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Abstract. Tree balance plays an important role in different research areas
like theoretical computer science and mathematical phylogenetics. For
example, it has long been known that under the Yule model, a pure birth
process, imbalanced trees are more likely than balanced ones. Also, con-
cerning ordered search trees, more balanced ones allow for more efficient
data structuring than imbalanced ones. Therefore, different methods to
measure the balance of trees were introduced. The Sackin index is one of
the most frequently used measures for this purpose. In many contexts,
statements about the minimal and maximal values of this index have been
discussed, but formal proofs have only been provided for some of them,
and only in the context of ordered binary (search) trees, not for general
rooted trees. Moreover, while the number of trees with maximal Sackin
index as well as the number of trees with minimal Sackin index when the
number of leaves is a power of 2 are relatively easy to understand, the
number of trees with minimal Sackin index for all other numbers of leaves
has been completely unknown. In this manuscript, we extend the findings
on trees with minimal and maximal Sackin indices from the literature on
ordered trees and subsequently use our results to provide formulas to
explicitly calculate the numbers of such trees. We also extend previous
studies by analyzing the case when the underlying trees need not be bi-
nary. Finally, we use our results to contribute both to the phylogenetic as
well as the computer scientific literature using the new findings on Sackin
minimal and maximal trees to derive formulas to calculate the number
of both minimal and maximal phylogenetic trees as well as minimal and
maximal ordered trees both in the binary and non-binary settings. All
our results have been implemented in the Mathematica package Sackin-
Minimizer, which has been made publicly available.
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1. Introduction

Rooted trees, and binary ones in particular, play a fundamental role in many
sciences as they can be used as a basis for search algorithms [16,17] as well
as, amongst others, as a model for evolution [7,22]. In many cases where these
trees occur, probability distributions are not always uniform concerning the
degree of tree balance—for instance, the Yule model in phylogenetics, which is
a pure birth process, has long been known to lead to more imbalanced trees. A
simple example is depicted in Fig. 1, where it can be seen that if all leaves of a
tree with three leaves are equally likely to give rise to a new leaf, then two of
them lead to the same (‘imbalanced’) tree, whereas the other possible tree (the
‘balanced’ one) occurs only once. So to understand such processes and their
possible bias towards imbalanced (or, in other cases, balanced) trees, one has
to be able to classify the degree of balance in more detail than just in a binary
way (‘balanced’ versus ‘imbalanced’). Therefore, various balance indices were
introduced and have been used over the years, e.g. [1,5,20,21,26]. One of the
most frequently used and discussed indices is the Sackin index [21].

︸ ︷︷ ︸

Figure 1. The Yule process splits one leaf at a time uni-
formly at random to form a so-called cherry. It can be easily
seen that this leads to a tree shape bias already when there
are n = 4 leaves. This is due to the fact that the only rooted
binary tree on three leaves has two leaves that give rise to
the tree on the left, which is considered ‘imbalanced’ (it is the
so-called caterpillar tree T cat

4 on 4 leaves), whereas only one
leaf leads to the so-called fully balanced tree T bal

2 of height 2
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This index has been observed to have some very nice properties for binary
trees—for instance, it has been stated that its maximum is achieved by the
caterpillar tree (the unique tree with only one ‘cherry’, i.e. with only one
internal node whose two descendants are both leaves) and that, whenever the
number n of leaves equals a power of 2, i.e. when n = 2k for some k, the
minimum is achieved by the so-called fully balanced tree of height k, i.e. the
tree in which all leaves have distance k to the root [24]. While these statements
can be found in the phylogenetic literature, they are typically stated there both
without rigorous proofs and without references.

However, these statements are actually known, at least to some extent,
and have been proven in a totally different context—namely, in theoretical
computer science. They actually trace back to the famous book series “The
art of computer programming” by Knuth [16], the first edition of which ap-
peared already in the late 1960s. Knuth and other computer scientists do not
use the term Sackin index; they use the term total external path length instead,
and they do not consider general rooted binary trees but ordered binary search
trees (i.e. binary trees with a distinction between left and right), which may
have contributed to the fact that their proofs are widely unknown in the phy-
logenetic community, even though the characterizations given in [16] actually
also apply to non-ordered trees.

In this manuscript, as a first step, we will present some known results and
transfer them from ordered search trees to general rooted binary trees. We will
thus show that the Sackin index indeed has the above mentioned properties,
which are desirable for a good tree balance index, as the caterpillar tree is
normally perceived as very ‘imbalanced’, whereas the fully balanced tree is
normally referred to as very ‘balanced’ (which explains its name).

