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Abstract
Virtual staging technique can digitally showcase a variety of real-world scenes. However, relighting indoor scenes from a
single image is challenging due to unknown scene geometry, material properties, and outdoor spatially-varying lighting. In this
study, we use the High Dynamic Range (HDR) technique to capture an indoor panorama and its paired outdoor hemispherical
photograph, and we develop a novel inverse rendering approach for scene relighting and editing. Our method consists of four
key components: (1) panoramic furniture detection and removal, (2) automatic floor layout design, (3) global rendering with
scene geometry, new furniture objects, and the real-time outdoor photograph, and (4) virtual stagingwith new camera position,
outdoor illumination, scene texture, and electrical light. The results demonstrate that a single indoor panorama can be used to
generate high-quality virtual scenes under new environmental conditions. Additionally, we contribute a new calibrated HDR
(Cali-HDR) dataset that consists of 137 paired indoor and outdoor photographs. The animation for virtual rendered scenes is
available here.

Keywords HDR photography · Photometric calibration · Scene editing · Global illumination · Inverse rendering

1 Introduction

Virtual home staging is crucial in the real estate industry,
enabling both the public and real estate agents to assess
properties conveniently. Particularly since the COVID-19
pandemic, the use of virtual home tours in the housingmarket
has increased significantly due to work-from-home restric-
tions [72]. The increasing popularity of omnidirectional
cameras has driven increasing research interests in panoramic
photography in recent years, and a single panorama provides
a complete representation of the surrounding context.

The High Dynamic Range (HDR) technique captures a
wide range of pixel information from the real world. The
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global rendering method proposed by Debevec [8] offers an
image-based rendering model for relighting virtual objects
using HDR photographs. Previous studies have focused on
estimating 360◦ HDR environment map directly from Low
Dynamic Range (LDR) images for relighting new virtual
objects [15, 16, 18]. However, these data-driven approaches
often assume linear proportionality between pixel values and
scene radiance without considering photometric calibration.
Bolduc et al. [2] recently conducted a study that calibrated
an existing panoramic HDR dataset with approximate scene
luminance levels. In our work, we take this a step further
by calibrating the captured HDR panoramas using absolute
luminance value (in SI units) measured in each scene. The
actual brightness of a scene,measured in luminance (cd/m2),
accurately reflects the light properties in the real world. This
calibration ensures that ourHDR images accurately represent
realistic spatially-varying lighting conditions, distinguishing
them from existing indoor panorama datasets [6, 60, 69].

Panoramic images introduce unique challenges for scene
understandingdue to the distortion causedby equirectangular
projection. When dealing with scenes that contain furniture
objects, the complexities of 3D scene reconstruction are fur-
ther amplified. Recent studies on indoor furniture inpainting
focus on furniture removal from 2D perspective images [35,
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Captured Scene Virtual Rendered Scene

Fig. 1 Illustration of Our Rendering Approach: A real-world scene is
captured at 11:27AM(cloudy sky condition).Different furniture objects
are removed from the existing room, and the empty scene is refurnished

with new virtual furniture objects [13]. A new panorama is then virtu-
ally renderedwith edited camera position, outdoor illumination at 01:00
PM (clear sky condition), scene textures, and electrical light

54]. Directly applying these inpainting techniques to fur-
nished panoramas can result in geometric inconsistencies
within indoor surfaces. To directly remove furniture objects
from a single panorama, our method first segments the
panorama into multiple 2D perspective images to identify
furniture objects. It then uses 3D indoor planes to guide the
inpainting process.

Existing studies on inserting small objects into 2D per-
spective images have focused on different contexts, such as
virtual scenes [59] and real-world scenes [7, 15, 40]. How-
ever, there is a lack of automated methods for directly insert-
ing virtual furniture objects into panoramas. We introduce a
rule-based layout design that identifies floor boundaries and
allows precise placement of new furniture objects through
geometric transformations and spatial parameters.

Our inverse rendering approach aims to directly estimate
physical attributes, such as 3D geometry, material proper-
ties, and illumination, from a single panorama. We focus on
realistic virtual staging for indoor scenes and develop a ren-
dering approach that includes a detailed scenemodel, surface
materials, and outdoor spatially-varying light. Our rendering
pipeline allows flexible scene editing and generates the new
virtual scene with global illumination (Fig. 1).

