Diabetologia (2001) 44: 1102-1110

Diabetologia

© Springer-Verlag 2001

Antioxidants attenuate early up regulation of retinal vascular
endothelial growth factor in streptozotocin-diabetic rats

I. G.Obrosova!, A. G.Minchenko?, V.Marinescu', L. Fathallah!, A.Kennedy?, C.M. Stockert!, R. N. Frank®,

M.J.Stevens" *

! Division of Endocrinology and Metabolism, Department of Internal Medicine, University of Michigan Medical Centre,

Ann Arbor, Michigan, USA

2 Department of Anesthesiology, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
3 Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
* Veterans Administration Medical Centers, Ann Arbor, Michigan, USA

Abstract

Aims/hypothesis. A strong positive correlation has
been found between lipid peroxidation product and
vascular endothelial growth factor concentrations in
the vitreous of patients with proliferative diabetic re-
tinopathy. To establish a causal relation between dia-
betes-associated enhanced oxidative stress and vascu-
lar endothelial growth factor production, we evaluat-
ed two antioxidants, pL-0-lipoic acid and taurine, on
retinal vascular endothelial growth factor protein
and mRNA expression and on parameters of oxida-
tive stress in streptozotocin-diabetic rats.

Methods. Our experiments were on control rats and
streptozotocin-diabetic rats with a 6-week duration
of diabetes, treated with or without pL-a-lipoic acid
(100 mg - kg™' - d’!, i.p.) or taurine (1% in the diet)
starting from induction of diabetes. Vascular endothe-
lial growth factor protein in retinal homogenates was
assessed by sandwich ELISA with an affinity-purified
polyclonal antibody and vascular endothelial growth
factor mRNA by ribonuclease protection assay. Reti-
nal lipid peroxidation products i.e. malondialdehyde
plus 4-hydroxyalkenals were quantified with N-meth-
yl-2-phenylindole. Retinal reduced and oxidized glu-
tathione, ascorbate, dehydroascorbate, and sorbitol
pathway intermediates were measured spectrofluoro-
metrically, and taurine by reverse-phase HPLC.

Results. Vascular endothelial growth factor protein
concentration (means + SD) was increased in diabetic
rats compared with control rats (33 = 7vs 19 + 5 pg/mg
total protein, p <0.01) This increase was attenuat-
ed by taurine (26 + 8, p < 0.05) and prevented by pL-
a-lipoic acid (21 + 4, p < 0.01). Vascular endothelial
growth factor mRNA abundance was reduced by 1.4-
fold in diabetic rats compared with control rats and
this decrease was attenuated but not completely pre-
vented by both antioxidants. Malondialdehyde plus
4-hydroxyalkenal concentration was increased in dia-
betic rats compared with control rats, and both antiox-
idants arrested accumulation of lipid peroxidation
products. Taurine, reduced glutathione, oxidized glu-
tathione, ascorbate, dehydroascorbate and sorbitol
pathway intermediate concentrations as well as oxi-
dized glutathione/reduced glutathione and dehydro-
ascorbate/ascorbate ratios were similar in control and
diabetic rats treated with or without taurine.
Conclusion/interpretation. Oxidative stress is directly
involved in up regulation of vascular endothelial
growth factor protein in the retina during early diabe-
tes. [Diabetologia (2001) 44: 1102-1110]
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The Diabetes Control and Complications Trial [1]
and the United Kingdom Prospective Diabetes Study
[2] indicate a strong consistent relation between hy-
perglycaemia and the incidence and progression of
diabetic complications in patients with Type I (insu-
lin-dependent) and Type II (non-insulin-dependent)
diabetes mellitus. Chronic hyperglycaemia leads to
sorbitol pathway hyperactivity, non-enzymatic glyca-
tion/glycoxidation and protein kinase C activation,
all of which have been implicated in the pathogenesis
of diabetic complications [3-5] including retinopathy
[3, 6-8].

