an action of a discrete group G on a unital,
separable C*-algebra A with T (A) # 0. Consider the following conditions:

(1) The action o is tracially amenable.
(2) For e > 0 and any finite set K C G, there exists & € C.(G, A) such that

(@) 1§l = 1;
(b) 1€, &) = L2 < &
(c) ldg(§) —&llou < eforallg € K.

(3) For any separable, unital C*-algebra C with an action y : G — Aut(C), there is
an equivariant, unital, completely positive map ®: (C, y) — (A° Ni(A), a®).

(4) There is a sequence of functions 6,: G — A® N ((A) of finite support and of
positive type with respect to a®, which satisfy 6,(e) < 1 for alln € N, and
lim,— o0 [160,(8) — L =0, forall g € G.

(5) The induced action a®: G — Aut(A® N(A)) is amenable.

(6) The induced action G ~ T (A) is topologically amenable.

(7) The induced action G ~ 9,T (A) is topologically amenable.

(8) The induced action af : G — Aut(Ag}) is von Neumann-amenable.

Then (1) & (2) < (6) < (7) < (8). If moreover G is countable and exact then all of
the above conditions are equivalent.

For the proof we need the following well-known lemmas.

Lemma 2.6 Let A and B be unital C*-algebras, let w1 : A — B be a surjective homo-
morphism, and let F be a finite set. Denote the induced map €*(F, A) — €*(F, B)
again by w. Given n € 02(F, B), there exists & e 2(F, A) such that w(€) = nand
&1 = lnll.

Proof Note that there is an isometric embedding 02(F,A) —> M |F|(A) given by

a0---0
(a17"'7al’l)'_) )

a, 0---0

and an analogous embedding ?2(F, B) — M, |(B). By astandard functional calculus
argument (see, for example, [47, Lemma 17.3.3]), there is an element £’ € M|r|(A)
satisfying 7 ® idy (§") = n and [|§’|| = [In|l. We write p = diag(1,0,...,0) €
Mf|(A). Then & :=¢&'p € £2(F, A) has the desired properties. O

Lemma 2.7 Let K be a compact convex set and denote by Aff.(K) C C(K) the set
of all continuous affine functions K — R. Then the restriction of the weak topology
of C(K) to Aff.(K) coincides with the topology of pointwise convergence.
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Proof This follows from the fact that forevery f € Aff.(K) and any Radon probability
measure ( on K, we have

/ Fdu= B,
K

where B(u) € K denotes the barycenter of u (see [44, Lemma IV.6.3]).

Proof of Theorem 2.5 We prove the following set of implications where, in the impli-
cations labeled by dashed arrows, we additionally assume that G is countable and
exact:

6) «=> 4 ==> (1) <= (§)

a2 ~
P %
[T /7
3) (2) = (6)

(1) = (3). Fix a state ¢ € S(C). Since G is countable and A is separable, we can
find a sequence (§,),eN in C.(G, A) satisfying

(a.1) [|& ]l < 1foralln € N;
(@.2) limy— oo [1Ena — a&ylla,u = O forall a € A;

(a.3) lim,_, ||S§nv &n) — 2,0 = 0;
(@4) lim,— 0 |lotg(§n) — &nll2,u = Oforall g € G.

We define a map b= (®p)nen: C — €*°(N, A) by setting

Dy(c) 1= D 9(Y-1()En () En(2).

geG

forn € Nand ¢ € C. (Note that sup,, .y [P, || < 1 by (a.1) above, so that the resulting
map @ does indeed take values in £°(N, A).) Denote by &: C — A the composition
of ® with the canonical quotient map £*°(N, A) — A®. We claim that ® is an equiv-
ariant, unital, completely positive map, and that its image is contained in A® N ¢(A)’.
The fact that @ is unital follows from the equality || P, (1) — 1|l2., = (&4, &) — Lll2.u
together with (a.3). As each &, is completely positive, the same is true for ® and thus
also for ®. To see that ® takes valuesin A®?Ni(A),fixa € Aandc € C.Givend € C,
denote by T; € L(£*(G, A)) the operator given by pointwise multiplication with the
function g — @(y,-1(d)), and note that ||7y|| < ||d||. Using the Cauchy-Schwarz
inequality (see part (2) of Lemma 2.1) and ||§, || < 1 at the last step, we get

la®u(e) — @u@)al,, = |alén. Tekn) = (En. Tetn)al,,
= [ {gua*, Tekn) — (Tevbin. £nad |,
< [(na* — a*6n. Teba) | + [(Tern. an — ),
< llell(Igna* — a*Enllz + lagn — Enallz.),
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with the latter term converging to zero asn — 00, by (a.2). To see that ® is equivariant,
fix g € G and ¢ € C. Using again the Cauchy-Schwarz inequality and ||&,|| =
llatg (5,)1I < 1 at the last step, we obtain

||05g (P () — Dy (yg(c)) HZ,M
= | 2 0015 @n (e Ente™ m (g™ ) — & W 6 ) |

heG
= | @), T8 @) = 6. Typo8)

=< 2||C|| ”Sn - ag(%_n) ”2,”7

2.u

2.u

with the latter term converging to zero as n — 00, by (a.4). This proves (3).