Wedemonstrate a complete pipeline that includes data col-
lection, scene design, and virtual home staging to showcase
real-world indoor scenes (Fig. 2). This paper is the extended
version of our previous work [32]. We further develop the
algorithms for editing the outdoor scene and integrate the
design applications into our rendering pipeline. Overall, our
work makes the following technical contributions:

(1) A method for calibrating indoor-outdoor HDR pho-
tographs, along with a new calibrated HDR (Cali-HDR)
dataset that includes 137 scenes.

(2) An image inpainting method that detects and removes
furniture objects from a panorama.

(3) A rule-based layout design for positioning multiple fur-
niture objects on the floor based on spatial parameters.

(4) The outdoor sun position is accurately edited during the
day, incorporating the full-spectral sky appearance.

(5) Virtual staging is achieved through the integration of new
camera positions, scene texture, and electrical light.

2 Related work

2.1 HDR and photometric calibration

The dynamic range of radiances in a real-world scene spans
from 10−3 cd/m2 (starlight) to 105 cd/m2 (sunlight) [48].
In the context of a 2D perspective image, some studies
have focused on predicting panoramic HDR environment
maps [15], lighting representation [16], and estimating HDR
panoramas from LDR images [18]. Considering that HDR
images reflect the relative luminance values from the real
world, absolute luminance measurement is required for on-
site HDR photography to recover scene radiance [10]. To
display the absolute luminance value, the captured HDR
image requires photometric calibration, which is a means of
radiometric self-calibration [42]. Reference planes, such as a
matte ColorChecker chart or gray cards, should be positioned
within the scene for luminance measurement [43].

2.2 Indoor light estimation

Previous studies on indoor lighting estimation have explored
indoor lighting editing [40],material property estimation [63],
and the recovery of spatially-varying lighting [17, 39, 51]
from a 2D image. Following the global renderingmethod [9],
some studies aim to estimate a 360◦ indoorHDRenvironment
map from a 2D image and subsequently render the virtual
objects [15, 37]. User inputs, such as annotating indoor
planes and light sources, have also been utilized to assist
scene relighting and object insertion [33]. Zhi et al. focus
on the decomposition of light effects in the empty panora-
mas [70].While previous studies have extensively focused on
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Outdoor Photograph
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Fig. 2 Our renderingpipeline consists of fourmodules: Indoor-Outdoor
HDR Calibration (Sect. 3) calibrates the captured indoor and outdoor
HDR photographs with measured absolute luminance values. Furniture
Detection and Removal (Sect. 4) identifies and removes the target fur-

niture objects from the scene. Automatic Floor Layout (Sect. 5) allows
the automatic placement of multiple furniture objects. Virtual Home
Staging (Sects. 6, 7, and 8) achieves high-quality virtual scenes

global light estimation and 3D object insertion, there is lim-
ited research on panoramic global rendering under real-time
outdoor illumination.

2.3 Outdoor light estimation

Outdoor illumination includes direct sunlight and sky light.
The all-weather sky model proposed by Perez et al. [47]
visualizes relative sky luminance at different times. Later,
the full spectral sky model achieves color change under dif-
ferent atmospheric conditions [25]. However, the virtual sky
model cannot reconstruct the complete outdoor scene content
for outdoor illumination, lacking cloud details and surround-
ing context in the rendered sky image. Given a single LDR
image, some studies [24, 68] estimate a 360◦ HDR environ-
ment map as spatially-varying light for inverse rendering and
object insertion. Meanwhile, other studies [11, 22, 23, 36,
49] focus on estimating outdoor illumination from multiple
images.

2.4 Panoramic furniture removal

The conventional image inpainting method assumes a nearly
planar background around the target object, making it unsuit-
able for indoor scenes with complex 3D room structures.
For the case of indoor scenes, the existing state-of-the-art
inpainting models, such as LaMa [54], cannot recognize
the global structure, including the boundaries of walls, ceil-
ings, and floors. Several approaches have been attempted

to address this challenge: (1) utilizing lighting and geome-
try constraints [67], (2) using planar surfaces to approximate
contextual geometry [26, 34, 35], and (3) estimating an empty
3D room geometry from furnished scenes [66]. These studies
have primarily focused on furniture detection and inpaint-
ing tasks for 2D perspective images. Panoramic furniture
removal needs furniture detection [21], spherical semantic
segmentation [65], and image inpainting.Recent studies have
focused on furniture removal tasks in both virtual panora-
mas [19, 20] and real-world panoramas [50].

