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Abstract
This paper introduces explicit minimum length-scale constraint functions suitable for parameterized implicit function based
topology optimization methods. Length-scale control in topology optimization has many potential benefits, such as removing
numerical artifacts, mesh independent solutions, avoiding thin, or single node hinges in compliant mechanism design and
meeting manufacturing constraints. Several methods have been developed to control length-scale when using density-based
or signed-distance-based level-set methods. In this paper a method is introduced to control length-scale for parameterized
implicit function based topology optimization. Explicit constraint functions to control the minimum length in the structure
and void regions are proposed and implementation issues explored in detail. Several examples are presented to show the
efficacy of the proposed method. The examples demonstrate that the method can simultaneously control minimum structure
and void length-scale, design hinge free compliant mechanisms and control minimum length-scale for three dimensional
structures.

Keywords Length-scale constraints · Topology optimization · Implicit function · Parameterization

1 Introduction

Length-scale control in topology optimization has been a
topic of interest since the early days of its development,
almost 30 years ago (Bendsøe and Kikuchi 1988). Initially,
length-scale control was part of methods devised to solve
numerical issues, such as mesh dependent solutions and
checker-board patterns (Sigmund and Petersson 1998),
and to avoid thin or single node hinges in compliant
mechanism design problems (Luo et al. 2008b; Sigmund
2009). Researchers have also applied length-scale control
methods to obtain manufacturable designs (Liu et al.
2015; Allaire et al. 2016; Vatanabe et al. 2016; Lazarov
et al. 2016). Another potential benefit of minimum
length-scale control is the implicit improvement in stress
and buckling performance. Minimum void length-scale
promotes rounded internal corners, hence implicitly reduces
stress concentrations. Whereas, increasing the minimum
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structural length-scale results in thicker members that have
a higher buckling resistance.

There are now several different approaches to topol-
ogy optimization (Sigmund and Maute 2013; Deaton and
Grandhi 2014), including density-based methods (Bendsøe
and Sigmund 2004), Evolutionary Structural Optimization
(ESO) (Munk et al. 2015) and level-set methods (van
Dijk et al. 2013). Density-based and ESO methods utilize
element-wise design variables to indicate where material
exists. These methods have been successfully applied to
solve many problems. However, one of the main drawbacks
of element-wise design variables is that a smooth boundary
is not available throughout the optimization. This can be impor-
tant for certain types of problem, for example problems involv-
ing fluid-structure interaction (Jenkins and Maute 2016).

Thus, alternative methods have been proposed where the
exact position of the boundary is known throughout the
optimization. The most popular of these is the level-set
method, where the boundary is describe by the zero level-set
of an implicit signed-distance function. Although the zero-
level set is usually only approximately extracted from the
discretization of the implicit function. The traditional level-
set optimization method uses shape derivatives to define a
velocity function that is used to update the boundary by
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solving a Hamilton-Jacobi type PDE (Wang et al. 2003;
Allaire et al. 2004). The traditional approach can be slow
to converge (Luo et al. 2008a; van Dijk et al. 2013) and
requires additional techniques to handle constraints beyond
a simple volume constraint (Dunning and Kim 2015).

To address the drawbacks of the traditional level-
set approach, several methods have been proposed to
parameterize the implicit function such that standard
optimization methods (e.g. nonlinear programming) can be
used to efficiently solve problems with arbitrary nonlinear
constraints. In this paper, these methods are referred
to as parameterized implicit function based topology
optimization. Several different parameterization schemes
have been proposed. A popular approach is to use radial
basis functions (Norato et al. 2004; De Ruiter and Van
Keulen 2004; Luo et al. 2007; Pingen et al. 2010). Other
parameterization methods are the spectral level-set method
(Gomes and Suleman 2006), Kriging-based (Hamza et al.
2014) and an approach based on the intersection of a cutting
plane and an implicit signed-distance function, recently
proposed by the author (Dunning 2017).

Some of the main techniques created for length-
scale control in density-based methods are: introducing a
perimeter constraint, local density gradient constraints and
filtering (Sigmund and Petersson 1998; Liu and Ma 2016).
The perimeter constraint cannot explicitly control length-
scale and the local density gradient constraint method adds a
large number of constraints to the problem. It was also noted
that the original filtering methods do not explicitly control
length-scale and thin hinges in compliant mechanisms
can still occur. Thus, more advanced filtering methods
have have been developed to enable explicit length-scale
control. Sigmund (2009) introduced the so-called robust
topology optimization method based on dilation, erode
and combinations filters to explicitly control length-scale.
However, this is only guaranteed if the dilated and eroded
designs have the same topology as the original, which
is not always the case (Wang et al. 2011). Furthermore,
it is computationally expensive, as it requires multiple
finite element analyzes each iteration. Density projection
schemes, which are similar to filtering methods, can
also control length-scale in the solid or void regions by
restricting the minimum radius of the projection (Guest
et al. 2004). A multiphase project method can be used
to control minimum length-scale in both solid and void
regions (Guest 2009). To avoid the computational cost
of the robust formulation, Zhou et al. (2015) introduced
explicit constraint formulations for minimum length-scale
in both solid and void regions for a three-field density-based
method. An alternative to filtering is the “MOLE” method
(Poulsen 2003), where an explicit length-scale constraint
is formulated by checking the monotonicity of the density
gradient along certain directions for each element.

For the level-set methods that utilize a signed-distance
function, techniques have been created to control length-
scale by exploiting the geometric information contained
within the signed-distance function. One approach is to
set constraints on the maximum and minimum value of
the signed-distance function within a domain around the
medial axis (essentially the set points that have at least
two closest boundary points) (Guo et al. 2014b). This
method has also been extended and applied to density-based
methods, which imposes constraints on the maximum and
minimum density values within the medial axis domain
(Zhang et al. 2014). The method proposed by Xia and
Shi (2015), also used the medial axis (referred to as
the ‘skeleton’) to control length-scale by constraining the
distance from the boundary to the skeleton. Wang et al.
(2016) formulated length-scale constraints by comparing
the geometry and level-set offset areas, again supported
by the signed-distance function. The structural skeleton
idea is also used by Zhang et al. (2017c) to control
minimum hole size. Allaire et al. (2016) proposed thickness
constraints by constructing penalty function integrals of
the signed distance function. A thickness-control functional
based on the signed-distance function was introduced by
Liu et al. (2015) to promote uniform member thickness,
which is important for parts made by injection molding.
An alternative to utilizing the signed-distance function is to
add a fictitious quadratic energy functional to the objective
function in order to control features in the level-set method
(Luo et al. 2008b; Chen et al. 2008). However, this approach
cannot satisfy the minimum structural size to an exact
value.