(3) = (4). Recall that since G is countable and exact, there is an amenable action
of G on a compact, metrizable space X (see [7, Theorem 5.1.7]). By Theorem 2.4,
there exists a sequence of finitely supported positive type functions 6,,: G — C(X)
with respect to « satisfying 6,(e) < 1 and lim,_, ||6,(g) — 1|l =0 forall g € G.
If ¥: C(X) - A® N((A) is an equivariant, unital, completely positive map, then
Wob,: G— A®Ni(A), forn € N, gives a sequence of positive type functions with
respect to a® with the desired properties.

(4) = (5). We prove amenability of the action a®: G — Aut(A® N ((A)’) by
showing that it satisfies the QAP, which can be stated as our Definition 2.2 once
every occurrence of the tracial norm is replaced with the C*-norm on A% (see [8,
Definition 3.1]), and then resorting to [32, Theorem 3.2]. Fix a finite subset K C
G and ¢ > 0. By assumption, there is a finitely supported positive type function
0: G — A® N(A) satisfying 0(e) < 1 and ||0(g) — 1|| < ¢ forall g € K. By [2,
Proposition 2.5], there exists n € £2(G, A% N ((A)') with 6(g) = <n, &?(n)> for all
g € G. By slightly perturbing 1 (and therefore 6), we can assume that 1 has finite
support. This almost gives the QAP for «®, except for the condition of almost centrality,
which follows from a standard reindexing argument. To show this, fix a finite set F C
A® N (A). Applying Lemma 2.6 to the quotient map £>°(N, A) — A®, we can find
a sequence (1,)nen in Co(G, A) C £2(G, A) that represents 7 and satisfies [|77, || < 1
and supp(n,) < supp(n) foreveryn € N. Since we have ||0(g)—1|| < eforallg € K,
we can find (b,(lg))neN € LN, A), for g € K, satisfying lim,,_,, ||b,(1g) ll2.. = 0 for
all g € K, and

00, T )y = 1+ b )| < & @.1)

foralln € Nand g € K. Now choose a dense sequence (a,),eN in A, and foreach x €
F find a representative (x,),en € £°°(N, A). Using that the (1,),en have uniformly
finite support (contained in supp(n)) and that each (9,(g))nen, for g € supp(n),
represents the element n(g) € A® N ((A), we can find inductively an increasing
sequence (k(n)),en of natural numbers satisfying

(b.1) XnMk(n) — Mk Xnll2u < =, foralln € N;
(b:2) llajnkem) — Mk ajllou < 1, foralln e Nand j = 1,...,n;

(63) 15 llou < L. foralln e Nand g € K.
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Then the sequence & := (1k(n))nen gives rise to a contraction in 2(G, A N(A)) of
finite support satisfying x§ = £x for all x € F. Moreover,

|5, a2®) — 1] < sup |ty » T raey)) — 1+ b,if,l) ||
ne

for all g € K. This proves (5).

(5) = (4). This follows from associating to an element & € £2(G, A® N 1(A)’) of
finite support, the finitely supported positive type function 6 : G — A“ N¢(A)’ given
by

0 () = (6. 00©)

for all g € G, and using that amenability of «® is equivalent to the QAP.
4) = (1).Let F € A and K C G be finite sets and € > 0. As in the proof of
(4) = (5), we can find an element n € C.(G, A® N1(A)’) satisfying ||n]| < 1 and

[(n.azan)—1] <. 2.2)

for all g € K, and a sequence (1,)n,en in Co(G, A) representing n that satisfies
In, ]l < 1 and supp(n,) < supp(n) for every n € N. We can thus find a large enough
no € N so that

(c.1) [lanmy — nneallz.u < &, foralla € F;
(c2) ||<T7no,&g(’7n0)) — 1|2y <e,forall g € K.

This proves (1) (see Remark 2.3).

(1) = (2). This is immediate.

(2) = (6). Fix a finite set K € G and ¢ > 0. Choose an element & € C.(G, A)
satisfying ||&|| < 1 and

1§, &g (§)) — L2 < &,

for g € K. We define a positive type function 6: G — C(T(A)) by

0()(1) == T((§, 0g(§)))

forall g € G and all T € T(A). Using part (1) of Lemma 2.1 at the second step, we
get

16(g) — LIl = sup |t((§, & (E)) — D]
teT (A)

1§, &g (§)) — Lll2u < &

IA

for all g € K. Thus, G ~ T (A) is topologically amenable by Theorem 2.4.
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(6) = (7). This follows by composing the functions G — C(T(A)) coming
from amenability of G ~ T (A) with the equivariant quotient map C(T (A)) —
C(0.T(A)).

