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Abstract

Aims/hypothesis The T allele of transcription factor 7-like
2 gene variant, TCF7L2 rs7903146, increases the risk of
type 2 diabetes by 40-50%. As TCF7L2 rs7903146 has
been associated with diminished incretin effect we inves-
tigated whether interaction between dietary intake of
carbohydrate, fat, protein or fibre and this variant affects
the risk of type 2 diabetes.

Methods A cohort of 24,799 non-diabetic individuals
from the Malmo Diet and Cancer Study (MDCS), with
dietary data obtained by a modified diet history method,
were followed up for 12 years, with 1,649 recordings of
incident type 2 diabetes made. Risk of type 2 diabetes in
strata of diet quintiles was analysed prospectively adjust-
ing for potential confounders. Cross-sectional analyses
were performed on baseline fasting glucose and HbA,,
levels in a subset of 5,216 randomly selected individuals
from the MDCS.

Results The elevated risk of type 2 diabetes with rs7903146
(OR 1.44, 95% CI 1.33, 1.56, p=4.6x10"'°) increased with
higher intake of dietary fibre (OR 1.24, 95% CI 1.04, 1.47 to
OR 1.56, 95% CI 1.31, 1.86 from the lowest to highest
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quintile; Pinteraction=0-049). High intake of dietary fibre
was inversely associated with diabetes incidence only
among CC genotype carriers (OR 0.74, 95% CI 0.58, 0.94
per quintile, p=0.025). The T allele was associated with
0.027% elevated HbA ;. (p=0.02) and this effect increased
with higher intake of fibre (from —0.021% to 0.079% for the
lowest to the highest quintile, pineraction=0.02). Each quin-
tile of higher fibre intake was associated with lower HbA .
levels among CC and CT but not among TT genotype
carriers (—0.036%, p:6.5><10_7; —0.023%, p=0.009; and
0.012%, p=0.52, respectively).

Conclusions/interpretation Our study suggests that dietary
fibre intake may modify the association between TCF7L2
rs7903146 and incidence of type 2 diabetes, and that higher
fibre intake may associate with protection from type 2
diabetes only among non-risk allele carriers.

Keywords Diet - Gene - Gene—environment interaction -
Transcription factor 7-like 2 (TCF7L2) - Type 2 diabetes
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Introduction

Transcription factor 7-like 2 gene (TCF7L2) rs7903146 to
this date remains the strongest and most widely replicated
type 2 diabetes susceptibility locus [1, 2]. In addition to
the increased risk of type 2 diabetes, the TCF7L2 rs7903146
T allele has been associated with increased fasting glucose
and HbA,. levels in genome-wide association studies
(GWAS) [3,4].

As a principal transcription factor in the wingless-type
MMTV integration site (WNT) signalling pathway [5],
TCF7L2 has been reported to be involved in the induction
of transcription of the proglucagon gene through heterodi-
merisation with (3-catenin and synthesis of glucagon-like
peptide 1 (GLP-1) [6]. In line with this, several studies have
reported an attenuated insulin response to oral glucose in
individuals with the TCF7L2 risk variant, pointing to the
possibility of a defective incretin system [7, §].

Levels of incretin hormones are modified by macronutri-
ent intake [9, 10] and several previous studies have tested
for interactions between TCF7L2 risk variants and diet. In
the Diabetes Prevention Program, the TT genotype of
TCF7L2 157903146 showed a tendency towards being more
strongly associated with type 2 diabetes in the placebo
group compared with the intervention group but the results
did not reach statistical significance [11]. In the European
Prospective Investigation into Cancer and Nutrition (EPIC)
Potsdam cohort [12] higher whole-grain intake was found to
be protective against type 2 diabetes among rs7903146 CC
genotype carriers but not among T allele carriers. Still an-
other study, a large meta-analysis of 14 cohorts, investigat-
ing fasting glucose levels instead of incident type 2 diabetes,
did not detect any interaction between the TCF7L2 risk
allele and whole-grain intake on that phenotype [13]. In
addition, the TCF7L2 risk allele was reported to have a
stronger association with type 2 diabetes among individuals
with higher dietary glycaemic load and glycaemic index
[14]. Finally, a recent report from the Tiibingen Lifestyle
Intervention Program (TULIP) described an interaction
between dietary fibre and the TCF7L2 rs7903146 risk
variant with regard to successful weight loss after a lifestyle
intervention [15].