Several methods have recently been developed that
utilize components, or voids, to parameterize the design
(Guo et al. 2014a; Zhang et al. 2016a, 2017a, b, d).
These methods allow the exact position of the boundary
to be known throughout the optimization. They also allow
easier control of length-scale by adding simple geometric
constraints to feature dimensions (Zhang et al. 2016b;
Hoang and Jang 2017). These methods are not considered
as parameterized implicit function methods, which is the
focus of this paper, because the parameterization is of
discrete components or voids and therefore they do not
directly parameterize an implicit function. Also, Chen
et al. (2007) proposed a method that combines components
and void features with a spline-based parameterized
implicit function to perform parametric shape and topology
optimization. This method has some control over length-
scale, as the maximum and minimum size of primitive
features can be explicitly defined through geometric
constraints. It is interesting to note that Liu et al. (2016)
define two different types of void: interior voids and
boundary voids. This distinction is useful in the context
of minimum void scale for machining constraints (i.e.
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Fig. 1 Filtering a discrete
feature with R = 4: a L < 2R,
b L = 2R, c L > 2R

(a) (b) (c)
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minimum tool size). In this paper, minimum length-scale
constraints are applied to both interior and boundary voids.

In summary, there have been many schemes developed
to explicitly control length-scale in density-based methods,
level-set methods that utilize a signed distance function
and methods based on moving components, or voids.
However, the author is unaware of any general scheme to
explicitly control minimum-length scale for parameterized
implicit function based topology optimization methods.
Therefore, this paper introduces a new method that can
control the minimum length-scale, in both solid and
void regions, for parameterized implicit function based
topology optimization. The formulation of the length-scale
constraints is introduced in Section 2. Numerical issues
and implementation details are presented in Section 3.
The parameterization scheme used in this paper is briefly
reviewed in Section 4, followed by examples in Section 5
and finally conclusions.

2 Length-scale constraint formulation

2.1 Fundamental idea: filtering a discrete feature

The approach to topology optimization studied in this paper
utilizes an implicit function φ(x) to define the structure and
void regions:
⎧
⎨

⎩

φ(x) > 0 ⇔ x ∈ �,

φ(x) = 0 ⇔ x ∈ �,

φ(x) < 0 ⇔ x /∈ �,

(1)

where φ(x) is the implicit function, x is a point in the
design domain (�D), � and � are the structural domain
and boundary, respectively. The design domain and implicit
function are usually discretized on a fixed regular grid with
edge length, h. The implicit function is then parameterized
such that the values of φ(x) at set locations (usually nodes
of the fixed grid) are explicitly linked to a set of design
variables b: φ(b).

The first step in building the length-scale constraint
functions is to normalize the implicit function such that it
takes values between 0 and 1. The binary case is then:

φ̂(x) =
{
1 x ∈ �,

0 x /∈ �.
(2)

A linear filter with radius, R, equal to half the desired
minimum length-scale is then applied to the normalized
implicit function:

φ̃(x) =
∑

i∈H w(xi)φ̂i
∑

i∈H w(xi)
, w(xi) = R − |x − xi |, (3)

whereH is the neighborhood of points lying within the filter
radius of point x.

The filtered function, (3), can be used to identify discrete
features with a size less than the minimum desired length-
scale. To illustrate this, a simple one-dimensional example
is shown in Fig. 1, where the shaded area shows a discrete
feature with width L and the solid line is the filtered
function. It can be seen that when L < 2R, then max(φ̃) <

1, otherwise if L ≥ 2R, then max(φ̃) = 1. Therefore,
for structural features, the length-scale is violated if the
maximum of the filtered function is less than 1. For length-
scale in the void region a similar observation can be made:
if L < 2R, then min(φ̃) > 0, otherwise if L ≥ 2R, then
min(φ̃) = 0. So the minimum void length-scale is violated
if the minimum of the filtered function is greater than zero.

2.2 Indicator function

To build the length-scale constraint functions we need to
identify locations (nodes) where the filter function should
be measured. According to the observations in Section 2.1
this should be where the filter function is a maximum or
minimum, i.e. ∇φ̃ = 0. To achieve this we use the indicator
function idea introduced by Zhou et al. (2015):

Is = φ̂i exp
(
−c||∇φ̃i ||2

)
(4)

Iv =
(
1 − φ̂i

)
exp

(
−c||∇φ̃i ||2

)
(5)

where Is and Iv are the structure and void indicator
functions, respectively, and c is an exponential decay
constant that is set with respect to the normalized filter
radius: r = R/h, where h is the fixed grid edge length.
The value suggested by Zhou et al. (2015) is c = r4,
which allows the inflection region of the filter function
(||∇φ̃i || ≈ 0) to be captured accurately, while accounting
for the effect of discretization. This value was also found to
be suitable for the application in this paper. It is important to
note that because the decay constant, c, is calculated based
on a normalized filter radius, the finite difference scheme
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Fig. 2 Constraint values for a
feature with length: a L < 2R,
b L = 2R, c L > 2R

used to compute the spatial gradient of the filter function
assumes a normalized grid spacing of h = 1. Thus, in 2D,
the spatial gradient magnitude is computed as:

||∇φ̃i ||2 = 0.25
(
(φ̃i+x − φ̃i−x)

2 + (φ̃i+y − φ̃i−y)
2
)

(6)

where i + x, i − x, i + y and i − y are the grid points to the
right, left, above and below point i, respectively.