(7) = (8). Denote by B(d,T (A)) the C*-algebra of Borel bounded functions on
0.T(A). By [31, Theorem 3], there is a unital homomorphism 6: B(9,7T (A)) —
Z(AEY). We claim that 6 is equivariant. Given t € T (A), identify T with its unique
normal extension to Ay and write 1, for the unique probability measure on 9,7 (A)
whose barycenter is 7. The map 6: B(3,T(A)) — Z(Ag}) obtained in [31, Theo-
rem 3] satisfies

[0(f)) = / FO) die (), 23)

3. T(A)

for every f € B(3,T(A)) and every t € T(A). Condition (2.3) uniquely deter-
mines 6, since traces on A (or rather their normal extensions to AfY) are in bijective
correspondence with the normal states on Z(Af}), via the restriction map (see [6, The-
orem II1.2.5.7] and [6, Theorem II1.2.5.14]). In what follows, a*, &** and «;* denote
the actions induced by « respectively on T'(A), B(9.T (A)) and Afy. In order to verify
that 6 is equivariant, it is thus sufficient to check that 6, := (af’)g 0 6 o oz;"i‘ ; also

verifies equality (2.3) for every g € G. To prove this, notice first that, given T € T (A)
and g € G, by uniqueness of the boundary measure (4704, We have that

Moy = K1 © 05;- 2.4
Fix f € B(0,T(A)) and t € T(A). Then

T(05(f)) = (T o) (O(f 0 ap))

D / F @) dtroa, (1)
3. T (A)

e dieo)
3. T(A)

= / fo)du (o).
3.T(A)

This proves equivariance of 6. Composing 6 with the unital, equivariant inclusion
of C (BeT(A)) into B(9,T (A)), one obtains a unital, equivariant homomorphism

C (33T(A)> — Z(A}"). Since the action on 9,7 (A) is assumed to be amenable,

we conclude that the action on AE: is von Neumann-amenable (see, for example, [9,
Lemma 3.21]).

(8) = (1). Fix finite sets F € A and K € G and ¢ > 0. We may assume
without loss of generality that F' consists of contractions. Throughout the proof, we
will identify A with its natural (not necessarily isomorphic) copy inside Af;. This is
possible thanks to Lemma 2.6 and the fact that ||-||, , coincides on A and its copy
inside Af*.
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We claim that for every § > 0 and a finite subset 7 C T (A), thereis n € C.(G, A)
satisfying ||| < 1 and

L= 1nl3 . + Y lln = &I3 . + D llan —nall5, <8,
gek aeF

forallt e T.
Set M = A§' and y = . Since y is von Neumann amenable, there exists a net
(&2)5.en of finitely supported contractions in 02(G, Z(M)) such that

(.80 — 1, and (5 —¥,(60). &6 — V(D) — 0

pointwise on G in the ultraweak topology. Since each trace t € T extends to a normal
state on M, there exists A € A such that, with £ := &, , we have

T(1—(£.6) < § and D (& — 7 (8). £ — () < 3.

gek

for all T € T. By an application of Kaplansky’s density theorem for Hilbert modules
(see [9, Lemma 4.5]), there exists n € C.(G, A) C 22(G, A) with Inll < 1 satisfying
t({n—&n— E))% < m, for all T € T. Using the triangle inequality, one gets

L=lnl3, =<1 —(n.n) <4, and
Dol =z, =Y t(in—dgn). n — () < 3,

gek gek

for all T € T. Since & takes values in the center of M, then n can be chosen so that
Y acr lan — W”%J < %, for all ¢ € T. This proves the claim.
Given n € C:(G, A), with |n|| < 1, set Q(n) := (n, n) and

D) :=1-0@m)+ Y 00— &)+ Y _ Qlan —na).

gek acF

Note that the map 17(?): T(A) — [0, 00) given by 5(\7’))(‘() = t(D(n)), for all
T € T(A), is continuous and affine. By the claim above, 0 is in the closure of the set

Z:={Dm: ne G, A, lnl =1} < cT @y

with respect to the topology of pointwise convergence. Since the elements of Z are
continuous, affine functions, it follows from Lemma 2.7 that O is also in the weak
closure of Z. Thus, by the Hahn—Banach Theorem, there are 11, ..., n, € C.(G, A)
with ||n;|l < Iforall j =1,...,n,and A1, ..., &, > O with 377 _; &; = 1, such that
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S D)) < € (2.5)
j=1

forall T € T(A). Assuming without loss of generality that G is infinite, and replacing
each n; with an appropriate right translate, we can assume that the supports of &, (1;)
and &, (n;) are disjoint whenever i # j and g, h € K U {1}. Set

U
£ = ijnj € C.(G, A).
j=1

Using that (n;, n;) < §; j fori, j =1,...,n, one checks that ||§]| < 1, since

n
IE1% <Y ajlmil> < 1,

j=1

and that D(§) = 2?21 AjD(n;). Hence

n
2.5
sup T(DE) = sup Y ijr(D() < &,
teT (A) reT(A)j:1

which implies

(1) llga —aélly, <& foralla € F;

@) 165, &) = 1o,y < &
3) [&g &) —¢,, <& forallg e K.

