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Abstract
The role of prognostics and health management is ever more prevalent with advanced techniques of estimation methods.
However, data processing and remaining useful life prediction algorithms are often very different. Some difficulties in
accurate prediction can be tackled by redefining raw data parameters into more meaningful and comprehensive health level
indicators that will then provide performance information. Proper data processing has a significant importance on remaining
useful life predictions, for example, to deal with data limitations or/and multi-regime operating conditions. The framework
proposed in this paper considers a similarity-based prognostic algorithm that is fed by the use of data normalisation and
filtering methods for operational trajectories of complex systems. This is combined with a data-driven prognostic technique
based on feed-forward neural networks with multi-regime normalisation. In particular, the paper takes a close look at how
pre-processing methods affect algorithm performance. The work presented herein shows a conceptual prognostic framework
that overcomes challenges presented by short-term test datasets and that increases the prediction performance with regards
to prognostic metrics.
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1 Introduction

Prognostics is a promising technology which enables to
manage assets based on their remaining useful life (RUL)
and future health conditions [1, 2]. The potential of prog-
nostics relies on its capacity to anticipate the evolution of
anomalous conditions in time. It seeks to provide enough
time for maintenance operation and sets off the alarm for
necessary actions. A key feature in prognostics is to accu-
rately predict the RUL of systems whose current condition
and historical data are available. Such data-driven prognos-
tics makes use of historical condition monitoring informa-
tion for analysing and modelling of desired system output
[1]. Most of these data-driven approaches originated from
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“conventional numerical” methods and “machine learning”
applications [3].

The common conventional methods include regression
models [4, 5], Wiener processes [6], wavelets [7, 8], hidden
Markov model [9, 10], Kalman filters [11, 12], particle
filters [13, 14] and the Gaussian process [15]. A widespread
range of conventional applications dealing with different
domains can be found in the literature, such as fatigue
degradation evolution in materials [16], ageing of batteries,
[17], fault detection and isolation of mechatronic systems
[18–22], and failure of electronic components [23].

When a data-driven model is planned and tested, it has
to face the challenges brought up by the complexity of real-
world systems [24]. In general, these include dealing with
incomplete knowledge of future load conditions, inaccurate
estimation of the current state of health, poor evolution mod-
els, sensor noise and varying operating conditions. In con-
ventional methods, the selection of a prognostic algorithm
for complex systems depends on an understanding of the
challenges associated with the type of systems [25]. There-
fore, it is not surprising that most prognostic research work
to date has been theoretical and restricted to a small num-
ber of models, and there have been few published examples
of prognostic applications being fully fielded in condition
monitoring of complex systems that are exposed to a range
of operating conditions [26].

Indeed, prognostics of complex engineered systems
remains an area of active research and development.
Increasing trends appeared in the prognostic field have
been summarised in the literature [27–31]. Machine learn-
ing methods and related techniques can offer an impor-
tant part of the solution [3]. They can be used when an
explicit degradation model is not available, but suffi-
cient condition monitoring data have been collected. Arti-
ficial neural networks are the most common machine
learning methods used in prognostic applications [32–34];
other methods include decision trees [35], support vec-
tor machines [36–38], case-based reasoning [39], cluster-
ing [40], classification [41], Bayesian methods [42, 43]
and Fuzzy logic [44, 45]. Such approaches make use
of historical data for estimating the health conditions
rather than building models based on physical system
characteristics.

A core issue encountered in making meaningful RUL
estimations is to account for different kinds of uncertainties
from various sources in the whole exercise such as process
noise, measurement noise, and inaccurate process models
[1]. Particularly, uncertainties arising from complex systems
make identification of their source even harder. Complex
systems are formed of various interacting components in
which the collective actions are difficult to deduce from
those of the individual elements, predictability is limited and
responses do not scale linearly [46]. In this respect, among

the data-driven approaches, the artificial neural networks
(ANNs) have been the most used methods to prognostics,
due to their capability of approximating non-linear complex
functions [1].

Condition monitoring of the complex systems is usually
based on multiple sensors that receive information on the
system health and recognise any potential failures at an
early stage so that corrective actions can be suggested in
a timely manner. However, evaluation of sensor data from
various components is often a challenge due to complicated
interdependencies between measured data and actual system
conditions [47].

As a function of operating conditions, complex systems
work at superimposed operational margins at any given
time instant. The wear process of such systems is not
deterministic, and usually not one-dimensional [48]. The
multidimensional and noisy data stream is monitored from
a large number of channels (such as use or environmental
conditions, direct and indirect measurements which are
potentially related to damage) from a population of similar
components [49]. Therefore, a simple analytical model is
unable to present the wear phenomena and one should
consider the decision-making process in multidimensional
condition monitoring case [50]. In such cases, a well-
known pre-processing step is to perform component-wise
normalisation to provide a common scale across all the
features of condition monitoring data [51].

While the importance of multidimensional data and the
multiple axes of information have been recognised in the
literature, there is still a gap in analysis of such data, leaving
the analysts with yet more information to process through
the complex systems [52]. This can be attributed to an
incomplete understanding of the multidimensional failure
mechanisms and lack of correlation between different but
similar data sources.

The review of literature in this section shows that, due
to the incomplete understanding on the multidimensional
failure mechanisms and lack of support between data
sources, current methods lack the ability to deal effectively
with complicated interdependency [47], multidimensional
data [48] and noisy data [49]. Further conventional pre-
processing is unable to deal with this efficiently. Moreover,
emerging technologies for the Internet of Things (IoT)
still face some enormous challenges on data security and
confidentiality [53].

Beginning with introducing a novel data filtering archi-
tecture, the framework proposed in this paper addresses
these shortcomings by considering both regime standardis-
ation methods and neural network filtering model. Among
the data confidentiality measures concerned, the ones about
network filtering on independent sources are particularly
elaborated, including data population and characteristics,
normalising different operations with regard to each other,
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data integrity, as well as dimensionality reduction and RUL
estimation.