2.3 Constraint functions

The constraint functions for minimum length-scale in the
structure and void regions are formulated by multiplying
the appropriate indicator function, (4) or (5), respectively,
by a measure on the difference between the filter function
and the ideal value if the length-scale is satisfied (i.e. 1
for structure and 0 for void). This value is calculated and
summed over all locations in the domain where the implicit
function is specified (i.e. at the grid nodes):

gs =
N∑

i=1

(
1 − φ̃i

)2
φ̂i exp

(
−c||∇φ̃i ||2

)
≤ εs (7)

gv =
N∑

i=1

φ̃2
i

(
1 − φ̂i

)
exp

(
−c||∇φ̃i ||2

)
≤ εv (8)

where N is the number of nodes in the domain and εs and
εv are the constraint tolerances. See Section 3.1 for further
discussion on setting tolerance values.

These constraint functions are similar to those proposed
by Zhou et al. (2015) for density-based topology optimiza-
tion. However, they have been adapted here for use with
parameterized implicit function based topology optimiza-
tion methods. The main difference is that the Zhou et al
method was developed for a three-field density-based topol-
ogy optimization method, which uses a filtered density field
that is then passed through a threshold function. The fil-
tered and threshold fields are directly used in the constraint
formulation. Here, the filter function is only required to
formulate the length-scale constraints and is not otherwise
required. This feature is useful, as it allows the proposed
constraints to be added to any parameterized implicit func-
tion based method, without having to change the original
formulation.

3 Numerical issues and implementation

First, the normalized implicit function, (2), is approximated
by a smooth function to enable differentiation:

φ̂ =

⎧
⎪⎨

⎪⎩

0, φ < −�,

3
4 (

φ
�

− φ3

3�3 ) + 1
2 , −� ≤ φ < �,

1, � ≤ φ,

(9)

where � is the smoothing length of the approximation.
A value of � = 2h was chosen based on numerical
experience.

3.1 Constraint tolerance

The constraint tolerance values, ε in (7, 8), cannot be set
to zero because the indicator functions, (4, 5), are nonzero
over a domain where the filter function would indicate that
the length-scale is not satisfied. To illustrate this, the point-
wise values of the constraint function are plotted in Fig. 2
for the analytical 1D example from Fig. 1. This shows
that when the length-scale is satisfied (i.e. L ≥ 2R) then
the maximum value of the point-wise constraint function
does not decrease with increasing values of L. For the 1D
analytical example this maximum value can be calculated
as: δg = r−4 · exp(−2) (see Appendix A). Therefore, if a
nodal value of the constraint function is greater than this
maximum value (i.e. gsi > δg), then the length-scale in the
local region is expected to be violated and gs,i should be
reduced. On the other hand, if it is equal to or below the
maximum value (gsi ≤ δg), then this value of gs,i does
not need to be reduced. This observation provides a way

1.0

3.2

2.0

Fig. 3 Cantilever example
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Fig. 4 Cantilever solutions with
full sensitivity: a no length-scale
constraint, and minimum
structure length of, b 0.15,
c 0.20 and d 0.30

(b)

(c) (d)

(a)

of automatically setting an appropriate constraint tolerance,
without the need of user selected parameters:

εs =
{

gs − ∑N
i=1 max(gs,i − δg, 0), Lmin < 2R,

1.5gs, Lmin ≥ 2R,
(10)

where:

gs,i =
(
1 − φ̃i

)2
φ̂i exp

(
−c||∇φ̃i ||2

)
(11)

and Lmin is the current minimum length-scale.
There are two additional issues to discuss. The first

issue is the second condition in (10), where the constraint
tolerance is relaxed if the length-scale constraint is satisfied.
This was found necessary because it was observed that
the length-scale constraint often prevented useful topology

changes (by removing members or closing holes) because
this would increase and violate the constraint function.
Thus, a relaxed constraint tolerance is used if the length-
scale constraint is satisfied. This scheme enables the
possibility of escaping from the local minima created by the
length-scale constraint. The value of 1.5 in (10) was chosen
based on numerical experience.

The second issue is that the constraint tolerance, as
calculated by (10), will change every iteration, as the
values of the constraint function change. If ε is updated
every iteration, this may cause convergence problems.
Also, the procedure used to calculate Lmin requires that
a signed-distance function is created (see Section 3.2).
Performing this calculation every iteration adds a noticeable
computational overhead. Therefore, constraint tolerance
values are only updated periodically. In this work, they are
recomputed every 10 iterations.

(a) (b) (c)

(d) (e) (f)

Fig. 5 Cantilever solutions. Using approximate sensitivities: minimum structure length of: a 0.15, b 0.20 and c 0.30. Using the hybrid scheme:
minimum structure length of: d 0.15, e 0.20 and f 0.30
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Table 1 Cantilever example solution data

Min. length Full sensitivity Approx. sensitivity Hybrid sensitivity

Volume Iteration Volume Iteration Volume Iteration

0.15 2.75 980 2.64 820 2.41 1225

0.20 3.05 850 2.67 850 2.50 968

0.30 3.37 1200 2.78 750 2.78 752

3.2 Estimating theminimum length

The constraint tolerance strategy introduced in the previous
section requires the minimum length, Lmin, to be computed
automatically. To achieve this we first construct a signed-
distance function, φsd from the current implicit function
using the fast marching method (Sethian 1999). Next,
we adapt the indicator functions, (4, 5), to identify
inflection points of the signed-distance function, as this
will approximately identify points lying at the center of
structural members or holes:

Isd,s = H(φsd
i ) exp

(
−||∇φsd

i ||2
)

(12)

Isd,v =
(
1 − H(φsd

i )
)
exp

(
−||∇φsd

i ||2
)

(13)

Using these indicator functions, we find the set of points:
S = {x|Isd(x) > 0.6}. This set is then reduced using a trim
function to eliminate meaningless points (see Xia and Shi
(2015) for a detailed discussion on this issue):

I =
{

x|1 − ∇bφsd(x) · ∇f φsd(x)

|∇bφsd(x)||∇f φsd(x)| > 1.2, x ∈ S

}

(14)

where ∇b and ∇f are forward and backward finite
differences, respectively. Finally, the set I is further reduced
by eliminating any points within 2R of the domain corners.

The estimate for Lmin in the structure domain is then the
minimum value of the signed distance function for the final
set of points. For the void region, the maximum value of the
signed distance function for the final set of points is used
to estimate Lmin. This procedure for computing Lmin was
numerically validated and found to underestimate the true

value by approximately h/2. This is reasonable, because
the numerical discretization may not exactly capture the
value of the signed distance function corresponding to the
minimum length. Therefore, a value of h/2 is added to the
estimate computed by the above procedure to obtain a more
accurate value for Lmin.