In this study we hypothesised that different dietary
intakes, in particular the relative intake levels of carbohy-
drates, fats, proteins or fibres, could modify the risk associ-
ated with the TCF7L2 rs7903146 T allele in incident type 2
diabetes.

Methods

Study population The Malmé Diet and Cancer Study
(MDCS) is a population-based prospective cohort study

based in the city of Malmdo, Sweden. In 1991 the source
population of the MDCS was defined to include all
individuals born between 1926 and 1945 and living in
Malmé. In 1995 this was extended to include all women
born between 1923 and 1950 and men born between
1923 and 1945. This resulted in a source population of
74,138 individuals. Study participants were recruited
through public advertisements or personal letters. Men-
tal disability and limited Swedish language skills were
used as the sole exclusion criteria. Study participants
were invited to visit the screening centre twice during
the baseline examination period, which extended from
March 1991 to October 1996. During the first visit,
participants were divided into groups of six to eight
individuals and received instructions on how to record
meals in the menu book. They were also instructed on
how to fill in the diet questionnaire and the extensive
questionnaire covering socioeconomic and lifestyle fac-
tors, to be completed at home. Approximately 10 days
later, participants returned for a dietary history inter-
view. By the end of the baseline examination period,
we had complete dietary, anthropometric and lifestyle
data on 28,098 individuals. Details of the recruitment
procedures are described elsewhere [16].

From this population we excluded 909 individuals
with prevalent type 2 diabetes, identified as individuals
with a self-reported diabetes diagnosis or on a self-
reported glucose-lowering regimen. After exclusion of
prevalent type 2 diabetes patients we were left with
27,189 individuals, 24,799 of whom had available
DNA samples and were genotyped successfully for
TCF7L2 1rs7903146 and composed our study population.
Of these, 15,010 were women (mean [£SD] age 57.3+
7.9 years, BMI 25.3+4.2 kg/mz) and 9,789 were men
(age 59.1+3.4 years, BMI 26.2+3.4 kg/m?).

Altogether 6,103 individuals were randomly selected
from the MDCS to participate in a cardiovascular sub-
cohort (MDC-CC). Additional measurements were
obtained for these individuals, including analysis of
fasting blood glucose and HbA,. levels. For the analy-
ses in the MDC-CC, we excluded cases of prevalent
type 2 diabetes, and included 5,216 individuals with
complete diet, fasting glucose and genotype informa-
tion: 3,067 women (age 57.3+£5.9 years, BMI 25.3+
4.2 kg/m?) and 2,149 men (age 57.5+6.0 years, BMI
26.1+3.4 kg/m?).

The MDCS was approved by the Ethical Committee at
Lund University (LU 51-90). All participants provided written
informed consent.

Incident type 2 diabetes We studied the incidence of type 2

diabetes until December 2006 (mean follow-up time 11.8+
3.0 years). Incident cases were identified using the Swedish
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National Diabetes Register [17] and the Diabetes 2000
register of Skane region [18]; both registers included only
individuals diagnosed by a physician according to estab-
lished guidelines. To identify cases that were not diagnosed
at the hospital, we used the local HbA,, register, which
contains data from institutional and non-institutional care
in Malmoé since 1988 [19]. Individuals with at least two
HbA,. values above 6.0%, using the Swedish Mono-S
standardisation system (corresponding to 6.9% using the
US National Glycohemoglobin Standardization Program
and 52 mmol/mol using International Federation of Clinical
Chemistry and Laboratory Medicine units) [20, 21], were
categorised as diabetes cases. In our study population (n=
24,799) a total of 1,649 incident cases of type 2 diabetes
occurred during the follow-up period.

Dietary assessment An interview-based, modified dietary
history method specially designed for the MDCS was used
consisting of: (1) a 7-day menu book where lunch, dinner
meals and cold beverages, including alcohol, were recorded;
and (2) a dietary 168-item questionnaire to assess meal
patterns, consumption frequencies and portion sizes of reg-
ularly consumed foods. Medicinal drugs, natural remedies
and nutrient supplements were recorded in the menu book.
A 48-page booklet was used to help participants at home
estimate the portion sizes for recording information in the
questionnaire. This was followed by interviews performed
by trained interviewers. Portion sizes and dishes in the menu
book were estimated during the interview using a more
extensive book with photographs. Participants were also
asked about their meal pattern, cooking methods and food
choices.