This proves (1). ]

As mentioned before, some of the conditions in Theorem 2.5 resemble similar char-
acterizations of amenability for actions on C*-algebras. For example, the equivalence
between (1) and (5) is the tracial version of the fact that amenability of an action on
A is equivalent to amenability of the induced action on the norm-central sequence
algebra A, N A’; see [32, Theorem 4.4], while the equivalence between (1) and (8) is
the tracial version of the fact that amenability of an action on A is equivalent to von
Neumann amenability of the induced action on A*™*; see [32, Theorem 3.2] and [1,
Lemma 6.5]. On the other hand, (2), (6) and (7) do not have analogous statements for
amenable actions.

The authors would like to thank Siegfried Echterhoff and Rufus Willett for pointing
out to them the following observation.

Remark 2.8 The analogue of (1) < (6) in Theorem 2.5, where one replaces tracial
amenability with amenability, and 7 (A) with the state space S(A), is not true. While
amenability of an action «: G — Aut(A) always implies amenability of the induced
action on the state space by [32, Proposition 3.5], the converse fails. An easy example
can be constructed from any amenable action G ~ X of a nonamenable group G on
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a compact space X by considering the associated inner action § on C(X) x G. As an
inner action, 8 is not amenable as it induces the trivial action on Z((C(X) x G)**).
However, $ induces an amenable action on S(C(X) x G). Indeed, this follows from
Theorem 2.4 and the equivariance of the unital, completely positive map ¢: C(X) —
C(S(C(X)xG))givenby t(f)(p) := @(f),forall f € C(X)andgp € S(C(X)xG).
For the same reason, there is no analogue of (1) < (2) for amenable actions.

The key tool that allows to obtain these equivalences in the tracial setting is [31,
Theorem 3].

Given an amenable action «: G — Aut(A) of a discrete group on a unital C*-
algebra, it is not hard to show that there exists an invariant state on A if and only if G
is amenable. The next lemma, which will be needed in Sect. 3, shows that the tracial
counterpart of this statement also holds.

Lemma 2.9 Let o: G — Aut(A) be a tracially amenable action of a discrete group
on a unital C*-algebra with T (A) # (. Then G is amenable if and only if A has an
invariant trace.

Proof If G is amenable, then it is well-known that the affine action G ~ T (A)
has a fixed point. Conversely, assume that T € T (A) is G-invariant. Then the Dirac
measure on T (A) associated to 7 is also G-invariant. Since G ~ T (A) is amenable
by (1)=(6) of Theorem 2.5 (the proof of this implication applies verbatim also if A
is not separable), it follows from [13, Lemma 2.2] that G is amenable. O

2.1 Examples

In this subsection, we use our characterizations of tracial amenability from Theo-
rem 2.5 (particularly (7)), together with results from the classification programme
for simple, nuclear C*-algebras, to construct a wide class of examples of tracially
amenable actions on unital, simple, stably finite C*-algebras. Since we lift automor-
phisms from the Elliott invariant to the C*-algebra in question, we work with free
groups in order to guarantee that we get a group action. Recall that the Elliott invari-
ant of a unital C*-algebra A is given by

Ell(A) = ((Ko(A), Ko(A)+, [1aD), K1(A), T(A), pa);

see [18, Definition 2.4] for its definition.

Example 2.10 Letn € N, let F,, = (g1, ..., gn) be the free group on n generators, and
let6: F, ~ X be an amenable action on a compact, metric space (for example, let X
be the Gromov boundary 9 F},). By [18, Theorem 14.8] (see also [12, Theorem 2.8],
or [10]), there is a stably finite, classifiable C*-algebra A with

Ell(A) = ((Z, Z+, 1), {0}, Prob(X), pa),

where pa: Ko(A) x T(A) — R is the (uniquely determined) pairing map given
by pa(n[la]l, ) = nforalln € Zand all T € T(A). Let : F, ~ Prob(X) be
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the action induced by 6. For each j = 1,...,n, the triple (idk,(4), idk,(A), 9;,].)
is an automorphism of ElI(A) in the sense of [18, Definition 2.4], and thus by [18,
Theorem 29.8] (see also [12, Theorem 2.7], or [10]) there exists an automorphism
aj € Aut(A) suchthat Ell(a ;) = (idg,(a4), idk, (). é;,/.). Using the universal property
of F,, we obtain an action «: F,, — Aut(A) whose induced action on 9,7 (A) = X
is conjugate to 8. Tracial amenability for o then follows directly from the equivalence
between (1) and (7) in Theorem 2.5.

In the above construction there is a significant amount of freedom in the choice
of the Elliott invariant of the C*-algebra A. The following variant of the construction
above was suggested to the authors by Mikael Rgrdam, and it has the advantage of
readily producing actions on unital, simple AF-algebras.

Example 2.11 Let 6: F,, ~ X be an amenable action on the Cantor space X. By [35,
Proposition 1.4.5], there is a unital AF-algebra A with

(Ko(A), Ko(A)4, [1]) = (C(X,Q%Y, C(X, Q%14 U {0}, 1),

where Q¢ denotes the rational numbers with the discrete topology, and C (X, Q%)
denotes the strictly positive continuous functions X — Q9. Since (Ko (A), Ko (A)4)
is simple in the sense of [35, Definition 1.5.1], it follows from [35, Corollary 1.5.4]
that A is simple.

