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peroxisome proliferation). Our findings provide evidence 
that identifying organ toxicity can be achieved in a robust, 
reliable, human-relevant system, representing a non-animal 
alternative for systemic toxicology.

Keywords  Metabolomics · Liver toxicity · In vitro · 
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Introduction

Toxicology is undergoing a paradigm shift, from predomi-
nantly observational science (based on animal testing), to 
predominantly predictive science focusing on target-specific, 
mechanism-based, biological observations, contingent upon 
in vitro data and in silico predictions, often referred to as 
toxicology for the twenty-first century (Hartung 2009). The 
development and application of modern tools can provide 
deeper insights into the molecular mechanisms underlying 
toxicity in a high throughput manner (Attene-Ramos et al. 
2015; Liu et al. 2015). Such developments are being driven 
by the need to improve the safety evaluation of chemicals in 
a more efficient, human-relevant context (Judson et al. 2014) 
to meet changing regulations and promote the use of non-
animal models to predict toxicity (Ramirez et al. 2013b).

Generally, toxicity studies require large numbers of ani-
mals, take several months to years to complete, are usually 
very costly, and can only test low numbers of compounds in 
a given time period. Current animal testing is primarily per-
formed in rats and mice, and although these rodents exhibit 
many of the same responses to chemicals as humans, there 
are qualitative and particularly quantitative differences. Most 
toxicology studies, particularly those used to fulfil regula-
tory requirements rely on apical endpoints, such as signs of 
clinical toxicity, hematology, urinalysis as well as clinical and 
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histopathological evaluations. Despite these numerous evalu-
ations, their main target is to determine a dose with no effect 
(no observed effect level: NOEL), rather than to understand 
the mechanisms responsible for inducing toxicity. The latter, 
however, is an essential component to address questions about 
the human relevance of these animal tests. The answer to such 
questions is conventionally circumvented by introducing safety 
factors (usually ranging between 100 and 1000-fold below 
the observed effect level). The appropriateness of these safety 
factors is hardly ever addressed. New approaches to toxicity 
testing offer the chance to open this “black box” of unknown 
liabilities, and provide a valuable foundation for more targeted 
risk assessment. Experience from clinical trials suggests that 
20–40% of drugs fail because of toxic side-effects not pre-
dicted (Arrowsmith 2012), about half of this being liver tox-
icities, and only about 43% of these predictable in retrospect 
from the rodent studies (Olson et al. 2000), which are the only 
information typically generated for industrial chemicals.

Metabolomics can provide a readout of a biological 
system’s biochemical and physiological status (Choucha 
Snouber et al. 2013; Van den Hof et al. 2014; Vermeersch 
et al. 2015). In comparison to other omics technologies, it is 
thought to best represent a phenotype and hence “classical 
toxicology” (Bouhifd et al. 2013). Metabolome analyses of 
body fluids such as urine or blood plasma have been shown 
to provide new insights into toxicity (Kamp et al. 2012a; 
Mattes et al. 2014; Reily and Tymiak 2015) as well as pre-
dicting the toxicity of compounds at an early stage of devel-
opment (van Ravenzwaay et al. 2012a). Such technologies 
are not only highly useful to gain more information from ani-
mal studies but also help to reduce animal testing by refining 
the methods. However, the above-mentioned investigations 
necessarily still rely on animal studies and have a limited 
potential to investigate the cellular, mechanistic origin of 
toxicity in humans.

Therefore, we decided to apply metabolomics in an 
in vitro human cell system, to address whether organ toxicity 
could be identified in a robust and reproducible way. Here, 
we report on a concept we have developed using a highly 
reproducible HepG2 liver cell-based system validated with 
35 test substances (Table 1, Supplementary Table 1) over 
a period of more than 3 years using both supernatant and 
intracellular metabolome analysis of natural low-molecu-
lar-weight endogenous constituents of cells (Ramirez et al. 
2012, 2013a).

Materials and methods

Cell culture

HepG2 (human hepatocyte carcinoma, acquired from ATCC, 
clone HB8065, maximum passage number 20) cells were 

maintained and grown on Dulbecco’s MEM media supple-
mented with 1 v/v% of penicillin/streptomycin, l-glutamine 
(200 mM, 1 v/v%), non-essential amino acids (100x, 1 v/v%) 
and 10% FBS (Biochrom, Germany). For experiments, 
0.45 × 106 cells were grown on multi-well plates or lumox® 
dishes 35 (35 mm, Sarstedt, Germany) and incubated under 
5% CO2 at 37 °C for 24 h (Bordag et al. 2016b). After incu-
bation, culture media were exchanged and chemical treat-
ment was applied for 48 h. Cells and their supernatants were 
then harvested, frozen and stored at − 80 °C under inert gas 
atmosphere until analysis. Cell viability was measured by 
WST-1, cells were seeded in dishes and treated as well as the 
cells used for metabolome analysis. After exposure time, cell 
culture media was removed and 500 µL of the WST-1 work-
ing reagent per dish were added and dishes were incubated 
at 37 °C. After 1 h, 100 µL of supernatant were transferred 
to a 96-well plate in duplicates. Absorbance was measured 
at 450 nm with a reference wavelength of 600–700 nm.

Treatment substances

The substances used for the experiments reported here have 
been selected because of their known in vivo effects. In 
particular, they have been chosen to proof whether HepG2-
based in vitro metabolomics can serve as a tool for the detec-
tion of different liver toxicities. Therefore, these compounds 
were selected based on the knowledge about their liver 
effects including the underlying modes of action. The fol-
lowing test substances were selected for treatment of HepG2 
cells in different experiments (Table 1).