In the work shown here, a component-wise normalisation
method is first used to standardise multidimensional data
for a better understanding of the multidimensional failure
mechanisms. Then, a neural network function is trained to
map between a dataset of numeric inputs (multidimensional
raw data) and a set of numeric targets (normalised data).
The network function here is a kind of dynamic filtering, in
which one can fit multidimensional mapping problems well.

These two data processing steps play an important role
in modelling performance health indicators for prognosis.
A similarity-based remaining useful life estimation model
identifies the best matching portion of training health
indicators for each test health indicator and produces future
multistep predictions of system wear levels.

The method is evaluated by “final test” subset of
PHM08 data challenge from NASA Prognostics Center
of Excellence data repository. Results demonstrate that
performance deterioration of initially trained subsets can be
used to successfully predict RULs of test subsets.

The developed prognostic model is based on the fun-
damental notions of the prognostics such as the degrada-
tion over time, monotonic damage accumulation, detec-
table ageing symptoms and the correlation of these symp-
toms with RUL [49]. With consideration of these, this work
has the objectives to investigate data filtering and processing
techniques as well as remaining useful life predictions.

2 Background andmotivation

As prognostic technology advances to maturation in real-
life applications, the desire for using data-driven processing
methods has considerably risen. Data-driven prognostic
approaches are used for modelling of the desired system
output where historical condition data are available [54].
However, the issue of output assignment arises when a set
of trajectories with different initial wear levels and multi-
regime operating conditions is inserted into the same data-
driven filtering model. This is the case in some common
datasets such as the C-MAPSS datasets (of which the
PHM08 dataset is a part) [55].

Ensuring performance and safety in complicated and
safety-critical systems is a major issue, and in particular,
complexity is of the most prominent problems that must be
tackled to make theoretical frameworks applicable to real
industrial applications [56]. The main motivation of this
paper is to provide an adaptivemodel for remaining useful life
estimations on multidimensional condition monitoring data.

Multidimensional data are defined in terms of dimen-
sions, which are organised in dimension hierarchies [57].
To model the multidimensional space, let � be the space of

all dimensions. Operational trajectory, T, in this space is a
set of time, t, operating conditions (or regimes), r, and the
condition monitoring data, x.

T(i) = 〈ti , ri , xi〉 , i = 1, 2, · · · , n, and,T, t, r, x, ∈ �

(1)

where t follows a sequential order (and each variable of t is
unique), and r can only have certain values. In other words,
the unique values of the operating conditions vector, “θ(r)”,
are limited to the number of regimes, “np”.

θ(r) = {ri}iε{1,2,3,··· ,n} ,where, r =(r1, r2, r3 · · · rn) (2)

θ(r) = (1, 2, · · · , np) (3)

Considering that the sensors working at different
operating conditions provide similar readings with those in
the same regime, the vector, x = (x1, x2, x3, · · · xn), would
align in certain domains, ϑri , which are bounded by lower
lri and upper limits uri .

ϑri = (lri , uri ) ⇒ {
xi ∈ � : lri ≤ xi ≤ uri )

}
, (4)

i = (1, 2, · · · n) and ∀ri, ri ∈θ(r)=(1, 2, · · · , np) (5)

Figure 1 shows a sample of multidimensional trajectory
(the data are taken from the PHM08 dataset). The
sensor readings represent various operating conditions and
condition monitoring measurements which, for this dataset,
falls into six cluster domains (ϑ).

To produce meaningful information from such a trajec-
tory, Wang et al. and Peel [51, 58] proposed a component-
wise “multi-regime normalisation” method to standardise
the sensor readings according to each other within the same
domain. In these cases, the normalisation is applied into
the PHM08 dataset which is formed of multiple trajectories
with distinct health levels that can be found in the condi-
tion monitoring data. The health levels in these trajectories
evolve with exponential characteristics [48].

h(t) = 1 − d̊ − exp
{
åt b̊

}
(6)

Fig. 1 Multidimensional data representation of a single trajectory
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where d̊ is an arbitrary point in the wear-space (the
trajectories are observed with some non-zero initial wear
degradation), å and b̊ are the model parameters. In this
scenario, each trajectory in the dataset starts at a distinct
point and follows a characteristic “h” pattern. Considering
the multiple trajectories, the entire dataset with its all
components needs to be standardised together to preserve
the characteristic wear levels. For the case considered in
the works of Wang et al. and Peel [51, 58], all trajectories
were available at the same time. The “normalisation at once”
has therefore not been a major issue. Nevertheless, it would
be rather unlikely to find such data in a real-life scenario
due to the restrictions on data proprietary considerations
and confidentiality [59]. In a real-world scenario, the
“multi-regime normalisation” should be repeated for each
novel incoming trajectory in order to calculate the changed
population characteristics such as h and d.

Heimes [32] provided a “neural network filtering”
approach that can be an alternative to the “multi-regime
normalisation” . Unlike the regime normalisation methods,
a trained neural network function can filter the necessary
degradation information. ANNs are computational algo-
rithms loosely inspired by the observed behaviour of biolog-
ical neural networks of the brain, and they are compromised
of data processing neurons [60]. The networks form a set of
interconnected functional relationships between many input
series and a desired unique output where the relationship
can be trained for optimal performance [11]. Since an oper-
ational trajectory of a complex system is formed of multiple
sensor observations, there are multiple corresponding val-
ues at each time point which can be used to train network
function with multi-input series.

x = [x1, x2, x3, · · · , xt , · · · , xn] (7)

xt = [
xt,1, xt,2, xt,3, · · · xt,ns

]
(8)

The basic method for supervised neural networks is
to train a non-linear model using data representing the
cases of interest by reducing measurable errors through
a regularisation algorithm. In certain complex engineering
applications, the observations from the system may not
be precise, and the desired exact results may not have
a direct mathematical link with the input data. An ANN
is a convenient tool for modelling such a system without
knowing the exact relationship between input, x, and output
data series, y [61].

y = fNN(x) (9)

However, the supervised learning task of inferring an
ANN function from “labelled historical condition data”
carries the potential risk of failing to identify population
characteristic, wear levels (“d”) and “h” pattern. Without
accurately specifying the initial wear levels and “h” pattern,

the network filtering may be thrown off since the initial bias
may dictate the sensitivity to RUL estimation.

