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Abstract
Small load carriers (SLCs) are standardized reusable containers used to transport and protect customer goods in many 
manufacturers. Throughout the life cycle of the SLCs, they will be collected, manually checked for defects (wear, cracks, 
and residue on the surface), and cleaned by specialized logistic companies. Human operators in small to medium-sized 
companies manually evaluate the defects due to the variety and degree of possible defects and varying customer needs. 
This manual evaluation is not scalable and prone to errors. This work aims to fill this gap by proposing a computer vision 
system that can recognize the SLC type for inventory management and perform defect detection automatically. First, we 
develop a camera portal, consisting of standard components, that capture the relevant surfaces of the SLC. A labeled 
dataset of 17,530 images of 34 different SLCs with their defect status was recorded using this camera portal. We trained 
a classification model (ConvNeXt) using our dataset to predict the different types of SLCs achieving 100% class predic-
tion accuracy. For defect detection, we explore eight state-of-the-art (SOTA) anomaly detection models that achieved high 
rankings in the MVTec industrial anomaly detection benchmark. These models are trained using default hyperparameters 
and the two highest-scoring models were chosen and fine-tuned. The best-fine-tuned models based on “Area under the 
Receiver Operating Characteristic Curve (AUROC)” are PatchCore (0.811) and DRAEM (0.748). These results indicate 
that there is still potential for improvement in the automation of defect detection of SLCs.

Keywords Industrial object classification · Industrial anomaly detection · Machine learning · Quality control · Small 
load carrier · Reusable containers
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1 Introduction

Small load carriers (SLCs) are reusable containers with dif-
ferent shapes and sizes commonly used in industries such as 
automotive, manufacturing, and electronics. SLCs are reus-
able, stackable, standardized size for the respective types of 
SLCs, and protect the goods that are being transported using 
the SLCs [5]. The reusable nature of SLCs makes them a 
sustainable solution. Due to the ever-increasing global 
exchange of goods, the logistics industry is continuously 
growing and the need for standardized reusable containers 
such as SLCs and pallets is increasing [9]. Companies in 
the logistics industry have been paying extra attention to 
the container management system and status management 
[22]. The SLC quality assessment, which is a part of the 
container management system and status management, is 
an important step in determining whether SLCs are usable 
or contain defects that might pose risks of damaging cus-
tomer goods during transport, which can be costly. Besides 
directly affecting the quality of the customer’s goods, it 
can also affect the efficiency when moving the SLCs (e.g. 
breakage in the outer wall hinders proper SLC movements) 
[32]. Despite the critical nature of the inspection and evalu-
ation of the SLCs, logistics companies still rely largely on 
manual human evaluation for the SLCs which is not scal-
able [23]. Automation of quality control of SLCs can reduce 
the risk of human errors during the sorting and checking 
of the SLCs due to fatigue and the repetitive nature of the 
job [18]. Human personnel can be allocated to other more 
important processes in the company such as supervising the 
system which may increase the general workflow. A reliable 
SLC quality control system removes the subjective bias of 

different human operators when evaluating containers that 
have different degrees of defects [16].

Automation of SLC quality control is not commonly 
implemented as it requires a trained model for the classifi-
cation of the type of the SLC and identification of the con-
dition of the SLCs (normal or anomalous) which requires 
a large amount of SLC data usually an image-based data-
set. To our knowledge, there is no automated system for 
large data collection of SLCs for model training purposes. 
Another gap between the research field and the industrial 
field is that anomaly detection (AD) models are mostly 
tested on large controlled datasets such as MVTec AD [4] 
that might not represent the defect characteristics in SLCs. 
So it cannot be expected that AD models trained on bench-
mark datasets provide the same performance for quality 
control for SLCs [36]. To address these gaps, this study 
raises the following research questions: How can we imple-
ment a computer vision system for classifying the different 
types of SLCs and for assessing their conditions? Which of 
the different state-of-the-art (SOTA) methods for anomaly 
detection can be implemented in evaluation of SLCs? What 
are the limitations of the respective methods? How do the 
hyperparameters affect the output of the respective model? 
This research aims to fill these gaps by designing a system 
for data collection of the SLCs that are scalable and can 
be used to train a model for the classification and anomaly 
detection of the SLCs as shown in Fig. 1. The main contri-
butions of this research are as follows:

 ● Development of a camera portal: We designed a mod-
ular, cost-effective camera portal using standard com-
ponents to capture key areas of the SLC surfaces. The 

Fig. 1 General implementation of the cleaning, classification, and 
anomaly detection of the different types of SLCs. The dotted rectangle 
on the right side of the figure is the implementation of trained models 
for the classification of the type of SLC and the anomaly detection 
pipeline. Dirty SLCs are first collected and transported on conveyor 
belts to automated washing machines. The SLCs are cleaned and 
further transported to the camera portal. Images from all sides of the 

SLCs are taken and further evaluated using neural networks to predict 
the type of the SLCs and the condition of the SLCs (OK or NOK). The 
explanation for the NOK SLCs can be given as a heatmap evaluation 
of the potential point of anomaly based on the respective images. SLCs 
with different conditions are later separated using an automated con-
veyor system for further transport and evaluation. The predicted type 
of SLCs are later stored in a database
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camera portal can be installed in industrial production 
lines without disrupting the flow of the production.

 ● Creation of an extensive labeled dataset: We compiled 
a dataset of 17,530 images for 34 different SLC types. 
Each image is annotated for both classification (type) 
and defect detection (OK/NOK). Of these, a subset of 
9,260 images from the whole SLC dataset, covering 18 
SLC types, that does not contain customer’s credentials 
and is made publicly available.

 ● Effectiveness of classification model on the dataset: 
We demonstrate that fine-tuning an off-the-shelf deep 
convolutional neural network provides highly accurate 
results for the classification of the SLC type.

 ● Comparison of SOTA anomaly detection methods: 
We conduct a performance comparison of eight state-of-
the-art anomaly detection methods for the SLC defect 
detection task, and identify the two most promising can-
didates for further evaluation.

 ● Analysis of optimized models: We provide both quanti-
tative and qualitative analysis on hyperparameter-tuned 
versions of these candidates. We conduct the quantita-
tive analysis by evaluating various performance met-
rics. The models’ predicted image outputs are assessed 
to determine their effectiveness in accurately identifying 
anomalous sections within the images.

1.1 Organization of the paper

The structure of this paper is as follows: Sect. 2 discusses 
the prior and related works on the building of the system 
for data acquisition and the models for the classification 
of SLC types and identification of the SLC defects. Sec-
tion 3 describes the design decisions of the system for data 
acquisition which is the camera portal. Section 4 describes 
the dataset collected from the designed system and the pre-
processing steps taken before model training. Section 5 
discusses the classification algorithm used for the SLC 
dataset. Section 6 discusses the different SOTA algorithms 
used for anomaly detection that are commonly implemented 
for industrial implementation. Exploratory analysis of the 
SOTA algorithms is conducted along with hyperparameter 
tuning to adapt the models to the present data set. Quali-
tative and quantitative analyses are conducted on the best 
models. Section 7 discusses the result of the experiments 
and explores different sectors of the experiment that can be 
improved.