Data from the menu book and diet questionnaire were
used to calculate the average daily intake of foods. The
average daily food intake was converted to energy and
nutrient intakes using the Malmo Diet and Cancer Food
and Nutrient Database, which was designed for the MDCS
and was derived from PC KOST2-93 of the Swedish National
Food Administration [22, 23].

A slight alteration of the coding routines for dietary
data was introduced in September 1994 [23]. A method
variable, classifying data collected before and after September
1994, along with a four-category season variable (i.e.
winter, spring, summer and autumn) was created and
used as a covariate to adjust for variation in data collec-
tion over time.

Dietary variables used in our analysis included total
energy intake (EI) (kJ), carbohydrate, fat and protein intake
as percentages of non-alcohol EI (%E), and fibre intake as
grams (g) per 4,184 kJ (1,000 kcal). The relative validity of
the dietary assessment method used in the MDCS has pre-
viously been evaluated in a sample of 50- to 69-year-old
Malmo residents, 105 women and 101 men. The reference
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method used was 18 days’ weighed food records (3 days
every second month) collected over 1 year. Energy-adjusted
Pearson correlation coefficients for fat, carbohydrate, pro-
tein and fibre intake were in the range of 0.54—0.74 [24].

Individuals with potentially inaccurate reports of EI
(n=4,548) were identified as having a ratio of EI to the basal
metabolic rate outside the 95% CI limits of the physical
activity level (PAL) calculated for each individual as total
energy expenditure. This procedure is described in detail
elsewhere [25].

Individuals with a change in their dietary habits in the
past (n=5,540) due to illness or other factors were identified
by one questionnaire item [22].

Other variables used as potential confounders Leisure-time
physical activity was assessed by an extensive lifestyle
questionnaire adapted from the Minnesota Leisure Time Phys-
ical Activity Questionnaire. Participants had to estimate the
number of minutes per week for each season they spent
performing each of 17 different physical activities. The dura-
tion was multiplied by an intensity factor to create a physical
activity score that was divided into tertiles. Participants were
classified as current smokers, ex-smokers and never-smokers.
Alcohol intake was classified into four categories based on
grams of alcohol consumed per day: zero, low (<15 g/day in
women or <20 g/day in men), medium (15-30 g/day in women
or 2040 g/day in men) and high consumers (>30 g/day in
women or >40 g/day in men). The education variable was
created by classifying participants according to their highest
educational level (<8 years, 9-10 years and 11-13 years at
school, and university degree).

Genotyping TCF7L2 1s7903146 was genotyped using the
TagMan PCR method (Applied Biosystems, Foster City,
CA, USA), according to the manufacturer's instructions.
The ABI Prism Sequence Detection System ABI 7900HT
(Applied Biosystems) was used for post-PCR allelic dis-
crimination by measuring allele-specific fluorescence. The
concordance rate was >99% in 325 randomly repeated sam-
ples. Genotyping success rate was 96%. The genotypes were
in Hardy—Weinberg equilibrium (p=0.16); 13,571 (54.7%)
individuals carried the CC genotype, 9,488 (38.3%) the CT
genotype and 1,740 (7.0%) the TT genotype.

Statistical analysis Assuming an additive model, logistic
regression was used to calculate the OR of incident type 2
diabetes associated with the TCF7L2 T risk allele in the
MDCS, adjusting for age, sex and BMI. A similar analysis
was done within quintiles of relative intakes of carbohydrate,
fat, protein and fibre. Interactions between TCF7L2 genotypes
and quintiles of different dietary intakes and type 2 diabetes
incidence were analysed by introducing a multiplicative factor
of genotype and dietary quintiles as continuous variables and
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also adding these variables to the equation. Interactions
were analysed using a basic adjustment model for age,
sex, BMI, total EI, method and season. For the sensitivity
analyses, we excluded inaccurate reporters of EI and in
the prospective analysis of incident type 2 diabetes, we
further excluded individuals reporting a change in their
dietary habits.

In the MDC-CC subcohort we performed cross-sectional
analysis using linear regression to calculate the effect sizes per
each risk T allele on baseline fasting plasma glucose and
HbA . in quintiles of fibre intake, adjusting for age, sex and
BMI. Interactions between quintiles of dietary fibre intake and
TCF7L2 genotype on fasting plasma glucose and HbA . were
analysed by introducing a multiplicative factor of genotype
and dietary quintiles as continuous variables using the same
adjustment model as described for the MDCS above. For the
sensitivity analyses, we excluded individuals potentially
reporting inaccurate EI.