By considering both component-wise multi-regime nor-
malisation methods proposed by Wang et al. and Peel
[51, 58] and the neural network filtering model of Heimes
[32], an initial unsupervised learning task that learns hid-
den degradation behaviour can be used. In other words,
the initial wear levels can be identified as desired, and the
“normalisation at once” issue can be solved by a neural
network-based supervised learning data filtering method.
Then, the remaining useful life of a test sample can be
predicted by using the actual lifetime of similar examples
so that the final prediction of RUL can be collaboratively
estimated from multiple historical instances. The novelty
presented in this paper is to perform the output parame-
ters assignment (unsupervised learning) and data filtering
(supervised learning) steps sequentially.

The proposed model combines the work of “multi-regime
normalisation” [51, 58] with the work of a neural network
filtering approach ([32]), so that normalised trajectories
can form an output, y for the network filtering. The main
hypothesis for this theory is that there is the possibility
that, after applying normalisation for a certain number
of trajectories, novel data can be filtered independently.
Following this hypothesis, it is also expected that the
new model will be more effective for the similarity-based
remaining useful life estimations.

3 Experimental data

To start the acquisition of condition monitoring information
for effective prognostic applications, the first major issue
is to find available data sources. A common database is an
important instrument for understanding the problems and
developing the methodologies. If such a database includes
information from several relevant operational domains, it
can form the basis for data acquisition and required actions
[62]. Application of the common database practice also
allows for the comparison of current activities and potential
fields of improvement with regard to other methods in the
literature [63].

One of the most applied datasets in the literature is the
C-MAPSS datasets. Commercial Modular Aero-Propulsion
System Simulation (C-MAPSS) was developed by NASA
to simulate realistic large commercial turbofan engines [48,
64]. The software is coded in Matlab and Simulink (The
MathWorks, Inc.) environments with some editable input
parameters that allow the developers to enter specific values
of their choice regarding operational profile, environmental
conditions, etc [64].

C-MAPSS code was used to carry out the simulation
of PHM08 Challenge DataSet and Turbofan Engine
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Degradation Simulations [55]. Trajectories differ from each
other and were simulated under various combinations
of operational conditions, regimes and fault modes. The
datasets have been made publicly available for training and
validation of results [55].

The features of C-MAPSS engine degradation sim-
ulations include the following characteristics that make
them practical and suitable for developing prognostic algo-
rithms on multistep ahead remaining useful life calcu-
lations [55, 59].

– Each dataset contains multiple multidimensional time
series representing sensor magnitudes over time and
three operational settings that indicate variations of
operational regimes.

– The sensors are contaminated with high levels of noise
that simulate the variability of parameter readings dur-
ing operations. There is also very little system informa-
tion and no sensor labels available to developers.

– Each trajectory has a distinct degree of an initial wear
level and manufacturing variation. This wear level is
considered normal, and it is unknown to the users.

– The fault signature is “hidden” on account of opera-
tional conditions and noise.

– Datasets are divided into training and test trajectories
(individual subsets). The training trajectories are
implemented to build up to train remaining useful
life prediction algorithms, and therefore, the instances
are formed of complete run-to-failure data which can
be used to feed the test trajectories that are only set
up by shorter instances up to a certain time prior to
adopted system failure. The main challenge for users
is to predict RULs of “test” subsets by learning from
“training” data.

– Each dataset is from a different instance of a complex
engine system. The complete dataset can be regarded
as representing a fleet of an aircraft of the same type
(Table 1).

The raw values in the dataset are regarded as a snapshot
of the parameters taken during a single cycle, and each
column corresponds to a different variable (see Table 2).
The first two columns are respectively the trajectory unit

Table 1 Characterstics of PHM08 challenge dataset

Training Test Final test

Number of trajectories 218 218 435

Regimes 6 6 6

Fault modes One (high-pressure compressor

degradation)

Maximum unit length 357 364 298

Minimum unit length 128 15 20

Table 2 PHM08 challenge dataset parameters available to participants
as sensor data [48]

Symbol Description Unit

Unit – – –

Time – – t

O. Setting 1 – Altitude ft

O. Setting 2 – Mach number M

O. Setting 3 – Sea-level Temperature ◦F
Sensor 1 T2 Total temperature at fan inlet ◦R
Sensor 2 T24 Total temperature at LPC outlet ◦R
Sensor 3 T30 Total temperature at HPC outlet ◦R
Sensor 4 T50 Total temperature at LPT outlet ◦R
Sensor 5 P2 Pressure at fan inlet psia

Sensor 6 P15 Total pressure in bypass-duct psia

Sensor 7 P30 Total pressure at HPC outlet psia

Sensor 8 Nf Physical fan speed rpm

Sensor 9 Nc Physical core speed rpm

Sensor 10 epr Engine pressure ratio —

Sensor 11 Ps30 Static pressure at HPC outlet psia

Sensor 12 phi Ratio of fuel flow to Ps30 pps/psi

Sensor 13 NRf Corrected fan speed rpm

Sensor 14 NRc Corrected core speed rpm

Sensor 15 BPR Bypass ratio —

Sensor 16 farB Burner fuel-air ratio —

Sensor 17 htBleed Bleed Enthalpy —

Sensor 18 Nf dmd Demanded fan speed rpm

Sensor 19 PCNfR dmd Demanded corrected fan speed rpm

Sensor 20 W31 HPT coolant bleed lbm/s

Sensor 21 W32 LPT coolant bleed lbm/s

LPC/HPC low/high-pressure compressor,LPT/HPT low/high-pressure
turbine

number and time of operational cycles, while columns 3, 4
and 5 are operational settings. The remaining are different
sensor labels from operations.

