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Abstract
Drug-induced liver injury remains a frequent reason for drug withdrawal. Accordingly, more predictive and translational 
models are required to assess human hepatotoxicity risk. This study presents a comprehensive evaluation of two promising 
models to assess mechanistic hepatotoxicity, microengineered Organ-Chips and 3D hepatic spheroids, which have enhanced 
liver phenotype, metabolic activity and stability in culture not attainable with conventional 2D models. Sensitivity of the 
models to two hepatotoxins, acetaminophen (APAP) and fialuridine (FIAU), was assessed across a range of cytotoxicity 
biomarkers (ATP, albumin, miR-122, α-GST) as well as their metabolic functionality by quantifying APAP, FIAU and CYP 
probe substrate metabolites. APAP and FIAU produced dose- and time-dependent increases in miR-122 and α-GST release 
as well as decreases in albumin secretion in both Liver-Chips and hepatic spheroids. Metabolic turnover of CYP probe 
substrates, APAP and FIAU, was maintained over the 10-day exposure period at concentrations where no cytotoxicity was 
detected and APAP turnover decreased at concentrations where cytotoxicity was detected. With APAP, the most sensitive 
biomarkers were albumin in the Liver-Chips (EC50 5.6 mM, day 1) and miR-122 and ATP in the liver spheroids (14-fold 
and EC50 2.9 mM, respectively, day 3). With FIAU, the most sensitive biomarkers were albumin in the Liver-Chip (EC50 
126 µM) and miR-122 (15-fold) in the liver spheroids, both on day 7. In conclusion, both models exhibited integrated toxic-
ity and metabolism, and broadly similar sensitivity to the hepatotoxicants at relevant clinical concentrations, demonstrating 
the utility of these models for improved hepatotoxicity risk assessment.
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Introduction

Drug-induced liver injury (DILI) is one of the most frequent 
reasons for withdrawal of approved drugs from the market, 
and represents a huge burden on the healthcare system, 
accounting for up to 50% of acute liver failure cases (Lee 
et al. 2016; Lee 2017). A conceptual framework for the mech-
anism of action of chemical toxins at the chemical, biochemi-
cal, cellular and clinical levels has been developed over the 
last decades through major advances in molecular pharmacol-
ogy and toxicology. Using this framework, we are now able to 
design in vitro models that better reflect the in vivo processes 
that link drug metabolism and the formation of toxic metabo-
lites to changes in cell function. An additional need is to build 
translational models that improve hepatotoxicity predictions 
for which more integrated in vitro models would contribute 
(Park et al. 2011; Williams et al. 2013).

Current in vitro test systems used by the pharmaceutical 
industry include simple liver-derived cell-based or sub-cellu-
lar models that are poorly predictive of toxicological poten-
tial over a diverse chemical space. Importantly, such models 
take no account of the mechanistic basis of human DILI or 
the environmental conditions under which it might occur. 
Also critically, there has been no concerted effort to harmo-
nise current, emerging and novel test systems, or to develop 
strategies for their implementation, across the pharmaceuti-
cal industry (Williams et al. 2013). Consequently, too lit-
tle is understood about how current test systems compare 
physiologically with human liver, what the critical signalling 
systems are and the mechanisms by which DILI occurs in 
man, to be able to produce more predictive test systems. 
Simultaneous combination of both metabolic and cytotoxic 
endpoints is required to gain an integrated understanding of 
how drug metabolism affects hepatocyte health (Bell et al. 
2016, 2018; Sison-Young et al. 2017; Stachulski et al. 2013).

Two of the most promising areas of research for novel 
in vitro hepatic co-culture models are 3D spheroids/micro-
tissues and flow-based microphysiological systems (MPS) 
(Esch et al. 2015; Ewart et al. 2018; Pridgeon et al. 2018; 
Whitman et  al. 2016; Williams et  al. 2013). Both have 
demonstrated superior enzyme expression or functionality 
of phase I and II, and transporter proteins over simple 2D 
cultures in extended culture periods (Bell et al. 2018; Tsa-
mandouras et al. 2017). One of the main benefits of these 
novel models is that they allow maintenance of an in vivo-
like phenotype for longer periods versus 2D static cultures. 
For example, 3D hepatic spheroid/microtissue cultures show 
enhanced metabolic and toxicological phenotypes with 
superior sensitivity and specificity in detecting DILI com-
pounds over 2D systems, in some cases with the cells from 
the same donor (Bell et al. 2016, 2018; Proctor et al. 2017). 
Additionally, complex models can include non-parenchymal 
cells (NPCs) necessary for stabilising chronic hepatocyte 

function, mimicing the permeability properties of the liver 
endothelium and modelling of further DILI mechanisms, 
such as involvement of the innate immune system and fibro-
sis (Bell et al. 2018; Li 2018; Vorrink et al. 2018). Moreover, 
towards replacing the use of animal-derived tissue or in vivo 
models, MPS can recapitulate the liver sinusoid (Bale et al. 
2014; Ewart et al. 2018; Lee-Montiel et al. 2017). Of these 
systems, Organ-Chips have been designed to control the 
cellular microenvironment and to emulate the environment 
present within the liver in vivo (Du et al. 2017).