Use Elliott’s classification of AF-algebras (in the form stated in [35, Theo-
rem 1.3.3 (ii)]) to lift the automorphisms of (Ky(A), Ko(A)+, [1]) induced by the
homeomorphisms g, ..., 0, to automorphisms ay,, ..., ag, of A. We again obtain
anactiona : F,, — Aut(A). Since there is a natural continuous affine homeomorphism
T (A) = Prob(X) by [35, Proposition 1.5.5], it follows that the action that « induces
on T (A) is conjugate to 8. Hence « is tracially amenable by Theorem 2.5.

3 Purely infinite crossed products

In this section, we investigate the internal structure of reduced crossed products by
tracially amenable actions. For a large class of nonamenable groups, we show that
outer, tracially amenable actions on simple, unital, Z-stable C*-algebras produce sim-
ple, purely infinite reduced crossed products. Our proof proceeds in two steps. The
first one is Proposition 3.9, where we show in great generality that dynamical strict
comparison is sufficient to conclude pure infiniteness of the reduced crossed product.
The second step is Theorem 3.14, the main result of this work, where we show that
tracial amenability implies dynamical strict comparison for a vast class of actions of
nonamenable groups on simple C*-algebras.

3.1 From dynamical comparison to pure infiniteness of crossed products

We begin by recalling some preliminaries about Cuntz comparison, and refer the reader
to [3, 17, 45] for modern introductions to the subject.
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Let A be a C*-algebra. For positive elements a, b € Ay, we say that a is Cuntz
subequivalent to b, written a = b, if there exists a sequence (r,),eN in A such that
lim,—, o0 |Fabr) —all = 0.

For a unital C*-algebra A, we denote by QT (A) the set of (everywhere defined)
normalized (2-)quasitraces on A ([45, Definition 6.7]). We will be mainly interested
in C*-algebras where QT (A) = T (A), which is the case, for instance, whenever A is
exact ([20]).

Given 1 € QT (A), there exists a unique extension of 7 to a lower semicontinuous
(unbounded) quasitrace on A ® K. With a slight abuse of notation, we denote such
extension again by t. Fora € (A ® K)+ and 7 € QT (A), set

dr(a) = lim (@™ € [0, 00].

The following lemma, which was pointed out to us by Sam Evington, will be needed
in the proof of Theorem 3.14. For ¢ > 0, we denote by f;: [0, c0) — [0, 00) the
function given by f;(#) = max{0, t — ¢} for ¢ € [0, 00). Fora € A, we will usually
write (a — €)4 for fe(a).

Lemma 3.1 Let A be a unital C*-algebra, and let y, & > 0.
(1) Forevery f € C([0, 1]) there exists 5 > 0 such that for all contractionsa,b € Ay
and all T € T (A) satisfying |la — b5, < 8, we have

If(a) = fFD)ll2r < v-

(2) There is § > 0 such that for all contractions a,b € Ay and all T € T(A)
satisfying lla — bl ; < 8, we have

de((a—¢)y) <de(b) +y.

Proof (1). Suppose that there is n € N such that f(¢) = ¢" for all # € [0, 1]. Then

n—1

1f @ = fB)llar < lla—bllar Y _ llall/ 61"~ < nlla = bl

J=0

Thus, in this case we may take § = % The case where f is a polynomial can be
deduced from this, and the general case follows using a density argument.

(2). Let g, € C([0, 1]) be the function defined as g.(r) := min{e~'¢, 1}, for all
t € [0, 1]. Using part (1), find § > O such that whenever a, b € A are contractions
satisfying |la — bl|2, < 8, then ||g:(a) — g:(b)|l2.r < y. By part (1) of Lemma 2.1,
we have

1T(8e(@) — g (D))| < lIge(a) — ge(D)ll2,x < y. (3.1

Denote by u the measure on the spectrum of a induced by the trace t|c#(1,4), o that
di((a —&)4+) = p({x € sp(@): fe(x) > 0}) = p((e, 1]). (3.2
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Using that g, = 1 on (e, 1] at the second step, we get

3.2 3.
d:((@a—¢)y) = nu((e 1] = /[0 ; gedin = 1(ge(a)) = t(ge(b)) +y =de(b)+y,

as desired. |

For a compact convex set K, we denote by LAff (K) 4 (respectively, LAff(K)y4)
the set of lower semicontinuous positive (respectively, strictly positive) affine functions
on K.

Definition 3.2 Let A be a unital C*-algebra. For a € (A ® K), we define its rank
function to be the map rk(a): QT (A) — [0, oo] given by

tk(a)(t) = d:(a)

forallt € QT (A).