2 Prior and related work

Prior and related work of this study will be divided into three 
main parts: data acquisition and evaluation system in indus-
try (Sect. 2.1), image classification (Sect. 2.2), and image-
based anomaly detection for industrial objects (Sect. 2.3). 
Each part further discusses what has been done on other 
studies for the respective topics.

2.1 Data acquisition and evaluation system in 
industry

A reliable system for data acquisition of the SLCs is criti-
cal in developing a consistent object detection and anomaly 
detection system. Considerations such as the physical fea-
tures of the SLCs (whether the surface of the object is reflec-
tive when shined with lights), the on-site hard constraints 
such as the maximum dimension of the system, the number 
of cameras needed, the movement of the SLCs during pro-
duction, the lighting condition on-site and the computing 
power needed are all important details that need to be con-
sidered before designing the system [48]. Careful planning 
of the camera setup and the lighting condition for the image 
acquisition is crucial as background noise or other objects 
that are not relevant to the quality control process can affect 
the evaluation of the SLC [46]. Poss et al. [36] describe the 
characteristics of the SLCs that they use in the production 
line as well as the hard constraints such as cycle time of the 
line that must be kept as efficient as possible. The evaluation 
system must conform to the hard constraints of the line to 
avoid slowing down production.

Sobottka et al. [45] use CCD (Charged-Coupled Device) 
cameras in their experiment for detecting dust and other 
types of debris on SLCs. They emphasize the importance 
of having multiple camera setups from different angles and 
a stable light source preferably in an all-enclosed tunnel-
like structure to avoid external uncontrollable lighting. The 
usage of conveyor belts and switch plates to separate dif-
ferent SLC conditions reflects the general use case of our 
needed system. Despite all the suggestions, Sobottka et al. 
simulated the setup in a simulation model layout which can 
be different in real use scenarios. Bohm et al. [6], Xu et al. 
[54], and Noceti et al. [34] emphasize the importance of 
multiple camera setups (with Noceti et al. [34] emphasiz-
ing the importance of top view camera position). It is more 
practical to have a "view insufficiency" situation where 
images have overlapping information in environments with 
a lot of movement.

Pierer et al. [35] experimented on a scalable multi-cam-
era (13 monochrome camera setup) inspection approach for 
industrial press line applications with parts moving on top 
of conveyor belt and four high-powered LED illumination 
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anomalies, especially in complex datasets. To mention a few 
examples, Huang et al. [25] implemented visual language 
models for AD in medical images that can detect anomalies 
from different kinds of medical images. AD is also pivotal in 
the predictive maintenance of machinery, where algorithms 
analyze sensor data or machine logs to identify unusual pat-
terns indicative of potential faults; for example, Wang et al. 
[52] used a reinforcement learning-based method for fault 
estimation of the actuators. In the field of networks, anom-
aly detection is used to identify malformed packets [7].

This study focuses specifically on anomaly detection for 
image-based data types in the industrial domain. It is a com-
plex problem as anomaly instances in the industry can be 
diverse, unpredictable, rare, and irregular. The rare nature 
of anomalies made it impractical and costly to intentionally 
produce them in industry. We next provide a brief overview 
of anomaly detection for industrial images related to the 
present setup; for a broader discussion on the field we refer 
to the recent survey by Liu et al. [29]. Bai et al. [3] discussed 
methods for solving the problem of imbalance datasets due 
to the rare nature of anomalies in the industrial field.

Ruff et al. [41] explain that anomaly detection approaches 
can be classified based on the feature maps and models. Fea-
ture maps can be differentiated as deep or shallow methods. 
Models can be classified into classification, probabilistic, 
and reconstruction-based. The categorization of the anom-
aly detection approaches is not discrete as some approaches 
lie between different models. Other anomaly detection 
approaches can rely purely on distance-based methods.

Several implementations have been previously imple-
mented in the industrial fields. Liang et al. [28] use an indus-
trial camera to capture the inkjet printing of production 
codes containing information (expiry date, batch number) 
on plastic beverages to check for defects such as missing let-
ters. ShuffleNet V2 network is used to classify if the printed 
code is defective or normal. Singh et al. [44] uses pre-
trained ResNet-101 for feature extraction and multi-class 
support vector machines (SVMs) to detect surface defects 
of tapered rollers. He et al. [20] implemented an end-to-end 
steel surface defect detection approach using a fusion of 
multiple hierarchical features for potential real-time detec-
tion. Dlamini et al. [14] use the YOLOv4 model for textile 
industry quality control. The implementation of enhanced 
feature extraction YOLO industrial small object detection 
algorithm [47] can also be implemented for detecting spe-
cific anomaly types in close-up SLC images. Würschinger 
et al. [53] developed a low-cost machine vision system for 
piston rod quality evaluation using transfer learning.

A lot of the implementations of AD in industrial objects 
are for new production objects which have mostly a fixed 
degree of the normal object. Reusable objects such as SLCs 
are rarely in perfect condition when returned for inspection. 

bars. Zhang et al. [57] conducted experiments on object 
detection with the subject apples on modified YOLO (You 
Only Look Once) models with different illumination. Dif-
ferent illuminations (front, side, and backlight) change the 
appearance of the apple which affects the ability of the 
model to correctly identify the apples in the image. Most 
of the prior experiments emphasize the benefit of using a 
multi-camera setup with controlled lighting conditions to 
have the best image quality acquired from the object.

2.2 Image classification

SLCs are divided into different classes based on their physi-
cal properties (colors, dimensions, and geometry). The col-
lected images from the data acquisition system of the SLCs 
are labeled with the respective SLC type, creating a labeled 
dataset for normal instances. This can be used to train neu-
ral networks for common classification problems. Different 
models can be used for common classification problems 
such as vision transformers (ViT) [15] and convolution neu-
ral networks (CNNs). ViT may perform better generally on 
complicated problems with more data. However, for this 
particular use case of classifying SLCs with limited data-
sets, CNNs might be easier to train with the limited data 
and easier to fine-tune for better classification results. Con-
vNeXt [30] model is a modernization of ResNet (Residual 
Network) which is inspired by the design of Vision Trans-
formers while maintaining the simplicity and efficiency of 
CNNs. General architecture design of ConvNeXt that dif-
ferentiates it from traditional CNNs includes substituting 
the stem cell in ResNet with a simpler "patchify" layer as 
in ViT (4x4 non-overlapping convolution), implementation 
of depthwise convolution (a special grouped convolution 
where the number of groups equals the number of channels 
popularized by MobileNet [24]), inverted bottleneck block 
which was popularized by MobileNetV2 [42], implementa-
tion of 7x7 depthwise conv in each block, substitution of 
Rectified Linear Unit (ReLU) [33] with Gaussian Error Lin-
ear Unit (GeLU) [21], implementing single GeLU in each 
block, and changing the batch normalization [26] into layer 
normalization [2].