3.3 Sensitivity information

The derivatives of the length-scale constraint functions are
shown in Appendix B. These analytical formulae were
validated against finite differences and found to be accurate.
However, it is observed that unsatisfactory solutions
are often obtained using the full, accurate sensitivity
information throughout the optimization. The optimizer
used is the Method of Moving Asymptotes (MMA) as
implemented in the package nlopt (Johnson 2014).

To illustrate this issue, the solutions of a cantilever
example (Fig. 3) using the full sensitivities are shown in
Fig. 4. The example is taken from Allaire et al. (2016),
where the objective is to minimize volume, subject to a
compliance constraint of 60 units. The Young’s modulus
is 1.0 and Poisson’s ratio is 0.3. The design domain is
discretized using 160 × 80 bilinear plane stress elements.
A total of 2665 (65 × 41) design variables are used to
parameterized the implicit function (see Section 4). The
problem is solved with three different minimum length-
scale constraints on the structure. It can be seen in Fig. 4
that although the length-scale constraint is satisfied, the
solutions are intuitively far from optimal. This is especially
noticeable for the solution with a minimum length of 0.3,
where material islands exist in the solution.

A numerical investigation revealed that the sensitivity
information for the spatial gradient of the filtered function
(dgs/d(∇φ̃)) can prevent the optimizer from closing
holes and removing material islands. Two schemes are
investigated that aim to avoid the convergence issues
introduced by the full sensitivities. The first scheme uses
approximate sensitivities for the length-scale constraint
functions, by assuming: dgs/d(∇φ̃) = 0. However, when
approximate sensitivities are used it cannot be guaranteed
that the method finds a local minima. Therefore, a hybrid

(a) (b) (c)

Fig. 6 Cantilever solutions with length-scale constraints active from the start. Minimum structure length of: a 0.15, b 0.20 and c 0.30
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160

80

10
Fig. 7 Michell structure example

scheme is also proposed, whereby a solution is first found
using the approximate sensitivities, then the full sensitivities
are used to ensure a local minima is found.

Solutions for the cantilever example using both schemes
are show in in Fig. 5. Note that the black circle in the top
right of solution figures indicates the minimum structure
length. Visually, these solutions appear superior, which is
confirmed by comparing the objective function values in
Table 1. Furthermore, it can be seen that, although the
hybrid scheme adds computational cost in increased number
of iterations, the use of full sensitivities generally helps
improve the objective function. However, this is not always
the case, as can be seen for minimum length-scale of 0.30,
where no improvement is gained when using the hybrid
scheme.

Furthermore, it is interesting to note that approximate
sensitivities are used in other length-scale constraint
methods (Xia and Shi 2015; Allaire et al. 2016). In
particular Xia and Shi (2015) ignored the dependency of the

position of the skeleton on the boundary position. This has a
similar effect to the proposed approximate derivative in this
paper, as it ignores most of the dependency of the indicator
function on the design variables.

3.4 Constraint activation

The final implementation issue is to decide when to activate
the length-scale constraints. Two schemes are proposed. The
first is to simply include the length-scale constraints from
the start. The second idea is to activate them after a solution
to the original problem (without length-scale constraints) is
obtained.

Numerical testing shows that the first strategy is not
suitable, as the length-scale constraints can quickly trap the
design in a local minima close to the initial design. This
occurs despite the relaxed constraint tolerance technique
introduced in Section 3.1. To highlight this, the cantilever
problem (Fig. 3) is solved with length-constraints active
from the start and the solutions are shown in Fig. 6.
Although the solution for a minimum length-scale of 0.15
is reasonable, it is obvious that the solutions for minimum
length-scales of 0.2 and 0.3 are stuck in local minima close
to the initial design. Note that the solutions obtained in
the previous section (Figs. 4 and 5) are obtained using
the second strategy where the length-scale constraint is
activated after the original problem converges. This type
of approach, where explicit length-scale constraints are
activated part way through the optimization process is also
used in other methods, see for example Zhou et al. (2015),
for a density-based example, and Allaire et al. (2016), for a
level-set based example.

Fig. 8 Michell structure solutions with different structure and void length-scale constraints
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Table 2 Michell structure example solution data

Minimum length

Structure Void Compliance Iteration

None None 1670 100

5 None 1665 440

7 None 1728 1250

None 4 1665 420

5 4 1665 700

7 4 1718 990

None 6 1670 450

5 6 1672 430

7 6 1754 840

4 Parameterizationmethod

The implicit function parameterization method used in
this paper is based on the idea of defining the structure
boundary as the intersection of a signed-distance implicit
function (created from the initial boundary), α, and a
“cutting surface”, β, (Dunning 2017). The cutting surface
is parameterized by the design variables, b, such that the
implicit function, φ in (1) becomes an explicit function of
the design variables:

φ(x, b) = α(x) − β(x, b). (15)

In the original method, the cutting surface was param-
eterized using finite element shape functions. Here, it is
parameterized using spline basis functions. A number of
control points are evenly spaced over the design domain in
each coordinate direction. The value of the cutting surface
at any point (such as the grid nodes) is calculated from the
design variables defined at the control points and the spline
basis functions. Using this parameterization, (15) is now
written in a discrete form:

φ(b) = α − A · b (16)

where φ and α are vectors of implicit function values
defined at the nodes of the fixed grid. The values in the
matrix A are calculated using spline basis functions:

Ai,j = Nj,k(xi)Mj,k(yi) (17)

where (xi, yi) are the coordinates of grid node i, Nj,k and
Mj,k are the kth order spline basis functions for the control
point spacing in the x and y directions, respectively (see,
for example, Rogers 2000). In this paper 3rd order (k = 3)
spline basis functions are used. Note that the matrix A

remains fixed throughout the optimization and is only
calculated once at the start.

The use of a fixed signed-distance function in the
parameterization provides some regularization, but also
restricts the design space. Therefore, it is periodically
updated during the optimization using the current design
boundary (φ = 0). This leads to an optimization process
composed of a series of inner-loop problems defined as:

min
b

f (φ(b))

s.t. gi(φ(b)) ≤ 0 , i = 1 . . . m

bmin ≤ b ≤ bmax

(18)

where f is the objective function and gi are the constraint
functions, which can include the length-scale constraint
functions introduced in Section 2.3.