The PHM08 challenge dataset was used for the
prognostics challenge competition at the International
Conference on Prognostics and Health Management in 2008
[55]. The challenge is still open for researchers to develop
and compare their algorithm performance against the
winners of the challenge. Users can train their algorithms
using training data, and then evaluate the RUL prediction
performance on test trajectories. There are two different test
subsets in PHM08 dataset, namely test and final test. A web-
based application is available to upload the test results that
calculate an aggregate score feedback. Once algorithms are
trained to satisfaction, users can apply their methods to the
final test dataset and send the vector of predicted RULs to
the Prognostics Center of Excellence for evaluation. A score
can only be submitted once for the final test.



92 Int J Adv Manuf Technol (2019) 101:87–103

4 Prognostic model

The contribution of this study is to provide a multiple-
regime normalisation and health indicator (HI) assignment
as an output to neural network function. PHM08 data exhibit
multiple operational regimes that may cause prognostic
models without a detailed pre-processing step to have a
risk of excessive error rates. Main challenges encountered
during the data pre-processing step include determining
the initial wear level, filtering noise and calculating HI.
The differences between the initial wear levels can occur
due to service-life differences. Although they are not
considered abnormal, they directly affect the analysis of
useful operational life of the engines. Noise filtering is a
non-trivial undertaking while assessing the true state of
system’s health. The identification of operability margins
for the HI is a crucial step to determine safe operation
regions of engines.

Data pre-processing is performed to transform raw data
into an understandable format that can be consumed by an
automated filtering process. Data analysis that is based on
poorly partitioned data could produce misleading outcomes.
Therefore, proper pre-processing of data must be given
consideration before carrying out the remaining useful life
calculations.

Each trajectory in the dataset includes some noise, has a
specific initial wear level and is scrambled by the effects of
operational conditions. The algorithm is, thereby, required
to deal with unfolding these complexities.

Figure 2 shows raw sensor signals of a specific training
trajectory. The sensors represent various system conditions
and performance measurements.

Figure 3 shows the behaviour of a single sensor (sensor
4—column 9). It can be seen in the plot that the data
are highly scattered and it is hard to perform a regression
that represents the system degradation. A meaningful
observation from the raw sensor is, therefore, not possible
without first carrying out a transform that allows better
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Fig. 3 Sensor 4

identification of the degradation pattern within the noisy and
scattered sensors.

In order to provide a HI that is useful for prognosis,
a data processing approach is required that includes
feature extraction, data cleaning and feature selection. The
characteristic features of raw data and system conditions are
extracted, and then outliers are removed.

The steps taken from new data intake to the neural
network fitting and multistep ahead RUL calculations are
shown in Fig. 4. The following sections describe the steps
in more detail.

4.1 Data pre-processing

Based on data observations obtained from a single sensor
such as on Fig. 3, it can be noticed that certain sets of data
points align in similar regions. When one looks only at data
from a specific region (say those between y-values of 1110
to 1150 as seen on Fig. 5), it becomes apparent that readings
align in a domain (ϑri ) as suggested in Eq. 4. Raw sensor

Fig. 4 Flowchart representing data processing and multistep ahead
remaining useful life calculation
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Fig. 5 Sensor 4 (y axis limited)

values in this range could be regarded as coming from a
certain operational regime.

4.1.1 Regime identification and clustering

The first step of data processing is to identify these oper-
ational regimes in all trajectories. The number of regimes
can be found by finding the number of clusters in the oper-
ational settings. For the PHM08 challenge dataset, multiple
regime clustering was carried out via various methods, such
as k-means [65], Gaussian mixture models[66], nearest-
neighbour clustering [67], Fuzzy c-means [68] and neural
network clustering [69].

Further observations reveal that the three operational
settings (altitude, mach number and sea-level temperature
as given in Table 2) are concentrated in six different
clusters, pointing out six operating regimes including many
data points at each sensor parameter as such in Fig. 3.
To identify the regimes in sensor parameters that are
highly scattered due to the operational settings, a clustering
analysis is needed to group data points in such a way that
the operational setting variables in the same group are more
similar (with regard to their maximum andminimum values)
to each other than to those in other groups. Operating
condition 3 has constant values that are correlated with
different regimes (see Table 3). This paper utilises that
correlation to assign the different operating regimes.

The mathematical expression for clustering is given by;

f (xp) = argk=1,...R find(x = k) (10)

where argk=1,...R find(x = k) defines the index of the
occurrence of regimes, k, in the data, x, and R denotes the
number of the unique values in operating condition 3.

An illustrative sample of the sensors after regime
assignment is given in Fig. 6. Comparing to Fig. 5 in which
the plot’s axis is limited by a certain data range, all six
regimes are grouped successfully, and if a correlation is
carried out to cluster and standardise the data into a common
regime, sensors can provide more meaningful information
on system degradation.

4.1.2 Normalisation and re-assembling

A normalisation method can carry out adjustments by
returning raw values into a common scale (for example the
z-score). The z-score is a dimensionless quantity that is the
result of subtracting the population mean of each regime
from each individual raw sensor value and then dividing the
difference by the population standard deviation.