One of the most dangerous consequences of diabe-
tes-associated “glucose toxicity” is oxidative stress re-
sulting from increased production of reactive oxygen
species (ROS) and insufficient up regulation [9] and
often down regulation [10, 11] of the antioxidative
defence mechanisms. Reactive oxygen species are in-
volved in decreased retinal blood flow [12], increased
vascular permeability and disruption of blood-retinal
barrier [13, 14], and the appearance of acellular capil-
laries [15, 16] from apoptotic loss of retinal capillary
cells [16]. Recent findings suggest that premature ap-
optosis of pericytes and endothelial cells is induced
by poly(ADP-ribosyl)ation [17, 18] which, in turn, is
caused by hydroxyl radicals [19] and peroxynitrite
[20] formed in the reaction of superoxide anion radi-
cals with nitric oxide. Furthermore, in vitro studies
[14, 21-23] implicate oxidative stress in the excessive
production of vascular endothelial growth factor
(VEGF) which is associated with increased vascular
permeability and disruption of blood-retinal barrier
[7, 13, 24] in background diabetic retinopathy as well
as neovascularization [25, 26] in proliferative diabetic
retinopathy. A strong positive correlation has been
found between lipid peroxidation product and
VEGF concentrations in the vitreous of patients
with proliferative diabetic retinopathy [27].

VEGTF formation is controlled by oxygen supply
[28,29], pH [30], and glucose concentration [31]. Ret-
inal VEGF immunoreactivity in the galactose model
of diabetic retinopathy is suppressed by inhibitors of
aldose reductase and non-enzymatic glycation [6]
1.e. two major mechanisms contributing to ROS gen-
eration [11, 32, 33]. To determine a causal relation be-
tween diabetes-induced oxidative stress and VEGF
formation, we evaluated two antioxidants, bL-a-lipo-
ic acid and taurine, on variables of lipid peroxidation,
antioxidative defence and VEGF protein and mRNA
concentrations in the retinae of streptozotocin-dia-
betic rats with 6-week duration of diabetes. En-
hanced oxidative stress and VEGF up regulation
have been documented in the rat and mouse models
early in the course of diabetes [34-36]. Taurine and
pL-a-lipoic acid penetrate through the blood-retinal
barrier [34, 37, 38].

Materials and methods

The experiments were done in accordance with regulations
specified by The Guiding Principles in the Care and Use of
Animals (DHEW Publication, NTH 80-23) and the University
of Michigan Protocol for Animal Studies.

Animals. Barrier-sustained, Caesarean-delivered male Wistar
rats (Charles River, Wilmington, Mass., USA), body weight
250 to 300 g, were fed a standard rat chow diet (ICN Biomedi-
cals, Cleveland, Ohio, USA) and had ad libitum access to wa-
ter. Diabetes was induced by a single intraperitoneal injection
of streptozotocin (55 mg/kg body weight, i.p.). Blood samples
for measurements of glucose were taken from the tail vein
about 48 h after streptozotocin injection and the day before
the rats were killed. Rats with blood glucose of 13.9 mmol/l or
more were considered diabetic. The 6-week diabetic rats were
treated with or without pL-a-lipoic acid (100 mg - kg™ -d™,
i.p.) or taurine (1% in the diet). Both treatments were started
after diabetes was confirmed i.e. about 48 h after streptozoto-
cin injection.

Reagents. Unless otherwise stated, all chemicals were of re-
agent-grade quality (Sigma Chemical, St. Louis, Mo., USA).
Methanol (HPLC grade), perchloric acid, hydrochloric acid,
and sodium hydroxide were purchased from Fisher Scientific,
Pittsburgh, Pa., USA. Ethyl alcohol (200 proof dehydrated al-
cohol, U.S.P. punctilious) was purchased from McCormick
Distilling, Weston, Mo., USA. f-p-Glucose, sorbitol, N.F.,
and p-fructose, U.S.P. were purchased from Pfanstiehl Labo-
ratories, Waukegan, Ill., USA. [¢*P]-UTP (800 Cu/mmol)
was purchased from NEN Life Science Products, Arlington,
Ill., USA. Kits for measurements of malondialdehyde (MDA)
and 4-hydroxyalkenals (4-HA) were purchased from Oxis In-
ternational, Portland, Ore., USA, kits for VEGF measure-
ments and rat VEGF protein from R and D Systems, Minne-
apolis, Minn., USA, and bicinchoninic acid protein assay kits
from Pierce, Rockford, Ill., USA.