2.3 Image-based anomaly detection for industrial 
objects

Anomaly detection (AD) refers to the detection of pat-
terns in data that do not conform to expected behavior; it 
is widely applied in various fields, such as fraud detection 
in banking, identifying spam in emails, fault detection in 
industrial systems, and detecting abnormalities in medi-
cal images [8]. The key challenge in AD lies in accurately 
distinguishing between normal variations and genuine 
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high sensitivity to shift of the SLC location. Adding two 
more cameras and placing the four cameras at the parallel 
sides of the SLCs and one camera on the top of the SLC 
mitigated these issues. Implementing two additional cam-
eras means more cost but is still justifiable. To summarize 
the camera portal uses a five-camera setup where four are 
placed on the parallel sides of the SLCs and one at the top 
of the portal frame (providing the top view).

3.2 Geometrical calculation

Choosing the appropriate camera characteristics and select-
ing the proper position and orientation of the camera for 
SLC evaluation is crucial for capturing important details of 
the object. Geometrical calculations help identify potential 
blind spots that might affect the performance of models. 
Higher camera resolutions are considered in capturing more 
detailed images for better model performance. The spatial 
resolution needed to capture the details for anomalous sam-
ple can be set as 1 pix/mm as the nature of anomalous parts 
in SLCs are larger in dimensions. Furthermore, considering 
an additional safety factor of three, the required spatial reso-
lution is 3 pix/mm. For choosing the camera resolution, the 
calculation must consider the largest dimension of the SLC 
which is 280 mm (height), 600 mm (length), and 400 mm 
(width). The calculated minimum sensor dimension for the 
given distance of the portal is 1800 × 840 pixels for the lon-
ger sides of the SLCs. This paper uses U3-3880CP-C-HQ 
Rev.2.2 from IDS Imaging Development Systems GmbH 
which is an RGB camera with 6.41 MP resolution (3088 × 
2076 pixels), frame rate 59.0 fps, and C-Mount type. As the 
position of the camera will be static and the position of the 
incoming SLC will be approximately in the same spot (with 
a little variation on the exact positioning), the initial setup of 
the camera must be chosen to avoid lens and perspective dis-
tortion. The calculation of the field of view (FOV) depends 
on the camera sensor width or height and the focal length 
used. The determined FOV also affects the working distance 
of the camera. When SLCs are placed closer than the work-
ing distance, then some part of the SLC might be cut off. 
The working distance is related to the focal length, where 
a longer focal length means a longer working distance. The 
size constraints of the camera portal setup are 1.5 × 1.5 m 
(width × length). If the SLC is placed in the center of the 
camera portal setup, the longer side of the largest SLC has a 
constraint of a maximum working distance of 450 mm. The 
shorter side of the largest SLC has a constraint of a maxi-
mum working distance of 550 mm. Due to the physical size 
constraints, the camera needs to be set higher to mitigate 
the longer working distance. Setting a higher camera posi-
tion will have lower visibility on the sides of the SLCs and 
capture more background that might not contribute to the 

This introduces another complexity level as the surface of 
the normal SLCs can slightly differ while still considered 
normal. Truong et al. [49] use a camera to evaluate reusable 
food packaging (namely plastic cups) for defects and con-
tamination. They implemented background removal using 
U-Net [39] to highlight the object from the background and 
trained the model based on an auto-encoder-based frame-
work for anomaly detection. Despite the similar reusable 
condition of the object, this study has some slightly differ-
ent conditions. SLCs have different physical features such 
as size and color which is different from only evaluating one 
type of object. As SLCs are not transparent, all the inner and 
outer surfaces of the SLCs must be evaluated, thus requiring 
more than one view for a sufficient quality image.

3 Design of the camera portal

Designing the camera portal is further divided into three 
different parts: requirements (Sect. 3.1), geometrical calcu-
lation (Sect. 3.2), and final build of the camera portal and 
hardware used (Sect. 3.3). The requirements section dis-
cusses the basic requirements needed for the camera portal 
to function and collect data properly. The geometrical calcu-
lation elaborates on the positioning of the cameras and how 
it affects the images taken. The final build of the camera 
portal and the specific materials used for building the proto-
type are further elaborated in the last part.

3.1 Requirements

The data acquisition system needs to solve both the clas-
sification of the SLC types and determine whether it is 
defective. While the first task (classification) can be solved 
with a single camera view, the second task (defect detec-
tion) requires a complete view of all the surfaces (inside and 
outside) of the SLC as the defect can be anywhere on the 
surface of the SLC. The bottom surface is excluded as it is 
rarely defective and the defects usually have little negative 
impact on the usability of the SLC. The system design needs 
to be under certain constraints such as not slowing down 
the SLC cleaning process, need to fit into the facilities, and 
being economical while maintaining quality. For cost and 
simplicity reasons, a setup based on a single camera moving 
around the object was ruled out as the mechanism would be 
very complicated. The geometry of the containers suggests 
that at least three (static) cameras are needed; two cameras 
on the diagonals of the SLC and one camera for the top 
view. The three-camera setup is cost-effective for capturing 
images but a preliminary test revealed that the diagonally 
placed camera setup caused occlusion for higher containers, 
exhibited a notable perspective distortion, and a relatively 
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4 Dataset acquisition and preprocessing

This section explains the details of the dataset collected and 
further used for training the AD models. The total collected 
images are 17,530 images of 34 types of SLCs with an 
unbalanced number of images for each class of SLCs. The 
SLCs can be further differentiated into different shapes such 
as covers, inlays, and boxes. The SLCs consist of different 
colors and can have a mixture of two colors in an SLC box 
such as orange with yellow stripes.

The SLCs were labeled as normal or anomalous by an 
expert familiar with SLC defects. Each SLC corresponds 
to five images and anomalies may only be present on one 
of the sides. Thus, the dataset is further preprocessed by 
manually choosing the OK views from the anomalous SLCs 
and moving it to the normal view SLCs. Approximately 
17.9% of the total number of recorded images were labeled 
as anomalies after the additional preprocessing. Anomalies 
can range from scratches, cracks, broken parts on the edges 
of the SLCs, the remainder of old stickers, and the presence 
of foreign objects inside the SLCs. For the training purposes 
of the models, resizing of the original images is carried out 
from 3088 × 2076 to 256 × 256. For AD training pipelines, 
some models are pre-processed on an additional background 
removal pipeline to remove unwanted background noise 
and see the performance difference between the models with 
and without background removal. The method used for the 
background removal is U2-Net [37] which is a pre-trained 
model that processes the input image into an output image 
that only contains the SLCs without the backgrounds. Nor-
malization of the images is done based on ImageNet mean 
and standard deviations.