For non-binary trees, however, even less has been proven in the literature,
even though this case is less involved and some statements can be found in
some manuscripts, even if they are to the best of our knowledge not stated
anywhere with rigorous proofs. For instance, some authors mention that the
so-called star tree, i.e. the unique rooted tree with only one inner node, is the
unique Sackin minimal tree [19]. We present a concise rigorous proof for this as
well as for the fact that even in the setting where the tree need not be binary,
the binary caterpillar is still the unique most imbalanced tree concerning the
Sackin index.

The idea of the Sackin index is to assign a small number to trees that
are perceived as balanced and a high number to more imbalanced trees—
i.e. the higher the Sackin index, the more imbalanced the tree. So while some
statements on the maximum of the Sackin index and its minimum in the special
case n = 2k can already be found in the literature, even if without proofs, little
has been known about trees with the minimum Sackin index for n �= 2k—in
particular, so far no formula has been known to count these trees. While it has
long been known that the binary tree achieving this minimum in such cases
need not be unique, the number of most balanced or most imbalanced binary
trees has never been formally investigated; neither in the phylogenetic nor in
the computer scientific literature.
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It is the first aim of the present manuscript to give an overview of the
different versions of the Sackin index that can be found in the literature and to
link them to the notion of total external path length in computer science. We
then fully characterize both for binary and non-binary trees all Sackin minimal
and maximal trees as well as the corresponding minimal and maximal Sackin
values. We also point out which of these characterizations and proofs are new
to the literature and which ones can be traced back, for instance, to theoretical
computer science. We then turn our attention both to phylogenetic as well as
to ordered trees and generalize our findings to these settings.

Ultimately, we use our characterizations to count all Sackin minimal and
maximal trees—in the binary and non-binary settings, in the phylogenetic
setting, and in the ordered setting. Some of these enumerations are recur-
sive, while others are explicit, and some of them are even new to the Online
Encyclopedia of Integer Sequences [25], i.e. they have not occurred in other
combinatorial contexts yet, whereas some can be linked to other research areas.

In the last section of the present manuscript, we give a brief discussion
and point out some areas for future research.

We have implemented the results presented in this manuscript in a Math-
ematica [14] package called SackinMinimizer and made this package publicly
available [11].

2. Preliminaries

Before we can start to discuss the Sackin tree balance index, we first need
to introduce all concepts used in this manuscript. We start with trees: Trees
are connected, acyclic graphs with node set V and edge set E. We use V 1 to
denote the set of leaves of a tree, i.e. the set of nodes of degree at most 1. All
nodes v that are not leaves, i.e. v ∈ V \V 1, are called internal nodes. The set
of internal nodes of a tree T will be denoted by V̊ (T ), or, whenever there is
no ambiguity, simply by V̊ .

All trees T in this manuscript are assumed to be rooted, i.e. they have a
designated inner node that is called root. Apart from the root, no vertices of
degree 2 are allowed. Unless explicitly stated otherwise, we consider trees to
be binary1, i.e. if these trees have an internal node at all, they have one root
node ρ of degree 2 and all other internal nodes have degree 3. The only rooted
binary tree which does not have an internal node is the tree that consists of
only one node and no edge—in this special case, the only node is for technical
reasons at the same time defined to be the root and the only leaf of the tree, so
it is the only case where the root is not an internal node. Please note that by a
slight abuse of notation, which is common in mathematical phylogenetics, the
set of non-binary trees contains also the binary ones—non-binary thus is meant

1Note that our concept of binary trees corresponds to the one in mathematical phylogenetics,
where only one node of degree 2 is allowed, namely the root. This is, however, in contrast
to computer science, where sometimes binary trees are allowed to have multiple nodes of
degree 2.
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in the sense of “not necessarily binary”. So if we discuss Sackin minimal and
maximal non-binary trees in Sect. 4.1, this optimization includes also binary
trees.

Furthermore, for technical reasons all tree edges in this manuscript are
implicitly assumed to be directed from the root to the leaves. Thus, for an edge
e = (u, v) of T , it makes sense to refer to u as the direct ancestor or parent
of v (and v as the direct descendant or child of u). More generally, when there
is a directed path from ρ to v employing u, u is called ancestor of v (and v
descendant of u). Two leaves v and w are said to form a cherry, denoted by
[v, w], if v and w have the same parent, i.e. if there exists an internal node u
in V such that (u, v) and (u,w) are edges in E. Note that every rooted tree
with at least 2 leaves has at least one cherry.