Here, we have evaluated the metabolic and toxicologi-
cal phenotype of two novel in vitro models, using cryopre-
served hepatocytes from the same human donor, 3D hepatic 
spheroids and a human Organ-Chip model (Liver-Chip). 
Metabolism and cytotoxic endpoints were assessed using 
two model hepatotoxic molecules, APAP and FIAU, over a 
10-day culture period.

Materials and methods

Details of all materials, cell culture media formulations, a 
summary of the incubation and dosing conditions, and the 
sampling times can be found in Supplementary Methods.

Liver‑Chip preparation and cell seeding

The Liver-Chip has been designed to recapitulate both the 
physical and multicellular architecture as well as tissue–tis-
sue interfaces of the liver, while providing a dynamic micro-
environment representing vascular perfusion. Liver-Chips, 
fabricated from polydimethylsiloxane (PDMS), contain two 
microchannels separated by a submillimeter-sized flexible, 
porous, PDMS membrane. A detailed description of the 
Liver-Chip can be found in Peel et al. (Peel et al. 2019).

Both Liver-Chip channels were coated with a proprietary 
mixture of extracellular matrix prior to overnight incuba-
tion in a humidified chamber at 37 °C. PHH were thawed, 
resuspended in hepatocyte plating media (CHPM), pelleted 
and resuspended prior to determination of cell number using 
trypan blue exclusion. Liver-Chips (top channel) were seeded 
with PHH (3.5 × 106 cells/ml) and a monolayer was allowed 
to form over 24 h at 37 °C with 5% CO2. The monolayer 
was then overlaid with ice-cold Matrigel® Matrix (200 µl 
0.25 mg/ml) in hepatocyte maintenance media (HMM) and 
the Liver-Chips were incubated overnight at 37 °C. The bot-
tom channel was then seeded with LSECs (3.4 × 106 cells/
ml) in LSEC iXCell endothelial growth medium (LSECGM). 
Liver-Chips were inverted and incubated at 37 °C for 2 h 
to allow LSEC attachment to the top surface of the bottom 
channel. Liver-Chips were then connected to a pneumatic 
pump and HMM or LSECGM flowed through the respec-
tive channels at 30 µl/h. Compound treatment started 5 days 
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after commencement of flow (7 days and 5 days post-seeding 
hepatocytes and LSECs to the Liver-Chips, respectively).

Liver spheroid preparation and cell seeding

PHH and NPCs were thawed separately in CM7000 media, 
pelleted and resuspended in hepatocyte plating medium 
(HPM). Cells were pelleted and resuspended a second time 
prior to cell number determination using trypan blue exclu-
sion and seeding into 96-well ULA plates (final volume 
100 µl/well; 1350 hepatocytes/well and 150 NPCs/well). 
Cells were allowed to aggregate under gravity over 4 days at 
37 °C with 5% CO2 prior to 50% medium change (repeated 
2x) with hepatocyte culture media (HCM). Drug exposure 
commenced after a further 3 days at 37 °C (7 days post-
seeding hepatocytes and NPCs).

Toxicity study compound dosing and sampling

DMSO (FIAU) or media (APAP) stock solutions were 
diluted in HCM or respective Liver-Chip media, HMM or 
LSEC dosing media, as detailed below.

Liver‑Chips

Both channels were exposed to 0–100 or 300 µM FIAU, 
or 0–10 mM APAP, (0.1% DMSO v/v final) at 30 µl/h for 
10 days. Media samples from the Liver-Chip outflow were 
collected for biomarker analysis and metabolite quantification/

identification over a 24-h period on days 0–1 (D1), days 2–3 
(D3), days 6–7 (D7) and days 9–10 (D10). Dose solutions 
were replaced with freshly prepared dose solutions every 
3 days. Duplicate chips were incubated with each drug con-
centration. All samples were stored at − 80 °C prior to analy-
sis. Adsorption of APAP and FIAU to PDMS was evaluated 
prior to commencement and no adsorption was observed.

Liver spheroids

Liver spheroids were exposed to 0–100 or 300 µM FIAU, 
or 0–10 mM APAP, (0.1% DMSO v/v final) for 10 days. 
Dose solutions were replenished by the replacement of 50% 
of the media in each well with freshly prepared dose solu-
tions on days 4 and 7. Twelve spheroids were incubated with 
each drug concentration. Two replicates were collected for 
biomarker analysis and metabolite identification/quantifica-
tion on days 1, 3, 7 and 10 by pooling 50 µl media from 4 to 
5 wells/concentration, to ensure sufficient sample was avail-
able for analysis of all endpoints, prior to storage at − 80 °C.

CYP probe substrate dosing and sampling

Pooled stocks containing 5 CYP probe substrates were 
prepared in acetonitrile or methanol prior to dilution in 
serum-free media to give the following final concentra-
tions: phenacetin 30 µM (CYP1A2); diclofenac 10 µM 
(CYP2C9); S-mephenytoin 35 µM (CYP2C19); bufuralol 
5 µM (CYP2D6) and midazolam 3 µM (CYP3A4).