For our experiments, we use the following four variants 
of the dataset: all SLC with background removal, all SLC 
without background removal, sampled SLC without back-
ground removal, and inference dataset. The sampled SLC 
dataset is a subset of the whole dataset where it is sampled 
using a stratified sampling method. This sampled dataset 
contains 7430 total images with 2970 images as the nor-
mal train images. Approximately 42.3% of the total sampled 
SLC dataset are considered anomalies. The sampled dataset 
was built for hyperparameter tuning due to time and resource 
constraints. The inference dataset is a custom-made dataset 
containing a mixture of normal and abnormal views of the 
SLCs. Each of the 34 types of SLCs are included in this 
dataset. The total number of images is 265 which 155 are 
normals and 110 are anomalies. 11 out of the 34 types of 
SLCs do not have defective samples.

performance of the model. Considering all the constraints 
present, the focal length of 8 mm is used for the cameras 
and the height is 500 mm from the edge of the highest SLC 
(780 mm above the rollers of the conveyors). The inclina-
tion of the camera is set at approximately 47.5°.

3.3 Final build of the camera portal and hardware 
used

The final prototype of the camera portal was built using 
aluminum structural beams with mountings for the camera 
and underneath the portal is an industrial roller conveyor for 
the movement of the SLCs. Diffused lights were installed 
on the top of the camera portal to reduce shadowing in the 
SLCs. Opaque plastic sheets are used to cover the camera 
portal to provide stable lighting conditions (enclosed tun-
nel-like structure). Additional tube lights are installed on the 
horizontal aluminum structural beams to provide additional 
lighting. Cameras are set to trigger all at the same time to 
provide a uniform condition on all the images. The move-
ment of the SLC in the conveyor is controlled by a Program-
mable Logic Controller (PLC). Sensors and PLC are used to 
control the position of the SLCs to the center of the camera 
portal and the movement after the images are taken. Fig-
ure 1 (Camera Portal) shows the setup of the camera portal 
prototype. The detailed types of hardware used are shown 
in Table 1.

Table 1 The hardware details used to build the camera portal for SLC 
data acquisition
Part name # of 

Items
Type Material Details

Roller 
conveyor

1 Driver roller and support 
roller

Galva-
nized steel

636 mm 
width

PLC 
controller

1 CPU 1211C DC/DC/DC – –

Controller 2 ConveyLinx Ai2 – –
Sensors 3 OPT1508 – Reflex 

sensor
Portal 
structure

1 – Aluminum 
bars

–

Light tube 4 Glass LED –
Diffused 
lights

2 50-50-Sled-1-VA2-18W Acryl 
2 mm 
white

–

Camera 5 U3-3880CP-C-HQ Rev 
2.2

– 3088 × 
2076

Partition 5 PVC hard foam PVC –
Each part has its total number of items used, the specific type name, 
the material used for the particular part, and additional important 
details. The # symbol stands for number
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5.2 ConvNeXt inference and analysis

Inference tests for the trained ConvNeXt are shown in 
Table 2. The inferencing is done with the same hardware as 
explained later in Sect. 6.2 and additional hardware laptop 
with Intel i5-1335U CPU. The inferencing dataset used the 
same inference dataset as explained in Sect. 4 and a 5-image 
inference to replicate the real-life use case where inferenc-
ing is done using 5 cameras in the camera portal. Each run is 
done five times for the same task and the average time of the 
five runs is taken. As of now, the recognized SLC types are 
stored locally. In a later stage, they will be sent to a central 
database which will allow analysis of the throughput and the 
stock in an enterprise resource planning (ERP) system. The 
integration into the ERP system will be reported elsewhere.

6 Defect detection

Next, we investigate camera-based defect detection. There 
are different kinds of possible defects such as residue of old 
stickers, rust stains, oil spillage, surface wear, cracks, and 
breakage that can occur. Currently, the defect type is of low 
importance. The number of defective SLCs in real-world 
scenarios is very low (a single-digit percentage or less com-
pared to the total number of SLCs evaluated). Thus, model-
ing this task as a visual anomaly detection is reasonable. 
Defect detection are divided into three subsections: explora-
tion of the SOTA AD methods and hyperparemeter tuning 
(Sect. 6.1), experimental setup (Sect. 6.2), and experimental 
results (Sect. 6.3).

6.1 Explorative analysis of SOTA anomaly detection 
methods and hyperparameter tuning

To keep the implementation effort manageable, this study 
focuses on anomaly detection methods that can be invoked 
in a standardized manner using the Anomalib Python 
library [1]. Table 3 categorizes SOTA deep anomaly detec-
tion models based on their taxonomy, loss function, and the 
pre-trained model used if any. The table format and expla-
nations are inspired by the work of Liu et al. [29]. Student-
teacher model approaches depend on pre-trained models 
such as ResNet [19] and VGG [43] as the teacher network. 
The teacher networks are trained on large datasets such as 
ImageNet [13] for normal feature extraction. A particular 
layer of the pre-trained network is selected as a parameter 
for the teacher network. The teacher network then teaches 
a simpler student network on extracting normal features. 
Anomalies are detected when the features extracted differ 
vastly between the teacher and student networks. An anom-
aly score is generated by comparing the features generated 

5 Classification of SLC type

The experiments start with collecting the dataset as explained 
in Sect. 4. The collected images of the SLCs are used as 
training images for the classification model to differentiate 
the different types of SLCs. The model used for the clas-
sification problem is the ConvNeXt [30] model which is a 
modernization of ResNet towards the design of Transform-
ers. Details of the parameters used for the training and other 
additional processes are discussed further in Sect. 5.1. Fur-
ther analysis of the model for the inference times to evaluate 
the performance of the model are elaborated in Sect. 5.2.

5.1 ConvNeXt training and additional 
preprocessing

The collected SLC dataset is further divided into train, test, 
and validation datasets based on the 60:20:20 split. The 
dataset used for the training, testing, and validation of the 
classification model has a mixture of OK and NOK images 
of each type of SLC. The training of the dataset used the fol-
lowing hyperparameters: base-ConvNeXt model, 4 · 10−3 
for the learning rate with AdamW optimizer [31], and batch 
size is 64. Training is executed for 250 epochs. Normaliza-
tion parameters for the images (mean and standard deviation 
for the RGB (red, green, blue) values) are from ImageNet.

Table 2 Inference testing for the classification model is implemented 
using two different datasets: inference dataset which contains 265 
images as explained in Sect. 4 and a 5-image inference which a folder 
contains five different views of the same SLC
Inference setup Hardware Aver-

age 
time 
(secs)

Inference 
time per 
image 
(secs)

Inference dataset (265 
images)

CPU-only 
(i5-1335U)

65.78 0.25

Inference dataset (265 
images)

CPU-only (Ryzen 
3970X)

36.38 0.14

Inference dataset (265 
images)

GPU (RTX 3090) 18.34 0.07

5-image inference CPU-only 
(i5-1335U)

1.13 0.24

5-image inference CPU-only (Ryzen 
3970X)

0.67 0.13

5-image inference GPU (RTX 3090) 0.51 0.10
There are two hardware used to test the model. First is the hardware 
used in the study as explained in Sect. 6.2 and the second one is the 
CPU-only laptop. This shows how different hardware and configura-
tions (using CPU-only or with GPU) can affect the average time and 
inference time per image. All tests are executed five times and the 
average time is taken
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reconstructed and the original image will differ significantly 
in anomalous cases.