Let T be a rooted tree with root ρ, and let x ∈ V 1 be a leaf of T .
Then we denote by δx the depth of x in T , which is the number of edges
on the unique shortest path from ρ to x. Then, the height of T is defined
as h(T ) = maxx∈V 1 δx, i.e. as the maximum of these distances. Note that
whenever a leaf v has maximal depth, i.e. whenever h(T ) = δv, v is element
of a cherry. This is due to the fact that if another direct descendant2, say w,
of the parent of v, say u, was not a leaf but an internal node, it would have
descending nodes of a greater depth than δv = δw, which would contradict the
maximality of δv. This is why in this manuscript, instead of considering both
v and w separately as leaves of maximal depth, we sometimes refer to a cherry
[v, w] as cherry of maximal depth.

Moreover, recall that a rooted binary tree T can be decomposed into its
two maximal pending subtrees Ta and Tb rooted at the direct descendants a
and b of ρ, and we denote this by T = (Ta, Tb). In the non-binary setting, this
so-called standard decomposition of T into the maximal subtrees pending from
the root may result in more than two trees.

As we will later on transfer some findings from graph theoretical trees
back to research areas like mathematical phylogenetics as well as theoretical
computer science, we need two more notions of trees:

• A rooted (binary or non-binary) phylogenetic X-tree is a rooted (binary
or non-binary) tree without degree-2 vertices other than the root and
whose leaves are bijectively labeled by some taxon set X. We may typ-
ically assume without loss of generality that X = {1, . . . , n}, in which
case we simply talk about phylogenetic trees with n leaves rather than
phylogenetic X-trees.

• A rooted ordered tree is a rooted (binary or non-binary) tree without
degree-2 vertices other than the root and which has the property that for
all inner nodes u, its descendants are ordered, e.g. from “left” to “right”.
So in the ordered setting, if we for instance swap the left and the right
maximal pending subtrees of T2 in Fig. 2, this would change the ordered
version of T2, whereas T2 as a mere tree would remain unchanged.

2Note that in a binary tree, there is precisely one other such descendant; in a non-binary
tree, there may be even more than that.
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Last but not least, we want to introduce three particular trees which play
a crucial role in this manuscript, namely the so-called caterpillar tree T cat

n , the
so-called fully balanced tree T bal

k and the star tree T star
n , respectively. T cat

n

denotes the unique rooted binary tree with n leaves that has only one cherry,
while T bal

k denotes the unique rooted binary tree with n = 2k leaves in which
all leaves have depth precisely k. T star

n denotes the unique tree on n leaves in
which all leaves are directly pending from the root, i.e. in which all leaves have
distance 1 to the root. Whenever there is no ambiguity concerning n or k, we
also write T cat, T bal and T star instead of T cat

n , T bal
k and T star

n . T cat
4 and T bal

2

are depicted in the bottom row of Fig. 1. Note that without loss of generality,
the unique rooted binary tree with only one leaf, which consists of only one
node and no edges, is defined to be T cat

1 , and it is thus the only caterpillar
tree which does not contain a cherry. This tree is at the same time equal to
T bal
0 , i.e. the fully balanced tree of height 0 and it is also equal to T star

1 . This
technicality enables inductive proofs concerning T cat, T bal and T star to start
at n = 1.

We are now in a position to define the central concept of this manuscript,
namely the Sackin index. As there are four different versions of this index to
be found in the literature, we will define all of them first and subsequently
investigate their respective relationships. Note, however, that we focus on the
first three definitions in the present manuscript, which can be shown to be
equivalent. Therefore, we will not refer to the last definition as Sackin index,
but give it a modified name instead.

Definition 1. [20,26] The Sackin index of a rooted tree T is defined as S(T ) =
∑

u∈V̊ (T ) nu, where nu denotes the number of leaves in the subtree of T rooted
at u.

Note that in the following, whenever we have for two trees T1 and T2 that
S(T1) < S(T2), then T1 is called more balanced than T2.

Definition 2. [20,26] The Sackin index of a rooted tree T is defined as S̄(T ) =
∑

x∈V 1(T ) δx.