Experimental procedure. Rats were sedated with carbon diox-
ide and immediately killed by cervical dislocation. Both reti-
nae were rapidly dissected and frozen in liquid nitrogen. In ex-
periment one, three retinae from three animals were pooled
for each VEGF protein measurement. The variables MDA
plus 4-HA, GSH, GSSG, DHAA, AA, taurine, glucose, sorbi-
tol and fructose were measured in individual retinae. Taurine,
GSH, GSSG, DHAA and AA concentrations were measured
in control and diabetic rats treated with or without taurine.
We have reported the effects of bL-a-lipoic acid on retinal oxi-
dative stress and sorbitol pathway activity previously [34, 39].
In experiment two, individual retinae were used for measure-
ments of VEGF mRNA.

VEGF Enzyme-Linked Immunosorbent Assay (ELISA). Ma-
terial from three retinae was homogenized in 50 mmol/l Tris-
buffer (pH 8.0) and centrifuged at 10000 g for 10 min (Sorvall
MC 12 V). 50 (ul-aliquots of the supernatant were used for
VEGF measurements. VEGF was assayed by a sandwich ELI-
SA with an affinity-purified polyclonal antibody specific for
mouse VEGF according to the manufacturer’s instructions.
Good linearities (1,0, = 0.996 and r,,, = 0.986) were obtained
with this antibody and mouse and rat VEGF standards in the
range of 5 to 500 pg/ml (Fig.1) as well as rat VEGF standards
in the range of 15 to 500 pg/ml added to rat retinal homoge-
nates (r = 0.964). The average recovery was 81 %. Intra-assay
and inter-assay coefficients of variability were 3.2 + 2.0 and
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Fig.1. Representative standard curves obtained in the sand-
wich ELISA of murine and rat VEGF proteins with an affini-
ty-purified polyclonal antibody specific for mouse VEGF

6.4 + 5.5, respectively. VEGF concentrations were assayed in
triplicate and normalized to total protein. For total protein
measurements, 50 ul-aliquots of the retinal homogenate were
mixed with 0.5 ml 0.1 N NaOH, sonicated and left overnight
for complete solubilization. Proteins were quantified accord-
ing to the manufacturer’s instructions.

RNA preparation. Total RNA was isolated using the acid gua-
nidium-phenol-chloroform extraction method [40] with minor
modification [41]. Retinae were homogenized in 0.4 ml of
guanidine isothiocyanate solution containing 4 mol/l guanidine
isothiocyanate, 50 mmol/l tris-HCl, 25 mmol/l EDTA and
0.1 mol/l f-mercaptoethanol. Sequentially, 0.04 ml of 2 mol/l
sodium acetate (pH 4.0), 0.4 ml of water saturated phenol and
0.08 ml of chloroform-isoamyl alcohol mixture (49:1) were
added to homogenate, with thorough mixing after each re-
agent was added. RNA was precipitated with equal volume of
2-propanol. RNA pellets were washed with 75 % ethanol and
dissolved in nuclease-free water.

Quantification of VEGF mRNA concentrations by ribonu-
clease protection assay. The plasmid for synthesis of the rat
VEGF probe was created by synthesis of a cDNA using rat
heart total RNA and oligo(dT) followed by cloning. VEGF
cDNA was amplified using forward primer (5’ ccggat CCTCC-
GAAACCATGAACTTTCTGC-3") and reverse primer
(5°-ccggaatTCTGGATTAAGGACTGTTCTGTC-3") corre-
sponding to nucleotide sequences 46—69 and 773-751 of the hu-
man VEGF cDNA, respectively ([42] GenBank accession
number M32977). PCR fragments of VEGF cDNA were di-
gested with BamHI and EcoRI and cloned into plasmid pBlue-
script II KS + for ribonuclease protection assays. The plasmid
containing VEGF cDNA was digested with Xbal to make a
735-base radiolabelled antisense probe. The plasmid for syn-
thesis of the rat 18S probe was created by synthesis of a
cDNA using rat lung total RNA using forward primer (5’-A-
GATCAAAACCAACCCGG-3’) and reverse primer (5'-
ATTCCTAGCTGCGGTATC-3’). These oligonucleotides cor-
respond to nucleotide sequences 236-253 and 876-859 of rat
18S rRNA, respectively ([43] GenBank accession number
M11188). This fragment of cDNA for 18S rRNA was digested
with Pstl and Xbal and cloned into plasmid pBluescript 11
SK + for ribonuclease protection assays. This plasmid was di-
gested with Xbal and used as a template for in vitro transcrip-
tion of a 435-base radiolabelled antisense probe (predicted to
protect a 372-base fragment) using T7 RNA-polymerase and
[@¥P]-UTP. The rat18S ribosomal RNA antisense probe was