Range finder experiments

Prior to metabolome experiments, range finder experiments 
for all tested substances were performed to select a con-
centration range at which the protein concentration was not 
reduced below 80% compared to controls, and preferably in 
the range of 90% at the highest concentration. For treatment 
with each test substance, increasing concentrations were set 
up (in triplicates). After 48 h, protein content was measured 
using bicinchoninic acid (BCA; see below). The concentra-
tion that reduced the total protein content by a maximum 
of 20% was designated as the high dose (HD) for the main 
experiment. In general, one-third of the HD concentration 
was selected as the low dose (LD).

Treatment tests

For treatment, dishes were treated with vehicle control only 
(VC, final concentration of DMSO was 0.5%, 16 replicates 
each time), or with HD test substance (final concentration 
of DMSO was 0.5%, 8 replicates each time) and LD test 
substance (final concentration of DMSO was 0.5%, at least 
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Table 1   Overview of the test substances used for treatment of HepG2 cells for 48 h

Those highlighted in bold represent compounds discussed in the text

Substance CAS-Nr. Chemical class Category MoA (target in)

4-Chloroaniline 106-47-8 Amine Industrial chemical Methemoglobin formation
β-Naphthoflavone 6051-87-2 Benzoflavone Industrial chemical Liver enzyme inducer
Acetaminophen 103-90-2 Drug Pharma Cyclooxygenase inhibitor
Acifluorfen 50594-66-6 Diphenylether Herbicide Inhibition of protoporphyrinogen oxidase 

(PPO)
Aroclor 1254 11097-69-1 Polychlorinated biphenyl Industrial chemical Liver enzyme inducer
Benzylbutyl phthalate 85-68-7 Phthalic acids Industrial chemical Peroxisome proliferation
Bezafibrate 41859-67-0 Fibric acids Hypolipidemic agents Peroxisome proliferation
Carbaryl 63-25-2 Carbamate Insecticide Acetylcholinesterase (AChE) inhibitors
Cyclosporin A 59865-13-3 Peptides, cyclic Immunosuppresive agents Block the transcription of cytokine genes in 

activated T cells
Cycloxidim 101205-02-1 Pyrans Herbicide Fatty acid biosynthesis in grass
Dichlorprop 120-36-5 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)
Dichlorprop-p 15165-67-0 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)
Digitoxin 71-63-6 Digitalis glycosides Anti-arrhythmia agent Heart/Na–K ATPase inhibitor
Dimethenamide 87674-68-8 Chloroacetamide Herbicide Long chain fatty acid inhibitor
Dimethenamide-p 163515-14-8 Chloroacetamide Herbicide Long chain fatty acid inhibitor
Dimethoate 60-51-5 Organophosphate Insecticide Acetylcholinesterase (AChE) inhibitors
Dimethylformamide 68-12-2 Formamide Industrial chemical Not applicable (liver toxicant)
Fipronil 120068-37-3 Phenylpyrazole Insecticide GABA -gated chloride channel blockers
Fluoroglycofen-ethyl 77501-90-7 Diphenylether Herbicide Inhibition of protoporphyrinogen oxidase 

(PPO)
Fluoxetine hydrochloride 56296-78-7 Propyolamine Antidepressant Selective serotonin reuptake inhibitor
Imazamox 114311-32-9 Imidazole Herbicide Inhibition of acetolactate synthase ALS 

(acetohydroxyacid synthase AHAS)
MCPA 94-74-6 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)
Mecoprop 93-65-2 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)
Mecoprop-p 16484-77-8 Phenoxyacetate Herbicide Action like indole acetic acid (synthetic 

auxins)
Metconazole/cis 115850-27-6 Triazole derivative Fungicide Enzyme inhibitor
Metconazole/cis–trans 125116-23-6 Triazole derivative Fungicide Enzyme inhibitor
Nicosulfuron 111991-09-4 Sulfonylurea Herbicide Inhibition of acetolactate synthase ALS 

(acetohydroxyacid synthase AHAS)
Pendimethalin 40487-42-1 Dinitroaniline Herbicide Microtubule assembly inhibition
Phenobarbital sodium salt 57-30-7 Barbiturate Sedative Brain/GABA modulator
Pentobarbital sodium salt 57-33-0 Barbiturate Sedative Brain/GABA modulator
Pyridaben 96489-71-3 Pyridazine Pesticide Mitochondrial complex I electron transport 

inhibitors
Tamoxifen 10540-29-1 Stilbenes Antineoplastic Estrogen receptor modulator
Tetracycline 60-54-8 Tetracyclines Pharma Protein synthesis inhibitor
Verapamil hydrochloride 152-11-4 Phenethylamine Anti-arrhythmia agent Heart/Ca2 + channel blocker, CYP3A4 

inhibitor
Vinclozolin 50471-44-8 Oxazoles Fungicide NADH cytochrome c reductase in lipid 

peroxidation
Wy-14643 50892-23-4 Pyrimidines Hypolipidemic agents Peroxisome proliferation
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8 replicates each time). In addition, blank controls were set 
up as dishes without cells but containing media (16 rep-
licates) and technical replicates (pools) were prepared as 
samples containing only cells with VC (0.5% DMSO, 16–20 
replicates per testing of 2 test substances). After treatment, 
supernatant and cells were harvested, strictly ensuring that 
the time for harvesting every sample did not exceed 30 s.