QUANTO (http://hydra.usc.edu/gxe/ accessed 1 March
2012) was used to calculate the statistical power for the
gene—diet interaction with incident type 2 diabetes and
baseline HbA . levels [26, 27]. Assuming an OR of 0.90
per fibre quintile (additive model) and an OR of 1.44 per
TCF7L2 T allele (26% allele frequency, additive model) on
type 2 diabetes incidence, and an effect of —0.028% per fibre
quintile and 0.027% per TCF7L2 T allele on HbA . levels,

Table 1 Characteristics of the MDCS cohort by TCF7L2 genotype

we had 80% power to detect an interaction OR of at least
1.08 in type 2 diabetes incidence, and an interaction effect of
at least 0.022% on HbA | levels.

Our analyses showed similar results after further adjust-
ments for potential confounders as physical activity, alcohol
intake, smoking habits and level of education.

We used IBM SPSS Statistics, version 19 (SPSS Inc.,
Chicago, IL, USA), for the analyses. Two-sided p values of
<0.05 were considered significant.

Results

The TCF7L2 rs7903146 T allele was associated with a 44%
(95% CI 33, 56) increased risk of incident type 2 diabetes
(p=4.6x10""%) in the MDCS. In the MDC-CC subcohort,
each additional rs7903146 T allele was associated with
0.059 mmol/l higher fasting plasma glucose (p=0.004) and
0.027% (0.27 mmol/mol) higher HbA,. (p=0.02) level
(Table 1). Different genotype carriers reported similar mean
intakes of total energy, carbohydrates, fats, protein and fibre
(Table 1).

No significant interactions were found between rs7903146
and quintiles of carbohydrate, fat or protein intake (p=0.91,
0.47 and 0.70, respectively) and incident type 2 diabetes
(Table 2). However, the risk of type 2 diabetes with the

Characteristic TCF7L2 genotype OR (95% CI)* or B (SE)° Ptrend
CC CT T
n 13,571 9,488 1,740
Incident T2DM (%) 741 (5.5) 757 (8.0) 151 (8.7) 1.44 (1.33, 1.56)* 4.6%x107"°
FPG (mmol/l)* 5.640.9 5.7+0.9 5.740.8 0.06 (0.02) 0.004
FPI (pmol/1)°® 46.8+43.6 47.6+52.6 4414272 0.22 (1.00) 0.83
HbA,. (%)° 4.8+0.5 4.8+0.5 49405 0.03 (0.01) 0.02
HbA . (mmol/mol)® 39.7+52 40.0+5.3 40.1+4.8 0.27 (0.12) 0.02
Age (years) 58.1+7.6 58.0+7.6 58.0+7.6 —0.08 (0.07) 0.30
BMI (kg/m?) 25.743.9 25.743.9 25.543.8 ~0.08 (0.04) 0.06
Energy (kJ) 9,548+2,728 9,535+2,711 9,569+2,874 5.06 (24.2) 0.28
Carbohydrate (%E) 45.2+6.0 45.2+6.1 45.2+5.9 0.01 (0.06) 0.99
Fat (%E) 39.146.1 39.046.2 39.146.0 ~0.02 (0.06) 0.75
Protein (%E) 15.742.6 15.842.5 15.842.5 0.01 (0.03) 0.79
Fibre (/4,184 k) 9.0+2.7 9.0+2.7 9.1+2.8 0.003 (0.025) 0.91

Data are means £ SD unless otherwise stated
No. of individuals included in MDCS cohort, n=24,799

 Logistic regression model assuming an additive genetic model adjusting for age, sex and BMI

° B represents the difference generated by each additional T allele

¢ General linear model, assuming an additive genetic model adjusting for age, sex, BMI, season and method where appropriate

9 Data available only for the MDC-CC, n=5,216

FPG, fasting plasma glucose; FPI, fasting plasma insulin; T2DM, type 2 diabetes mellitus
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Table 2 OR of incident type 2 diabetes by TCF7L2 17903146 genotype and quintiles of different dietary intakes in the MDCS

Dietary component  Mean intake  OR (95% CI)* Puend Pinteraction”™
CC CT TT Additive model

Carbohydrate (%E) 0.91 (0.44)