used to normalize VEGF gene expression to total RNA. All
constructs were verified by sequencing and were found to be
100 % identical to the published sequences.

Synthesis of radiolabelled antisense probes for ribonu-
clease protection assay was done according to the Boehringer
Mannheim protocol using T7 or T3 RNA polymerase and
[¢*2P]-UTP. For ribonuclease protection assays, water solu-
tions of total RNA were dried under vacuum and dissolved in
25 ul of 80% formamide hybridization buffer containing la-
belled probes. Samples were preincubated for 5 min at 85°C
and then incubated for 16 h at 45°C [29]. The extracted, pro-
tected probe fragments were run on a 6 % polyacrylamide se-
quencing gel in 1 - Tris-borate-EDTA buffer for 2 h at 50 mA.
The gel was then dried and exposed to X-ray film at =70 °C. Ex-
pression of mRNA was quantified using a PhosphorImager
(Molecular Dynamics, Sunnyvale, Calif., USA). The intensity
of each VEGF mRNA band was normalized for 18S ribosomal
RNA level. No differences were detected between the various
VEGF mRNA transcripts in the response to the different ex-
perimental conditions.

Sorbitol pathway intermediates. Retinae were homogenized in
1.5ml 0.1 mol/l sodium-phosphate buffer, pH 6.5. Then a
0.1 ml-volume of 0.3 mol/l zinc sulfate, followed by an equiva-
lent of barium hydroxide, was added to 0.3 ml of the homoge-
nate for protein precipitation. The samples were centrifuged
at 4000 g for 10 min (Sorvall MC 12 V) and aliquots of the su-
pernatant were taken for spectrofluorometric measurements
of glucose, sorbitol and fructose by enzymatic procedures [44].

Malondialdehyde plus 4-hydroxyalkenals, GSH and GSSG.
0.6 ml of the retinal homogenates described above were used
for measurements of MDA plus 4-HA, GSH and GSSG [34].
GSH and GSSG were assayed in perchloric acid extracts. The
concentrations were normalized to total protein.

DHAA and AA. 0.2 ml of the homogenates described above
were mixed with 0.2 ml of ice-cold 10 % metaphosphoric acid
and centrifuged at 4000 g for 10 min. For measurements of
DHAA, 0.1 ml of the supernatant was mixed with 0.9 ml
2 mol/l Na-acetate buffer, pH 6.2. The reaction is started by
adding 0.02 ml 92.5 mmol/l O-phenylenediamine and is com-
pleted after 30 min. The initial and final readings are taken at
A excitation: 350 nm, emission: 430 nm. For measurements of
total AA, 0.1 ml of the supernatant was mixed with 0.9 ml
2 mol/l Na-acetate buffer, pH 6.2 and 10 U of ascorbate oxi-
dase to convert free AA to DHAA. The reaction is completed
in 30 min. Then DHAA was quantified as described above.
AA concentrations were calculated as the difference between
total AA and DHAA.