For exosome analysis, cell supernatants (1 mL per sam-
ple only) were transferred to Eppendorf tubes, quickly cen-
trifuged to eliminate potential cell debris, re-transferred to 
fresh Eppendorf tubes, gassed with argon to avoid sample 
oxidation and stored at − 80 °C until measurement. For 
the analysis of intracellular metabolomics, the bottom of 
the dishes was removed with a scalpel and rinsed three 
times in 0.9% NaCl solution (pre-warmed to 37 °C). After 
rinsing, membranes were transferred to pre-cooled 2 mL 
Eppendorf™ tubes (placed in liquid nitrogen). The Eppen-
dorf tubes were then placed in dry ice and quenched with 
600 µL of dichloromethane-ethanol (DCM/EtOH, 9:11, v/v 
at − 80 °C). Every sample was gassed with argon as with 
the supernatants. Samples were stored at − 80 °C until fur-
ther processing. Further details on the preparation of the 
metabolome samples can be found in Bordag et al. (2016a).

Determining protein content

Protein content was determined in a sister culture handled 
and treated exactly as the cultures used for metabolome 
analysis. Three replicates per test substance concentration 
or control were prepared and grown in dishes. After 24 h of 
seeding, cells were treated for 48 h. After treatment, cells 
were lysed with 0.1% triton x-100 (Sigma-Aldrich, Ger-
many). Lysates were pipetted (25 µL) into 96-well plates and 
incubated with 200 µL of BCA solution for 30 min at 37 °C. 
After incubation, plates were measured with a photometer 
and protein content was calculated by normalization with a 
standard curve (Pierce, Thermo Fisher, Germany).

Analytics: MxP® broad profiling

An extraction method for polar metabolites from cells grown 
on dishes (Balcke et al. 2011) was modified to comprehen-
sively extract lipid and polar metabolites. For this new extrac-
tion protocol 4 mg of ammonium acetate dissolved in 10 µL 
water, 400 µL water, 50 µL toluene and 45 µL methyl tert-
butyl ether were added, containing internal standards for 
MxP® Broad Profiling as described previously (van Raven-
zwaay et al. 2007). To each sample, 3 mm stainless steel 
beads were added and the samples homogenized with an 
Omni Bead Ruptor 24 3 times for 30 s each (10 s pause in 
between) at 3.5 m/s. The extracts were transferred to Ultra-
free ®—MC Durapore PVDF 5 µm filter units (Millipore 
UFC30SV00) and spun down for 5 min at 12,000 rpm, 12 °C 

in an Eppendorf™ 5417R microcentrifuge. Filter units were 
discarded, 200 µL DCM were added to the filtrates, agitated 
for 5 min at 1400 rpm, 12 °C in an Eppendorf™ Thermomixer 
Comfort and phase separation was achieved by centrifugation 
for 5 min at 12,000 rpm, 12 °C. Subsequently, aliquots of the 
polar and non-polar fractions were further treated and analyzed 
as described for MxP® Broad Profiling (Jung et al. 2013) with 
GC–MS (6890 GC (Agilent) coupled to a 5973 MS-System 
(Agilent) and LC–MS/MS (1100 HPLC (Agilent) coupled to 
an API4000 MS/MS-System (Applied Biosystems), using for 
LC–MS/MS a technology, which allows MRM in parallel to a 
full scan analysis (Walk and Dostler 2003).

Pooled reference samples derived from aliquots of all con-
trol samples (per matrix) were measured in parallel throughout 
the entire analytical process. Spent medium and intracellular 
data were normalized against the median in the pool reference 
samples to give pool-normalized ratios (performed for each 
sample per metabolite). This compensated for inter- and intra-
instrumental variation.

To correct for differences in cell numbers within and 
between different treatment groups, the data for both spent 
medium and intracellular metabolite levels were also normal-
ized to the within sample median. The median normalization 
produced a new set of values Xmed

ij
 according to the following 

formula:

with Xi. = (Xi1,Xi2,… ,Xim), representing the values from 
the ith sample.

Here, the index i = 1, 2,…, n denotes the samples and j = 1, 
2,…, m denotes the metabolites, so that Xij represents the pool 
normalized ratio of metabolite j from the sample i.

For intracellular metabolomics analysis, the median of 
each sample was calculated from 117 known and 77 unknown 
metabolites. In the case of supernatant medium data the sam-
ple median was calculated from 70 known and 19 unknown 
metabolites. A metabolite is regarded as known if the chemical 
identity of the metabolite has been determined.

To investigate whether the experimental variability 
remained stable over time, we calculated the variance of every 
log-transformed metabolite for both pooled samples (technical 
replicates) and control samples in each work package. These 
variances were back-transformed to the linear scale, yielding a 
relative standard deviation (RSD) using the following formula:

Metabolite profiling and pair‑wise comparison

To generate metabolic profiles for the different treatments, 
the heteroscedastic t test (Welch test) was applied to the 
log-transformed metabolite data to compare treated groups 

Xmed
ij

=
Xij

median(Xi.)
,

RSD = 1 − 10−sdlog .
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with their respective controls. The p values, t values and 
ratios of corresponding group medians were collected as 
metabolic profiles and stored in the database MetaMap®Tox 
(van Ravenzwaay et al. 2012b). The metabolite patterns were 
established applying a 5% significance level. To be able to 
compare the metabolite profiles in HepG2 cells induced by 
the different treatments, the similarity between two treat-
ments was determined by the Pearson correlation between 
their respective t value profiles. All pair-wise correlations 
were calculated.