2.5 3D layout estimation

Estimating a 3D room layout from a single image is a
common task for indoor scene understanding. While indoor
panoramacanbe converted into a cubicmap [4], the actual 3D
layout is oversimplified. Building on this cubemap approach,
other studies [55, 56] focus on panorama depth estimation
using 3D point clouds.Moreover, under theManhattanworld
assumption [5], a 360◦ room layout with separated planar
surfaces can be segmented from a single panorama [58, 62,
69, 73]. Moving beyond 3D room layout, detailed scene and
furniture geometry can be reconstructed from 2D perspec-
tive images [27, 30, 45]. Additionally, when provided with
a 2D floor plan, indoor space semantics and topology repre-
sentations can be generated to create a 3D model [61] and
recognize elements in floor layouts [64]. An accurate room
geometry allows new furniture objects to be inserted pre-
cisely into the existing scene.
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Fig. 3 Photometric Calibration between Two Cameras: (a) Photographs from two cameras. (b) Cropped target regions. (c) Original luminance
maps. (d) Luminance maps after scaling the HDR image captured by the fisheye lens with k2

3 Indoor-outdoor HDR calibration

3.1 Indoor HDR calibration

For indoor scenes, a Ricoh Theta Z1 camera was positioned
in the room to capture panoramic HDR photographs. The
camera settings were configured as follows: White Balance
(Daylight 6500), ISO (100), Aperture (F/5.6), Image Size
(6720 x 3360), and Shutter Speed (4, 1, 1/4, 1/15, 1/60, 1/250,
1/1000, 1/4000, 1/8000). To ensure consistency and avoid
motion blur during photography, the camera was fixed on a
tripod at a height of 1.6m. We placed a Konica Minolta LS-
160 luminancemeter next to the camera tomeasure the target
luminance on a white matte board. Each HDR photograph
needs per-pixel calibration to accurately display luminance
values for the scene. Themeasured absolute luminance value
at the selected point is recorded in SI unit (cd/m2).

As shown in Eq. (1), the luminance value of each pixel is
based on CIE XYZ values, based on the standard color space
(sRGB) [52] and CIE Standard Illuminants D65. According
to the study by Inanici [29], indoor scene luminance (Li )
(cd/m2) is expressed as:

Li = k1 · (0.2127 · R + 0.7151 · G + 0.0722 · B) (1)

where R, G, and B values are three color channels (RGB)
in the captured indoor HDR image. The measured luminance
value and the displayed luminance value from the original
HDR image are used to calculate the calibration factor (k1).

3.2 Outdoor HDR calibration

To capture outdoor scenes, a Canon EF 8-15mm f/4L fisheye
lens was installed on a Canon EOS 5D Mark II Full Frame
DSLRCamera, and a 3.0 Neutral Density (ND) filter was uti-
lized for capturing direct sunlight with HDR technique [53].
The camera settings were configured as follows: White Bal-

ance (Daylight 6500), ISO (200), Aperture (F/16), Image
Size (5616 x 3744), and Shutter Speed (4, 1, 1/4, 1/15, 1/60,
1/250, 1/1000, 1/4000, 1/8000). Due to the diverse outdoor
contexts, it is impractical to place a target plane to measure
target luminance values.

Each camera has its own fixed camera response curve
to merge multiple images with varying exposures into one
single HDR image. Rather than performing a separate
calibrationprocess for outdoorHDR,our objective is to deter-
mine a fixed calibration factor between two distinct cameras
and calibrate the outdoorHDR imageswith indoor luminance
measurement. As shown in Fig. 3, we positioned two cam-
eras in an enclosed room under consistent electrical lighting.
Following the camera settings of indoor and outdoor HDR
photography (Sect. 3), we captured the target Macbeth Col-
orChecker chart from two cameras, respectively. Then, 2D
perspective images displaying the same target regions were
cropped from the original images. After merging the two sets
of images into HDR photographs, we calculated the differ-
ence ratio (k2) between the target pixel region (white patch)
on the HDR photographs obtained from the two cameras.
Ultimately, the HDR image captured by the Canon EOS 5D
Camera was linearly calibrated with the computed constant
value (k2), and the HDR photographs from the two cameras
were calibrated to display the same luminance range. k2 is a
fixed constant when the two camera settings stay the same.