Ql 36.9 1.00 (ref) 1.54 (1.21, 1.95)  2.09 (1.40,3.11) 1.49 (1.25,1.77) 8.3x10°

Q2 42.1 1.00 (0.79, 1.26)  1.36 (1.07, 1.73)  1.62 (1.05,2.51) 132 (1.10, 1.58) 2.9x1073

Q3 45.2 0.92 (0.72, 1.17)  1.62 (1.28,2.05) 1.85(1.24,2.76) 1.53(1.29,1.82) 9.5x 1077

Q4 48.2 0.87 (0.68, 1.11)  1.37 (1.07, 1.76)  1.71 (1.12,2.60) 1.47 (1.23, 1.76) 3.0x% 1073

Qs 537 091 (0.71, 1.16)  1.47 (1.16, 1.88)  1.34 (0.83,2.17) 1.37 (1.14, 1.64) 9.0x10°*

Ptrend 0.30 0.74 0.19

Fat (%E) 0.47 (0.17)

Q1 30.5 1.00 (ref) 1.55 (1.23,1.96) 1.63 (1.06,2.51) 1.38(1.16,1.64) 3.0x107*

Q2 359 0.73 (0.57,0.94) 129 (1.01, 1.66) 2.03 (1.36,3.03) 1.69 (1.41,2.03) 1.9x10°®

Q3 39.0 0.98 (0.77, 1.24) 147 (1.15,1.86)  1.55 (1.03,2.35) 136 (1.14, 1.61) 5.8x107*

Q4 422 0.88 (0.69, 1.12)  1.45 (1.14, 1.85)  1.53 (0.99,2.38) 1.45(1.21, 1.73) 5.1x10°°

Q5 47.6 0.98 (0.77, 1.24) 137 (1.07, 1.75)  1.66 (1.07, 2.58)  1.36 (1.13, 1.64) 9.4x10°*

Pusend 0.64 0.61 0.55

Protein (%E) 0.70 (0.52)

Ql 12.5 1.00 (ref) 1,57 (1.21,2.05)  1.81(1.15,2.86) 1.44 (1.19,1.74) 2.2x10°*

Q2 14.4 1.12 (0.87, 1.45)  1.87 (1.45,2.41) 1.69 (1.06,2.69) 140 (1.17, 1.68) 2.3x107*

Q3 15.6 102 (0.79, 1.32)  1.65 (1.27,2.13)  2.02(1.29,3.15) 1.49 (1.24, 1.80) 3.0x10°°

Q4 16.9 1.25 (0.97, 1.60)  1.66 (1.28,2.14) 2.18 (1.42,3.33) 1.33(1.12,1.59) 1.5x10°°

Qs 19.4 1.24 (0.97, 1.60)  2.09 (1.62,2.68) 2.63(1.78,3.89) 1.51(1.29,1.77) 3.5x107’

Ptrend 0.12 0.10 0.04

Fibre (g/4,184 kJ) 0.049 (0.006)

Ql 5.8 1.00 (ref) 1.35 (1.08, 1.70)  1.33 (0.86,2.05) 1.24 (1.04, 1.47) 1.4x1072

Q2 7.5 0.74 (0.58,0.93)  1.09 (0.86, 1.38)  1.39 (0.90,2.16) 1.43(1.18,1.72) 2.0x107*

Q3 8.7 0.80 (0.63, 1.01)  1.29(1.03, 1.63)  1.70 (1.15,2.50) 1.52(1.28, 1.80) 1.8x10°°

Q4 10.1 0.73 (0.57,0.93)  1.14 (0.90, 1.46) 148 (0.98,2.26) 1.49 (1.24, 1.80) 2.1x10°°

Q5 13.1 0.74 (0.58,0.94)  1.41 (1.11, 1.79)  1.44 (0.94,2.22) 1.56 (1.31, 1.86) 8.3x1077

Ditrend 0.029 0.78 0.64

No. of individuals included in MDCS cohort, n=24,799

#Basic model with adjustments for age, sex, BMI, total EI, season and method

® Sensitivity analysis after excluding inaccurate reporters of EI using the basic model

CC, CT, TT denotes TCF7L2 genotype; ref denotes reference value

TCF7L2 T allele increased from 24% to 56% from the lowest
(mean intake: 5.8+£0.8 g/4,184 kJ) to the highest (mean
intake: 13.1+£2.2 g/4,184 kJ) quintile of fibre intake
(Pinteraction=0.049). In the sensitivity analysis excluding po-
tential inaccurate reporters of EI (18.3% of the study sample),
the interaction between rs7903146 and quintiles of fibre intake
was more evident (p=0.006) (Table 2). The interaction
remained significant after further exclusion of individuals
who reported a dietary change in the past (resulting in exclu-
sion of 35.9% of the study sample) (p=0.046).