Statistical analysis

Metabolite values were log10-transformed for the entire 
statistical analysis to better approximate a normal distribu-
tion. For univariate analysis, linear models (statistical soft-
ware R (R Development Core Team 2014)) were set up with 
the factors: substance, dose and work package as well as 
all interactions. All factors were treated as categorical. For 
principal component analysis, the log-transformed metabo-
lite data was centered and scaled to unit variance. Scaling to 
unit variance introduced a common scale for all metabolites 
independent of their absolute variance. Thereby, the result-
ing models obtained robustness, i.e., a single or few high-
variance metabolites could not dominate them.

Results

Metabolite identification and general cytotoxicity effects 
of test substances

We investigated the analytical capacity of the metabolome 
platform using state-of-the-art LC–MS/MS and GC–MS, 
which allowed us to consistently detect, quantify and 
identify 89 supernatant and 194 intracellular HepG2 cell 
metabolites (Fig. 1). Although these cells have limitations 
(i.e., incomplete metabolic competence relative to primary 
hepatocytes), HepG2 cells represent a well-accepted model 

of human liver cells simple enough and controllable under 
in vitro conditions to provide robust data over time.

Prior to selecting HepG2 cells, we investigated several 
other cellular systems, e.g., precision cut liver slices, Hep-
aRG cells and primary liver microtissues. However, in our 
experimental set up, which was the same as described here, 
none of these alternative cellular systems provided repro-
ducible data. The precision cut liver slices had a rather low 
viability, and a profound difference between each slice, mak-
ing reliable and consistent metabolomic analyses impossi-
ble. The HepaRG cells were obtained in an undifferentiated 
state, and even after differentiation in vitro using 1% DMSO, 
analysis of several differentiation markers indicated that the 
process was not fully reproducible, making the system labile 
and unsuitable for metabolomics. When applying metabo-
lomics to fresh liver microtissues, the amount of biological 
material obtained in each microtissue was not sufficient to 
reliably measure metabolites, i.e., many of the metabolites 
were below the limit of detection/quantitation. Pooling of 
microtissues only partly solved this problem and still led to 
metabolite amounts that were not always sufficiently high for 
a reliable quantification. A further increase of microtissues 
to be combined was not considered because the resources 
needed would render this experimental set-up as unpractical. 
To our experience, a minimum number of 2 million cells 
should be used for intracellular metabolome measurements 
to achieve good quantitation and reproducibility of a high 
number of targeted metabolites.

To ensure that observed metabolome changes were not 
related to cell death or general cytotoxicity, we evaluated cell 
viability (water soluble tetrazolium, WST-1), and protein 
content (BCA). Cell viability was equal to, or above 90%. 
Despite careful selection of the high concentration, based 
on the range-finding experiments, at the high concentration 
(HC) of 8 out of 33 test substances reduced protein con-
tent slightly below our threshold of ≥ 80% (Supplementary 
Table 2). Test substances reducing protein content, consid-
ered a sign of cytotoxicity, induced consistent changes in 
certain metabolites, which might serve as internal cellular 
status markers for cell cytotoxicity in the future. However, 

Fig. 1   Metabolites distributed according to their metabolite class. 
Left: 89 metabolites found in the supernatant of HepG2 cells. Right: 
194 metabolites found intracellular in HepG2 cells. The distribution 

and actual numbers of the different identified metabolite classes are 
depicted, where unknown represents metabolites undergoing chemi-
cal class identification
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the altered “cytotoxicity” metabolites did not hinder iden-
tification of metabolite changes related to specific toxicity 
mechanisms (see below).

Standardization and reproducibility

To ensure the use of novel technologies in an industrial con-
text and their acceptance by regulatory bodies, it is essen-
tial to assess quality parameters such as reproducibility and 
reliability. During the project, we generated huge numbers 
of samples and realized early on that every step needed to 
be highly standardized and technically accurate. The major 
breakthrough was the sample harvesting; every sample must 
be quenched and shock frozen within a maximum of 30 s. 
Moreover, avoiding the need for elaborate normalization 
processes to account for differences in cell numbers obtained 
during harvesting, required a new process. Therefore, we 
used Lumox™ dishes with removable breathable membranes 
supporting the growth of cells and rapid preparation and 
extraction of intracellular metabolites, which proved to be 
one essential element for the success of the study.

Lumox™ dishes have several advantages over cell trypsi-
nization and scratching, which not only generate stress for 
the cells, but also take longer than 1 min to perform, raising 
the risk of inducing changes in metabolites related to cell 
processing rather than treatment. Another important fea-
ture of our technology was the normalization strategy. This 
can be achieved by comparing the protein content of sister 
cultures, a rather inaccurate approach, or by using statisti-
cal normalization to the median over all metabolites for the 
sample, a strategy with the advantage that the median can be 
determined in the measured sample rather than a sister cul-
ture. While small differences occurred in the control base-
line levels, the relative change from control to treated was 

remarkably stable, as identified in the pair-wise comparison 
of the respective t value profiles (data not shown).