Remark 1. The notion of the Sackin index given by Definition 2, i.e. the sum
of all path lengths from the root to any leaf (“external node”) of the tree, is
known as total external path length in computer science [3,15,16,28], where
it is typically applied to ordered search trees. We will consider these more
in-depth in Sect. 4.3.

Definition 3. [26, (3.10)] The Sackin index of a rooted tree T with root ρ and
vertex set V (T ) is defined as S̃(T ) =

∑

u∈V (T )\{ρ} nu, where nu denotes the
number of leaves in the subtree of T rooted at u.

Note that in the original paper by Sackin [21], in fact no index is defined at
all. Instead, a sequence b of leaf depths is defined, which implies that Definition
2 is probably most closely related to what Sackin originally intended. However,
we will show in Lemma 1 that the first three definitions are in fact equivalent,
which does not hold for the following definition.
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Definition 4. [27] The normalized Sackin index of a rooted tree T with n leaves
is defined as Ŝ(T ) = 1

n

∑

x∈V 1(T ) δx, where δx denotes the depth of leaf x.

We now state a first lemma, which has already been partially stated
(albeit without proof) in the literature [20].

Lemma 1. Definitions 1, 2 and 3 are equivalent, i.e. for any rooted binary tree
T , we have S(T ) = S̄(T ) = S̃(T ).

Remark 2. Before we prove Lemma 1, we want to state that this lemma is
actually crucial to transfer findings on S̄, which can be derived from theoretical
computer science, to the setting of mathematical phylogenetics, for instance,
where the definition given by S is more common.

Proof. We first prove S(T ) = S̄(T ). Therefore, consider S̄(T ) =
∑

x∈V 1(T ) δx.
Note that while δx by definition denotes the number of edges separating leaf
x from the root ρ of T , this is equivalent to the number of internal nodes on
the path from ρ to x (including ρ). This leads to

S̄(T ) =
∑

x∈V 1(T )

δx =
∑

x∈V 1(T )

|{u ∈ V̊ (T ) : u is an ancestor of x}|

= |{(x, u) : x ∈ V 1(T ), u ∈ V̊ (T ) and u is an ancestor of x}|
= |{(x, u) : x ∈ V 1(T ), u ∈ V̊ (T ) and x is a descendant of u}|
=

∑

u∈V̊ (T )

|{x ∈ V 1(T ) : x is a descendant of u}| =
∑

u∈V̊ (T )

nu = S(T ).

So now we have S(T ) = S̄(T ), and next we show that S(T ) = S̃(T ). We have

S(T ) =
∑

u∈V̊ (T )

nu =
∑

u∈V (T )

nu −
∑

x∈V 1(T )

nx =

⎛

⎝

∑

u∈V (T )

nu

⎞

⎠ − n.

The latter equality is due to the fact that the only leaf belonging to a subtree
rooted at a leaf is the leaf itself, so as we have n leaves, this gives n summands
that contribute 1 to the sum. Now recall that nρ = n, so this leads to

S(T ) =

⎛

⎝

∑

u∈V (T )

nu

⎞

⎠ − nρ =
∑

u∈V (T )\{ρ}
nu = S̃(T ).

This completes the proof.
�

So because Definitions 1, 2 and 3 are equivalent, we do not have to distin-
guish between them and will use them interchangeably. In fact, we will focus
in this manuscript mainly on second definition.

The normalized Sackin index, however, is a modification of the Sackin
index whenever trees with different numbers of leaves are considered, because
the ranking induced by the normalized Sackin index can even reverse the
ranking induced by the Sackin index. For instance, consider the two trees
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T1 = T cat
37 , i.e. the caterpillar tree with 37 leaves, and T2 = T bal

9 the fully
balanced tree with 29 = 512 leaves. Then it can easily be verified that we have
S(T1) = 702 < 4608 = S(T2), but Ŝ(T1) ≈ 18.97 > 9 = Ŝ(T2).3 In fact, this
ranking modification is no artifact but the very purpose of the normalization:
The effect that many leaves automatically may lead to more ‘imbalance’ shall
be eliminated. So in fact, S and Ŝ can be very different—but only when differ-
ent leaf numbers are considered! As long as n is fixed, the induced rankings of
the two indices are of course equivalent, and in this case, Ŝ is just S divided
by the constant factor n. So when we discuss for instance the question how
many trees with n leaves exist that have maximal or minimal Sackin index,
the answers for S and Ŝ will be the same.