Computing a z-score for each regime requires knowing
the mean and standard deviation of the regime population of
each sensor to which a data point belongs. The equation to
calculate the standard score of a raw value is given as;

N
(
xr

) = xr − μr

σ r
, ∀r (11)

where, x is the raw data values for regime r , σ is the
population standard deviation and μ is the population mean
or that feature. Since the data are made up of n scalar
observations, the population standard deviation is:

σ r =
√∑n

i=1(x
r
i − μr

i )
2

n
(12)

and the population mean is:

μr = 1

n

n∑

i=1

xr
i (13)

Table 3 Operating conditions
and regimes Regime Operating condition 1 Operating condition 2 Operating condition 3

Max Min Max Min Constant

1 42.008 41.998 0.842 0.840 40

2 35.008 34.998 0.842 0.840 60

3 25.008 24.998 0.622 0.620 80

4 10.008 9.998 0.252 0.250 20

5 20.008 19.998 0.702 0.700 0

6 0.003 0 0.002 0 100
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Fig. 6 Clustered regimes for sensor 4

A key point in multiple regime normalisation is that
calculating z requires each regime’s population mean and
deviation over all entire time series. This will baseline the
entire dataset at once.

This process is applied to all regimes and to all sensors
separately, the standardised sensors are reassembled to form
the normalised dataset. Figure 7 shows all standardised
sensors in a training trajectory.

4.1.3 Sensor selection

Next, it is required to evaluate howwell the sensors correlate
with the degradation pattern. Signals which do not ade-
quately correlate with a monotonic exponential trend will
be removed [58]. To that end, the three prognostic parame-
ter choosing measures of monotonicity, prognosability and
trendability are used to identify the meaningful sensors [70].

Monotonicity is a straightforward measure to characterise
the underlying positive or negative trend of the sensors. It is
defined by:

Monotonicity = mean

(∣∣∣∣∣
#pos d

dx

n − 1
− #neg d

dx

n − 1

∣∣∣∣∣

)

(14)
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Fig. 7 Normalised sensors

where n is the number of training trajectories in a particular
history. The monotonicity of a sensor population is calcu-
lated by the average difference of the fraction of positive and
negative derivatives for each path. A monotonicity measure
outcome close to 1 indicates that the sensor is monotonic
and useful for RUL estimation, whereas an outcome close
to 0 indicates that the sensor is a non-monotonic signal
and not suitable for further consideration.

Prognosability is calculated as the deviation of the failure
points for each path divided by the average variation
of the sensor during its entire lifetime. This measure is
exponentially weighted to provide the desired 0 to 1 scale:

Prognosability = exp

(
− σfailure

μfailure − μhealthy

)
(15)

The prognosability measures close to 1 indicate that the
failure thresholds are similar and the sensors are available
for prognosis, whereas the measures close to 0 show that the
failure points are different than each other and the sensors
are incapable for the prognostic calculations.

Trendability is given by the minimum absolute correlation
computed among all the training trajectories. The mathe-
matical expression is represented by:

Trendability = min
(∣∣corrcoeffij

∣∣) (16)

Results of trendability, monotonicity and prognosability
parameter features are used to compare whether the
candidate sensors are useful for individual-based prognosis.
By quantifying these results for given results, the parameters
can be used along with any traditional optimisation methods
[70]. By defining a fitness function as a sum of these three-
prognostic parameter choosing metrics, the sensors can be
compared to determine the most suitable ones. It has been
observed that the sensors can provide useful degradation
information when each measurement is close to “1”. With
respect to the results of prognostic parameter choosing
measures in Table 4, the ten sensors 2, 3, 4, 7, 11, 12, 15,
17, 20 and 21 are accepted as useful for the calculation of
HI and applied in the following sections.

Figure 8 shows these normalised useful sensors to be
used in further prognosis applications.

4.1.4 Health indicator assessment

To produce a single adjusted cycle (s), multiple readings
from useful sensors ( x ) are aggregated by taking the mean
of all sensors at each time step (i).

si = 1

n

n∑

j=1

xji (17)

where n is the number of multiple readings from useful
sensors. These aggregated time series contain noise, and



Int J Adv Manuf Technol (2019) 101:87–103 95

Table 4 Results of prognostic parameter suitability metrics

Sensor Monotonicity Prognosability Trendability Sum

1 0.259 0.478 0 0.737

2 0.811 0.822 0.842 2.475

3 0.798 0.814 0.824 2.436

4 0.863 0.867 0.914 2.644

5 0.245 0.442 0 0.687

6 0.344 0.531 0 0.875

7 0.782 0.742 0.703 2.227

8 0.498 0.422 0 0.92

9 0.552 0.315 0 0.867

10 0.258 0.182 0 0.44

11 0.904 0.893 0.926 2.723

12 0.791 0.785 0.713 2.289

13 0.478 0.424 0 0.902

14 0.581 0.284 0 0.865

15 0.857 0.814 0.872 2.543

16 0.315 0.479 0 0.794

17 0.828 0.83 0.841 2.499

18 0 0 0 0

19 0.286 0.442 0 0.728

20 0.739 0.765 0.702 2.206

21 0.744 0.766 0.747 2.257

there is a risk that neural network might learn the noise
during the training stage. Therefore, a regression model is
used to describe the relationship between the adjusted cycle
index (s, the aggregated variable of Eq. 17) and the HI. As
shown in Fig. 9, the adjusted cycle index represented by blue
line includes noise and a fitted model represented by red line
is used as the output term for the network training. Since
the trained network function will be used with different
raw training inputs and accordingly will estimate their HIs,
the noise in the output of the network training should be
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Fig. 8 Useful normalised sensors

Fig. 9 Adjusted cycle and HI

carefully considered. A certain output for network training
might produce biased results for alternative trajectories.
However, if a fitted HI from the noisy-adjusted cycle is used
in training, it will be possible to standardise the network
estimations for each novel estimation.