Since in several earlier studies fibre intake has been
associated with protection against type 2 diabetes, we next
analysed the effect of fibre intake on the risk of type 2
diabetes among different TCF7L2 genotype carriers. When
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comparing the extreme groups of fibre intake (i.e. the high-
est quintile vs the lowest) separately within each genotype
group, we found that higher fibre intake was associated with
protection against type 2 diabetes among CC genotype
carriers (OR 0.74, 95% CI 0.58, 0.94, pyeng=0.025), but
not among CT or TT genotype carriers (CT: OR 1.03, 95%
CI10.80, 1.32, pyeng=0.77; TT: OR 1.13, 95% CI1 0.62, 2.07,
ptrend:0~60) (Flg 1)

We next performed cross-sectional interaction analyses of
the quantitative traits of fasting glucose and HbA . that have
been reported to be associated with the TCF7L2 variant in
GWAS (Table 3). In the MDC-CC we did not detect any
significant interaction between quintiles of fibre intake and
TCF7L2 genotype and baseline fasting plasma glucose
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Fig. 1 ORs of type 2 diabetes in quintiles of fibre intake in strata of
TCF7L2 genotype in MDCS (n=24,799). We used the first quintile as a
reference (OR 1) and adjusted for age, sex, BMI, total EI, season and
method. Comparing the highest and lowest quintiles, a higher fibre
intake was only protective among CC (circle) genotype carriers
(Ptrena=0.025). Higher fibre intakes were not associated with type 2
incidence among CT (square) (Pieng=0.77) and TT (triangle)
(Prena=0.60) genotype carriers. The error bars denote the 95% CI

levels (»p=0.20). However, the association with elevated base-
line HbA . levels increased significantly with higher fibre
intake (effect size —0.021% (—0.21 mmol/mol) to 0.079%
(0.80 mmol/mol) per T allele from the lowest to highest

quintile, piperaction=0.020), and the T allele was significantly
associated with higher HbA | levels only in the highest quin-
tile of fibre intake (peng=0.002) (Fig. 2). This result remained
significant in a sensitivity analysis after excluding inaccurate
reporters of El (Pineraction="0.033).

We then analysed the association between fibre intake and
HbA,. levels among different TCF7L2 genotype carriers
(Table 3). Among all MDC-CC individuals, higher fibre in-
take was associated with lower HbA . levels (—0.03%
[-0.3 mmol/mol], —0.04% [—0.4 mmol/mol] to —0.02%
[-0.2 mmol/mol] per quintile of fibre intake, pyeng=1.7%
107%). This protective association was strongest among CC
genotype carriers (—0.036% [—0.37 mmol/mol] per quintile,
p=6.5x10""), while a higher fibre intake was not associated
with HbA . levels among TT genotype carriers (0.012%
[0.13 mmol/mol], p=0.52) and carriers of both alleles
appeared as an intermediate group (—0.023% [—0.24 mmol/
mol], p=0.009) (Fig. 2).

As TCF7L2 rs7903146 has been, in several studies,
shown to associate more strongly with risk of type 2 diabe-
tes among lean as compared with overweight individuals,
we were concerned that some potential confounding could
still be present after adjusting for BMI. In the MDCS the
risk of type 2 diabetes associated with the TCF7L2 T allele
decreased from 86% to 31% from the lowest to highest BMI

Table 3 Mean fasting plasma glucose and HbA, . by quintiles of fibre intake and TCF7L2 genotype