Table 1   Cytotoxicity assessment in Liver-Chips and liver spheroids

Effect of (A) APAP and (B) FIAU on albumin secretion and ATP depletion (Liver-Chip day 10 only). Data are mean EC50 values ± SD, n = 3/4

A. APAP

EC50 (mM) Day

1 3 7 10

Liver-chip
 Albumin 5.6 ± 3.0 3.1 ± 1.4 1.4 ± 0.4 1.5 ± 0.4
 ATP – – – 2.4 ± 0.2

Liver spheroid
 Albumin > 10 > 10 4.6 ± 0.3 2.4 ± 0.5
 ATP > 10 2.9 ± 1.0 1.9 ± 0.5 1.7 ± 0.6

B. FIAU

EC50 (µM) Day

1 3 7 10

Liver-chip
 Albumin > 100/300 > 100/300 126 ± 93 48 ± 57
 ATP – – – 77 ± 57

Liver spheroid
 Albumin > 100/300 > 100/300 > 100/300 111 ± 36
 ATP > 100/300 > 100/300 > 100/300 84 ± 54
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Liver‑Chips

A second pooled solution was prepared in DMSO prior to 
dilution in serum-free media to give the following final con-
centrations: chlorzoxazone 100 µM (CYP2E1 probe sub-
strate) and testosterone 200 µM (CYP3A4 alternative probe). 
Liver-Chips were incubated with the respective substrate 
solutions at 30 µl/h for 24 h on days 0–1, 2–3, 6–7 and 9–10. 
Samples were then collected, quenched 1:2 with acetonitrile 
containing 20 nM verapamil and stored at − 80 °C prior to 
LC–MS analysis. Following sample collection, the media 

was replaced with HMM or LSECGM media and the cells 
were incubated under flow until the next time point.

Liver spheroids

Liver spheroids were exposed to the five pooled CYP probe 
substrates at the same final concentrations detailed above. 
Samples were collected following incubation for 24 h on 
days 0–1, 3–4, 7–8 and 10–11, quenched 1:4 with acetoni-
trile containing 0.8% formic acid and 4 nM 5,5-diethyl-
1,3-diphenyl-2-iminobarbituric acid, and stored at − 80 °C.

Cell viability assessment

Liver‑Chips

Hepatocytes were incubated with 100 µl undiluted CellTi-
ter-Glo® assay reagent for 1 min prior to agitation and 

Fig. 1   Evaluation of the toxicity of APAP and FIAU in Liver-Chips. 
Cells were exposed to 0–10,000 µM APAP (a–d) or 0–100/300 µM 
FIAU (e–h) for 10  days with 24-h sample collection on days (a, e) 
0–1, (b, f) 2–3, (c, g) 6–7 and (d, h) 9–10 for (filled triangle) albumin 
and (filled circle) miR-122 release. On day 10, hepatocyte ATP levels 
and % viability of controls were determined (Filled Square). Data are 
mean ± SD, (n = 3/4)

◂

Fig. 2   Evaluation of α-GST release by the Liver-Chip and liver sphe-
roids following exposure to APAP or FIAU. Spheroids and Liver-
Chips were exposed to 0–10,000 µM APAP (a, c) or 0-100/300 µM 
FIAU (b, d) for 10  days with samples collected on days 1, 3, 7 or 

10 for the determination of release of α-GST. Liver-Chip data (a, b) 
are expressed as µg/million cells/day and spheroid data (c, d) as fold 
change with respect to the same day control. Data are mean ± SD, 
(n = 3/4)
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subsequent dilution with deionised water. The assay was 
then performed as per the manufacturer’s protocol with 
luminescence determined on an Envison™ Multiplate 
Reader (Perkin Elmer, Waltham, MA, USA).

Liver spheroids

Cell viability was determined by the CellTiter-Glo® Assay 
following the manufacturer’s protocol. Luminescence was 
determined on a SpectraMax iD3 Multi-Mode Microplate 
Reader (Molecular Devices, San Jose, CA, USA).

Determination of α‑GST activity

Samples were analysed using the TecoMedical α-GST 
ELISA assay. Briefly, samples (50 µl) were transferred 
into microassay strips and 50 µl diluent added. The ELISA 
was otherwise performed according to the manufacturer’s 
instructions utilising an absorbance wavelength of 450 nm.

Determination of albumin levels

Samples were analysed using the Bethyl Laboratories human 
serum albumin ELISA assay. Briefly, samples were diluted 
1:20 (spheroids all days; Liver-Chip D7 and D10) or 1:50 
(Liver-Chip D1 and D3) in sample diluent and 100 µl diluted 
sample transferred into pre-coated assay plates. The ELISA 
was otherwise performed according to the manufacturer’s 
instructions, apart from 1:90,000 dilution of the HRP Detec-
tion Antibody (Liver-Chips only).

Determination of miR‑122 levels

miRNA extraction was performed using an miRNeasy 96 
kit (Qiagen) following the manufacturer’s instructions with 
minor modifications. Details of the extraction and RT PCR 
methodology are presented in Supplementary Methods.