Taurine. Retinal taurine concentrations were measured by re-
verse-phase HPLC (apparatus: Waters 501, pumps: Waters
717; autosampler: Waters 470; column: Waters 3.9 - 150 mm
Nova-Pack C18; scanning fluorescence detector: A excitation:
360 nm; A emission: 455 nm; and Waters Millenium Software;
Waters, Milford, Mass., USA) after precolumn derivatization
with O-phthaldialdehyde reagent [45] (10 mg O-phthaldialde-
hyde dissolved in 0.2 ml absolute ethanol were mixed with 10
ul mercaptoethanol and 5 ml 0.5 mol/l borate buffer, pH 10.3).
In brief, 0.1 ml of retinal homogenate described above and tau-
rine standards in the range of 1-10 - 10~ mol/l were extracted
with 1 ml of 12 % perchloric acid and centrifuged at 4000 g for
10 min. The supernatants were purified on washed dual-bed
ion-exchange columns (2.5 cm AG 1-X8 100-200 mesh; Bio-
Rad Lab., Hercules, Calif., USA; in the chloride form over
2.5 cm AG 50W-X8 200/400 mesh (Bio-Rad) in the hydrogen
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Table 1. Final body weight and blood glucose concentrations in control and diabetic rats treated with or without pL-a-lipoic acid or

taurine (n = 18-27)

Control Diabetic Diabetic Diabetic
+T +LA
Experiment 1
Final body weight (g) 494 + 45 231 +26° 243 + 320 229 + 278
Blood glucose concentration (mmol/1) 3.5+0.53 252 +4.5° 249 +4.5° 271 +£3.7°
Experiment 2
Final body weight (g) 437+38 283 + 36° 298 + 442 286 + 38°
Blood glucose concentration (mmol/l) 3.94+0.24 22.0+4.3* 209 +1.7* 213 £2.5%
2 Significantly different from controls (p < 0.01)
T, taurine; LA, pL-a-lipoic acid
c 804 Results
T *
§ 60— The final body weights were lower in diabetic rats
o than in the control group (Table 1). The initial body
= weights were similar in control and diabetic groups.
B 404 No statistically significant difference was found be-
+ tween final body weights in diabetic rats treated with
g 20— taurine or pL-o-lipoic acid and the corresponding un-
= treated groups.
8_) Blood glucose concentration was increased 7.2-
0

C D D+T D+LA

Fig.2. Retinal VEGF concentrations in control and diabetic
rats treated with or without taurine or bpr-a-lipoic acid
(mean + SD, n = 6-8). C, control rats; D, untreated diabetic
rats; D + T, diabetic group treated with taurine; D + LA, dia-
betic group treated with pL-a-lipoic acid. *significantly differ-
ent vs controls (p < 0.01); ** *significantly different vs untreat-
ed diabetic group (p < 0.05 and < 0.01, respectively)

form) by elution with 2 ml H,O. The eluents were washed
twice with H,O-saturated ether and lyophilized. Samples and
standards were dissolved in 100 ul H,O before HPLC analysis.
Isocratic elution was carried out at a flow rate of 2 ml/min us-
ing 43 % solvent A ( 0.05 mol/l NaH,PO,, pH 5.3, plus 5 mol/l
NaOH) combined with 57 % solvent B (0.05 mol/l NaH,PO,
in 75 % methanol/H,O) filtered with type FH 0.5 um Millipore
filter and degassed. Glutamine, added after ion exchange chro-
matography, was used as the internal standard.

Statistical analysis. The results are expressed as means + stan-
dard deviations. Data were subjected to equality of variance F
test, and then to log transformation, if necessary, before one-
way analysis of variance. When overall significance (p < 0.05)
was attained, individual between-group comparisons were
made using the Student-Newman-Keuls multiple range test.
Statistical significance was defined as a p value of 0.05 or less.
When between-group variance differences could not be nor-
malized by log transformation, the data were analysed by the
non-parametric Kruskal-Wallis one-way analysis of variance,
followed by the Fisher’s PLSD test for multiple comparisons.

fold in diabetic rats compared with controls. Blood
glucose concentrations in diabetic rats were not af-
fected by taurine or pL-a-lipoic acid treatment.

Retinal VEGF concentration was increased 1.8-
fold in diabetic rats compared with controls (Fig.2).
This up regulation was attenuated but not completely
prevented by taurine, and was completely prevented
by pL-a-lipoic acid.

The ribonuclease protection assay showed two ma-
jor alternatively spliced VEGF mRNA transcripts
(Fig.3A). Retinal VEGF mRNA abundance was re-
duced 1.4 -fold in diabetic rats compared with con-
trols (Fig.3B). This reduction was attenuated but not
completely prevented by either taurine or pL-a-lipoic
acid.