As shown in Eq. (2), outdoor scene luminance (Lo)
(cd/m2) is expressed as:

Lo = k1 · k2 · (0.2127 · R + 0.7151 · G + 0.0722 · B) (2)

where R, G, and B values are three color channels (RGB)
in the captured outdoor HDR image. k1 is the calibration
factor determined by the measured luminance target value
and the displayed luminance value in the captured indoor
HDR image, and k2 is the computed constant for scaling the
outdoor hemispherical image into the indoor panorama.
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After linear rescaling, the outdoor HDR photographs are
processed through the following steps: (1) vignetting cor-
rection that compensates for the light loss in the periphery
area caused by the fisheye lens [29], (2) color correction
for chromatic changes introduced by ND filter [53], and (3)
geometric transformation from equi-distant to hemispherical
fisheye image for environment mapping [28].

4 Furniture detection and removal

4.1 Panoramic furniture detection

A single panorama displayed in 2D image coordinates can be
transformed into a 3D spherical representation [1, 58], and
this process can alsobe inverted.Buildingon this concept, our
objective is to convert a panorama into a list of 2D images for
scene segmentation. Subsequently, we aim to reconstruct the
panorama where target furniture objects are highlighted. The
selected region on the input panorama Ip is geometrically
cropped and transformed into a 2D perspective image, within
longitude angle (θ ) and latitude angle (φ). θ ∈ (−π,+π) and
φ ∈ (−0.5π,+0.5π). With the fixed field of view (FOV )
and the image dimension of height (h) by width (w), we
obtain 2D perspective image set I = {I1, I2, I3, . . . , Ii },
and the process of equirectangular-to-perspective can be
expressed as mapping function S (Eq. (3)):

Ii = S(Ip; FOV , θ, φ, h, w) (3)

After scene segmentation for 2D perspective images, a
set of processed images I′ = {I ′

1, I
′
2, I

′
3, . . . , I

′
i } is stitched

back to reconstruct a new panorama according to annotated
θ and φ. The invertible mapping process enables image
transformation between equirectangular and 2D perspective
representations.

As shown in Fig. 4 (a), one single panorama is segmented
into a set of 2D perspective images and segmented per color
scheme in semantic segmentation classes [71]. A 3D layout is
estimated with separated planer surfaces of the ceiling, wall,
and floor textures. The rendering model generates an indoor
mask to distinguish the floor and other interior surfaces, and
the result highlights the furniture object placed on the floor
(Fig. 4 (b)). The target mask includes tripod location, direct
sunlight region, and furniture areas (Fig. 4 (c)).

4.2 Furniture removal

For furnished panoramas, we first estimate the 3D room
geometry [58] and utilize the indoor planar information in
the panoramas to guide the inpainting process. As shown in
Fig. 5, our method allows for image inpainting on the orig-
inal furnished panoramas with surrounding context, while

utilizing the floor boundary as a guiding reference to pre-
serve clear indoor boundaries. One challenge in inpainting
the floor texture is when the masked region is distant from
nearby pixels, leading to blurring and noise. Unlike walls
and ceilings, the floor texture often exhibits a strong pattern
with various textures. Thus, we address this issue by treat-
ing the floor texture in the indoor scenes as a Near-Periodic
Pattern (NPP). Compared to LaMa [54], which is trained on
existing 2D image datasets, the NPP model developed by
Chen et al. [3] learns the masked region from the provided
image. This results in outputs that are optimized based on
the content of the input image itself. As demonstrated in
Fig. 5, our approach, combined with the LaMa [54] and NPP
models [3], effectively recovers the scene context around the
detected furniture area. The restored indoor textures, includ-
ing ceiling, wall and floors, will be incorporated into the 3D
rendering model.

5 Automatic floor layout

The indoor furniture layout follows the user’s preferences and
daily activities. To automate furniture placement, we develop
a rule-based method that automatically positions furniture
objects on the floor plane using a set of predefined spatial
parameters and floor geometry. The location of the window
and the corresponding floor edge are known in the estimated
floor layout. For the floor geometry, we compute and deter-
mine the longest side of the floor as the reference floor edge.
The window edge and the reference floor edge are used to
precisely guide the placement of furniture on the floor plane.

For each scene, we segment the floor mesh from the
captured panorama, and the orientation of each object is
determined based on whether it faces the window or indoor
walls. For the translation distance, we normalize the distance
between the object’s dimension and the floor boundary to a
range between 0 and 1. This normalization allows the object
to be precisely positioned along the wall and window side.
Different spatial parameters and orientation combinations
can express alternative floor layouts. The rule-based method
adapts to various layout rules by recognizing different floor
boundaries and placing target objects accordingly within dif-
ferent indoor scenes.