Distribution maps are anomaly detection approaches 
that require a robust pre-trained network to extract features 
from normal images. The extracted features are mapped 
to a distribution usually a Gaussian distribution. Anoma-
lies will have features that deviate from the normal feature 
Gaussian distribution. Examples of distribution maps AD 
models are FastFlow [55] and CFlow-AD [17]. FastFlow 
consists of a feature extractor (either Vision Transformers 
(ViT) or ResNet) and the FastFlow model. It is inspired by 
Normalizing Flow (NF) [38] techniques. During the infer-
ence, anomalous data should be out of distribution and have 
a lower likelihood than normal images. CFlow-AD consists 
of a discriminative pre-trained encoder and multi-scale gen-
erative decoders for estimating the likelihood of the encoded 
features. Features extracted by the encoder are processed by 
sets of decoders that are independent for each kth scale. The 
decoder is a conditional normalizing flow network with fea-
ture input and conditional input.

Memory banks are anomaly detection approaches that 
require robust pre-trained networks for feature extraction 
from normal images. Features extracted are stored in a 
memory bank and used during the inference step. Memory 
bank approaches require large memory space to store the 
features and require less training time. Anomalies are deter-
mined when the features are distanced far away from the 
normal features extracted from the memory bank. Examples 
of memory banks AD models are PaDiM [11], PatchCore 
[40], and CFA [27]. PaDiM consists of a pre-trained CNN 
for feature extraction of the patches from different seman-
tic levels. The features are embedded and the assumption 
for the normal training image distribution is based on a 
multivariate Gaussian distribution. Mahalanobis distances 
are used as a comparison of whether a particular patch is 
anomalous, where high scores indicate anomalous areas. 
PatchCore uses pre-trained networks on ImageNet dataset 
such as ResNet and WideResNet for feature extraction. 
Features extracted are stored in a memory bank which is 
later subsampled using greedy coreset selection. A sample is 
considered anomalous when the nearest neighbor search of 
the features is far from neighboring samples. CFA uses pre-
trained ResNet to extract features, features are interpolated 
and concatenated from different spatial resolutions to form 
patch features. Extracted features are stored in the memory 
bank and nearest neighbor searches are initialized to differ-
entiate the normal and abnormal features. Features that are 
outside of the hypersphere of memorized and normal fea-
tures are considered anomalies.

To choose a proper AD model, we first looked at the 
performance of the models on the MVTec anomaly detec-
tion dataset (MVTec AD) [4] which was generated for 

by the student and the teacher network. Example methods 
of student-teacher taxonomy in AD include Reverse distil-
lation [12], and Student Teacher Feature Pyramid Match-
ing (STFPM) [51]. Reverse distillation introduces one class 
bottleneck embedding (OCBE) as the input for the student 
network instead of raw images. The different architecture 
between the student and the teacher network helps improve 
anomaly detection. STFPM is an extension of the vanilla 
student-teacher network with feature pyramid matching 
(hierarchical structure). Several bottom layer groups of the 
model are used as feature comparisons between the student 
and teacher model, the differences between the feature gen-
erated are considered to be anomalies.

Reconstruction-based models, unlike student-teacher 
approaches, do not rely on robust pre-trained models. 
Reconstruction-based models have encoders and decoders 
in the reconstruction model that are self-trained to replicate 
the original normal images. Anomalies are reconstructed 
images that deviate from the original normal images based 
on a prediction from the comparison model. They per-
form worse in image-level anomaly detection as they can-
not extract high-level semantic features; however, they 
excel in pixel-level anomaly detection [29]. An example 
of a reconstruction-based model for AD is DRAEM [56]. 
DRAEM is composed of a reconstructive (encoder–decoder 
architecture) and a discriminative sub-networks (U-Net-like 
architecture). The reconstruction sub-network is trained 
to reconstruct the original image from an artificially cor-
rupted version by a simulator (generated by a Perlin noise 
generator). The output of the reconstructive sub-network 
is concatenated with the original image and used as input 
for the discriminative sub-network. The appearance of the 

Table 3 SOTA anomaly detection models based on the taxonomy, 
methods, loss functions, and the usage of pre-trained networks
Source: Based on overview of SOTA AD models [29]
Model taxonomy Method Loss function Pre-trained
Student–teacher Reverse 

distillation
Cosine similarity ResNet

Student–teacher STFPM MSE ResNet
Reconstruction DRAEM SSIM and Focal 

loss
–

Distribution map FastFlow Log-likelihood ResNet
Distribution map CFlow-AD Log-likelihood ResNet
Memory bank PaDiM – CNN
Memory bank PatchCore – ResNet
Memory bank CFA SVDD ResNet
Most of the models rely on pre-trained neural networks (CNN-
based). Student-teacher models generally compare the result of the 
teacher and student model with the loss function for learning. Recon-
struction models do not use pre-trained models for feature extraction. 
Distribution maps-based models rely on statistical concepts such as 
log-likelihood to fit the distributions to the data. Memory bank mod-
els mostly use distance-based algorithms as a replacement for loss 
functions
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highlights of the anomaly parts during the qualitative analy-
sis are considered better compared to the other models.

6.3 Experimental results

The experimental results will be mainly divided into three 
parts: results of explorative analysis SOTA anomaly detec-
tion models (Sect. 6.3.1), hyperparameter tuning of top can-
didates on sampled SLC dataset (Sect. 6.3.2), and results for 
tuned hyperparameter on whole SLC dataset (Sect. 6.3.3).

6.3.1 Results of explorative analysis SOTA anomaly 
detection models

Table 4 shows the result of the explorative analysis of SOTA 
anomaly detection models for the whole SLC dataset. Meth-
ods with ’(nob)’ are datasets that are preprocessed with a 
background removal pipeline before being used for training. 
The training time given here is in hh:mm:ss. The Reverse 
Distillation method is abbreviated to ’RD’. Methods such as 
PatchCore and PaDiM are memory bank taxonomy models 
that only need 1 epoch for feature extraction. Based on the 
AUROC metric, PatchCore performs best (0.786) followed 
by DRAEM (0.773) for the original dataset. For the dataset 
with the background removal pipeline, the best perform-
ers are PatchCore (0.781) followed by RD (0.726). The F1 
score metric also reflects similar results to the AUROC met-
ric for the best-performing models. Based on this explor-
ative analysis of the AD models, the experiments without 
the background removal pipeline perform consistently bet-
ter. The next training will be conducted without the back-
ground removal pipeline.

6.3.2 Hyperparameter tuning of top candidates on 
sampled SLC dataset

Quantitative analysis of top candidates on sampled SLC 
dataset For the sake of time efficiency, hyperparameter tun-
ing of the best-chosen models is done using only the sam-
pled SLC dataset. All of the hyperparameter tunings have 
global seed 4 to ensure reproducibility.