The analysis of experimental variability over time dem-
onstrated the robustness and reproducibility of the metabo-
lomics in vitro method, as evaluated by statistical analysis 
of the metabolite profiles in 1114 cell supernatants and 3556 
intracellular samples from 7 experiments performed within 
3 years (Fig. 2). Comparing the control samples generated 
in different work packages revealed a constant behavior of 
the RSD with small variabilities of about 10–15%, while the 
technical replicates had an RSD of about 5–10%. Reproduc-
ibility was also evaluated under treatment conditions using 
a reference liver toxic substance, bezafibrate, as a posi-
tive control in all experiments. The metabolome profile of 
different bezafibrate experiments clustered together in all 
analyses (supernatant/intracellular, low/high dose), indicat-
ing the high quality and homogeneity of the samples and 
experiments.

Another important aspect for toxicology is identifying 
concentration response effects following chemical treat-
ment. Concentration-dependent responses were analyzed 
in samples treated with bezafibrate by principle component 
analysis (PCA). The metabolome profile of control, or low 
and high dose bezafibrate samples clustered together in both 
supernatant and intracellular samples; however, the samples 
were all well separated from one another, suggesting observ-
able concentration-dependent effects (Fig. 3).

In addition to PCA, we also evaluated the number of 
changed intracellular metabolites after treatment by a 
small set of the analyzed compounds (Fig. 4). The data 
revealed dose-dependency in all cases, with higher num-
bers of changed metabolites recorded after high dose treat-
ments. However, the strength of the dose-dependent effect 
varied from treatment to treatment. For example, fluoro-
glycofenethyl exhibited stronger dose-dependency than 

Fig. 2   Variability of con-
trols generated over 3 years. 
Displayed are the total relative 
standard deviations (RSD) of 
all control samples grouped per 
experiment (study) and cor-
rected from the weak variability 
(depicted in red) and technical 
(depicted in blue) samples and 
grouped chronologically accord-
ing to the time when the experi-
ments were performed. The 
biological variability (purple) 
was estimating by subtracting 
the technical from the total 
variance on the log-scale and 
then transforming to RSD as 
described in the text
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β-naphthoflavone: the former induced 64 metabolite changes 
at the low dose and 123 at the high dose level, while the lat-
ter already induced 150 metabolite changes at the low dose, 
which only increased slightly to 169 at the high dose. It is 
important to note that β-naphthoflavone had much stronger 
effects at considerably lower concentrations (10 and 30 µM) 
than fluroglycofenethyl (40 and 120 µM).

Reproducibility was also evaluated for bezafibrate treat-
ments at high dose by means of pair-wise comparison 
(PWC) using the Pearson correlation ranking. The analysis 
included a maximum of 14 independent experiments where 
bezafibrate served as a positive control of liver effects. Pre-
vious studies from metabolomics in vivo have indicated 
that replicates are considered perfectly reproducible when 
they are top ranking in the PWC over samples or replicates 
from other conditions (Kamp et al. 2012a). For the PWC 
analysis, seven independent experiments were available for 
supernatant, and 14 for intracellular data (both high dose). 
When analyzing the supernatant, bezafibrate-induced pro-
files exhibited a high reproducibility, 6/7 experiments occu-
pying the first 6 positions of the Pearson rank, exhibiting 
a Pearson correlation coefficient (r) ranging from 0.94 to 
0.85, followed by a cluster of 4 low dose bezafibrate experi-
ments and the 7th high dose experiment (r = 0.845, Pearson 
rank 10). For the PWC of bezafibrate high dose data from 
the intracellular samples, all ranked in the top 14 positions 
(r = 0.956, Pearson rank 1 to 0.805, Pearson rank 13), fol-
lowed by bezafibrate low dose and other compounds show-
ing similar toxicity modes of action (data not shown). Since 
all evaluated experiments covered a period of 3 years, this 
indicates excellent reproducibility over time.

Supernatant and intracellular metabolomics of specific 
liver MoAs

Another major breakthrough was that we were able to meas-
ure the metabolites inside the cells. Many metabolomics 
in vitro studies in mammalian systems only measure metabo-
lites in the cell supernatant. Initially, we also did this before 

optimizing our standardized process to be rapid enough to 
reduce intracellular sample variability during harvesting 
(Bordag et al. 2016a). A further essential aspect of our study 
was selecting specific reference test substances to monitor 
specific liver modes of actions (MoAs): one set induced per-
oxisome proliferation and a second induced the expression 
of xenobiotic metabolizing liver enzymes, both important 
modes of action in liver toxicity from in vivo studies. A 
third set of substances that neither induce liver enzymes nor 
peroxisome proliferation served as important controls to test 
the specificity of the system.

The PCA data of supernatant and cell lysates induced by 
reference test substances clearly showed that the degree of 
distinction between the two different MoAs is superior when 
using intracellular metabolomics data (Fig. 5). Moreover, 
the intracellular metabolomics data also better reveal the 
concentration-dependency (LC versus HC). Considering this 
information, we decided to use only intracellular metabo-
lomics data from HC treatment as the most expedient way 
to draw conclusions about specific toxic effects and MoAs.

First, we analyzed the metabolic profile of all substances 
tested to establish a general pattern of liver toxicity compris-
ing metabolites concordantly regulated in most of the treat-
ments. We identified 38 changed metabolites that showed 
“general or common liver metabolite changes” (Supplemen-
tary Fig. 1). This pattern comprised 25 lipids (including 16 
unknowns), 6 energy related metabolites, 5 amino acids, 1 
amino acid-related metabolite and 1 carbohydrate. Identify-
ing these metabolites was crucial to “clean-up” the MoA 
profiles and to enhance their specificity.