Therefore, as this is sufficient for the numbers of minima and maxima,
we focus in this manuscript on Definition 2.

However, before we can proceed with the results concerning the Sackin
index, we need to introduce one more concept, which is closely related to
Definition 2.

Definition 5. Let T be a rooted tree with n leaves. Then we set

i(T ) :=
∑

v∈V̊ (T )

δv.

i(T ) is then called the total internal path length of T .

The following simple lemma has been stated already in [16, p. 400] (using
different notation), but without a formal proof, so that we briefly prove it
before we turn our attention to the extremal values of the Sackin index.

Lemma 2. Let T be a rooted binary tree with n leaves. Then we have S(T ) =
i(T ) + 2(n − 1).

Proof. We prove the statement by induction on n. If n = 1, T consists only
of one node, which is a leaf and has depth 0. So S(T ) = 0. In this case, there
is no inner vertex, so the sum in the definition of i(T ) is empty, so i(T ) = 0.
So indeed we have S(T ) = 0 = i(T ) = i(T ) + 2(1 − 1) = i(T ) + 2(n − 1),
which completes the base case of the induction. Next, assume the statement
holds for all trees with up to n leaves and consider T with n + 1 ≥ 2 leaves.
As every rooted binary tree on at least two leaves has at least one cherry, we
can construct a tree T ′ by deleting the leaves of a cherry [x, y] of T , which
turns its parent, say v, into a leaf. By the inductive hypothesis, we then have
S(T ′) = i(T ′)+2(n−1). Moreover, by the construction of T ′, we have i(T ′) =
i(T )−δv, because v is a leaf in T ′ but an inner vertex in T . Moreover, we have
S(T ) = S(T ′)+ δx + δy − δv, as x and y are leaves in T but not in T ′, and as v
is a leaf in T ′ but an inner node in T . Using δx = δy = δv +1, this immediately
shows that S(T ) = S(T ′)+δv +2. Using the inductive hypothesis, this leads to
S(T ) = i(T ′)+2(n−1)+δv +2 = (i(T )−δv)+2(n−1)+δv +2 = i(T )+2n =
i(T ) + 2((n + 1) − 1). This completes the proof. �

3Note that these numbers can also be verified later on using Theorems 1 and 2.
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3. Results

3.1. Minimally and Maximally Balanced Binary Trees

It is one of the main aims of this manuscript to count trees with minimal and
maximal Sackin index, respectively, and to do so, we need to characterize such
trees. In the present section, we focus on binary trees and for these, we will
start with the easier case, which is the maximum. Afterwards we will consider
the more involved and, therefore, more interesting case of the minimum.

3.1.1. Maximally Imbalanced Binary Trees/Minimally Balanced Binary Trees.
In this subsection, we prove that S(T ) is uniquely maximized by T = T cat

n for
binary trees, and we also explicitly state the value of S(T cat

n ), which is maximal.
So we will show that for all values of n, T cat

n is the unique tree maximizing
S, i.e. the unique most imbalanced tree. This result has been stated in the
literature before, e.g. in [20] as well as for ordered trees in [16, p. 400], but so
far, a formal proof has not been stated anywhere.

Theorem 1. Let T be a rooted binary tree with n leaves and maximal Sackin
index, i.e. we have S(T ) ≥ S(T ′) for all rooted binary trees T ′ on n leaves.
Then T is a caterpillar, i.e. T = T cat

n . In other words, T cat
n is the unique binary

tree maximizing S. Moreover, we have S(T cat
n ) = n·(n+1)

2 − 1.

Proof. 1. We begin by proving that the caterpillar tree is the unique binary
tree maximizing S. Assume this is not the case, i.e. assume there is a
tree T that is not a caterpillar and that maximizes S, i.e. S(T ) ≥ S(T ′)
for all rooted binary trees T ′ on n leaves. As T is not a caterpillar, T by
definition has at least two cherries. Let [x, y] be a cherry of T of maximum
depth, and let [u, v] with parent w be any other cherry of T . Then we
have: δx = δy ≥ δu = δv = δw + 1. Now we construct a tree T̃ from T as
follows: We delete leaves u and v and the edges leading to these leaves,
respectively, and we attach two new leaves u′ and v′ to leaf x. This implies
that in total, T̃ has three leaves that T does not have, namely u′ and v′,
but also w, which is not a leaf in T but which is a leaf in T̃ , as u and
v have been deleted. However, T also has three leaves that T̃ does not
have, namely u and v, which have been deleted to get to T̃ , but also x,
which is an internal node in T̃ as u′ and v′ have been attached to it. In
summary, this leads to

S(T̃ ) = S(T ) − δu − δv − δx + δu′ + δv′ + δw.