Determination of CYP probe substrate metabolite 
formation rates

Formation rates of the probe substrate metabolites paraceta-
mol (CYP1A2), 4-hydroxydiclofenac (CYP2C9), 4-hydrox-
ymephenytoin (CYP2C19), 1-hydroxybufuralol (CYP2D6), 

6-hydroxy-chlorzoxazone and 6-hydroxy-chlorzoxazone-
glucuronide (CYP2E1), and 1-hydroxymidazolam and/or 
6β-hydroxytestosterone (CYP3A4) were determined by 
LC–MS as detailed in Supplementary Methods.

APAP and FIAU metabolite identification/
quantification

FIAU metabolite identification and quantification of APAP 
and its principle metabolites, APAP–glucuronide, –sul-
fate, –GSH and/or –cysteine conjugates, was performed by 
LC–MS as detailed in Supplementary Methods.

Data analysis

Cell viability and albumin data were normalized to vehicle 
control. Inhibition curves and EC50 estimates were gener-
ated by non-linear regression of log-transformed inhibitor 
concentrations (eight-point (spheroids) or six-point (Liver-
Chip) serial dilutions including vehicle) for a sigmoidal 
dose–response using the four-parameter logistic equation 
in GraphPad Prism™ version 7.04 (GraphPad Software, La 
Jolla, CA, USA); bottom constrained to 0.

α-GST data were calculated as fold of control for liver 
spheroid samples and as µg/million cells/day for Liver-Chip 
samples, as control levels were at or below the lower limit of 
detection (1 ng/ml) for some of the sampling days.

MiR-122- and cel-miR-39-measured threshold cycles 
were reported as Ct. Mean Ct of three-technical triplicates 
was used to calculate the relative release of miR-122 com-
pared to cel-miR-39 spike-in (ΔCt). ΔΔCt was calculated 
for each sample relative to the mean of the vehicle controls 
at the matched timepoint, calculated as 2− ΔΔCt and reported 
as fold miR-122 release.

Masslynx® software version 4.1 and TargetLynx (Waters, 
U.K.) were used for analysis and processing of UPLC–MS/
MS data. Chromatographic peaks corresponding to the ana-
lyte were quantified using a calibration curve. The lower 
limit of quantification for each analyte can be found in Sup-
plementary Table 11.

Statistical analysis

The technical variation between the two models was com-
pared by calculating the residual variation (RV; the variation 
remaining after removing the effects of compound, day, and 
experiment) for each outcome. The RV (reported as % total) 
was calculated for each outcome separately and for APAP 
and FIAU separately. The models were compared using a 
paired t test.

Fig. 3   Evaluation of the toxicity of APAP and FIAU in liver sphe-
roids. Spheroids were exposed to 0–10,000  µM APAP (a–d) or 
0–100/300  µM FIAU (e–h) for 10  days with samples collected for 
the determination of (filled triangle) albumin secretion and (filled cir-
cle) miR-122 release on days 1 (a, e), 3 (b, f), 7 (c, g) and 10 (d, h). 
Additionally, ATP levels and % viability of controls were determined 
(Filled Square). Data are mean ± SD, (n = 2/3)

◂
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Results

Cytotoxicity and biomarker release profiles 
in Liver‑Chips and liver spheroids

Release of the hepatic biomarkers albumin (liver function), 
α-GST and miR-122 (liver injury) was monitored on days 1, 
3, 7 and 10 following the commencement of dosing. Addi-
tionally, ATP depletion (cell viability) was determined at 
all time points in liver spheroids and on day 10 in the Liver-
Chips. A summary of the biomarker changes observed fol-
lowing exposure to APAP and FIAU can be found in Sup-
plementary Table 12. Both models exhibited dose- and 
time-dependent cytotoxicity and decreased hepatocyte 
function following exposure to APAP and FIAU (Figs. 1, 
2, 3; Table 1).

Control albumin levels in the Liver-Chip model ranged 
from 13 to 34 µg/million cells/day (Supplementary Fig. 1) 
which is equivalent to the albumin levels reported in the 
biochip OrganoPlateTM (~ 11–25 µg/million cells/day) over 
a similar cultivation period (Jang et al. 2015). Sustained 
albumin production in perfused culture and a non-signifi-
cant decline in albumin under dynamic conditions have been 
reported previously (Buesch et al. 2018; Vinci et al. 2011). 
However, due to the different units used, a direct comparison 
of the levels to those in the Liver-Chip model in this study 
was not possible.