Within the 3D coordinate system, the segmented floor
mesh and furniture objects are positioned on the xy plane
(Fig. 6). Each furniture object can be represented as a set
of point clouds. The task of floor layout design is subject to
the constraint of the floor boundary. Each furniture object
rotates around the z axis to align with the target floor edge
and translates to the designated position, denoted by the valid
translation distances tx and ty . We transform the 3D point set
xi to its corresponding transformed point xi′ in the xy plane,
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(a)

Panorama 2D Perspective Segmentation Binarization

(b)

Stitched Panorama Filtered Panorama Floor Boundary Detected Furniture

(c)

Tripod Location Sunlight Region Furniture Areas Target Mask

Fig. 4 Panoramic Scene Segmentation: (a) A single panorama is seg-
mented into a set of 2D perspective images, and target furniture objects
are detected. (b) The stitched panorama is processed to display furniture
contours, and the rendered floor boundary is utilized to filter out solid

contours that are not attached to the floor area. (c) Estimated tripod
location [70], direct sunlight region, and the detected furniture areas
are combined as the target mask

(a) Input (b) PanoDR [19] (c) LaMa [54] (d) Ours

Fig. 5 Comparison of Image Inpainting Methods: The target mask (from Fig. 4 (c)) is paired with input panorama (a) to remove the target region
using PanoDR [19] (b), LaMa [54] (c), and our method (d), respectively
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Fig. 6 Furniture Layout Alternatives: Given an empty floor mesh, multiple furniture objects are placed on the floor with predefined positions and
orientations

by applying the rotation matrix and the translation matrix:

xi′ = Rz(θ)xi + t , where t = [
tx ty 0

]T
.

The detailed process of furniture arrangement is expressed
in Algorithm 1. The inputs for furniture arrangement include
geometry inputs (Floor Mesh (A), Furniture Object (B)) and
spatial parameters (Distance towindow (dx ),Distance towall
(dy), Orientation (α)). The algorithm first obtains geomet-
ric information from the target floor mesh and 3D furniture
object, then rotates and translates a single furniture object to
the target location.When there aremultiple furniture objects,
each object is placed according to its corresponding spatial
parameters.

6 Indoor virtual staging

The appearance of an indoor scene depends on various
factors, such as indoor and outdoor illumination, roomgeom-
etry, and materials. Following the Lambertian assumption in
previous studies [12, 14, 38, 44], the indoor surfaces’Bidirec-
tional Reflectance Distribution Function (BRDF) is assumed
to be constant in all directions.

Algorithm 1 Furniture Arrangement
Require: Floor Mesh (A), Furniture Object (B)
Require: Distance to window (dx ), Distance to wall (dy), Orientation

(α)

Phase 1 - Read Floor Mesh

1: Input: A
2: get the floor vertices in the xy plane
3: compute the Euclidean distance between adjacent vertices
4: Output: the longest floor edge (L), the floor edge with window (W )

Phase 2 - Read Furniture Object

5: Input: B
6: use a bounding box to get the vertices in the xy plane
7: compute the Euclidean distance between adjacent vertices
8: Output: furniture length (l), furniture width (w)

Phase 3 - Geometric Transformation

9: Input: B, dx , dy , α
10: rotate B with α around the z axis to adjust orientation
11: use floor dimension (L , W ) and furniture dimension (l, w) to com-

pute valid translation distance
12: use parameter inputs (dx , dy) to compute the target translation dis-

tance
13: Output: translated B ′
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As shown in Eq. (4), a real-world image (I ) can be rep-
resented as the pixel-wise product of reflectance layer R(I )
and shading layer S(I ).

I = R(I ) � S(I ) (4)

In our work, we capture the scene under natural illumi-
nation, where the outdoor image serves as the only light
source. The indoor panorama is used to estimate the 3D room
geometry, paired with segmented surface textures. For each
scene, the outdoor image and room geometry are used to ren-
der the shading layer S(I ) and compute the corresponding
reflectance layer R(I ) for surface textures.

We build up a physics-based rendering pipeline in Mit-
suba platform [31]. Various real-world scenes are refurnished
with virtual furniture objects (Fig. 7). Compared to previ-
ous scene relighting and object insertion approaches [15, 39,
70], our proposed rendering method integrates complete 3D
scene geometry (including both roomgeometry and furniture
objects), outdoor environment map, and material textures,
allowing the new furniture objects to be virtually rendered
within the scene.