To preserve the original degradation pattern, the follow-
ing two-term power series fitting model is used to identify a
standard HI.

y = ăsb̆ + c̆ + ε (18)

where an approximation to a power-law distribution sb̆

includes two fitting terms ă and c̆. The main reason for
selection of this fitting approach is that the fitted HIs, y,
for training trajectories have only increasing values and
early stages are behaving in such a way that the fitting has
minimum wear increase levels. Observing from the adjusted
cycles that the failure occurs at a certain stage of operations
and the system before this point is relatively stable, the
two-term power series model can describe the hypothetical
degradation model effectively. It is noticed that while the
failure starts and ends at particular time points at each
trajectory differs, the trajectories fail at similar wear levels.
Since this research estimates the RULs by a similarity-
based prediction method, the length of training trajectory
time series after the most similar location is accepted as the
RUL instead of identifying a threshold point and the HI’s
crossover.

4.2 Neural network training

HI identification can be applied to the entire dataset,
and both training and test trajectories can be normalised
and filtered according to each other for remaining useful
life predictions. However, the regime identification and
clustering steps might be problematic when the number
of regimes increases or the identification sensors behave
differently. Additionally, due to the nature of z-score
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normalisation, all testing and training trajectories should
be normalised at once in order to adjust initial wear and
threshold points. To avoid these issues, a neural network
fitting model is designed as an alternative method to map
between raw training inputs and an HI output.

The network is a feed-forward model which takes a set
of input vectors (raw data), and then arranges another set of
output vectors (HI) as a target data. Neurons, which are the
building blocks of the neural network, evaluate these input
state variables. The nodes in the hidden layer are performed
by the following function.

z = fx

(

b +
n∑

i=1

wixi

)

(19)

where the state variables (xi) are multiplied by fixed real-
valued weights (wi) and bias b is added. The neuron’s
activation z is obtained as a result of the nodes and the
nonlinear activation function of neurons fx [71, 72].

For the network structure shown in Fig. 10, the general
network equation can be denoted by

y(t) = f
[
x(t)

]

= fo

{

b +
nh∑

h=1

whfh

(

bh +
n∑

i=1

wihx(t−i)

)}

(20)

The network used for fitting function is a two-layer feed-
forward network, with a sigmoid transfer function (fh) in
the hidden layer and a linear transfer function in the output
layer (fo). The default number of hidden neurons is not
set to a certain number. Instead, an outer loop is designed
with an increasing number of hidden neurons. The optimum
hidden layer size is accepted according to the mean squared
difference between the initial output series and what is
estimated.

The first step to train the network structure is the con-
figuration of input and output series. Inputs are configured

Fig. 10 Neural network learning stage

as “10× time” cell of useful raw sensor data while the target
series are configured as a 1 × time cell of the HI calculated
in the previous section. In order to increase the accuracy
of configuration between trained outputs and targets, multi-
ple networks are designed in a double-loop design over the
increasing number of hidden nodes of an outer loop and ran-
dom weight initialisations of an inner loop [73]. Both loops
terminate when minimum desired error occurs and mean
squared error is used to reduce error numbers in training. At
the end of both loops, the least erroneous network is used to
choose the best design mode for validation.

Neural networks with multiple nonlinear hidden layers
are effective models that can contain a large number of
parameters, but both overfitting and computational overhead
might lead to poor network training, especially when data
are presented to the predictions of numerous different
large neural networks at testing stages [74]. These network
training could memorise the samples for the specific
training case, but there is always a risk that they cannot be
trained properly to generalise the upcoming testing cases.
That is why artificial neural networks (similar to other
artificial intelligent machine learning models) are prone to
overfitting the training data [75].

In order to avoid such training problems, this works
applies Bayesian regularisation method into the network
training [76, 77]. Other well-known alternatives to the
Bayesian method are the “Levenberg-Marquardt” and
“scaled conjugate gradient” algorithms [78]. When the
Levenberg-Marquardt model is used to avoid overfitting,
the network training needs more memory but less time
and it automatically stops when generalisation concludes
improving, as specified by an increase in the mean squared
errors. In the case of the “scaled conjugate gradient”, the
regularisation requires less memory and it is available when
the training data is short. Bayesian regularisation requires
more time in comparison to other methods due to the
adaptive weight minimisation but can result in satisfactory
generalisations from difficult or noisy datasets [79].

The training function in the Bayesian model is based
on Gauss-Newton approximation to the Hessian matrix. It
updates the weight and bias values according to Levenberg-
Marquardt optimisation [76]. This function diminishes a
compound of squared errors and weights in pursuance of
reducing the computational overhead and overfitting in
training, and then defines the correct compound so as to
produce a convenient network generalisation [77]. Although
this definition of Bayesian regularised neural network can
take longer to train, it obtains a better solution compared to
other methods.

To validate that the trained neural network accuracy is
sufficient, the same training raw data are inserted into the
obtained network function. The validation resulted in a
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similar pattern, but it is contaminated with noise as expected
(Fig. 11). In this case, the response is matching with the
original HI used in network training, and the network can
now be put to use on new inputs. The analysis of the network
response is performed with a test trajectory (Fig. 12). While
the length and initial wear level are different, the model
could accurately identify HI curve of the inserted data.

4.2.1 Network library

Although the network function trained with certain data
provides desired results, there is always a risk that if the
network is trained with other input and output values, the
estimations might result in undesired estimations due to
different weight and bias values. To that end, alternative
neural networks, fNN , with inputs and outputs from
different trajectories are trained on similar problems and
each trained function is stored in a network library, L.

L{i} = fNN{i} , i = 1, 2, · · · , nl (21)

L{i} = yNN
i , i = 1, 2, · · · , nl (22)

where nl is the number of trained functions in the library.
When all novel trajectories have been inserted into that

library, there will be multiple estimations for a single-input
trajectory. Figure 13 demonstrates such a set of network
library outputs that result in similar exponential growth
patterns. The network library is formed of multiple network
functions that have been trained by different data. When the
same input data, x, is applied to these functions, they result
in similar outputs, yNN

1:nl , no matter which trajectory is used
in their training.

Each trajectory in Fig. 13 is an estimated output of the
same raw training input resulting from a trained network
function in the library. The consistency between different
estimations shows that ANN functions trained with different

Fig. 11 Neural network validation stage

Fig. 12 Neural network estimation stage

trajectories could adequately assign similar HI outputs
which start at similar initial wear levels and end at similar
threshold points.