MDA plus 4-HA concentration was 1.6—fold high-
er in the retinae of diabetic rats compared with the
control group (Fig.4). Both antioxidants arrested dia-
betes-induced lipid peroxidation.

Retinal taurine, GSH, GSSG, DHAA and AA
concentrations were similar among control and dia-
betic rats treated with or without taurine (Table 2).
Neither glutathione redox state nor ascorbate redox
state (expressed as GSSG/GSH and DHAA/AA ra-
tios, respectively) were affected by diabetes or tau-
rine treatment.

Retinal glucose, sorbitol and fructose concentra-
tions were 5.1-fold, 26-fold and 4.75-fold higher in di-
abetic rats than in the control rats (Fig.5). Diabetes-
induced increase in retinal glucose and sorbitol path-
way intermediate concentrations was not affected by
dietary taurine supplementation.
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Fig.3A, B. A Representative polyacrylamide gel autoradio-
graph obtained in the ribonuclease protection assay of VEGF
mRNA and 18 S ribosomal RNA in the retinae of control rats
and diabetic rats treated with or without taurine or pL-a-lipoic
acid. B Retinal VEGF mRNA abundance (mean + SD,n =8)
in the retinae of control and diabetic rats treated with or with-
out taurine or pL-a-lipoic acid. Data were normalized to 18S ri-
bosomal RNA levels

Discussion

Measurements of VEGF protein and VEGF mRNA
concentrations in ocular tissues of non-diabetic ani-
mals and human subjects using in situ hybridization,
blotting techniques, and immunohistochemistry re-
sulted in contradictory findings [6, 42-46]. Absent [6,
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Fig.4. Retinal MDA plus 4-HA concentrations in control and
diabetic rats treated with or without taurine or pL-o-lipoic
acid (mean = SD, n = 8-10). C, controls; D, untreated diabetic
group; D + T, diabetic group treated with taurine; D + LA, dia-
betic group treated with pL-a-lipoic acid. *significantly differ-
ent vs control rats (p < 0.01); **significantly different vs un-
treated diabetic rats (p < 0.01)

46, 47], weak [46, 48] or abundant [49, 50] VEGF im-
munoreactivity and expression have been reported
by different groups. Recent development of highly
sensitive ELISAs made possible precise measure-
ments of VEGF protein concentrations in mammali-
an retinas [51]. Our results (calculated from the stan-
dard curve for rat VEGF) agree with those in a study
using murine VEGF protein as a standard [51]. Con-
trol retinal VEGF protein concentration calculated
in our study from murine VEGF standards (Fig.1)
was 18.9 + 4.68 i.e.1.6-fold lower than the one calcu-
lated from rat VEGF standards. Detection of retinal
VEGF protein in non-diabetic animals ([51] and in
our study) is consistent with the physiological role
for VEGF in retinal vasculogenesis and vascular de-
velopment [52, 53].

Early diabetes-induced up regulation of retinal
VEGTF protein, also observed in two other studies in
db/db mice [35] and streptozotocin-diabetic rats [36],
temporally coincides with a decrease in retinal blood
flow and impairment of retinal oxygenation [5, 12,
54] manifested in the decreased free mitochondrial
and cytosolic NAD*/NADH ratios [39]. The role of
oxygen as the major upstream regulatory molecule
controlling VEGF production is well established and
low oxygen tensions (hypoxia) have a stimulatory ef-
fect [28, 29]. Retinal VEGF up regulation is present
as early as six weeks after induction of streptozotocin
diabetes and thus precedes manifestations of back-
ground diabetic retinopathy. This is consistent with
the findings of VEGF immunopositivity in glial cells
of the retina and optic nerve in diabetic patients with-
out vascular anatomic abnormalities [55]. The up reg-
ulation of retinal VEGF production in short-term di-
abetes can potentially be responsible for increased
expression of the gene coding for intracellular adhe-
sion molecule-1 and extensive leukocyte stasis [56],
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Fig.5. Retinal sorbitol pathway intermediate concentrations
in control and diabetic rats treated with or without taurine
(mean + SD, n=8-10). C, controls; D, untreated diabetic
group; D + T, diabetic group treated with taurine. *significant-
ly different vs control rats (p < 0.01)