Our rendering approach not only accurately renders
the virtual objects but also reconstructs the inter-reflection
between the scene and newly inserted objects. It is important
to note that as the scene geometry is approximated into indi-
vidual planar surfaces, certain indoor details, such as curtains
or window frames, are simplified as planar surfaces in the
rendering model. Overall, our rendering pipeline effectively
generates high-quality indoor panoramas while preserving
the essential characteristics of real-world scenes.

We compared our rendering method with the conven-
tional global rendering approach for scene relighting (Fig. 8).
Meanwhile, a single LDR image is used to generate the cor-
responding HDR image by Liu et al.’s method [41], and the
rendered results are then compared with those obtained from
calibrated HDR images.

First, an indoor LDR panorama is used to estimate HDR
panorama to relight the virtual furniture objects (Fig. 8(a)),
and the objects are rendered with our calibrated indoor HDR
panoramas (Fig. 8(b)).While the furniture objects canboth be
rendered within the indoor context, the conventional method
fails to recover the direct illumination for the newly inserted
object, such as the bed in Room 2, and the inter-reflection
between the new objects and the existing scene is missed.
Second, we use one single outdoor image to estimate its
HDR image to render the indoor scene (Fig. 8(c)), and our
calibrated outdoor HDR fisheye image is used as the light
source (Fig. 8(d)). The estimatedHDRimage (Fig. 8(c)) lacks
photometric calibration, necessitating multiple searches for
optimal scaling factor, when converting the rendered HDR
panorama into an LDR image for visualization.

The camera position and indoor textures can be flexi-
bly customized for virtual staging. As illustrated in Fig. 9,
three rooms are rendered at new indoor locations (Posi-
tion 1 and 2), compared to the captured indoor panoramas.
When the camera position is closer to the window, the
window pattern is removed and the outdoor scene is visu-
alized (Position 3). The real-time outdoor scene can be
observed from various indoor view directions and loca-
tions. The 3D room geometry can be customized with
new wall and floor textures to visualize the refurnished
scenes.

7 Editing sun positions

Under natural illumination, the outdoor scene changes as the
sun position shifts at different times of the day. Considering
that the paired indoor-outdoor images are captured only at a
specific time point, the rendered scene remains fixed at that
captured moment. In this section, we focus on editing the
direct illumination of the sun in the outdoor scene, allowing
the indoor scene to be rendered under varying sun positions.
By using GPS location and time of the day, the local sun
position can be represented through altitude (φ) and azimuth
(θ ) angles.

S(θ, φ) = (x, y, z)

x = cos(φ) sin(θ)

y = sin(φ)

z = cos(φ) cos(θ) (5)

θ ′ = arctan
x

z

φ′ = arcsin
y

√
x2 + y2 + z2

(6)

According to the study on spherical coordinate sys-
tem [58], given a unit sphere (S), the sun position (x, y, z)
in the 3D coordinate is computed by φ and θ (Eq. (5)). In
the equirectangular representation [57], the 3D coordinate
can be converted into its corresponding φ′ and θ ′ on the 2D
image (Eq. (6)), θ ′ ∈ (−π,+π) and φ′ ∈ (−0.5π,+0.5π).
Thus, at different time points, the sun position in the real
world can be precisely annotated on the captured outdoor
image.

The outdoor scene changes not only with sun position
but also with color temperature of the sky during the day.
To achieve realistic effects of outdoor sky appearance, we
integrate the full spectral sky model [25] into our method.
The detailed process of editing sun positions is expressed in
Algorithm 2.
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Fig. 7 Photo Gallery of Scene Editing: (left) The captured scenes
include empty and furnished rooms. (right) The new scenes are vir-
tually rendered with new furniture objects [13]. In the empty scenes,

furniture objects are arranged according to the 3D layout. For the fur-
nished scenes, existing furniture objects are removed, and then new
virtual objects are inserted
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Room 1 Room 2 Room 3

(a)

(b)

(c)

(d)

Fig. 8 Comparison between our rendering method and the conven-
tional global rendering approaches, with the light source positioned in
the lower-left corner for each scenario. Relighting with indoor panora-
mas ((a) estimated HDR image and (b) calibrated HDR image) fails to

reconstruct the direct illumination and inter-reflection between furni-
ture and the existing scenes, in contrast to the use of outdoor fisheye
images ((c) estimated HDR image and (d) our calibrated HDR image)

Algorithm 2 Editing Sun Positions
Require: Captured Outdoor Image (I )
Require: Current Time (tc), Target Time (tt ), GPS location, RoomOri-

entation (α)