Second, based on the metabolite profiling of at least 
3 reference test substances sharing the same liver toxic 
MoA, we identified patterns of metabolite changes that 
are common for these at least three reference compounds, 
i.e., these metabolites are showing statistically significant 
similar regulation for all reference compounds used. This 
list of statistically significantly changed metabolites was 
further refined by subtracting the list of general toxicity 
metabolites, resulting in a more specific pattern. Now the 

Fig. 3   Dose response effects. 
Principal component analysis 
(PCA) of all control samples 
(red) and all bezafibrate treated 
samples in low dose (LD, 
green) and high dose (HD, blue) 
treatments. a Supernatant and b 
intracellular metabolomics data 
(color figure online)
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resulting pattern was analyzed against the complete data 
set of all tested substances and further refined through 
addition or removal of metabolites in order to increase 
specificity and sensitivity. Specificity and sensitivity are 
given if the resulting pattern can identify further refer-
ence compounds with the same mode of action while at 

the same time excluding other compounds with a differ-
ent mode of action. Applying this procedure to reference 
substances sharing liver enzyme induction or peroxisome 
proliferation MoAs enabled us to identify specific signa-
ture patterns for each MoA.

Fig. 4   Dose response effects on metabolite changes. The number of changed metabolites induced by liver enzyme inducers and peroxisome pro-
liferators at different doses (low dose in blue and high dose in red, specifications on the dose are depicted per test substance) (color figure online)
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Liver enzyme inducers (intracellular metabolome)

Using the metabolome profiles of aroclor, pendimethaline 
and dimethenamide, three typical liver enzyme inducers, we 
established a pattern comprising 9 metabolites: 3 lipid and 
complex lipid metabolites, 4 amino acids and related, 2 tria-
cylglycerols (Fig. 6). With the pattern in place, metabolite 
profiling could identify other compounds with liver enzyme 
inducing properties: fipronil, dimethenamide-p, pyridaben, 
β-naphthoflavone and vinclozoline. Interestingly, profile 
comparison with a peroxisome proliferator, acifluorfen (see 
below), revealed a different pattern. This confirms a biologi-
cal selectiveness related to the MoA of the test substances 
and the effects induced in the cells.

Liver peroxisome proliferators (intracellular 
metabolome)

Three liver peroxisome proliferator (PP) reference sub-
stances were used to establish a PP pattern: acifluorfen, 
fluoroglycofen-ethyl and Wy-14643. The signature pattern 
contained 12 intracellular metabolites, including 4 amino 
acids and related, 6 lipids and complex lipids and 2 from 
other metabolite classes (Fig. 6). This pattern enabled us 
to recognize further PP substances: bezafibrate, dichlor-
prop, dichlorprop-p and mecroprop, indicating the reli-
ability of the signature pattern to identify specific changes 
associated with peroxisome proliferators. Mecroprop-p 
was also correctly identified at a 0.15 p value; this was due 
to the statistical variation of one metabolite. Benzyl butyl 
phthalate was not identified, possibly due to its very low 
solubility as well as the rather low metabolizing capac-
ity of HepG2 cells (taking into account that the phthalate 
monoesters are the active metabolites for phthalate toxic-
ity). These findings represent the proof of concept that it is 

possible to recognize toxicological MoAs in a reliable and 
reproducible manner using metabolomics in vitro applied 
to cellular models.

To extend our metabolome analysis into a more mecha-
nistic analysis of toxicity effects, we focused further on PPs. 
These include pharmaceutical and industrial chemicals that 
increase the number and size of peroxisomes in vivo (Cor-
ton and Lapinskas 2005), and can enhance beta oxidation, 
which plays an important role in lipid metabolism. During 
beta oxidation, peroxisomes oxidize a major proportion of 
very long chain fatty acids using coenzyme A, synthesized 
intracellularly from pantothenic acid, as an initial activa-
tor. Subsequently, bile acid-CoA thioesters are cleaved to 
form unconjugated bile acids and converted to bile salts 
by conjugation to taurine and glycine before secretion into 
the bile (Vessey et al. 1983; Chiang 1998). We focused on 
the biosynthesis of pantothenic acid and taurine, as well as 
changes in metabolites related to lipid metabolism (Fig. 6). 
Both pantothenic acid and taurine were down-regulated, pos-
sibly because the cells would need more pantothenic acid to 
produce acetyl CoA as an activator of beta oxidation, and 
require more taurine to conjugate the bile acid products of 
beta oxidation (Chiang 1998).

Many of the metabolites related to lipid metabolism, 
specifically those involved in the biosynthesis of unsatu-
rated fatty acids, were down-regulated (i.e., eicosadienoic 
acid, eicosapentaenoic acid, elaidic acid), probably due to 
enhanced peroxisomal activity. This applied to the two clas-
sical hypolipidemic agents, Wy-14643 and bezafibrate, but 
was slightly different for acilfluorfen and fluoroglycofen-
ethyl. The latter also induce biochemical and morphologi-
cal changes in liver attributable to peroxisome proliferation 
(HSE 1992), but might not have such a targeted effect on 
lipid metabolism as the hypolipidemic agents especially 
designed to affect lipid metabolism.