Table 2. Retinal antioxidant concentrations® and glutathione
and ascorbate redox states in control and diabetic rats treated
with or without taurine (n = 8-15)

Control Diabetic Diabetic +
Taurine

Taurine 244 + 42 209 + 42 245 + 68
GSH 16.6 £5.9 153 £ 3.1 143 £33
GSSG 0.306 + 0.045 0.318 +0.023 0.327 +0.018
GSSG/GSH 0.020 + 0.005 0.021 + 0.004 0.024 + 0.04
Total AA 16.5+4.5 18.9 + 3.1 20.0+9.4
AA 15.1+4.6 16.9 + 3.1 79+85
DHAA 2.06 + 0.69 212 +0.48 21+1.1
DHAA/AA 0.129 + 0.020 0.130 + 0.024 0.115 + 0.027

2 Concentrations of taurine, GSH, GSSG, total AA, AA and
DHAA are expressed in nmol/mg total protein

as well as decreased occludin expression with subse-
quent weakening of interendothelial tight junctions
[24] and nonendothelial changes [56] leading to in-
creased vascular permeability. Furthermore, VEGF
activates endothelial cell p44/42 mitogen-activated
protein (MAP) kinase [57] and thus is probably in-
volved in p44/p42 M AP kinase-dependent [58] over-
expression of endothelin-1 present early in the course
of diabetes [54].

Of interest, VEGF mRNA concentration was re-
duced rather than increased in short-term diabetes.
Although most of the studies describe unidirectional
changes of VEGF mRNA and VEGF protein con-
centrations in response to different stimuli (including
strong oxidative insult in cell culture experiments [21,
22]) and in pathological states involving angiogenesis,
some reports indicate the discordance between
VEGF expression at mRNA and protein level. In
particular, stimulation of VEGF synthesis at low O,
tension in human proximal tubular cells was detect-
able at the protein level only [59]. Stimulation of
platelets with thrombin and of polymorphonuclear
neutrophils with the activator of protein kinase C

phorbol 12-myristate 13-acetate induced a time-de-
pendent release of VEGF, peaking after 30 and
60 min, respectively, i.e. within the time frame insuf-
ficient to change VEGF gene expression [60]. Re-
cently, it has been reported that phosphorylation of
the initiation factor (eIF) 4E known to play an impor-
tant part in the translational regulation of VEGF
[61], correlates with the activation of protein synthe-
sis and occurs via both protein kinase C-dependent
and protein kinase C-independent signalling path-
ways [62]. Thus, it is plausible that post-transcription-
al up regulation of retinal VEGF protein in early dia-
betes is mediated via activation of protein kinase C
[5, 7]. Correspondingly, down regulation of retinal
VEGTF protein concentrations by taurine and pL-o-li-
poic acid could be from the inhibitory effect of anti-
oxidants on protein kinase C activity [63]. Apparent-
ly, control of VEGF protein expression in tissue-sites
for diabetic complications is complex and different
components could predominate in short-term and
long-term diabetes [64].

Our data on two diverse antioxidants provides evi-
dence of a causal relation between diabetes-induced
retinal oxidative stress and VEGF protein formation
in early diabetes. The role of oxidative stress in exces-
sive retinal VEGF production in diabetes of longer
duration is supported by strong positive correlations
between lipid peroxidation product and VEGF pro-
tein concentrations in the vitreous of patients with
proliferative diabetic retinopathy [27], and between
retinal hydrogen peroxide and VEGF concentrations
in the BBZ/Wor diabetic rats examined at 4.5 to
18.0 months of diabetes [14]. In vitro studies and ob-
servations in animal models suggest that oxidative
stress contributes to diabetes-induced retinal VEGF
production through both hypoxia-mediated and hy-
poxia-independent mechanisms.