Albumin was a sensitive biomarker of APAP cytotoxicity 
in Liver-Chips, with decreased secretion observed as early as 
1 day after APAP dosing (EC50 5.6 ± 3.0 mM). Additionally, 
peak increases in α-GST and miR-122 release were observed 
at 10 mM on day 3 (Figs. 1b, 2a). Although peak absolute 
values varied (α-GST, 0.2–1.7 µg/million cells/day; miR-
122, 7-30-fold), a similar trend was observed for both bio-
markers in individual experiments. Moreover, dose-depend-
ent decreases in hepatocyte albumin secretion and cell 
viability (ATP) exhibited a similar trend on day 10 (Fig. 1d; 
EC50 1.5 ± 0.4 mM and 2.4 ± 0.2 mM, respectively; Table 1). 
With FIAU, albumin was again the most sensitive biomarker 
in Liver-Chips. Dose- and time-dependent decreases were 
observed on days 7 and 10, although some interexperimental 
variations were observed (EC50 126 ± 93 µM and 48 ± 57 µM 
respectively; Fig. 1g, h; Table 1). Dose-dependent decreases 
in cell viability were also observed on day 10, though the 
maximum decrease recorded at the top concentration was 

60% (300 µM; Fig. 1h). With α-GST, minimal release was 
observed on days 1–3 (< 0.4 µg/million cells/day; Fig. 2b) 
and only one to fivefold increases in miR-122 were observed 
on day 10 (Fig. 1h).

In liver spheroids, ATP depletion and miR-122 were early 
markers of APAP toxicity on day 3, with dose-dependent 
decreases in ATP levels at > 1 mM (EC50 2.9 ± 1.0 mM) and 
14-fold increases in miR-122 observed at 10 mM. Increased 
release of miR-122 was also observed on days 7 and 10 
(~ 10-fold; Fig. 3c, d) along with ~ 6- and 3-fold increases, 
respectively in α-GST (Fig. 2c). Moreover, similar profiles 
of decreases in albumin secretion and ATP were observed 
on day 10 (EC50 values of 2.4 ± 0.5 mM and 1.7 ± 0.6 mM 
respectively; Fig. 3d; Table 1). MiR-122 was an early marker 
of toxicity for FIAU in liver spheroids. Marked increases in 
miR-122 release (~ 15-fold) were observed on day 7 with peak 
values of 23-fold observed on day 10 (Fig. 3g, h). In contrast, 
marked dose-dependent decreases in albumin secretion and 
ATP levels were not observed until day 10 (EC50 111 ± 36 µM 
and 84 ± 54 µM, respectively; Fig. 2h; Table 1). Increased 
α-GST release was also observed on days 7 and 10 (Fig. 2d).

APAP and FIAU metabolite identification

Metabolite identification was performed on media samples 
from liver spheroids incubated with APAP or FIAU for 1, 
3, 7 or 10 days. With APAP, four metabolites were identi-
fied (Scheme 1a), APAP–glucuronide (M1), APAP–cysteine 
(M2), APAP–GSH (M3) and APAP–sulfate (M4).

With FIAU, three accurate m/z transformations were 
detected corresponding to proposed structures (Scheme 1b). 
Loss of 6.8930 (M1/M2) (suggesting des-Iodo-cysteine con-
jugate), loss of Iodine (M3) and two different glucuronide 
conjugates (M4/M5) appear at separate retention times (Sup-
plementary Table 4, Supplementary Fig. 2). M1/M2, M3, 
M4 and M5 FIAU metabolites were also observed in Liver-
Chip samples following incubation with 300 µM FIAU for 
3 days (Supplemental Fig. 3).

APAP metabolite quantification in Liver‑Chips 
and liver spheroids

The concentration of APAP and its principle metabolites 
APAP–glucuronide, APAP–sulfate and APAP–GSH were 
quantified on days 1, 3, 7 and 10 following dosing (Fig. 4). 
For both models, turnover of APAP was observed at times 
and concentrations where cytotoxicity was not observed, 
whereas metabolite formation rates appeared to be impacted 
where cytotoxicity was present. APAP–glucuronide and 
APAP–sulfate were the major APAP metabolites detected 
(Fig. 4a, b, e, f).

The profiles of generated APAP metabolites were simi-
lar between Liver-Chip and liver spheroids apart from the 

Fig. 4   APAP Metabolic formation rates in Liver-Chips and liver 
spheroids. Liver-Chip hepatocyte channel samples were collected 
over days 0–1, 2–3, 6–7 and 9–10 for the determination of APAP–
glucuronide, APAP–sulfate, APAP–GSH and APAP–cysteine metab-
olites (a–d) by LC–MS. Additionally, pooled spheroids samples were 
collected over days 0–1, 0–3, 4–7 and 7–10 (e–g). Cell viability on 
day 10 was determined by ATP depletion and this profile is overlaid 
over the metabolism profiles. Data are mean ± SD (n = 3)

◂
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formation of the APAP–GSH conjugate (Fig. 4c, g). This 
difference could be explained by the high prevalence of 
cysteine conjugates in the Liver-Chip system (Fig.  4d): 
APAP–cysteine conjugate is a potential downstream metabo-
lite of APAP–GSH conjugate (Vliegenthart et al. 2017) and so 
the low levels of APAP–GSH may be due to enhanced clear-
ance of the metabolite in Liver-Chips. Also in the liver sphe-
roid model, APAP–glucuronide and APAP–sulfate metabo-
lites were detected at ≥ 3000 µM despite low ATP levels being 
observed at the same concentrations on day 7 (Figs. 3c, 4e, f). 
This could be due to only 50% replacement of the media on 
days 4 and 7 to avoid ‘loss’ of the spheroid from the well, i.e. 
carry over of stable glucuronide and sulfate metabolites to the 
later time points, and/or possibly due to some residual enzyme 
activity prior to complete lysis of the cells.