Given a simple, unital C*-algebra A and a € (A ® K)+\{0}, it is always true
that d;(a) > O, for every t € QT (A). As rk(a) is a lower semicontinuous map on
a compact set, it attains its minimum. It follows that rk(a) € LAff(QT (A))4+, for
every a € (A ® K)1 \ {0}. We say that all ranks are realized in A if the rank map
rk: (A ® K)4\{0} - LAff(QT (A))4 is surjective.

One of the assumptions of Theorem 3.14 is that all ranks are realized for the coef-
ficient C*-algebra. This is in fact a very mild assumption, which is automatic in many
cases of interest. This is for example the case for nonelementary, simple, separable,
unital C*-algebras of stable rank one by [46, Theorem 8.11]. Moreover, it is an open
question of Nate Brown whether all ranks are realized in every nonelementary, unital,
simple, separable, stably finite C*-algebra (see [46, Question 1.1]).

We will need the notion of strict comparison. Although this is most commonly
defined using tracial states, we choose to do it using normalized quasitraces since this
version is more compatible with the Cuntz semigroup outside of the exact setting.

Definition 3.3 A unital, simple C*-algebra A is said to have strict comparison if we
have a =3 b whenever a, b € (A ® K)4\{0} satisfy rk(a) < rk(b).

Remark 3.4 When A is a simple, unital C*-algebra, and QT (A) = {, then strict
comparison is equivalent to the fact that 1 X a for all nonzero a € (A ® K)4. This,
in turn, is equivalent to pure infiniteness of A (see [23, Definition 4.1] and [11]).

The following definition originates from an ongoing project by Bosa, Perera, Wu and
Zacharias, and it provides a noncommutative generalization of the notion of dynamical
subequivalence from [22, Definition 3.2].

Definition 3.5 Let «: G — Aut(A) be an action of a countable, discrete group G on
a C*-algebra A, and leta,b € A.

(1) Write a Zo b if for any ¢ > O thereare § > 0,n € N, g1,..., g, € G, and
positive elements x1, ..., x, € Mx(A), such that

(a—e)4 I@_jog;(xj) and @ x; 3 (b— ).
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(2) Write a ¢ b if there are x1, ..., x, € Moo (A)4 with
a = X1 j()xZ j()...fjoanb.

The need for (2) stems for the fact that, unlike for =, it is not clear whether the
relation 3 is transitive.

Remark 3.6 Assume that there are n € N, elements g;,...,g, € G, and positive
elements x1, ..., x, € My (A) such that

a3 @_jog(xj) and @) x; 3b.
Then a = b. This follows from double application of [34, Proposition 2.4].

Remark 3.7 One can check that a 3¢ b entails a 3 b in A X, G, by putting together
[34, Proposition 2.4], [45, Proposition 2.18], and the fact that the action on A is
unitarily implemented inside A x, G.

The notion of dynamical strict comparison below is due to Bosa, Perera, Wu and
Zacharias, as part of their ongoing work on almost elementariness extending the ideas
and techniques developed in [22] to the noncommutative setting.

Definition 3.8 An action «: G — Aut(A) of a countable, discrete group G on a
unital C*-algebra A is said to have dynamical strict comparison if we have a Zg b
forall a,b € (A ® K)4+ \ {0} satisfying d;(a) < d.(b) for all invariant quasitraces
T € QT (A).

In the definition above, we deliberately allow for the possibility that there are no
invariant quasitraces, in which case dynamical strict comparison is equivalent to the
statement that a 3 b for all nonzeroa, b € (A ® K) .

Note that when « is trivial, dynamical strict comparison for « is equivalent to
strict comparison for A. The following is a generalization of [27, Theorem 1.1] to the
noncommutative setting (see also [13, Theorem 2.8]). Recall that an action «: G —
Aut(A) is said to be outer if a, is not inner for all g € G \ {1}.

Proposition 3.9 Leta: G — Aut(A) be an outer action of a countable, discrete group
G on a unital, simple C*-algebra A. Assume that a has dynamical strict comparison
and no invariant quasitraces. Then A %, G is simple and purely infinite.

Proof Simplicity follows from [24, Theorem 3.1]. Let a € A X, G be a nonzero
positive element. We will show that 1 = a in A x, G, which implies that A x, G
is purely infinite by Remark 3.4. By [37, Lemma 3.2] (see also [14, Lemma 4.2])
there exists a nonzero element b € Ay such that b 3 a. In the absence of invariant
quasitraces, dynamical strict comparison gives 1 =g b. By Remark 3.7, we have that
1 Zb 2 ain A X, G, as desired. O

@ Springer



Tracially amenable actions and purely... 3683

3.2 Groups with weak paradoxical towers

Next, we introduce the notion of weak paradoxical towers, based on ideas from [13].
This is a technical assumption which allows us to link tracial amenability to strict
comparison. The class of groups having weak paradoxical towers is quite large, and
it for example includes all groups containing the free group F»; see Corollary 3.13.

Definition 3.10 Letn € N. A group G is said to have weak n-paradoxical towers if for
everym € N, there exist a finite subset D C G with |D| > m, subsets K1, ... K, € G,
and group elements g1, ..., g, € G such that

(1) Foreach j =1, ..., n, the sets {dK}4ecp are pairwise disjoint;
) U;l'=1 8jKj=G.