Early increase in lipid peroxidation in the retina,
unlike other tissues of streptozotocin-diabetic rats
[9-11, 40, 65], occurs in the absence of glu-
tathione[66] and in our studies, taurine and ascorbate
depletion or changes in the glutathione and ascorbate
redox states. Despite total arrest of diabetes-induced
retinal lipid peroxidation by both antioxidants, DL-a-
lipoic acid completely prevented, whereas taurine
only attenuated, VEGF up regulation. There is no
doubt that the potent free radical scavenger and met-
al chelator pL-a-lipoic acid [67] counteracts oxidative
stress far more effectively than taurine. In addition, in
biological tissues DL-a-lipoic acid is reduced to dihy-
drolipoate, which combines free radical (hydroxyl,
superoxide, peroxyl, singlet oxygen) scavenging and
metal chelating properties with the ability to regener-
ate concentrations of non-enzymatic and enzymatic
antioxidants [34, 67, 68]. Our previous study suggests
that the antioxidant effects of pL-a-lipoic acid in the
retina of streptozotocin-diabetic rats are caused by
free radical scavenging and metal chelating proper-
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ties rather than to changes in GSH and GSSG con-
centrations and the glutathione redox state [34].

The mechanism(s) of antioxidant activity of tau-
rine is poorly understood although the ability of tau-
rine to decrease diabetes-induced lipid peroxidation
has been shown in several studies [40, 69, 70]. It has
been reported [71, 72] that taurine decreases lumi-
nol-dependent chemiluminescence elicited by chemi-
cally generated hydroxyl radicals and #-butyl hydro-
peroxide whereas others [73] indicate that hypotau-
rine, a taurine precursor, rather than taurine itself,
has antioxidative properties against ROS. Both tau-
rine and hypotaurine scavenge hypochlorite [73],
and the retina contains the hypochlorite-producing
enzyme, myeloperoxidase [74]. In addition, taurine
decreases superoxide anion abundance by an un-
known mechanism [75] and accelerates catabolism of
norepinephrine [76] which can autoxidize and thus
contribute to ROS generation. Our findings show
that the antioxidant effects of taurine in the retina
are not mediated through the glutathione and ascor-
bate systems of antioxidative defence. In addition,
we could not detect any substantial increase in retinal
taurine concentration in diabetic rats which were fed
a taurine-supplemented diet. The retina has a re-
markable capacity to maintain taurine concentration
[77, 78], and any access of retinal taurine is probably
rapidly removed after the cessation of food intake.

The relation between the sorbitol pathway activity,
oxidative stress and VEGF production deserves spe-
cific consideration because both structurally diverse
AR inhibitors [3, 6, 79-81] and less extensively studied
antioxidants [15, 82] prevent vascular abnormalities
characteristic of diabetic retinopathy. Recently, it was
hypothesized that oxidative stress is a cause of AR ac-
tivation and sorbitol pathway intermediate accumula-
tion in tissue-sites for diabetic complications [83]. In
our study, however, retinal glucose, sorbitol and fruc-
tose concentrations were similarly increased in diabet-
ic rats fed regular and taurine-supplemented diets.
Furthermore, prL-a-lipoic acid which is known to in-
crease glucose transport [84, 85] by facilitating translo-
cation of glucose transporters towards the plasma
membrane [84], exacerbates diabetes-induced retinal
sorbitol pathway intermediate accumulation [39].
The absence of any suppression of the sorbitol path-
way activity by two diverse antioxidants, both of which
arrest lipid peroxidation and neutralize superoxide
anion radicals [67, 75], suggests that oxidative stress is
not likely to be the cause of retinal sorbitol pathway
metabolite accumulation in diabetes. The arrest of
VEGF production by prL-o-lipoic acid and taurine,
both of which counteract oxidative stress but do not
suppress the sorbitol pathway hyperactivity, does not
contradict animportant role for AR in VEGF up regu-
lation. Our findings are consistent with downstream
localization of diabetes-associated oxidative stress
consequent to increased AR activity [11, 32, 86-89]

which, therefore, renders VEGF up regulation pre-
ventable by both AR inhibitors [6] and antioxidants.

In conclusion, oxidative stress causes increased
VEGF production in the retina in early diabetes.
This up regulation is detectable at the protein, but
not mRNA level. The findings support the rationale
for evaluating potent antioxidants, such as pL-a-lipo-
ic acid, dietary antioxidant mixtures and antioxidant-
containing combination therapies to prevent the on-
set or progression of diabetic retinopathy.
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