CYP activity profiling in Liver‑Chips and liver 
spheroids

CYP activity was maintained in both models over the dura-
tion of the study, although activity levels varied between and 

within experiments. Additionally, slightly lower CYP1A2 
activity was observed in both models, and lower CYP2D6 
activity was observed in liver spheroids, at later time points 
(Figs. 5, 6). In Liver-Chips relatively, low levels of OH-
midazolam were detected (Fig. 6d). An alternative CYP3A4 
probe substrate, testosterone, was, therefore, evaluated. 
Much greater turnover of this substrate to its 6β-hydroxy-
metabolite was observed (Fig. 6f). For Liver-Chip CYP2E1 
activity determination, formation rates for 6-hydroxy-chlor-
zoxazone-glucuronide (Fig. 6g) were measured as its precur-
sor, 6-hydroxy-chlorzoxazone, was not detected.

Technical variation

Overall, no difference was observed in the technical varia-
tion of the Liver-Chip and liver spheroid models (Supple-
mentary Fig. 4; paired t test: t6 = 1.5, p = 0.184).

Discussion

DILI remains a major issue for the pharmaceutical industry, 
with failure to detect significant hepatotoxicity risk at non-
clinical stages of the drug discovery/development pipeline 
having serious clinical repercussions with late stage and 
post-marketing attrition. Using in vitro cellular models to 
recapitulate hepatic function allows hazard identification and 
risk assessment of chemicals and drugs that may interfere 

Scheme  1   a Metabolites detected in the liver spheroid and Liver-
Chip samples dosed with APAP: M1 (APAP-glucuronide), M2 
(APAP-cysteine), M3 (APAP-GSH) and M4 (APAP-sulfate). b Pro-
posed metabolites detected in the liver spheroid and Liver-Chip sam-
ples dosed with FIAU: M1/M2 (loss of 6.8930), M3 (loss of Iodine), 
and M4/M5 (glucuronide conjugate)

◂

Fig. 5   Evaluation of CYP activity in liver spheroids. Spheroids were 
incubated with CYP probe substrates for 24 h on days 0–1, 3–4, 7–8 
and 10–11, and metabolites formed via CYP1A2 (a), CYP2D6 (b), 

CYP2C9 (c), CYP3A4 (d), CYP2C19 (e) and CYP2E1 (f) were 
detected by LC–MS. Data are mean ± SD (n = 3, 6 spheroids/experi-
ment)
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with homeostatic function resulting in adverse effects. The 
design of these models is crucial to ensure maintenance of 
the long-term hepatocyte and NPC phenotype; factors such 
as flow, cell–cell contact and co-culture each contribute to 
enable the in vitro hepatocyte to regain a more in vivo-like 
physiology. This study compared the effects of two model 
hepatotoxins, APAP and FIAU, on cryopreserved PHH from 
the same human donor in two in vitro models, hepatocyte/
NPC spheroid co-cultures and the Liver-Chip containing 
flow. Importantly, both models demonstrated functional 
drug metabolism and release of cellular stress and cyto-
toxicity biomarkers. This work has two novel aspects: first, 
we compared cells co-cultured in a static, scaffold-free 3D 
environment and those cultured in a more sinusoidal-like 
architecture with media flow; second, a seamless integration 
of cell stress/cytotoxicity endpoints with quantification of 
functional drug metabolism kinetics at equivalent concen-
trations and timepoints. In both models, NPCs are present, 
the hepatic spheroids containing 10% mixed NPC and the 
Liver-Chips containing a 1:1 ratio with endothelial cells. 
The model hepatotoxins were selected because hepatocyte 
function is directly related to their mechanism of toxicity, 
for APAP this is reactive metabolite formation, glutathione 
depletion and covalent binding; for FIAU this is transporter-
mediated uptake and integration into mitochondrial DNA 
(Honkoop et al. 1997). Biomarkers were selected based on 
two criteria. First, they needed to be sensitive enough when 
using only 1500 cells in the hepatic spheroid (Proctor et al. 
2017). Second, circulating biomarkers (albumin, α-GST 
and miR-122) were prioritized over destructive biomark-
ers (ATP) to enable the evaluation of chronic responses in 
the same incubation. Dose- and time-dependent release of 
α-GST and relative expression of miR-122 into liver sphe-
roid supernatants has been demonstrated previously in a 
proof of concept study in response to drug-induced cyto-
toxicity (Proctor et al. 2017).