Using δu′ = δv′ = δx + 1 and δw = δu − 1 = δv − 1, this becomes

S(T̃ ) = S(T ) − δu − δu − δx + (δx + 1) + (δx + 1) + (δu − 1)

= S(T ) + δx − δu
︸ ︷︷ ︸

≥0
as x has max. depth

+1 > S(T ).
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So S(T̃ ) > S(T ). Clearly, this contradicts the maximality of T , which
shows that the assumption was wrong. Thus, the caterpillar is the unique
binary tree maximizing S. This completes the first part of the proof.

2. Note that the caterpillar T cat
n on n leaves has one leaf of depths 1 to

n− 2 each, but it has precisely two leaves of depth n− 1, namely the two
leaves in its only cherry. Thus, we have S(T cat

n ) =
∑n−1

1 i+(n−1). Using
the Gaussian sum, this immediately gives S(T cat

n ) = (n−1)n
2 + (n − 1) =

n·(n+1)
2 − 1. This completes the proof.

�

In total, we conclude that the caterpillar is indeed the unique binary tree
maximizing the Sackin index, i.e. the caterpillar is the unique most imbalanced
binary tree. So for all n, there is precisely one binary tree with maximal Sackin
index. As we will show in Sect. 3.1.2, the situation is entirely different for the
minimal Sackin index in the binary case, as it can be taken on by various
trees (depending on n). Moreover, we will show in Sect. 4.1 that the binary
caterpillar remains the unique tree maximizing the Sackin index even if we do
not restrict the maximization to binary trees.

We conclude this subsection by noting that the sequence of maximal
Sackin values (an)n∈N≥1 with an = S(T cat

n ) = n(n+1)
2 − 1 for i ∈ N ≥ 1, which

starts with 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170,
189, 209, . . ., corresponds to sequence A000096 in the Online Encyclopedia of
Integer Sequences OEIS [25, Sequence A000096], when the index is shifted by
1 (i.e. the ith entry of the OEIS sequence corresponds to the (i + 1)st entry of
our sequence). So this sequence has already occurred in other contexts, which
might link the maximal Sackin index to other areas of research like the study of
prime polyominoes or the traveling salesman polytope [25, Sequence A000096].

3.1.2. Maximally Balanced Binary Trees. In this subsection, we first want to
establish the same results for binary trees with minimal Sackin index that the
previous section stated for trees with maximal Sackin index. In particular, we
want the minimum value of the Sackin index and we want to characterize the
trees that achieve it. However, it turns out that—as opposed to the previous
section—the case of minimality is far more involved. Some approaches con-
cerning the minimum Sackin value can be found in the literature on rooted
binary trees—for instance in the appendix of [24], where a somewhat com-
plicated (and unfortunately erroneous) attempt at calculating this minimum
value was made4, albeit without a formal proof. Independently, ordered binary
trees with minimum internal path length have already been characterized in
[16, p. 401], which can be used to derive a formula for the minimal possible
Sackin index for n leaves. We show how to do so in the proof of Theorem 2.

4The definition of the function F (t, i) presented in [24] should actually be called F (t, i, j), as

it depends on j, too, and for the last summand, i.e. for j = mi, the definition of this function
does not coincide with the (correct) example presented at the very end of that manuscript.
Thus, the values calculated by Equation (A1) in that manuscript do not coincide with the
true minimal Sackin values, e.g. for n = 11.
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T1 T2

Figure 2. Two trees with n = 6 leaves which both have
Sackin index 16, which can be verified to be minimal for n = 6
using Theorem 2, as both of them only employ leaves of depths
2 and 3

The reason why the minimum is more involved than the maximum is
that, depending on the number n of leaves, the binary tree with minimal
Sackin index need not be unique, so counting these trees is more complicated.
Note that while examples for the fact that the Sackin index can be minimized
by more than one tree have been presented before, e.g. in [20], see Fig. 2,
it has so far not been investigated for which values of n this happens and
precisely how many minima there are for each n. It is the main aim of this
subsection to characterize all binary Sackin minimal trees and to present a
recursive approach to count them.