Fig. 5   Metabolomics of specific liver MoAs. Principal component 
analysis (PCA) of control samples (red squares) and peroxisome 
proliferator-treated samples [green crosses  =  low dose (LD), green 
dots  =  high dose (HD); including acifluorfen, bezafibrate, dichlor-
prop, dichlorprop-p, fluroglycofenethyl, mecoprop, mecoprop-p and 

Wy-14643] as well as liver enzyme inducer-treated samples (blue 
crosses = LD, blue dots = HD; including aroclor, β-naphthoflavone, 
fipronil, pendimethalin). a Supernatant and b intracellular metabo-
lomics data; the latter more efficiently distinguish between different 
MoAs and dose-dependency (color figure online)
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PCA analysis of several classes of compounds

In the above paragraphs, we have described a procedure 
to identify liver MoAs by determining specific patterns of 
metabolite change. This is basically the same method which 
we have been using for the identification of systemic toxic-
ity MoAs in in vivo studies (van Ravenzwaay et al. 2007; 

Kamp et al. 2012b). A different way of identifying proper-
ties of compounds is to do a PCA comparison. An overview 
of a normalized joint PCA analysis is shown in Fig. 7, and 
a detailed three-dimensional navigable graph of this PCA 
is shown as supplementary file, in which the single com-
pounds can be identified. Note that benzylbutylphthalate 
and dimethylphthalate match close to the controls, since 

Fig. 6   Heat map of metabolome changes induced by liver enzyme 
inducers and peroxisome proliferators in HepG2 cells. Yellow indi-
cates statistically significant (p = 0.05) downregulation and magenta 
indicates statistical significant (p  =  0.05) upregulation of the com-
pound classes indicated; gray represent no statistical significant 
change. The metabolite classes are depicted in the vertical colored 
bars to the left of each heat map. a The metabolome changes induced 
by 3 liver enzyme inducers at HD, aroclor, dimethinamide and pen-
dimethaline; the combination of metabolites that allow distinction of 

the liver enzyme inducers’ mode of action (pattern) is listed on the 
top left. For comparison, the metabolome changes induced by a per-
oxisome proliferator, acilfluorfen, are also displayed, clearly demon-
strating a different pattern. b The metabolome changes induced by 
3 peroxisome proliferators at HD, acylfluorfen, fluoroglycofen-ethyl 
and Wy-14643, including the list of metabolites that serve to dis-
tinguish the peroxisome proliferation mode of action (pattern). The 
metabolome pattern of changes induced by the liver enzyme inducer, 
β-naphthoflavone clearly differs from peroxisome proliferators
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metabolic conversion to the monoesters takes not place in 
HepG2 cells, which is necessary for the mode of action.

The results of the overall PCA analysis clearly demon-
strate a good separation between peroxisome proliferators, 
enzyme inducers, enzyme inhibition, compounds which 
cause liver toxicity and compounds which are not primar-
ily liver toxic (in this case nephrotoxicants). The apparent 

continuum of liver enzyme induction and liver toxicity was 
also noted in a very similar way in the in vivo analysis of 
such compounds (van Ravenzwaay et al. 2012b). Thus, 
following the metabolome analysis of a new compound, a 
PCA comparison with that of reference compounds (i.e., 
compounds with a known MoA) may help to quickly iden-
tify the probable MoA of a new compound.

Fig. 7   Overview of a joint PCA analysis. The plot includes liver 
enzyme inducers, liver enzyme inhibitors, liver toxicants, peroxisome 
proliferators, steatogenic compounds, nephrotoxicants and verapamil. 

Benzylbutylphthalate and dimethylphthalate match close to con-
trols, since metabolic conversion to the monoesters takes not place in 
HepG2 cells, which is necessary for the mode of action
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Discussion

In the present study, we used the human hepatoma cell line 
HepG2 for prediction of liver toxicity and mode of action 
using metabolomics in vitro. HepG2 cells are easier to han-
dle than primary human hepatocytes and are superior regard-
ing reproducibility. However, one drawback of this cell line 
is its limited metabolic capacity. This applies particularly 
to phase I enzymes, which are expressed magnitudes lower 
compared to primary human hepatocytes (Wilkening et al. 
2003). Therefore, compounds which require metabolic acti-
vation to exert toxic effects like acetaminophen (CYP2E1, 
Raucy et al. 1989) or nitrobenzodiazepines (CYP3A4, Miz-
uno et al. 2009) may not be detected correctly by this sys-
tem, since these enzymes are only very scarcely expressed 
in HepG2 cells. However, this limitation could be overcome 
by induction of Cytochrome P450 enzymes with TCCD, 
ß-naphthoflavone, phenobarbital of rifampicin (Gerets et al. 
2012; Garcia-Canton et al. 2013) or by using engineered 
HepG2 cells expressing Cytochrome P450 enzymes (Yoshi-
tomi et al. 2001). Another limitation of the HepG2 cell line 
is that various nuclear receptors are expressed at a consid-
erably lower level in these cells (Tolosa et al. 2016). Thus, 
compounds like phenobarbital, which acts via activation of 
CAR and PXR receptors, might not exhibit the complete 
toxicological feature compared to the in vivo situation.