Quintiles TCF7L2 genotype Effect size® Puend Dinteraction
CC CT
Mean fasting glucose (mmol/l)
Fibre (g/4,184 kJ)
Q1 5.85 5.84 5.73 —0.006 0.91 0.20
Q2 5.65 5.70 5.83 0.09 0.03
Q3 5.60 5.69 5.74 0.10 0.01
Q4 5.59 5.60 5.67 0.009 0.80
Q5 5.53 5.63 5.71 0.12 0.006
Effect size” —0.04 —0.03 -0.03
Prend” 0.0002 0.047 0.39
Mean HbA . % (mmol/mol)
Fibre (g/4,184 KI)
Ql 4.92 (40.8) 4.90 (40.6) 4.85 (40.1) —0.021 (-0.21) 0.49 0.02
Q2 4.79 (39.5) 4.82 (39.4) 4.87 (40.3) 0.032 (0.33) 0.16
Q3 4.81 (39.7) 4.86 (40.2) 4.85 (40.1) 0.033 (0.33) 0.21
Q4 4.78 (39.4) 4.82 (39.7) 4.78 (39.4) 0.011 (0.12) 0.60
Q5 4.75 (39.1) 4.80 (39.6) 4.93 (40.9) 0.079 (0.80) 0.002
Effect size” —0.036 (~0.37) —0.023 (=0.24) 0.012 (0.13)
Puend” 6.5%1077 0.009 0.52

Data are taken from n=>5,216 individuals

#Basic model with adjustments for age, sex and BMI

® Basic model with adjustments for age, sex, BMI, total EI, season and method
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Fig. 2 Mean HbA,, levels in quintiles of fibre intake, by the TCF7L2
157903146 genotypes, in the MDC-CC (n=5,216). The associated effect
size () per T allele on HbA . level increased in higher fibre intake groups
(Pinteraction=0.020) and the risk allele was associated with higher HbA .
levels only in the highest quintile of fibre intake (3=0.08%, p=0.002).
Individuals in the highest quintile of fibre intake had significantly lower
HbA . levels compared with those in the lowest intake group (»<0.001).
This association was driven by the strong associated effect per fibre intake
quintile among the CC genotype carriers (3=-0.036%, p=6.5x10""). No
such association was observed among TT genotype carriers (3=0.012,
p=0.52) while carriers of both alleles appeared as an intermediate
group (3=-0.023%, p=0.009). To convert values for HbA,. in %
into mmol/mol, multiply by 10.11 and subtract 8.94. Genotype carriers:
hatched bar, all; black bar, CC; grey bar, CT; white bar, TT. The error bars
denote the SEM

quintile (Pinteraction=0.009). However, dictary fibre intake
and BMI did not correlate (+*=—0.006, p=0.88) and sepa-
rate interaction analyses of BMI tertiles indicated similar
results in each BMI category.

Finally, each quintile of higher leisure-time PAL was asso-
ciated with 6.4% reduced risk of type 2 diabetes (p=0.0003).
However, PAL did not interact with TCF7L2 genotype on
type 2 diabetes incidence (p=0.46), and the interaction
between fibre intake and T7CF7L2 genotype on type 2 diabetes
incidence remained similar after further adjustment for leisure-
time physical activity.

Discussion

Although type 2 diabetes is thought to result from a complex
interplay between genetic predisposition and an unfavoura-
ble environment, very little is known about the interactions
involved. We observed the risk increase of type 2 diabetes
with the 157903146 T allele to be significantly accentuated
by increasing dietary fibre intake. Analyses of HbA . levels
supported this observation as the rs7903146 T allele was
only associated with higher HbA . levels among individuals
with the highest fibre intake.

Several previous studies have reported a protective associ-
ation between a high fibre intake and type 2 diabetes [28, 29].
Our results indicate that the protective effect of higher fibre

@ Springer

intake is dependent on the genetic background of the individ-
ual, being limited to TCF7L2 non-risk CC genotype carriers.
This is in line with a recent report from the prospective EPIC-
Potsdam case-control study reporting that the association be-
tween whole-grain intake and protection against type 2 diabe-
tes is dependent on TCF7L2 1s7903146 genotype; a high
whole-grain intake was associated with protection among
CC genotype carriers while individuals carrying one or two
T alleles lacked such protection [12]. Our analyses of HbA .
levels by TCF7L2 genotype and fibre intake further support
such an interaction, as the TCF7L2 T allele was associated
with higher HbA,. levels only among individuals with
higher fibre intake. Consistent with the observed dissimilar
effects of fibre intake on type 2 diabetes incidence among
different TCF7L2 genotype carriers, a high fibre intake was
strongly associated with lower HbA,. levels among CC
genotype carriers, while this association was completely
lacking among TT genotype carriers. We did not find any
interaction between dietary fibre intake and T7CF7L2 variant
on fasting glucose levels, which is in line with a large
meta-analysis of 14 cohorts (including MDC-CC), which
reported no interaction between whole-grain intake and
TCF7L2 variant and fasting glucose levels [13].