Phase 1 - Editing Sun Position

1: Input: I
2: use GPS location and α to get current sun position (θ1, φ1) at tc and

target sun position (θ2, φ2) at tt in the equirectangular representation
3: segment I into sky region (Is ) and non-sky region (In)
4: translate Is from (θ1, φ1) to (θ2, φ2) and keep In consistent
5: Output: Edited Outdoor Image (I ′)
Phase 2 - Applying Spectral Change

6: Input: I ′
7: render the Current Full-Spectral Sky (Sc) at tc and Target Full-

Spectral Sky (St ) at tt
8: compute chromatic change between Sc and St
9: apply chromatic change to I ′
10: image inpainting to complete the outdoor image I ′
11: Output: New Outdoor Image

As illustrated in Fig. 10, the captured outdoor image is
transformed from the fisheye image into the equirectangular
representation. Using GPS location, room orientation, the
current time, and the target time as inputs, the correspond-
ing sun positions (θ ′, φ′) are annotated on the image. Due
to the varying room orientations, adjustment of the azimuth
(θ ) angle is required for each scene. The outdoor image is
segmented into sky and non-sky regions. The sky patch is
then translated based on the new sun position. To address the
changes in sky color throughout the day, we render full spec-
tral sky images [25] in panoramic perspective to compute the
chromatic change in the sky region between the current and
target time points. For the non-sky region, we assume the
scene context is flat and apply the color change between the
rendered ground surfaces to the new image.
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Fig. 9 Rendering with New Camera Positions and Indoor Textures:
Compared to captured scenes (top row), virtual indoor scenes are ren-
dered at new camera positions (Position 1 and 2), and outdoor scenes are

viewed from indoor locations (Position 3). (bottom row) The existing
scenes are refurnished with new indoor textures

In Fig. 11, we demonstrate that using a single input image
allows for editing new sun positions in outdoor scenes under
different weather conditions and at various time points.

The edited outdoor images serve as new illumination
sources for rendering virtual indoor scenes. In clear sky con-
ditions (Fig. 12: Room 1 and Room 2), the virtual rendered
scenes show the indoor appearance under dynamic sun posi-
tions throughout the day. When the sun is not visible, such as
in a cloudy sky condition (Fig. 12: Room 3), a simulated sun
mask is added to the cloudy image, providing direct illumi-
nation for the indoor space. In this way, even if the captured
scene does not have direct illumination from the sun, the ren-
dering pipeline can still visualize the scene under clear sky
conditions.

8 Adding electrical light

During the daytime, natural light from outdoor space pri-
marily illuminates indoor spaces, while in the evening
electrical lighting fixtures provide illumination. To show-
case the indoor appearance during nighttime, we modified
the illumination source from the outdoor environment map
to electrical light and achieved virtual staging in the evening,
when the virtual scene is exclusively illuminated by electrical
lighting with accurate spectral data.

In the real world, each electrical lighting fixture corre-
sponds to a distinct spectral power distribution, resulting in
unique color temperatures when it’s deployed to illuminate
the space. For our study, we chose three different electrical
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(a) (b) (c)

(f) (e) (d)

Fig. 10 Process of Editing Outdoor Image: (a) The captured outdoor
fisheye image is transformed into the equirectangular representation.
(b) We annotate the sun positions at the current time in Red and target
time in Blue, respectively. The full spectral sky images at the current

time (c) and target time (d) are rendered to transfer chromatic change to
the new sky appearance. (e) The sky patch is then translated according
to the target sun position on the 2D image. (f) Image inpainting [54] is
applied to complete the outdoor image
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Fig. 11 Results of Editing Outdoor Images: A single image, labeled in Red, serves as the input for generating new outdoor images at different
times of the day. The sun position is adjusted according to the target time point
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Fig. 12 Virtual Rendered Scenes with New Illumination: (top row) The
scenes are rendered using the captured outdoor images. For Room 1 and
Room2,when the sun is visible outside, we edited the outdoor images to

reflect new sun positions. For Room 3, when the outdoor sky is cloudy,
we added direct sun illumination onto the outdoor image and edited the
sun positions to render the scene

light sources and selected their respective spectral data [46] to
illuminate the scene. Our rendering pipeline incorporates the
scene geometry and textures obtained from previous steps
and then integrates electrical light into the virtual model.
As illustrated in Fig. 13, the virtual rendered scenes exhibit
different appearances when the electrical lighting changes.
When the color temperature of the light source increases from
2700k to 6336k, the rendered night scene transitions from
displaying yellowish tones to bluish tones.