Despite these limitations, we achieved standardization 
and reproducibility as well as the robustness of metabo-
lomics in an in vitro human cell system. We also success-
fully identified, with dose–response and high specificity, 
different modes of action of liver toxicants (liver enzyme 
induction/inhibition, liver toxicity and peroxisome prolif-
eration) by comparing metabolome profiles. For example, 
PPARα agonists (peroxisome proliferators in rats and mice) 
revealed clear changes in metabolites related to beta oxida-
tion of fatty acids, correlating well with the mechanism of 
this class of test substances in the in vivo situation, and con-
firming the reliability of the system. Within this context, it 
should be mentioned that the upregulating effects of PPARα 
agonists on fatty acid oxidation in vivo occur in both rodents 
and primates, the magnitude being greater in rodents. In 
rats and mice, these compounds induce peroxisome pro-
liferation, hepatocellular hypertrophy and liver tumors. In 
contrast, primates are much more resistant to peroxisome 
proliferation and hepatocellular hypertrophy, and peroxi-
some proliferation or increased incidence of liver tumors 
was not observed in humans treated chronically with fibrates 
(Klaunig et al. 2003). One reason why primates are refrac-
tory to liver carcinogenesis may be that apoptosis is down-
regulated and cell proliferation is increased in the rodent, 
but not in the primate liver (Hoivik et al. 2004). Based on 
that, the PPARα response seen in the human HepG2 cell line 
reflects the upregulation of fatty acid oxidation. Based on 

the marked species differences outlined above, the PPARα 
signature in HepG2 cells is unlikely to predict a human risk 
concerning liver cancer.

It should be noted that the purpose of this study was not 
a full validation of HepG2 cell-based metabolomics as a 
tool for liver toxicity, but more to show proof of concept 
that this technology can identify different liver toxicities. 
Therefore, no negative compounds for liver toxicity have 
been included. In order to achieve this goal, the compound 
concentrations tested here were as high as possible, but 
below significantly cytotoxic levels (i.e., viability > 80%) 
without taking into account whether these concentrations do 
reflect relevant in vivo plasma or tissue concentrations. This 
approach poses the risk that these high concentrations could 
saturate metabolism or detoxifying mechanisms. Therefore, 
the observed effects could be different from those at lower, 
possibly more physiological concentrations. Additionally, 
other mechanisms could play a role at lower concentrations.

Garcia-Cañaveras et al. examined changes in the metabo-
lome after incubation of HepG2 cells with compounds caus-
ing no liver toxicity and compounds causing oxidative stress, 
steatosis and phospholiposis (García-Cañaveras et al. 2015, 
2016). Using PCA analysis and PLS-DA (projection to latent 
structures-discriminant analysis), they found a clear separa-
tion of specifically altered metabolites for each compound 
class, which allowed unravelling changes in the respective 
underlying biochemical pathways. In this respect, our data 
confirm these results, but also add data of liver enzyme 
inducers/inhibitors, liver toxicants and peroxisome prolif-
erators to the available database.

The advantages of combining metabolomics with an 
in vitro system are manifold. (1) It reduces the need for ani-
mal studies, (2) the amount of test substance needed is in the 
range of 100–200 mg, allowing for early screening of novel 
compounds, (3) measurement of intracellular metabolites 
provides data which can be plotted on biochemical charts, 
making a biochemical interpretation of the results possi-
ble, (4) connecting observed disturbances in biochemical 
pathways with known modes of action (MoA) will help to 
identify adverse outcome pathways, (5) creating patterns of 
metabolite changes typical for a particular MoA will lead 
to fast identification of the toxicological properties of new 
compounds, and (6) if a database is created which is large 
enough, comparison of the metabolome profile of a com-
pound under investigation with all other compounds in the 
database will also provide important information on its tox-
icity as is already shown for plasma metabolomics in vivo 
(see references of this group). Generally, we have found that 
PCA comparisons are adequate in predicting the toxicologi-
cal MoA of the compounds investigated.

One can envisage expanding MoA identification by 
selecting different reference substances exhibiting other 
toxic effects in the liver, as well as establishing kidney or 
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neuronal cellular systems to enhance the battery of cellu-
lar models that can be combined with metabolomics. For 
example, we have previously demonstrated that rat plasma 
metabolomics can identify the MoA of hepatotoxic or kidney 
toxic compounds (van Ravenzwaay et al. 2012b; Kamp et al. 
2012a; Mattes et al. 2014). A battery of human cellular mod-
els covering different organs, an “organ toxicity-toolbox” for 
testing chemicals over prolonged periods, would transform 
metabolomics in vitro into a powerful tool to accurately 
measure changes in these cells and rapidly predict toxicity. 
Moreover, combining information from different organ-like 
models would contribute to future risk assessment based on 
altering toxicity pathways, as has been proposed for the use 
of transcriptomics (De Abrew et al. 2015). We also have evi-
dence for the feasibility of many other applications, such as 
chemical grouping (Ramirez et al. in preparation), opening 
new possibilities for the application of metabolomics in vitro 
in the regulatory area.

A further area which merits exploration is the quantita-
tive relationship between metabolite changes in this in vitro 
setting and results observed in animal studies. Is there a pos-
sibility to distinguish between true adverse effects and adap-
tive changes at the level of metabolites? Can quantitative 
differences in the sensitivity of humans and rats (as the most 
commonly used animal model) also be seen when comparing 
rat and human cells when applying metabolomics to liver 
cells of both species? Although at this time these answers 
cannot be given, they become testable with the technology 
presented in this paper.

In conclusion, in vitro metabolomics systems can help 
identify organ toxicity, determine the toxicological pro-
file of different test substances, predict the toxicity of new 
compounds, and better elucidate the molecular mechanisms 
underlying their toxicity in highly controllable systems suit-
able for regulatory purposes, and most importantly, without 
animal testing.
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