A group is said to have weak paradoxical towers if it has weak n-paradoxical towers
for some n € N.

We make the following observation:
Lemma 3.11 Let G be a group with weak paradoxical towers. Then G is not amenable.

Using elementary arguments, one can show that all nonabelian free groups have
weak 2-paradoxical towers; see [13, Proposition 3.2] for a stronger result. More gen-
erally, groups that have paradoxical towers in the sense of [13, Definition 3.1] have
weak paradoxical towers in our sense, and in particular all the groups considered in
[13, Section 4] have weak paradoxical towers. The class of groups we consider here
is really larger than the one considered in [13]: for example F> x Z does not have
paradoxical towers by [13, Remark 3.7], but it has weak paradoxical towers by Corol-
lary 3.13 below. The key difference is that weak paradoxical towers can be induced
from subgroups:

Proposition 3.12 Let G be a group and H C G a subgroup with weak n-paradoxical
towers for some n € N. Then G has weak n-paradoxical towers.

Proof Let m € N. Since H has weak n-paradoxical towers, there are a finite set
D € H with |D| > m, subsets L1,...,L, € H, and elements g1,...,8, € H,
such that the sets {dL j}4ep are pairwise disjoint for every j = 1,...,n, and such
that H = (J]_; g;L;. Let S € G be a set satisfying G = | |;c5 Hs, and set K :=
Llses Ljs, j= I, ..., n. One readily checks that Uj=18;K; = G, and that the sets
{dK j}qep are pairwise disjoint, forevery j =1, ..., n. O

A combination of Proposition 3.12 with [13, Proposition 3.2] gives the following
corollary.

Corollary 3.13 Every group containing F» has weak paradoxical towers.

3.3 Establishing dynamical comparison from tracial amenability

We are now ready to prove the main result of this section. As before, given ¢ > 0
we denote by f;: [0, 00) — [0, co) the function f,(¢) := max{0,¢ — ¢} for¢t > O,
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and for a positive element a we write (a — €)4 for f:(a). Since functional calculus
commutes with automorphisms, for ¢ € Aut(A) we have p((a —¢)+) = (p(a) —&)+.

Theorem 3.14 Let G be a countable, discrete group with weak paradoxical towers,
let A be a unital, simple, separable C*-algebra with QT (A) = T (A) # ¥, with strict
comparison, and for which all ranks are realized. Then, any tracially amenable action
o : G — Aut(A) has dynamical strict comparison.

Proof Since G has weak paradoxical towers, it is not amenable by Lemma 3.11 and
thus has no invariant traces by Lemma 2.9. In particular, dynamical strict comparison
for @ amounts to showing that 1 = a for every nonzero a € A.. Fix such a. Since
rk(a) is a strictly positive, lower semicontinuous function on the compact space 7'(A),
it attains its infimum and thus there is m € N such that

m -rk(a) > 1. (3.3)
Letn € N be such that G has weak n-paradoxical towers. Fix a finite subset

D C G with | DI 1(2n +1) < Z’ and use weak paradoxical towers for G to find
Ki,...,K, € Gandgy,..., g, € G such that

(al) {dr{(j}deD are pairwise disjoint forall j =1, ..., n;
@) Ui, gK; =G.

Let0 < ¢ < 18n| Dl Apply part (2) of Lemma 3.1 to find § > 0 such that for all
positive contractions s, t € A satisfying ||s — t|[2., < 8, we have

de((s —€)4) < de(1) + ¢, 34

for all T € T(A). Apply now part (1) of Lemma 3.1, find 0 < y < &, such that for all
positive contractions s, t € A satisfying ||s — t]|2,, < y, we have

1

[6=%), —(=%),], <o (3.5)

By tracial amenability of «, there is £ € C.(G, A) satisfying

G 5l =1L
(02) 11(5,8) = 2w < &
(b3) 1@ (5) = &ll2,u < &, forallg € DU {g1, ..., g}

Forj=1,...,n,set

cj= Y E@E®. bj=(cj— %), and bi=b @ - @b
gEKj

For an element x € A and ¢ € N, we will denote by x®¢ € M,(A) the £-fold direct
sum of x with itself. We will prove that 1 Z¢ a in two steps.
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Claim 3.14.1 We have 1 Zo (b — )3

Forj=1,...,nand h € DU{gy, ..., gn}, we denote by lhK_,. € EA(Ez(G, A))
the projection onto the elements supported on 2K ; € G. Using the Cauchy-Schwarz
inequality (see part (2) of Lemma 2.1) for the third step, we obtain

Jonten— 3 5(g>*s<g>H2’u

gehkK;
= [ (L, @ (), @ () — (k6. 6,
< || (Uhk, @ (©). @) = &), + 6 — @ ®), g, |,
<20@n () = €l < v (3.6)

Combining (3.5) and (3.6), we get

anon - (X ewew-4) |, <5 67

gehK;

foralh € DU{gy,...,gn}and j = 1,...,n. Fixt € T(A).For j € {1,...,n},
denote by u j the measure on the spectrum of «; (¢ ;) corresponding to 7| c*( Lty (¢ _)).
g (Cj

We have
dy (g, (b — £)1)) = dr ((ag; (c)) —& — 57).)