Considering that the library results in multiple estima-
tions for a single input, a final HI estimation similar to
Section 4.1.4 is applied for dimensionality reduction. For
further stages, referring to Eq. 17, the moving average of all
these alternative network results is applied to filter a final
HI.

sr = 1

p

r+p∑

q=r

1

nl

nl∑

j=1

yNN
jq (23)

where the random sequence sr is the mean of p-moving
average of nl number of HIs. As the window size of p-
moving average is specified as a numeric duration scalar for
next steps, the average contains the parameters in the current
location plus upcoming neighbours. When the window is

Fig. 13 Neural network library results
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expanded prior to the sr , the centred average equation can
be expressed as:

sr = 1

2p + 1

r+p∑

q=r−p

1

nl

nl∑

j=1

yNN
jq (24)

Directional window is a temporary duration matrix, and
its size is formed of two distinct elements, the positive
integer scalars of moving average windows size “p” and
the number of library estimations “n”. This moving average
helps to smooth out HI action by filtering out the “noise”
from the network library results. However, the characteristic
starting and failure points are of critical importance to the
defining HI feature and they are required to be included
in the filtered outputs. Regarding the prior and posterior
values as well as the sequence itself, the exact windows size
calculation is over (2p + 1) × n elements.

When initial starting and the final ending points are
concerned, the modified moving average method for a full
matrix of library estimations is calculated by;

si=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p+i

∑p+i

q=1
1
n

∑n
j=1 yNN

jq if i−p<0

1
p+(l−i+1)

∑p+(l−i+1)
q=i

1
n

∑n
j=1 yNN

jq if i+p>l

1
2p+1

∑r+p
q=r−p

1
n

∑n
j=1 yNN

jq if i−p>=0
and if i+p<= l

(25)

where l is the length of the estimations. Short dimensions to
operate along the matrix are specified as a positive integer
scalar for starting points and an integer scalar smaller than
the length of matrix for the ending points. The rest have
the full dimensions that moving average operates along the
direction of the defined window slide. Thus, the moving
average method could be applied to starting and ending
points of the time series.

4.3 Similarity-based distance evaluation

Once different neural networks are trained to form a
generalisation of the input-output relationship, the network
library is used to estimate all HIs of training and test
trajectories in the same dataset. The goal of supervised
similarity learning is to learn from samples a similarity
model that measures how similar or related two trajectories
are. This method is closely related to distance metric
learning in which the task of learning is a distance function
over training and test trajectories. In practice, the similarity
learning ignore the condition of identity of indiscernibles
and learn the best fitting objects.

RUL estimation of test trajectories is used as a valid case
to compare the test case against the full operational periods.

The difference between the two trajectories is computed as
a similarity measure.

This similarity can be expressed as a distance between
two vectors and is calculated as:

d(tr,te) =
√√√√

n∑

i=1

(tei − tri)
2 . (26)

where te is the test trajectory, tr is the corresponding part
and n is the length of test trajectory.

In Fig. 14, pairwise distance between two sets of obser-
vations is initially calculated at time step “1”. However, the
best-matching training units can be in the later part of the
curve. The testing curve is, therefore, moved step by step
to the end of the base curve. The pairwise distance is cal-
culated and stored for each step by the following equation;

d(te,tr)(j)
=

ntr∑

j=nte

√√√√
nte∑

i=1

(
tei − tri+j

)2 . (27)

where ntr is the length of the base curve (training trajectory)
and nte is the length of test trajectory.

After the testing curve is moved to the end of a baseline
case, the location of the best-matching units is calculated by
identifying the minimum pairwise distance value.

Mn(te,tr) = min
(
d(te,tr)(1) , d(te,tr)(2) , · · · , d(te,tr)ntr−nte

)

(28)

The location of the best-matching part at the training
baseline, Lcte,tr , is calculated by:

Lcte,tr = arg find
(
d(te,tr)(j)

= Mn(te,tr)

); (29)

j = 1, 2, · · · (ntr − nte) (30)

The prior parts before this location are removed and the
followings are used for further estimation as seen on Fig. 15.

Fig. 14 Pairwise distance calculation
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Fig. 15 Top similarities and RUL calculation

4.3.1 RUL estimation

The identification of the best-matching location and
minimum Euclidean distance is used for the calculation of
RUL for each baseline (training trajectory).

RULte,tr = ntr − (nte + Lcte,tr ) (31)

The length of time series after the calculated location
of the best-matching part, Lte,tr , equals to the remaining
useful life of the test trajectory. As a single calculation
with a single baseline can be expanded to all training
trajectories, the calculations with more training data
samples could increase prediction accuracy in multistep
ahead estimations. The final RUL is estimated by the mean
value of corresponding RUL calculations of the minimum
ten distance values of all baselines. A demonstration of
these best-matching trajectory parts is shown in Fig. 15.

5 Results

There have been several thousand downloads of C-MAPSS
dataset files since their first release in 2008, and as of 2014,
more than 70 papers referring to these datasets were found
in the published literature [59].

The presented algorithm was applied to all trajectories
in PHM08 data challenge and RUL was calculated for each
test subset. The results were evaluated by the prognostic
metrics shown in Table 5. Several metrics are used here to
allow for comparison of findings on several different levels.