The signed-distance function, α remains fixed during
each inner-loop optimization and is updated between inner-
loop optimizations using the fast marching method (Sethian
1999). The maximum number of iterations for each inner-
loop is set to 10. The inner-loop problem is solved using
MMA, as implemented in the package nlopt (Johnson
2014). For further details on this parameterization method
and its implementation, see Dunning (2017).

For this particular parameterization method, the update
of the signed-distance function is conveniently timed to
coincide with the required generation of a signed-distance
function to estimate the current minimum length, as detailed
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Fig. 9 Michell structure convergence history, with minimum structure length = 5
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Fig. 10 Michell structure convergence history, with minimum void length = 6

in Section 3.2. Thus, the number of times a signed-
distance function is created is reduced, which improves
computational efficiency.

A fixed grid finite element approach is used, where the
analysis discretization coincides with the discretization of
the implicit function. The stiffness and mass properties
of elements are computed using the smoothed Heaviside
method. For more details on how this approach is
implemented with the parameterization scheme, please
see Dunning (2017). For the examples in this paper, the
smoothing length is set to one element edge length.

5 Examples

5.1 Michell structure

The length-scale constraint functions are applied to a classic
Michell arch benchmark structure, Fig. 7. The shaded areas
at the corners indicate areas fixed to remain part of the
structure domain. The design domain is discretized using
160 × 80 bilinear plane stress elements. Young’s modulus
is 1.0 and Poission’s ratio is 0.3. The implicit function

is parameterized using 41 × 21 control points, giving a
total of 861 design variables. The objective is to minimize
compliance with an upper limit on volume, set to 40% of the
design domain.

The problem is solved several times using different
structure length-scale (Lmin) and void length-scale (Vmin)
constraints. The solutions are shown in Fig. 8 and objective
function values are shown in Table 2. The black and
white circles at the top right of the solutions indicate
the minimum structure and void length-scale, respectively.
It can be seen that as Lmin is increased from 5 to 7,
the number of holes reduces, allowing fewer and thicker
structural members, which also increases the objective
function. Another observation is that when a minimum void
length-scale is imposed the solutions have slightly more
rounded internal corners, especially near the lower central
joint where the load is applied. These results show that the
proposed method can effectively impose a minimum length-
scale in the structure and void regions, independently and
simultaneously.

Convergence histories for 3 examples are shown in
Figs. 9, 10 and 11. Other examples have similar convergence

0

6

12

18

24

30

36

0

2

4

6

8

10

12

0 100 200 300 400 500
Iteration

Vmin

gv

gs

Lmin

0

0.1

0.2

0.3

0.4

0.5

0

1

2

3

4

5

0 100 200 300 400 500
Iteration

Volume

Compliance

Length-scale
constraint activatived

Full sensitivity
activated

C
om

pl
ia

nc
e 

(
10

3 
)

M
in

im
um

 le
ng

th

V
ol

um
e 

fr
ac

tio
n

gs
, g

v

Fig. 11 Michell structure convergence history, with minimum structure length = 5 and minimum void length = 6
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(a)

(f)

(b)

(c) (d)

(e)

Fig. 12 Michell structure with minimum structure length = 5. Design
evolution: a initial convergence without length-scale constraints
(iteration 100), b iteration 150, c iteration 230, d iteration 300, e
iteration 380, and f solution at iteration 440

behavior and are omitted for brevity. The convergence of
the compliance and volume fraction is shown alongside the
convergence of the minimum length-scale constraints. The
values of gs and/or gv , (7, 8), are shown with the actual
computed minimum length-scale (using the method detailed
in Section 3.2). However, data for constraint convergence
is only shown at the end of each inner-loop (every 10
iterations), as the minimum length-scale is only explicitly
computed at these times.

It is noticed that the convergence of compliance and vol-
ume is oscillatory. This is caused by the reinitialization of
the implicit function after every inner-loop (10 iterations).
The oscillations occur both before and after the length-
scale constraints are activated. This behavior is caused
by the chosen parameterization method and not the for-
mulation, or implementation of the length-scale constraint
method. The convergence of the length-scale constraint
functions show the effect of the scheme employed to set the

constraint tolerance, proposed in Section 3.1. When the
desired length-scale is found to be satisfied, the value of the
constraint function tends to increase, which is the effect of
the relaxation condition in (10). Finally, it can be seen that
all length-scale constraints are satisfied at the end of the
optimization.

To illustrate how a design typically evolves when the
length-scale constraints are active, the case with a minimum
structure length of 5 is shown in Fig. 12. It can be seen that,
first, the small holes in the top of the arch are closed, which
is an efficient way of increasing the minimum structure
length in that region. Next, the larger holes at the extreme
left and right are closed and the final topology is found,
before further iterations of essentially shape optimization
to produce the final design. Indicator functions, (4, 5), are
shown in Fig. 13 for two solutions that have both structure
and void length-scale constraints applied.

5.2 Compliant mechanism

Another motivation for imposing length-scale control is to
avoid thin, or single node hinges when designing compliant
mechanisms by topology optimization. The classic inverter
mechanism example is used to demonstrate the ability of
the method proposed in this paper to achieve this goal. The
specification for the inverter is taken from Allaire et al.
(2016) and shown in Fig. 14. The shaded areas at the corners
indicate areas fixed to remain part of the structure domain.
The objective is to maximize the displacement at the output
location, uout , subject to an upper limit on volume, set to
30% of the design domain. Using symmetry, only the top
half of the mechanism in modeled (as shown in Fig. 14). The
design domain is discretized using 160 × 80 bilinear plane
stress elements. Young’s modulus is 1.0 and Poission’s ratio
is 0.3. The implicit function is parameterized using 41× 21
control points, giving a total of 861 design variables.