We now state the first theorem of this subsection, which gives a full
characterization of all rooted binary trees with minimum Sackin index and
also provides an explicit formula to calculate this minimum value. Note that
a variation of the statement of this theorem can also be found, for instance,
in [3], where it is attributed to Knuth [17]. Indeed, as we will outline in the
proof, Knuth stated the main ideas underlying this assertion, but not in [17].
Instead, these ideas can be found in [16, pp. 400–401].

Theorem 2. Let T be a rooted binary tree on n leaves and let k = �log2(n)�.
Then, T minimizes the Sackin index amongst all such trees if and only if
T equals T fb

k (for n = 2k) or T employs precisely two leaf depths, namely
k − 1 and k (for n < 2k). Moreover, if T has minimal Sackin index, we have
S(T ) = −2k + n(k + 1) (which equals k · 2k if n = 2k).

Proof. First, note that by Lemma 2, it suffices to analyze the total internal
path length i(T ) instead of S(T ). And as explained already in [16], i(T ) is
clearly minimal if and only if every internal node is as close to the root as
possible, but in a rooted binary tree, there are at most 2m vertices at distance
m to the root for all m = 1, . . . , k. Now, as we have n ∈ {2k−1 + 1, . . . , 2k}
leaves, we know that (as T is binary) we have n−1 inner vertices with 2k−1 ≤
n − 1 ≤ 2k − 1. This implies that in a tree which minimizes the total internal
path length, the inner vertices form a subtree T ′ which consists of T fb

k−2, which
has 2k−1 − 1 vertices (and the “leaves” of which have distance k − 2 from the
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root), with (n− 1)− (2k−1 − 1) = n− 2k−1 extra vertices attached at distance
k − 1 to the root. Note that some of the vertices at distance k − 2 from the
root in T ′ may be degree-2 vertices. So if T contains such a subtree T ′ of inner
vertices, the leaves of T must be attached such that all degree-2 vertices of T ′

are attached to one leaf of T , and all leaves of T ′ are attached to two leaves
of T (i.e. leaves of T ′ lead to cherries in T ). Note that this implies that all
leaf depths in T are k − 2 + 1 = k − 1 or k − 1 + 1 = k, respectively, and the
number of leaves at distance k equals 2 · (n − 2k−1). The latter assertion is
due to the fact that only the extra vertices of depth k − 1 in T ′ can lead to
depth-k vertices in T , but they are leaves in T ′, so each of them must be the
parent of a cherry in T (which is why each extra vertex leads to two vertices
of maximal depth in T ).

In case that n = 2k, by the reasoning above we have that there are
2n − 2k = 2k+1 − 2k = 2k = n many leaves at distance k to the root, so all
leaves have distance k, which implies that T equals T fb

k .
It only remains to show that S(T ) = −2k + n(k + 1). But this is now

obvious by Definition 2, as we now know that a tree with n leaves and minimum
Sackin index has 2n − 2k leaves at depth k and n − (2n − 2k) = 2k − n
many leaves at depth k − 1. This implies that S(T ) = (2n − 2k)k + (2k −
n)(k − 1) = −2k + n(k + 1). Note that in case that n = 2k, this implies
S(T ) = −2k + n(k + 1) = −2k + 2k(k + 1) = k · 2k. This completes the
proof. �

Before we continue, we briefly turn our attention to theoretical computer
science.

Remark 3. In [16, pp. 400–401], the author proves an explicit formula for the
minimum total internal path length for rooted binary ordered trees with m
internal nodes, i.e. for the sum of all depths of the m internal nodes: this
number equals (m+1)q − 2q−1 +2, where q = 	log2(m+1)
. Using Lemma 2,
it can be easily shown that the value stated in [16] equals S(T ) = −2k+n(k+1),
so this leads to an alternative proof for the minimum value stated in Theorem
2. Moreover, it is stated there that the “optimum value ... is clearly achieved
in a tree that looks like this”, followed by an example for m = 12 and thus
with n = 13 and k = 4. This example is a tree with 13 leaves, 3 of which have
depth 3 = k − 1 and 10 of which have depth 4 = k—so it is T fb

3 in which 5
leaves have been replaced by cherries.

Note that while the author is explicitly referring to ordered trees [16,
p. 309], it is obvious that the Sackin value is independent of the ordering.
Thus, Theorem 2 can be derived from the groundbreaking work by Knuth in
the described manner. However, as we will see in Sect. 4.3, the ordering does
indeed make quite a difference when the number of Sackin minimal trees shall
be counted, as there are far more ordered ones than non-ordered ones (even
though the ordered ones can be counted more easily).