Table 5 Prognostic metrics

Metric Formula

Mean absolute error [80] MAE = 1

n

n∑

i=1

|ei | = 1

n

n∑

i=1

∣∣yi − ŷi

∣∣ e=error

y=true RUL

ŷ=predicted RUL

n=number of predictions

Mean absolute percentage error [81, 82] MAPE = 100

n

n∑

i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣

Mean square error [80] MSE = 1

n

n∑

i=1

ei
2 = 1

n

n∑

i=1

(
yi − ŷi

)2

False positive rate [83] FP (i) =
{
1 error > tFP

0 otherwise
tFP , tFN=acceptable
early/late prediction

limits

False negative rate [83] FN(i) =
{
1 −error > tFN

0 otherwise

Anomaly correlation coefficient [82, 83] ACC =
∑

(π(i|j) − z#(i)) (z∗(i) − z#(i))√∑
(π(i|j) − z#(i))

2 ∑
(z∗(i) − z#(i))2

z∗(i)=prediction variable
z#(i)=corresponding

history data value

Sample standard deviation [80, 82] s =
√√√√ 1

n − 1

n∑

i=1

(yi − μe)
2 μe=sample mean of error

Mean absolute deviation from sample median [82] MADi = 1

n

n∑

i=1

|ei − M| M = median(e) median

is n+1
2 th order statistic

Median absolute deviation from sample median [82] MdAD = median (|ei − M|)
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Table 6 Performance of the developed model

Rank Scoring function MSE FPR (%) FNR (%) MAPE (%) MAE Corr. score Std. dev. MAD MdAD

1 5530.12 515.35 48.51 50.80 20.68 15.93 0.92 1.07 16.63 10.20

These metrics aim principally at performance validations
for prognostics applications. Since they are mostly focused
on applications where run-to-failure data are available,
their usage has a particular importance for the model
development stage where metric feedback could be used to
integrate the prognostic procedures.

Table 7 shows the comprehensive set of metrics as
computed from PHM08 Challenge leader board of final
test set [59]. Ranking is established based on PHM scoring
function, which is a weighted sum of RUL errors [82, 83].
The following equations describe the scoring function.

Sc =

⎧
⎪⎪⎨

⎪⎪⎩

∑npr

i=1 exp
−

(
e
a1

)

for e < 0

∑npr

i=1 exp

(
e
a2

)

for e ≥ 0

(32)

where “Sc” is the computed score, npr is the number of
predicted units and e is the error term. The scoring function
is an asymmetric metric that penalises late predictions
more than the early predictions, a1 = 13 and a2 = 10,
due to the fact that late predictions imply more costly
failure consequences. There is no upper penalty limit for
predictions, and thereby, a single high error rate among the
predictions in the dataset can dominate the final score. It
is particularly risky for test units with a short history in
which both early and late predictions are highly possible.
In order to avoid such a risk, the maximum threshold
value for RUL predictions is capped at 135. This value
was gleaned from the training data (i.e. none exceeds 135)

and assumes that future unseen trajectories will adhere
to that same characteristic. Also, it is observed that the
trajectories shorter than 50-time cycles are prone to result
in excessive early or late predictions. Considering the
asymmetric characteristic of the scoring function, the range
of the short trajectory RUL predictions is directly adjusted
between 100 and 130.

The algorithm explained in this paper is applied to the
validation dataset which contains 435 test samples and the
results were sent to PCoE for performance validation. The
model achieved a total score of 5530.12, which is the overall
leading score at this time (see Tables 6 and 7).

The distinguishing difference between false positive
(FP) and false negative (FN) rates deserves a special
consideration for final test validation. Their percentage can
be compiled to measure the consistency and reliability of
developed models. As seen in Table 7, the positive rates in
the leader board are predominantly higher than the negative
rates. This might be a direct result of a biased merging of
multiple RUL estimates through a weighted calculation due
to the high penalty scores for late predictions. However, the
early predictions might also dominate the final score in a
real case scenario and might result in catastrophic failures.
This work did not apply any weighting method between
early and late predictions. Accordingly, the calculated rates
are very close to each other, and the developed model could
be regarded consistent and reliable in terms of FP and FN
rates when comparing the results in Table 7.

Table 7 Leader board of PHM08 final dataset (published works) [59]

Rank Scoring function MSE FPR (%) FNR (%) MAPE (%) MAE Corr. score Std. dev. MAD MdAD

1 5636.06 546.60 64.83 31.72 19.99 16.23 0.93 1.01 16.33 11.00

2 6691.86 560.12 63.68 36.32 17.92 15.38 0.94 1.03 16.29 8.08

3 8637.57 672.17 61.38 23.45 20.72 17.69 0.92 1.09 17.79 11.00

4 9530.35 741.20 58.39 39.54 34.93 20.19 0.90 1.22 20.17 15.00

5 10571.58 764.82 58.85 41.15 32.60 20.05 0.91 1.22 20.41 14.23

6 11572∗ – – – – – – – – –

7 14275.60 716.65 59.77 37.01 21.61 18.16 0.90 1.17 18.57 11.00

8 19148.88 822.06 56.09 41.84 30.25 20.23 0.88 1.29 20.89 13.00

9 20471.33 1000.06 51.95 48.05 33.63 22.44 0.88 1.42 24.05 14.78

10 22755.85 1078.19 62.53 35.40 39.90 24.51 0.86 1.45 24.08 20.00

11 25921.26 854.57 34.25 64.83 51.38 22.66 0.86 1.36 21.49 16.00

*After 2008
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6 Conclusion and future work

The algorithm developed in this work has been effective
for RUL calculations of C-MAPPS datasets. A data-driven
filtering approach can successfully assign HI targets for
similarity-based remaining useful life calculation. Since the
multiple regime normalisation is applied by the trained
neural network, there is no need for the standardisation of
the entire dataset at once. Thereby, both training and test
trajectories could be processed individually by considering
their initial wear levels.

During the course of model development, it was observed
that a mathematically defined synthetic output vector also
performed satisfactorily for neural network training. Due
to the constraints of the scoring metrics (one-time limited
submission and variance in initial wear levels), this work
used a step by step HI (output) data processing.

A smart selection system produced a library of synthetic
output models and the best-matching degradation model
was selected for the raw test data. For future works, we
envision to explore for the developed network model with
automated output selection and normalisation for various
failure mode situations.
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