Hyperparameter tuning for PatchCore is conducted by 
changing the backbone of the feature extractor (ResNet-18 
or WideResNet-50), the layers configuration, the Limit 
Train Batches, the coreset subsampling percentage, and the 
number of neighbors. The layer configurations can be cho-
sen between layer 2, layer 3, or layer 2+3. The Limit Train 
Batches size can be lowered to account for limited VRAM. 
The possible choices include 0.2, 0.4, 0.8, or 1.0. Using 
Limit Train Batches size as 1.0 means maintaining the 
whole training dataset during the training. Table 5 shows the 
result of the hyperparameter tuning of the PatchCore model. 

benchmarking anomaly detection methods with a focus on 
industrial inspection. The experiments are implemented 
using the Anomalib Python library [1] for uniform imple-
mentation of the models. From the Anomalib library, eight 
different anomaly detection models are trained using default 
hyperparameters from the library. Default hyperparameters 
are changed when there are limitations such as limited GPU 
VRAM for training a particular model. All models are imple-
mented with early stopping with the AUROC as the main 
evaluation metric. All models are trained with two datasets 
(all SLC with background removal and without background 
removal) as explained in Sect. 4. Based on the result of 
the training of the anomaly detection models, comparisons 
of different metrics between the trained models are made 
(further explained in Sect. 6.2). The top two models that 
performed best based on the metrics were further explored 
for hyperparameter tuning. The hyperparameter that was 
chosen and tuned will be explained in Sect. 6.3.2. Note that 
the chosen best models can have different hyperparameters 
from the other models.

6.2 Experimental setup

The experimental setup covers the hardware used for the 
whole experiment and the metrics used for choosing the two 
best models based on the results of the explorative analysis 
of the SOTA anomaly detection models.

The hardware used for the preprocessing of the data and 
the training of the models for the experimental setup is a 
desktop PC with the following specifications: CPU AMD 
Ryzen Threadripper 3970X 32 Core Processor, NVIDIA 
GeForce RTX 3090 24 GB VRAM, 72 GB RAM. Codes 
are written in Python. Python libraries used are Anomalib 
(v 0.7.0), mmpretrain for ConvNeXt (classification model) 
[10]. The NVIDIA CUDA Toolkit version is 12.2.

The anomaly detection methods are compared based on 
quantitative analysis and qualitative analysis. The quanti-
tative analysis of the models is based on the Area Under 
the Receiver Operating Characteristic (AUROC), F1 
score, precision, recall, and accuracy. AUROC is the area 
under the curve of ROC which plots the true positive rate 
against the false positive rate at various threshold settings. 
AUROC with a value of 0.5 indicates a classifier with no 
discriminative power, equivalent to random guessing, while 
an AUROC value of 1.0 corresponds to a perfect classi-
fier. Models with the top two highest AUROC in the initial 
explorative analysis comparison were chosen for hyperpa-
rameter fine-tuning. The qualitative analysis is implemented 
when comparing the top two anomaly detection methods to 
see how the anomaly detection models can highlight the 
anomaly in a given image. Models that have more precise 
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Table 6 shows the result of the hyperparameter tuning 
of the DRAEM model. The experiments are conducted by 
changing the lambda value, the learning rate, and the batch 
size. Lambda values are called loss balancing hyperparam-
eter that controls how much of the loss SSIM (Structural 
Similarity Index Measure) between neighboring patches 
affects the loss function.

Qualitative analysis of top selected models on sampled 
SLC dataset Figures 2 and 3 show the qualitative analy-
sis of the two tuned models from PatchCore and DRAEM 
based on the AUROC metrics on different types of defects. 
The left image is the original image with the respective 
defects. Defects included are foreign objects, stickers, dirt 
on the surface of the SLCs, oily surfaces, breakage, and 

Based on the results of the hyperparameter tuning for Patch-
Core, choosing the WideResNet-50 backbone has a slight 
improvement in the metrics compared to the ResNet-18 
backbone. Choosing only layer 3 in the layer hyperpa-
rameter has worse metrics compared to the other models. 
However, it is significantly faster in training time which can 
be useful for rapid model training or prototyping. Increas-
ing the neighbors above 9 does not increase performance. 
Decreasing the number of neighbors has a slight decrease 
in performance while still maintaining approximately the 
same training time. Choosing a smaller coreset subsampling 
percentage sacrifices a little performance but significantly 
improves the training time (coreset 0.05 to 0.01).

Table 4 Explorative analysis of SOTA AD models for the whole SLC dataset
Method AUROC F1 score Recall Precision Accuracy Training time Trainable parameters (M)
RD 0.710 0.647 0.757 0.565 0.657 3:19:59 80.6
RD (nob) 0.726 0.633 0.829 0.512 0.602 2:46:54 80.6
STFPM 0.699 0.618 0.736 0.533 0.624 5:57:35 49.7
STFPM (nob) 0.697 0.611 0.713 0.535 0.624 5:53:40 49.7
DRAEM 0.773 0.658 0.728 0.601 0.687 35:21:34 97.4
DRAEM (nob) 0.663 0.591 0.782 0.478 0.551 21:54:06 97.4
FastFlow 0.698 0.634 0.885 0.499 0.584 3:50:55 124
FastFlow (nob) 0.617 0.592 0.973 0.425 0.444 3:43:44 124
Cflow-AD 0.575 0.584 0.974 0.417 0.425 11:28:10 236
Cflow-AD (nob) 0.610 0.592 0.998 0.421 0.431 5:50:13 236
PaDiM 0.634 0.606 0.914 0.454 0.509 0:20:39 24.9
PaDiM (nob) 0.566 0.587 0.942 0.426 0.451 0:18:17 24.9
PatchCore 0.786 0.678 0.810 0.583 0.681 1:18:07 4.1
PatchCore (nob) 0.781 0.674 0.798 0.584 0.680 1:17:20 4.1
CFA 0.536 0.585 0.964 0.420 0.435 0:34:11 31.3
CFA (nob) 0.504 0.588 0.964 0.423 0.441 0:33:20 31.3
(nob) means that the models are subjected to a background removal pipeline. AUROC is used as the main evaluation for the models. Best per-
forming models based on AUROC metric are given in bold followed by underline. Original and (nob) has its ranking based on the AUROC 
metric. The F1 score metric also depicts similar results to the AUROC metric for the best-performing models. For the whole dataset, the models 
with the background removal pipeline consistently perform worse compared to the original dataset. Training time is given as hh:mm:ss (hours, 
minutes, seconds). Note that some models may only need one epoch to train