1dw;

vy

Z/ tdpj — (e + ;)
[0,1]

= (g, (cj)) — (e + 5)

3.6
(Y s@E@) -k ty) G

8<gjK;

Furthermore, we have

n

Yo ¥ EwE@) S o Y s@rE)

=1 gegjK; 8€G
b2
>1—e¢.
We conclude that there is j € {1, ..., n} for which
(Y cwew)zte (3.9)
8 g)) = P . .
g<gjK;
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Combining (3.8) and (3.9), we obtain

3 de g (5 —ozi-e—(erhty)z b3 4
j=1

for all T € T (A). Using strict comparison for A, this implies that

1 2@ 0, (b — &))" (3.10)
As 69” (b — 8)@% = (b 8)@3”, it follows that 1 3o (b — )®3", proving
Clalm 3.14.1.
Claim 3.14.2 We have (b — &)%¥" =

Fixt € T(A),d € D,and j € {1,...,n}. Denote by p the probability mea-
sure on the spectrum of ) gedK; £(g)*&(g) corresponding to the restriction of T to

C*(L, Xgeax, £(8)*€(g)). Then

3.4).3.7
deaatbj -1 = a((X E@re@ - %) ) +e

gedK

/ ldp + ¢
(1]
/ tdp+ ¢

Z £(8) S(g)) (3.11)

gedK;

| /\

Taking the sum of (3.11) over j € {1,...,n} andd € D yields

S Y dealy—) =20 (3 Y £ @) +nlDle

deD j=1 j=1 deD gedK;

al,bl )
< wmry (3.12)

Since all ranks are realized in A, we can find positive elements b/, € Mo (A) for
d € D satisfying

k(b)) = rk(og (b — €)4)). (3.13)

3
|D| -1
Note that (b — €)4+ # 0 by Claim 3.14.1. Using this at the second step, we get

3n-do((b—e)y) = |_ Y droa, ., (@a((b — €)1))
deD

@ Springer



Tracially amenable actions and purely... 3687

2 s @0 =004 D S ACTRIUA)

|D| -1 deD

foralld € D and t € T (A). Using strict comparison for A, it follows that

(b — )" 2 @uepay1(bl). (3.14)

On the other hand, we have

> de vl OL > de @b — )1))

deD |D|_1dD
3.12)  3n )
< 2 1
= o@D
3.3
2 4 (a)

for all T € T(A). Again by strict comparison, this implies that
®aep by 3 a, (3.15)
and therefore
b-e%" Zoa.

Putting together both claims, we get 1 Z¢ a, as required. O
The following is the desired result for crossed products.

Corollary 3.15 Let G be a countable, discrete group with weak paradoxical towers,
let A be a unital, simple, separable C*-algebra with QT (A) = T(A) # @, with
strict comparison and for which all ranks are realized, and let o: G — Aut(A) be a
tracially amenable, outer action. Then A X, G is simple and purely infinite.

Proof The statement follows from Theorem 3.14 and Proposition 3.9. O

Let A be a simple, separable, exact, unital, stably finite C*-algebra. If A has strict
comparison and stable rank one, then all ranks are realized on it by [46, Theorem 8.11],
and so A satisfies the assumptions of Corollary 3.15. In particular, this is the case if A
is Z-stable, by [36, Theorem 4.5 and Theorem 6.7]. Instead of stable rank one, one can
equivalently require A to be almost divisible. Indeed, simple, separable, unital, stably
finite C*-algebras with strict comparison and almost divisibility have stable rank one
by work in progress of Geffen and Winter (see also [26], where the assumption of
almost divisibility is replaced by tracial approximate oscillation zero).

We close the paper with an application of our results to classifiable C*-algebras. In
the following corollary, we require amenability of the action, as tracial amenability is
not sufficient to grant nuclearity of the crossed product.
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Corollary 3.16 Let G be a countable, discrete group with weak paradoxical towers,
and let A be a simple, separable, unital, nuclear, stably finite, Z-stable C*-algebra.
Suppose that o: G — Aut(A) is an amenable, outer action." Then A x, G is a
unital Kirchberg algebra. If A satisfies the UCT and G is torsion-free and satisfies the
Haagerup property (for example, G = F,,; see [7, Definition 12.2.1]), then A %, G
also satisfies the UCT, and is therefore completely determined by its K -theory.

Proof By Corollary 3.15 and the comments after it, A X, G is simple, separable, unital
and purely infinite. By [2, Theorem 4.5], it is also nuclear. The fact that it satisfies the
UCT follows from [21] and [30, Corollary 9.4] (see [38, Corollary 7.2] for the case
G =Fy). m]

We remark that Corollary 3.16 holds also when A is purely infinite, by applying
[37, Lemma 3.2] (see also [14, Lemma 4.2]).
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