The problem is solved several times with different
minimum structure length constraints. Solutions are shown
in Fig. 15 and objective function values in Table 3. The
solution without a length-scale constraint has the familiar

Fig. 13 Indicator functions for
Michell structure. Solution wth
Lmin = 5, Vmin = 6, indicator
for: a structure, b void. Solution
wth Lmin = 7 , Vmin = 4,
indicator for: c structure, d void

(a) (b)

(c) (d)

1.0

0.5

0.0

Is , Iv
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uout1.0

1.0

0.5

Fig. 14 Inverter mechanism example

thin hinge regions that may be difficult to manufacture in a
robust way (Sigmund 2009). The results show the expected
behavior that increasing the minimum structure length-scale
increases the thickness in the hinge regions, which reduces
the performance (smaller uout ) of the mechanism. Thus,
the proposed minimum structure length-scale constraint can
produce hinge-free compliant mechanism designs.

5.3 Three dimensional example

The ability of the proposed method to control length-
scale for three-dimensional structures is investigated using
an example adapted from Kennedy (2015). The problem
is shown in Fig. 16 and the objective is to minimize
compliance, subject to an upper limit on volume, set to
30% of the design domain. Young’s modulus is 100.0 and
Poission’s ratio is 0.3. The design domain is discretized
using 50×50×100 trilinear elements. The implicit function
is parameterized using 26× 26× 51 control points, giving a
total of 34,476 design variables. The problem is solved with
a minimum structure length of 0.5. The solutions with and
without the length-scale constraint are shown in Fig. 17.

(a) (b)

(c) (d)

(e)

Fig. 15 Inverter mechanism solutions with a no length-scale constraint
and a minimum structure length of: b 0.05, c 0.06, d 0.07, and e 0.08

Table 3 Inverter mechanism example solution data

Min. structure length uout Iteration

None 25.0 150

0.05 21.0 390

0.06 18.9 410

0.07 16.9 640

0.08 14.5 520

The problem without the length-scale constraint con-
verges in 80 iterations and has a compliance of 2.74 units.
Then the minimum structure length-scale constraint is acti-
vated and a solution is found after a total of 410 iterations,
with a compliance of 2.85 units. The solution without a min-
imum length-scale, Fig. 17a, has several thin cross members
that help resist the applied loads and reduce compliance.
However, these members are much thinner than the desired
minimum structure length and are removed when the length-
scale constraints are activated, Fig. 17b. It is also noticed
that the web is thicker to meet the length-scale constraint.
This problem demonstrates that the proposed method can
control minimum length-scale for three-dimensional prob-
lems. This is achieved with only trivial modifications in
going from 2D to 3D and the performance of the method for
this 3D example is comparable to the performance for the
2D examples.

5.4 Discussion

The examples in this section have shown that the proposed
method is successful in obtaining optimal solutions with
desired minimum length-scale. However, the addition of the
explicit constraint functions to the problem adds significant
challenges and complexity. It is also observed that many
more iterations are required to obtain a solution with
length-scale control, compared to a problem without (the

1.0

1.0

5

5

10

Fig. 16 3D structure example
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Fig. 17 3D structure solutions,
a no length-scale constraint,
b with length-scale constraint

(a)

(b)

extreme case is a factor of around 12). One cause of this is
that explicit length-scale constraints significantly alter the
design space by making large parts infeasible. Therefore,
the optimizer can take a large number of iterations to
navigate the design space toward an optimum. This is
exaggerated by the proposed scheme to dynamically adapt
the length-scale constraint tolerance (Section 3.1), which is
required to avoid some undesirable local minima.

However, the author is not aware of any alternative gen-
eral exact length-scale control method suitable for parame-
terized implicit function based topology optimization. Thus,
the method proposed in this paper at least provides a starting
point to build and improve upon.

6 Conclusions

This paper introduces minimum length-scale constraint
functions suitable for parameterized implicit function based
topology optimization. The method is based on comparing
the value of a filtered function with a normalized implicit
function.

Several implementation aspects are discussed. Firstly, a
robust scheme is introduced to set the constraint tolerances
for the length-scale constraint functions. The scheme is
developed based on observations and calculations from an
analytical 1D example. The scheme includes a feature to
relax the constraint tolerance to aid the optimizer escaping
from local minima created by the introduction of the
length-scale constraints. Secondly, it is observed that using
the full accurate sensitivity information for the length-
scale constraints often results in unsatisfactory solutions,

due to prevention of topology changes. Thus, a hybrid
method is proposed, where approximate sensitivity values
are initially used to avoid the observed convergence issues
for full sensitivities. Then, to help the optimizer find a local
minima, the full sensitivities are used. Finally, activating
length-scale constraints from the start often results in the
design being trapped in a local minima close to the original
design. Thus, it is proposed to activate the constraints only
after a solution to a problemwithout length-scale constraints
is first obtained.

Several examples are used to demonstrate the ability of
the proposed method to control minimum length-scale for
different problems and for different reasons. Simultaneous
and separate control of minimum structure and void length-
scale are demonstrated using a minimum compliance
example. The design of hinge free compliant mechanisms
is achieved for an inverter problem. The proposed method
is also applied to control minimum length-scale for a three-
dimensional problem.
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Appendix A: Maximum constraint value

In this appendix we calculate the maximum value of the
constraint function when L = 2R for a 1D analytical model
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of a structural feature. First, the feature is defined by a
normalized implicit function:

φ̂(x) =
{
0, x < R, x > 3R,

1, R ≤ x ≤ 3R.
(19)

The analytical linear filter function at any point x is then:

φ̃(x) = 1

R2

⎧
⎨

⎩

0.5x2, 0 ≤ x ≤ R,

0.5x2 − (x − R)2, R ≤ x ≤ 3R,

0.5x2 − 4Rx + 8R2, 3R ≤ x ≤ 4R.
(20)

The filtered function is symmetric and thus it is sufficient
to continue the calculation on the domain x ∈ {0, 2R}. To
construct the constraint function we also need the spatial
gradient of the filtered function:

∇φ̃(x) = 1

R2

{
x, 0 ≤ x ≤ R,

2R − x, R ≤ x ≤ 2R.
(21)

From (7), the constraint function is only non-zero when
φ̂(x) > 0. Thus, from (19), we only need to calculate the
constraint function on the domain x ∈ {R, 2R} (again using
the symmetry of the feature). The constraint function in this
domain is then:

gs(x) =
(

1 − 0.5x2 + (x − R)2

R2

)2

exp
(
− c

R4
(2R − x)2

)