Table 5 The result of hyperparameter tuning for PatchCore model on sampled SLC dataset
PatchCore
Hyperparameter Metrics
Backbone Layers/ C/N LTB AUROC F1 score Accuracy Training time (hh:mm:ss) Trainable parameters (M)
ResNet-18 3/0.1/9 1.0 0.747 0.832 0.729 00:18:09 2.8
WideResNet-50 3/0.1/9 1.0 0.772 0.833 0.742 00:18:13 24.9
WideResNet-50 2/0.1/9 0.8 0.808 0.852 0.769 01:37:12 4.1
WideResNet-50 2/0.1/12 0.8 0.808 0.852 0.769 01:37:15 4.1
WideResNet-50 2/0.1/6 0.8 0.807 0.850 0.761 01:37:12 4.1
WideResNet-50 2/0.1/3 0.8 0.793 0.843 0.759 01:37:13 4.1
WideResNet-50 2/0.05/9 0.8 0.811 0.851 0.762 00:53:38 4.1
WideResNet-50 2/0.01/9 0.8 0.790 0.843 0.757 00:18:50 4.1
WideResNet-50 2+3/0.1/9 0.4 0.748 0.830 0.726 00:32:09 24.9
Due to hardware limitations (GPU VRAM), some of the models can only be trained on lower Limit Train Batches to avoid out-of-memory 
errors. For PatchCore models, the WideResNet-50 backbone performs better compared to the ResNet-18 backbone. Best performing models 
based on the metrics are marked with bold followed by underline. C in the hyperparameter refers to the Coreset and N refers to the number of 
neighbors. LTB refers to the Limit Train Batches. hh:mm:ss means the time in hours, minutes, and seconds
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limitations. Changes in specific parameters will be specified 
during the quantitative and qualitative analysis of the mod-
els. Table 7 shows the quantitative comparison of the hyper-
parameter-tuned models with the default parameter models. 
The hyperparameter-tuned PatchCore model performs bet-
ter and is faster than the default hyperparameter PatchCore. 
The hyperparameter-tuned PatchCore may perform better, 
if there is no limitation to the GPU VRAM, as the hyper-
parameter used here is the second model from Table 5 with 
lower Limit Train Batches (0.7). When higher GPU VRAM 
is available, using the Patchcore layer 2 models with 1.0 
Limit Train Batches may increase the performance of the 
model. The hyperparameter-tuned DRAEM performs better 
compared to the default parameter DRAEM. The training 
time needed to train the tuned model is shorter. The infer-
ence time for the model to do inferencing on the inference 
dataset (265 images of normal and anomalous SLCs) is on 
average the same.

Figures 4 and 5 show the qualitative analysis and com-
parison between the hyperparameter-tuned whole SLC 
dataset models and the default parameter models. Figure 4 
shows the first three defects on different colors and types 
of SLCs. The first two columns are from breakage on the 
top left side of the blue SLCs. The next two columns show 
a yellow SLC with a breakage defect on the top left corner 
walls. This represents one of the most challenging cases, 
as the defect is difficult to detect for the naked human 
eyes. The final two columns are one of the simpler cases 
of defects (a large hole in the center of the SLC). Patchcore 
hyperparameter-tuned models are more confident in the 
larger defects with red heat map highlights on the location 
of the defect. However, the PatchCore model (both default 
and hyperparameter-tuned) still struggles to accurately clas-
sify the yellow SLCs as defects and highlight the location 
of the defects. DRAEM models have high anomaly scores 
on obvious defects such as the dark blue SLC defects in 
Fig. 4. However, the highlighted anomaly locations are not 

liquid spillage. Every two columns are the predicted heat 
map from the model and the confidence level of whether the 
SLC is anomalous or normal. A higher anomaly score in a 
particular spot of the SLC has darker red spots, and a lower 
anomaly score has lighter yellow colors. PatchCore mod-
els generally perform best for most of the anomaly types. 
It can highlight the location in which the anomaly is most 
likely located in Figs. 2 and 3 compared to DRAEM tuned 
models. PatchCore layer 2 generally has tighter groupings 
of the anomalous region as shown in the foreign object (big) 
anomaly. PatchCore layer 3 has much-spread groupings of 
anomalous regions. PatchCore performs slightly worse in 
oily surface defects. DRAEM models work best on surface 
anomalies such as dirt on the surface and oil on the surface. 
Heatmaps from DRAEM perform best on surface anomalies 
and do not highlight the breakage of the SLC walls as seen 
in breakage, breakage and liquid, and major breakage in 
Fig. 3. Despite having high confidence in predicting major 
breakage, the heatmap does not give a proper visualization 
of which part of the SLC is anomalous. This is however 
expected as DRAEM models are built for pixel-level detec-
tion. Based on the qualitative experiment, the PatchCore 
model performs consistently better compared to the other 
models and has a better-predicted heat map on the localiza-
tion of the defects.

6.3.3 Results for tuned hyperparameters on whole SLC 
dataset

Based on the quantitative and qualitative analyses con-
ducted during the hyperparameter tuning for the sampled 
SLC dataset, we use the best combination of hyperparam-
eters to train it on the whole SLC dataset without back-
ground removal. The total number of images in the whole 
SLC dataset is twice as high as the sampled SLC dataset. 
This prevents us from directly using the same hyperparam-
eters from the hyperparameter tuning due to GPU VRAM 

Table 6 The result of the hyperparameter tuning for DRAEM model on the sampled SLC dataset
DRAEM
Hyperparameter Metrics
Lambda Learning rate Batch size AUROC F1 score Accuracy Training time (hh:mm:ss) Trainable parameters (M)
None 0.0001 4 0.717 0.830 0.723 07:49:01 97.4
None 0.0001 16 0.732 0.832 0.728 10:55:33 97.4
0.0 0.0001 8 0.742 0.838 0.743 09:12:07 83.0
0.5 0.0001 8 0.730 0.814 0.723 10:04:10 83.0
1.0 0.0001 8 0.729 0.832 0.729 09:50:44 83.0
None 0.0001 8 0.748 0.834 0.739 05:58:27 97.4
None 0.001 8 0.702 0.832 0.733 05:47:19 97.4
None 0.01 8 0.664 0.828 0.720 05:58:42 97.4
The optimal learning rate is 0.0001 with batch sizes 8. The average time per epoch is around 3 min 30 s, which is uniform throughout the dif-
ferent hyperparameter settings. Best performing models based on the metrics are marked with bold followed by underline. hh:mm:ss means 
the time in hours, minutes, and seconds
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Fig. 2 The qualitative analysis of the two tuned models from Patch-
Core and DRAEM models is based on the explorative analysis of 
SOTA anomaly detection. Heatmaps from PatchCore better isolate the 
anomalies compared to the DRAEM models. Patchcore Layer 2 pro-
duces heatmaps that are well-localized at the true anomalous areas. 
Patchcore Layer 3 produces more spread-out anomaly scores near the 

anomalous areas. Layer 2 also has darker red spots which means a high 
anomaly score which indicates a high likelihood of anomaly in that 
particular region. DRAEM performs best on surface-based anomalies 
such as dirt on the SLC surface. DRAEM with batch size 8 performs 
better compared to batch size 4 in most of the cases
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class. Figure 5 shows additional qualitative analysis of 
the models on another three different colored and shaped 
SLCs. The first two columns show a blue cover SLC with a 
cracks on the upper left part of the cover SLC. All models 
except the DRAEM default model identify the cover SLC 

properly shown or misguiding, especially in the dark blue 
SLC. This may be unfavorable in industrial settings as the 
result of the defect classification cannot be backed with a 
proper indication of the location of the defects. The tuned 
DRAEM model misclassifies the yellow SLC into a normal 