9 Discussion

Conventional virtual home staging is labor-intensive and
expensive, especially when dealing with an existing fur-
nished scene to create a new refurnished scene. While the

global rendering approach is a commonly used method for
scene relighting, it encounters limitations in fully recon-
structing global illumination. Typically, new virtual objects
are rendered within a 360◦ environment map and then
inserted, along with their surrounding shadows, into the
original image. However, since such a rendering process
doesn’t integrate the complete scene geometry, the resulting
image often lacks inter-reflection between the newly inserted
objects and the existing scene.

For indoor scenes under natural illumination, light estima-
tion is a challenging task. The outdoor light enters through
the window into the indoor space, and the indoor appearance
is shaped by the room geometry, materials, and spatially-
varying light within the room. To achieve complete global
illumination for indoor virtual staging, we focus on a single
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Fig. 13 Rendering Night Scenes with Electrical Light: Four spectral
power distribution curves with different color temperatures are selected
from the database [46]: (a) LSI LumeLEX 2040-C2M2-6S: LED -
2700K - 96.00 CRI, (b) LSI LumeLEX 2040-C4M2-6S: LED - 4000K

- 95.00 CRI, (c) Philips TLD 36W/95: FL - 5000K - 90.00 CRI, and
(d) Endura OT16-3101-WT MR16: LED - 6336K - 76.00 CRI. A sin-
gle lighting fixture is mounted in the ceiling and paired with different
spectral data to illuminate the entire scene

panorama that allows us to understand the indoor scene from
all directions.

Following the conventional image-based renderingmethod,
we proposed a rendering approach that takes an indoor
panorama along with its corresponding outdoor image as
inputs. Our photography technique, supported by photo-
metric calibration, allows the captured HDR image to be
linearly scaled into the correct luminance range and ensures
the accurate display of scene radiance. The captured indoor
panorama is used to estimate 3D layout, materials, and win-
dow apertures. Meanwhile, the outdoor image serves as an
environment map to render the scene. Leveraging the seg-
mented floor boundary, we systematically arrange multiple
furniture objects within the space and render the entire scene
geometry, textures, and illumination globally. This approach
reconstructs both the direct and indirect illumination between
the newly inserted objects and the existing scene. Using the
outdoor image as the light source enables direct adjustments

for new sun position and color temperature, providing flexi-
bility in customizing light sources for indoor virtual staging.

9.1 Limitations

This study has several limitations. First, ourHDRdata collec-
tion needs users to set up two different cameras and perform
luminancemeasurement for each scene, which requires labor
efforts and a series of photography procedures. Second,when
changing the sun position in the outdoor images, we adjust
the sky patch to match the new sun position, assuming a flat
ground context. In the real world, outdoor scenes include all
kinds of geometries and materials. Particularly, in outdoor
scenes where trees block the sun and light penetrates the
leaves, recovering the subtle light leakage is a complex task.
Ourmethod, focusingprimarily on editingdirect illumination
and rendering indoor scenes with new sun positions, cannot
fully capture these complexities. Third, the layout estimation
specifically is built on the Manhattan-based layout assump-
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tion, and 3D room geometry is simplified as multiple planar
surfaces. This approach fails to recognize small scene details
such as cabinets, countertops, and curtains.

9.2 Future work

Future work aims to improve the virtual staging applica-
tion and address complex indoor scenarios. Based on our
data collection approach, future work will develop a simpler
and more cost-effective photography method for capturing
the indoor and outdoor scenes. When estimating indoor 3D
layouts, the current data-driven approach fails to recognize
complete room geometry in certain scenarios, such as the
living room and kitchen. Additionally, future research will
investigate how to integrate user annotation to improve the
accuracy of layout generation. Other work will involve rec-
ognizing detailed indoor structures and refurbishing indoor
scenes, particularly developing applications to transform
kitchen spaces.

10 Conclusion

Virtual staging plays an important role in the housing market
and provides an immersive way to showcase houses. Our
study demonstrates a complete pipeline for virtual home
staging that integrates indoor-outdoor HDR photography,
inverse rendering, and scene editing. Key features of our
design application include automatic floor layout, camera
position adjustment, scene texture replacement, and illumi-
nation changes, allowing the existing scene to be rendered
with various environmental changes. Throughout this study,
we evaluated our virtual staging method across different
homes and contributed a new calibrated HDR dataset for
future lighting research. Our method offers a robust solu-
tion for virtual home staging and contributes to indoor scene
relighting, architectural design, and real estate development.
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