For APAP, the most sensitive cytotoxicity biomarkers 
were albumin in the Liver-Chips, and ATP and miR-122 for 
the spheroids. ATP depletion was equivalent during FIAU 
administration. Similar sensitivity to APAP was observed 
in both models, but less sensitivity to FIAU as reported by 
Bell et al. (2016, 2018) in hepatic spheroids over a similar 
time course. Additionally, both models exhibited greater 
sensitivity to APAP than reported by Skardal et al. (2017) 

in liver constructs in a fluidic system. Marked decreases in 
albumin secretion and elevations of α-GST release following 
exposure to 10 mM APAP were not observed until 14 days 
and 10 days, respectively, in the liver construct model. Bell 
et al. (2018) reported that their proteomic dataset did not 
support an obvious correlation of the expression levels of 
various proteins known to play a role in FIAU mitochondrial 
uptake and its metabolism to the active triphosphate moiety, 
such as ENT1, TK2, and TMPK, with differences in sensi-
tivity. However, differences in activity of these proteins or 
in the overall physiology of the mitochondria between 2D 
sandwich culture, 3D and Liver-Chips under flow condi-
tions are possible and need to be tested to gain a further 
understanding of how these models can be used for particu-
lar DILI liabilities. Bell et al. (2018) also reported donor 
variability in 3D culture sensitivity to APAP and FIAU, 
particularly with APAP at 72 h and FIAU at 7 days, yet 
this disappeared with longer culture (14 days), likely due to 
gradual loss of CYP450 activities. We examined the same 
donor in both spheroids and Liver-Chips, and the sensitivity 
observed fits with the range of donor sensitivities previously 
reported (Bell et al. 2018). As CYP genes are highly variable 
between populations (Zhou et al. 2017) and previous studies 
have shown that genotypic differences can alter respective 
substrate pharmacokinetics (Vorrink et al. 2017), it is likely 
that larger scale investigations with donors from different 
ethnic backgrounds and with selected genotypes of interest 
will reveal more noticeable differences in drug sensitivities 
between donors in vitro (Bell et al. 2018).

Drug metabolites may initiate hepatotoxicity via multiple 
mechanisms, such as interfering with mitochondrial function 
or inhibiting the BSEP transporter (Dragovic et al. 2016). A 
recognised mechanism of hepatotoxicity is CYP450-mediated 
formation of reactive metabolites (Dragovic et al. 2016). Both 
APAP and FIAU undergo metabolism in human liver (Fein 
et al. 1985; Mazaleuskaya et al. 2015). At therapeutic doses, 
APAP undergoes direct Phase II detoxification via sulfation 
and glucuronidation, and is bioactivated to the reactive inter-
mediate NAPQI via CYP450s. APAP–glucuronide has been 
reported as the most abundant human metabolite, followed 
by APAP–sulfate, whereas the APAP–GSH conjugate has 
been reported to be only a minor metabolite at therapeutic 
APAP dose levels (Critchley et al. 1986; Patel et al. 1992). 
This metabolic profile has been recapitulated in a cryopre-
served hepatocyte suspension system, with approximately 
85% of the drug appearing as the APAP–glucuronide con-
jugate at concentrations of 5 mM (Riches et al. 2009). The 
metabolism of APAP presented here in the Liver-Chip and 
liver spheroid models is in line with the APAP metabolic 
profile reported in man in vivo and in human hepatocytes 
in vitro (Critchley et al. 1986; Patel et al. 1992; Riches et al. 
2009). GSH conjugation of NAPQI (APAP–GSH) protects 
hepatocytes from reactive intermediates becoming covalently 

Fig. 6   Evaluation of CYP activity in Liver-Chips. Liver-Chips were 
incubated with a CYP probe substrates for 24 h on days 0–1, 2–3, 6–7 
and 9–10, and metabolites formed via CYP1A2 (a), CYP2D6 (b), 
CYP2C9 (c), CYP3A4 (d, f), CYP2C19 (e), and CYP2E1 and phase 
II (g) detected by LC–MS. Pharmacokinetics was assessed under 
media flow conditions identical to the toxicity assessment protocol 
in this study, 30  µl/h. Paracetamol and 1-hydroxy-midazolam have 
the potential to be further metabolised. Data are mean ± SD (n = 2 in 
duplicates)

◂
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bound to hepatic protein and eventually hepatotoxicity (Laine 
et al. 2009; Mazaleuskaya et al. 2015). In both Liver-Chips 
and spheroids, GSH and cysteine conjugates of APAP were 
detected, indicating CYP450 activity, formation of NAPQI 
and preserved hepatic protection function via GSH conjuga-
tion in vitro. APAP–cysteine can either be formed directly 
from NAPQI (Streeter 1984) or by downstream metabolism 
via APAP–GSH (Vliegenthart et al. 2017). In vivo, NAPQI 
increases at toxic doses, which is captured in both models 
with significant increases in formation rates of APAP–GSH 
for spheroids and APAP–GSH and cysteine conjugates for 
Liver-Chips above toxic APAP concentrations (> 1 mM) 
(Mazaleuskaya et al. 2015; Pierce et al. 2002). For spheroids, 
APAP–GSH formation was absent for the highest concen-
trations between days 7 and 10, and no ATP was produced, 
suggesting cell death had prevented drug metabolism capabil-
ity. A similar pattern was observed for APAP–cysteine in the 
Liver-Chips. APAP–glucuronide and APAP–sulfate formation 
is present during the culture period demonstrating phase II 
metabolism at comparable levels in both systems. Similar to 
in vivo, APAP–glucuronide is increased at supratherapeutic 
doses of APAP (> 0.1 mM) and saturated after highly toxic 
doses (> 3 mM) (Mazaleuskaya et al. 2015). APAP–glucuro-
nide, APAP–sulfate and APAP–cysteine formations have been 
demonstrated previously in vitro in 2D culture cryopreserved 
human hepatocytes and HepaRG cells (Sjogren et al. 2014).