Fig. 3 Qualitative analysis of the two tuned models from PatchCore 
and DRAEM models. This covers the rest of the anomaly types that 
are not covered in Fig. 2. Despite the high confidence of the DRAEM 
model on major breakage and breakage anomalies, the model fails to 

highlight the area of the breakage anomaly properly. Patchcore layer 2 
consistently highlights the main point of anomaly as in breakage defect 
and major breakage SLCs
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outer wall. The final two columns show a breakage on the 
top right corner of the yellow SLC and the part broken lies 
on the center of the SLC. This is another harder defect case 
where the defect location is not as obvious. Both PatchCore 
models successfully highlight the location of the breakage 
and the location of the foreign object with the default hav-
ing better heatmap result due to the layer 2 hyperparameter. 
The default DRAEM model fails to highlight anything sig-
nificant, thus the misclassification of the yellow SLC. The 

successfully as a defect class. The difference between the 
Patchcore default (layer 2) and tuned Patchcore (layer 3) 
can be seen in the blue cover SLC, where Patchcore with 
layer 2 has a higher anomaly score in the region of the 
anomaly affecting the confidence in the prediction. The next 
two columns show a black SLC with a deformed left outer 
wall of the SLC. All models classify properly that the black 
SLC belongs to the defect class. None of the model have 
successfully highlighted the location of the deformed left 

Table 7 Quantitative comparison between the default (noted by def on the end of the model name) and hyperparameter-tuned models on the whole 
SLC dataset
Comparison default and best hyperparameter-tuned models on whole SLC dataset
Model AUROC F1 Score Recall Precision Accuracy Training time (hh:mm:ss) Inference time (mm:ss)
PatchCore 0.812 0.700 0.736 0.672 0.741 01:02:27 01:22
PatchCore (def) 0.786 0.678 0.810 0.583 0.681 01:18:07 01:24
DRAEM 0.789 0.672 0.886 0.541 0.642 28:57:19 01:24
DRAEM (def) 0.773 0.658 0.728 0.601 0.687 35:21:34 01:23
Metrics are given as AUROC, F1 score, recall, precision, accuracy, training time, and inference time. The training time is given as the total 
training time. Whereas the inference time is the total inference time needed to process the inference SLC dataset (which contains 265 images 
of normal and anomalous SLCs). The hyperparameter-tuned PatchCore and DRAEM performed better based on the AUROC metric. PatchCore 
model is not performing to its maximum potential due to limitations in the VRAM. hh:mm:ss means the time in hours, minutes, and seconds

Fig. 4 The qualitative analysis and comparison of the two best models 
based on the default parameter and the hyperparameter-tuned models 
on the whole SLC dataset. Patchcore on both default and hyperparam-
eter-tuned models performs better in highlighting the position of the 
anomaly compared to DRAEM (as seen in the left and right column 
heatmap). DRAEM models can mostly classify the SLC as a defect 
but fail to properly highlight the defect location in the heat maps. The 
blue SLC cover (left column) has breakage on the top left side of the 
image. All models can accurately classify the image as anomalous. 
However, only the default PatchCore can properly pinpoint the anoma-

lous spot. The dark blue SLC (right column) are simpler defect case 
where breakage on the surface of the SLC is easily observed with the 
naked human eye. Despite the high confidence score of the DRAEM 
models, the highlighted regions do not represent the anomalous part of 
the SLC. The yellow SLC (center) exhibits a more complex structure 
which makes defect detection considerably more difficult. The defect 
for the yellow SLC is on the top left corner walls of the SLC (break-
age). Both Patchcore and DRAEM fail to identify the anomalous part 
in the yellow SLC
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This work implemented SOTA classification and anom-
aly detection models, which are commonly used for bench-
marking on controlled datasets such as MVTec Dataset, on 
real SLC datasets.

The accuracy of the finetuned classification model Con-
vNeXt is 100% for the SLC test data set. This exceptionally 
high accuracy can be attributed to the fact that the SLCs are 
standardized products, with a set of easily distinguishable 
features such as color, size, and geometry. So the classifica-
tion of the SLC type can be considered as a solved problem.

The anomaly detection is considerably more challeng-
ing than the SLC-type classification. The top two perform-
ers using the default hyperparameter in the explorative 
experiment step for anomaly detection are PatchCore and 
DRAEM. Despite the high metric score of DRAEM, it 
performs worse in image-level anomaly detection com-
pared to PatchCore qualitatively. PatchCore performs bet-
ter in localizing the defects in the heatmaps which helps to 
explain why an object is classified as defect. Besides this, 
PatchCore has consistently lower training times compared 
to DRAEM. Uncertainties during the implementation of the 

tuned DRAEM model highlights the breakage on the wall in 
dark red, however, fails to highlight the foreign object in the 
center of the yellow SLC. Based on all the qualitative analy-
sis, PatchCore models perform more consistently compared 
to DRAEM model and can more reliably highlight the exact 
location of the defects.

7 Discussion and conclusion

The goal of this work was to create a computer vision sys-
tem that can recognize the SLC type for inventory manage-
ment and perform defect detection automatically bridging 
the gap between research and the industrial field for anom-
aly detection systems. The camera portal was built based 
on careful consideration of the geometry of the SLCs while 
keeping space requirements and costs minimum. The whole 
setup consists of the camera portal with 5 cameras angled 
at approximately 47.5◦ with a placement height of 500 mm 
from the edge of the highest SLC and a PLC-controlled con-
veyor belt.

Fig. 5 Additional qualitative analysis and comparison of the two best 
models based on the default parameter and the hyperparameter-tuned 
models on the whole SLC dataset. The blue SLC cover (left column) 
contains cracks on the upper left part of the SLC cover. The default 
DRAEM model failed to classify this as anomalous. Both PatchCore 
models can classify this as anomalous and have some highlights in 
the region of the cracks. The black SLC (center column) has a defect 
(deformed plastic) in the left outer wall of the SLC. All of the models 
successfully classify the SLC as defective. However, none of the mod-
els properly highlights the defective left wall. The yellow SLC (right 

column) contains two defects. One breakage defect is on the top right 
corner of the SLC and the other defect is a foreign object in the center 
of the SLC. PatchCore models perform consistently better compared 
to other models with good highlighting of the location of the defect. 
The default DRAEM model produced a miss classification in the yel-
low SLC case as it fails to detect the foreign object and the breakage 
on the upper right walls. We can see the weakness of the hypertuned 
PatchCore model where the layers used in the hyperparameter (layer 3) 
have worse performance in highlighting the defect in the yellow SLC
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views is considered defective. This method has its limita-
tions and consideration of future work in multi-view AD 
methods can be an interesting direction. Techniques such as 
image stacking, anomaly score aggregation, or multi-view 
convolutional models could be explored to enhance perfor-
mance and provide a more accurate analysis of the SLCs.
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