The major strengths of our study include the high relative
validity of our dietary assessment method, the combination of
a diet diary with a questionnaire, the large sample size, the
prospective design and the ability to identify inaccurate report-
ers of energy intake and individuals who had changed their
diet in the past. In addition, the obtained association between
higher dietary fibre intake and lower risk of type 2 diabetes
and HbA . levels suggests that the dietary and type 2 diabetes
incidence measures of the MDCS are adequate. Still, our study
suffers from limitations including projection of the baseline
diet data to the whole follow-up period in the prospective
analyses (type 2 diabetes) and the limited causal inference in
the cross-sectional analyses (HbA . levels). In addition, we did
not correct the statistical analyses for multiple comparisons as
the dietary variables are correlated and we had the possibility
of repeating the test of interaction between TCF7L2 1s7903146
and fibre intake on HbA, levels. Despite these limitations our
interaction data from the prospective analyses were supported
by the data obtained using a cross-sectional design. However,
we need to keep in mind that the observed significance levels
of the interactions were not robust and thus the possibility of
false-positive findings cannot be excluded and therefore our
results need to be replicated in other studies.

In our study, the protective association of higher dietary
fibre intake with type 2 diabetes incidence was restricted to
around 55% of the population who were non-carriers of the
TCF7L2 risk allele, while TT genotype carriers completely
lacked such protection and CT carriers appeared as an inter-
mediate group. Fibre intake has been associated with lower
postprandial glucose and insulin concentrations, which have
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been mainly attributed to slower intestinal absorption of
nutrients [30]. In our study this was reflected among the CC
genotype carriers who had a significantly lower HbA . level
as well as a significantly lower incidence rate of type 2
diabetes when reporting high fibre intake. Dietary fibre has,
in previous studies, been associated with inconsistently affect-
ed GLP-1 response, which could be due to differences in
studied fibre types, the limited number of individuals studied
and/or the short duration of the studies [31, 32]. However, it
has been shown in hyperinsulinaemic individuals that after 9—
12 months, higher fibre intake was associated with elevated
plasma short-chain fatty acids (SCFAs), which are products of
colonic fermentation of dietary fibre, and higher GLP-1 levels
[33], pointing to a long-term effect of dietary fibre on glucose
homeostasis. Several animal studies have shown that SCFAs
are associated with increased expression of the proglucagon
gene and GLP-1 secretion in rat intestinal cells [34-36]. At
least part of the protective association of dietary fibre with the
risk of type 2 diabetes could therefore be mediated by SCFAs
through increased GLP-1 release. Since the TCF7L2 T allele
has previously been associated with an impaired incretin
effect [7], it can be speculated that carriers of this risk allele
could suffer from some degree of incretin resistance, leading
to a lack of benefit from higher GLP-1 levels associated with
SCFAs from higher fibre intake. This could be of clinical
relevance, especially as many type 2 diabetes patients are on
incretin-based treatment regimens and the risk allele carriers
may benefit from these drugs to a lesser extent.

However, as systemic plasma SCFAs have previously
been reported to increase after fermentable dietary fibre
intake [37, 38], SCFAs may affect other tissues, such as
pancreatic islets. Among the different SCFAs, butyrate has
been identified as the most potent histone deacetylase inhib-
itor (HDAC1) [39], which may be of interest because the
rs7903146 risk variant sequence has been reported to confer
an islet-specific open chromatin state translating to an elevated
enhancer effect on T7CF7L2 transcription [40]. Butyrate as a
fermentation product of dietary fibre could therefore play a
role in further propagating the previously reported difference
between the rs7903146 T allele carriers and the non-carriers
via histone hyperacetylation, which may result in further
enhanced transcription of the already overexpressed risk
transcript. Another possibility could be the ability of an
HDAC: to increase the levels of active (3-catenin [41].

To conclude, our study suggests that the TCF7L2 risk
variant modifies the protective association of dietary fibre
intake with type 2 diabetes incidence and HbA. levels.
Although our epidemiological observations cannot be trans-
lated into dietary advice for carriers of the T7CF7L2 risk
allele, our results question whether a fibre-rich diet is pro-
tective against type 2 diabetes in all individuals, and by
which mechanisms such protection may be lost in T allele
carriers. Further studies are needed to answer these

questions and to understand the mechanisms by which the
TCF7L2 risk variant increases the risk of type 2 diabetes.
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