(22)

To find the maximum value of the constraint function for the
1D analytical case, we differentiate (22) and find solutions
for dgs/dx = 0:

dgs

dx
=

[

2

(

1 − 0.5x2 − (x − R)2

R2

)
x − 2R

R2

+
(

1 − 0.5x2 − (x − R)2

R2

)2 (
4Rc − 2xc

R4

)]

× exp
(
− c

R4
(2R − x)2

)
(23)

It can be shown that (23) has the following roots: x = 2R
and x = 2R ± √

2R2/
√

c. The solution x = 2R is the
minimum point, as gs(2R) = 0. Thus, xmax = 2R −√
2R2/

√
c, is the location of the maximum value of gs ,

as the other solution is outside the range: x ∈ {R, 2R}.
Substituting xmax into (22), gives:

δg = gs(xmax) =
(
R4/c2

)
exp(−2) (24)

If the value of the exponential decay, c, is chosen as: c =
R4, then: δg = R−4 · exp(−2).

Appendix B: Length-scale constraint
derivatives

The derivatives of the length-scale constraint functions, (7,
8) with respect to a design variable are detailed in this

appendix. The derivation is similar for both functions, so
only the structure length-scale function is shown in detail.
Using the product rule, the derivative of (7) with respect to
a design variable bj is:

dgs

dbj

=
N∑

i=1

[

−2
(
1 − φ̃i

) dφ̃i

dbj

φ̂i +
(
1 − φ̃i

)2 dφ̂i

dbj

+
(
1 − φ̃i

)2
φ̂i

⎛

⎝−c
d

(
||∇φ̃i ||2

)

dbj

⎞

⎠

⎤

⎦

exp
(
−c||∇φ̃i ||2

)
(25)

The derivative of the normalized implicit function is found
using the chain rule and (9):

dφ̂i

dbj

=
{

3
4 (

1
�

− φ(xi )
2

�3 )
dφi

dbj
−� ≤ φi < �,

0, else.
(26)

The chain rule is again used to calculate the derivative of
the filtered function:

dφ̃i

dbj

=
∑

k∈Hi
wi,k

dφ̂k

dbj
∑

k∈Hi
wi,k

(27)

whereHi is the domain of points within R of node i and the
weight function is:

wi,k =
{

R − |xi − xk|, xk ∈ Hi ,

0, else.
(28)

Now, we calculate the derivative of the spatial gradient of
the filtered function, (6):

d
(
||∇φ̃i ||2

)

dbj

= 0.5

[

(φ̃i+x −φ̃i−x)

(
dφ̃i+x

dbj

− dφ̃i−x

dbj

)

+(φ̃i+y −φ̃i−y)

(
dφ̃i+y

dbj

− dφ̃i−y

dbj

)]

(29)

The final derivative required to complete the calculation
is the derivative of the implicit function with respect to the
design variable, which will depend on the parameterization
method. In this paper, there is a linear relationship between
the set of parameters and nodal implicit function values,
(16). Thus, the required derivative is simply determined
from the entries of the matrix A:
dφi

dbj

= Ai,j (30)

The approximate derivative, as discussed in Section 3.3,
assumes that the derivative of the spatial gradient of the
filtered function is zero. Thus, the approximate derivative is:

dgs

dbj

≈
N∑

i=1

[

−2
(
1 − φ̃i

) dφ̃i

dbj

φ̂i +
(
1 − φ̃i

)2 dφ̂i

dbj

]

× exp
(
−c||∇φ̃i ||2

)
(31)



168 P.D. Dunning

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate
credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

References

Allaire G, Jouve F, Toader AM (2004) Structural optimization using
sensitivity analysis and a level-set method. J Comput Phys
194(1):363–393

Allaire G, Jouve F, Michailidis G (2016) Thickness control in
structural optimization via a level set method. Struct Multidiscip
Optim 53(6):1349–1382

Bendsøe MP, Kikuchi N (1988) Generating optimal topologies
in structural design using a homogenization method. Comput
Methods Appl Mech Eng 71(2):197–224

Bendsøe MP, Sigmund O (2004) Topology Optimization: Theory,
Methods and Applications, Springer, Germany

Chen J, Shapiro V, Suresh K, Tsukanov I (2007) Shape optimization
with topological changes and parametric control. Int J Numer
Methods Eng 71(3):313–346

Chen S, Wang MY, Liu AQ (2008) Shape feature control in structural
topology optimization. Comput Aided Des 40(9):951–962

De Ruiter M, Van Keulen F (2004) Topology optimization using a topol-
ogy description function. Struct Multidiscip Optim 26(6):406–416

Deaton JD, Grandhi RV (2014) A survey of structural and
multidisciplinary continuum topology optimization: post 2000.
Struct Multidiscip Optim 49(1):1–38

Dunning PD (2017) Design parameterization for topology optimiza-
tion by intersection of an implicit function. Comput Methods Appl
Mech Eng 317:993–1011

Dunning PD, Kim HA (2015) Introducing the sequential linear
programming level-set method for topology optimization. Struct
Multidiscip Optim 51(3):631–643

Gomes AA, Suleman A (2006) Application of spectral level set
methodology in topology optimization. Struct Multidiscip Optim
31(6):430–443

Guest JK (2009) Topology optimization with multiple phase projec-
tion. Comput Methods Appl Mech Eng 199(1):123–135

Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum
length scale in topology optimization using nodal design variables
and projection functions. Int J NumerMethods Eng 61(2):238–254

Guo X, Zhang W, Zhong W (2014a) Doing topology optimization
explicitly and geometrically—a new moving morphable compo-
nents based framework. J Appl Mech 81(8):081,009

Guo X, Zhang W, Zhong W (2014b) Explicit feature control in
structural topology optimization via level set method. Comput
Methods Appl Mech Eng 272:354–378

Hamza K, Aly M, Hegazi H (2014) A kriging-interpolated level-
set approach for structural topology optimization. J Mech Des
136(1):011,008

Hoang VN, Jang GW (2017) Topology optimization using moving
morphable bars for versatile thickness control. Comput Methods
Appl Mech Eng 317:153–173

Jenkins N, Maute K (2016) An immersed boundary approach for shape
and topology optimization of stationary fluid-structure interaction
problems. StructMultidiscip Optim 54(5):1191–1208