Specific enzyme activity of relevant P450s was assessed 
by measuring probe substrate metabolite formation, via 
CYP1A2, CYP2C19, CYP2C9, CYP2D6, CYP2E1 and 
CYP3A4. CYP3A4 and CYP2E1 are reported to be the major 
isoforms to bioactivate APAP to NAPQI at toxic doses, 
whereas other isoforms including CYP1A2, CYP2C19, 
CYP2C9 and CYP2D6 may also play a role at toxic and/or 
therapeutic doses (Chen et al. 1998; Laine et al. 2009; Raucy 
et al. 1989). Spheroid CYP activity levels were maintained 
during the study and demonstrated comparable activity lev-
els to that observed in freshly thawed human hepatocytes, 
with the exception of CYP2E1 activity. The formation rates 
of both paracetamol (CYP1A2) and 4-hydroxy-diclofenac 
(CYP3A4) were observed to be in the range of that reported 
in freshly thawed cryopreserved human hepatocytes at 
Km (from nine donors) and > 1.4-fold higher than Hµrel 
co-culture system for paracetamol. However, the CYP2E1 
activity was observed to be 36-fold lower than that observed 
in human hepatocytes from the same study (Li 2015). The 
formation rate of 1-hydroxy-midazolam was observed to be 
twofold higher than that reported in 16 hepatocyte donors 
at Km (calculated as Vmax/2). For 1-hydroxy-bufuralol, 
the formation rate was comparable to that reported in 10 
donor pooled human hepatocytes (calculated as Vmax/2) 
and 14-fold higher than observed in the Hµrel co-culture 
system. Furthermore, CYP2C19 activity, measured by the 
formation of 4-hydroxy-mephenytoin, was observed to be 

comparable to that reported in freshly thawed cryopreserved 
human hepatocytes (calculated as Vmax/2) in a different 
study (Brown et al. 2007). Liver-Chip CYP activity was also 
maintained throughout the study, but with relatively low lev-
els of 1-hydroxy-midazolam formation (CYP3A4) (Fig. 6d). 
However, much greater levels of 6β-hydroxy-testosterone, 
formed from the alternative CYP3A4 probe substrate, testos-
terone, was observed (Fig. 6f). This indicates that metabo-
lism of 1-hydroxy-midazolam to the glucuronide conjugate 
may be the reason for lower levels of 1-hydroxy-midazolam 
formation and not low CYP3A4 activity. Greater turnover of 
midazolam to its glucuronide in a dynamic Liver-Chip sys-
tem versus a 2D-static system has been reported previously 
(Vivares et al. 2015). Here the amount 1-hydroxymidazolam 
had decreased due to turnover to its glucuronide. Phase II 
metabolism may also be responsible for the lower levels 
of paracetamol in the Liver-Chip compared to spheroids. 
Furthermore, for the determination of Liver-Chip CYP2E1 
activity, formation rates for 6-hydroxy-chlorzoxazone-glucu-
ronide were determined as its precursor 6-hydroxy-chlorzox-
azone (Desiraju 1983) was not detected suggesting almost a 
complete conversion of this metabolite to the glucuronide.

FIAU is metabolised to FIAU glucuronide and des-iodo-
FIAU in humans, and the same metabolites were detected in 
spheroids and Liver-Chips (Bowsher et al. 1994; Fein et al. 
1985). Additionally, a metabolite which has previously not 
been reported was observed in both systems suggesting the 
formation of electrophilic reactive species. This metabolite 
produced a mass of [M + H] + 366.0764 Da, corresponding 
to the cysteine conjugate of des-iodo-FIAU with the elemen-
tal composition C12H16FN3O7S. Further investigation of 
this proposed metabolite is required. Lewis et al. (Lewis 
et al. 1996) showed that parent FIAU decreased mitochon-
drial DNA replication in HepG2 cells. Thus, both FIAU and 
FIAU triphosphate could be involved in the mitochondrial 
hepatotoxicity observed in man.

In conclusion, both models demonstrated integrated drug 
metabolism and broadly similar sensitivity to the hepatotox-
ins at clinically relevant concentrations. The identification 
of FIAU as a hepatotoxicant in our models demonstrates 
that 3D co-culture and media flow/shear stress can result in 
the recapitulation of a more physiologically relevant in vitro 
system. Such an integration of metabolic bioactivation and 
markers of hepatotoxicity for APAP at relevant clinical 
concentrations demonstrates the utility of these models for 
improved hepatotoxicity risk assessment.
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