Johnson SG (2014) The NLopt nonlinear optimization package. http://
ab-initio.mit.edu/nlopt

Kennedy G (2015) Large-scale multi-material topology optimization
for additive manufacturing. In: AIAA Scitech 2015, Kissimmee,
FL, pp 1–13

Lazarov BS, Wang F, Sigmund O (2016) Length scale and
manufacturability in density-based topology optimization. Arch
Appl Mech 86(1-2):189–218

Liu J, Ma Y (2016) A survey of manufacturing oriented topology
optimization methods. Adv Eng Softw 100:161–175

Liu J, Ma Y, Fu J, Duke K (2015) A novel cacd/cad/cae integrated
design framework for fiber-reinforced plastic parts. Adv Eng
Softw 87:13–29

Liu J, Yu H, Ma Y (2016) Minimum void length scale control in
level set topology optimization subject to machining radii. Comput
Aided Des 81:70–80

Luo J, Luo Z, Chen L, Tong L, Wang MY (2008a) A semi-implicit
level set method for structural shape and topology optimization. J
Comput Phys 227(11):5561–5581

Luo J, Luo Z, Chen S, Tong L, Wang MY (2008b) A new
level set method for systematic design of hinge-free compliant
mechanisms. Comput Methods Appl Mech Eng 198(2):318–331

Luo Z, Tong L, Wang MY, Wang S (2007) Shape and topology
optimization of compliant mechanisms using a parameterization
level set method. J Comput Phys 227(1):680–705

Munk DJ, Vio GA, Steven GP (2015) Topology and shape
optimization methods using evolutionary algorithms: a review.
Struct Multidiscip Optim 52(3):613–631

Norato J, Haber R, Tortorelli D, Bendsøe MP (2004) A geometry
projection method for shape optimization. Int J Numer Methods
Eng 60(14):2289–2312

Pingen G, Waidmann M, Evgrafov A, Maute K (2010) A parametric
level-set approach for topology optimization of flow domains.
Struct Multidiscip Optim 41(1):117–131

Poulsen TA (2003) A new scheme for imposing a minimum length
scale in topology optimization. Int J Numer Methods Eng
57(6):741–760

Rogers DF (2000) An introduction to NURBS: with historical
perspective. Elsevier

Sethian J (1999) Level set methods and fast marching methods:
evolving interfaces in computational geometry, fluid mechanics,
computer vision and materials science. Cambridge University
Press, Cambridge

Sigmund O (2009) Manufacturing tolerant topology optimization.
Acta Mech Sinica 25(2):227–239

Sigmund O, Maute K (2013) Topology optimization approaches.
Struct Multidiscip Optim 48(6):1031–1055

Sigmund O, Petersson J (1998) Numerical instabilities in topology
optimization: a survey on procedures dealing with checkerboards,
mesh-dependencies and local minima. Struct Multidiscip Optim
16(1):68–75

van Dijk NP, Maute K, Langelaar M, Van Keulen F (2013) Level-
set methods for structural topology optimization: a review. Struct
Multidiscip Optim 48(3):437–472

Vatanabe SL, Lippi TN, de Lima CR, Paulino GH, Silva EC
(2016) Topology optimization with manufacturing constraints:
a unified projection-based approach. Adv Eng Softw 100:97–
112

Wang F, Lazarov BS, Sigmund O (2011) On projection methods,
convergence and robust formulations in topology optimization.
Struct Multidiscip Optim 43(6):767–784

Wang MY, Wang X, Guo D (2003) A level set method for
structural topology optimization. Comput Methods Appl Mech
Eng 192(1):227–246

Wang Y, Zhang L,WangMY (2016) Length scale control for structural
optimization by level sets. Comput Methods Appl Mech Eng
305:891–909

Xia Q, Shi T (2015) Constraints of distance from boundary to skeleton:
for the control of length scale in level set based structural topology
optimization. Comput Methods Appl Mech Eng 295:525–542

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://ab-initio.mit.edu/nlopt
http://ab-initio.mit.edu/nlopt


Minimum length-scale constraints for parameterized implicit function based topology optimization 169

Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection
method for the topology optimization of plate structures. Struct
Multidiscip Optim 54(5):1173–1190

Zhang S, Gain AL, Norato JA (2017a) Stress-based topology optimiza-
tion with discrete geometric components. Comput Methods Appl
Mech Eng 325:1–21

Zhang W, Zhong W, Guo X (2014) An explicit length scale control
approach in simp-based topology optimization. Comput Methods
Appl Mech Eng 282:71–86

Zhang W, Li D, Zhang J, Guo X (2016b) Minimum length scale
control in structural topology optimization based on the moving
morphable components (mmc) approach. Comput Methods Appl
Mech Eng 311:327–355

Zhang W, Chen J, Zhu X, Zhou J, Xue D, Lei X, Guo X (2017b)
Explicit three dimensional topology optimization via moving
morphable void (mmv) approach. Comput Methods Appl Mech
Eng 322:590–614

Zhang W, Liu Y, Wei P, Zhu Y, Guo X (2017c) Explicit control of
structural complexity in topology optimization. Comput Methods
Appl Mech Eng 324:149–169

Zhang W, Yang W, Zhou J, Li D, Guo X (2017d) Structural topology
optimization through explicit boundary evolution. J Appl Mech
84(1):011,011

Zhou M, Lazarov BS, Wang F, Sigmund O (2015) Minimum length
scale in topology optimization by geometric constraints. Comput
Methods Appl Mech Eng 293:266–282


	Minimum length-scale constraints for parameterized implicit function based topology optimization
	Abstract
	Abstract
	Introduction
	Length-scale constraint formulation
	Fundamental idea: filtering a discrete feature
	Indicator function
	Constraint functions

	Numerical issues and implementation
	Constraint tolerance
	Estimating the minimum length
	Sensitivity information
	Constraint activation

	Parameterization method
	Examples
	Michell structure
	Compliant mechanism
	Three dimensional example
	Discussion

	Conclusions
	Acknowledgements
	Appendix A A: Maximum constraint value
	 B: Length-scale constraint derivatives
	Appendix B B: Length-scale constraint derivatives
	Open Access
	References