Next, we consider the sequence of minimal Sackin values.
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Remark 4. Note that Theorem 2 implies that the sequence of minimal values
of the Sackin index, starting at n = 1, is 1, 2, 5, 8, 12, 16, 20, 24, . . . This corre-
sponds to Sequence A003314 in the Online Encyclopedia of Integer Sequences
OEIS [25, Sequence A003314], which is also often referred to as binary entropy
function, which interestingly links the Sackin index to the areas of information
theory [23] and thermodynamics [18].

We will now turn our attention to the set of trees of minimal Sackin
index, i.e. the maximally balanced ones according to this index. As we have
seen in Theorem 2, if the number of leaves is a power of 2, i.e. n = 2k, the
maximally balanced tree is unique, namely T bal

k . While this had previously
been observed in the literature (cf. [13,24]), no statement on the number of
maximally balanced trees (ordered or not) for leaf numbers that are not a
power of 2 has been made in the literature so far, even though it has long been
known that the minimal tree need not be unique for all values of n. In fact,
already for n = 6, there are two minima, which are depicted in Fig. 2. As stated
before, this example is not new; it can for instance already be found in [20].
However, so far the explicit number of Sackin minima for n �= 2k has not been
investigated. In Theorem 3, we will provide a recursive formula to calculate
this number in the following, and we will exploit the full characterization of
Sackin minimal trees provided by Theorem 2 to do so.

Counting the symmetries that may occur when some leaves of T fb
k−1 are

replaced by cherries is not trivial. So to conclude this section, we will show
in the following that the number of trees with minimal Sackin index can be
recursively counted. The proof of this formula exploits Theorem 2.

We now state the main result of this section.

Theorem 3. Let s(n) denote the number of binary rooted trees with n leaves
and with minimal Sackin index and let k = �log2(n)�. In the following, we
consider partitions of n into two integers na, nb, i.e. n = na + nb. Moreover,

let f(n) =

{

0 if n is odd
(
s(n

2 )+1
2

)

else.
Then, the following recursion holds:

• s(1) = 1
• s(n) =

∑

(na,nb):
na+nb=n,

n
2 <na≤2k−1,

nb≥2k−2

s(na) · s(nb) + f(n) for all n > 1.

Proof. First consider n = 1. In this case, it is clear that there is only one rooted
binary tree, namely the one consisting of only one node, which therefore has
minimal Sackin index, which implies s(1) = 1.

Now let n > 1. In this case, n can be partitioned into two summands na

and nb such that na ≥ nb and thus in particular na ≥ n
2 . We first consider the

case where na �= nb.
Note that a Sackin minimal rooted binary tree T with at least 2 leaves

can be decomposed into its two maximal pending subtrees Ta and Tb, both
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of which must be Sackin minimal, too (otherwise we could replace the non-
minimal one by a minimal one on the same number of leaves and thus achieve
a tree with a lower Sackin index, which would contradict the minimality of T ).
So we need to count the number of such combinations, where Ta has na leaves
and Tb has nb many leaves.

We first consider the trees for which na > n
2 and thus na > nb. As we

only consider Sackin minimal trees, we know by Theorem 2 that each such
tree can be constructed by taking T fb

k−1 and replacing n − 2k−1 leaves with
cherries. Note that if in Tb no leaves are replaced by cherries, Tb equals tree
T fb

k−2, in which case nb = 2k−2; in all other cases, nb > 2k−2. This explains
why we only consider cases with nb ≥ 2k−2. Again by considering Theorem
2, we can conclude that if all leaves in Ta are replaced by cherries, Ta equals
T fb

k−1 and thus has 2k−1 leaves. Otherwise, Ta has fewer leaves. This leads to
the requirement na ≤ 2k−1. So all s(na) · s(nb) such combinations of Sackin
minimal trees on na and nb leaves (where n

2 ≤ na ≤ 2k−1 and nb ≥ 2k−2 and
na + nb = n, respectively) lead to different Sackin minimal trees on n leaves
(counting trees twice has been prevented by the restriction na ≥ n

2 ). Clearly,
this consideration recovers all trees with na > nb that have the structure
described in Theorem 2 and thus have minimal Sackin index. This explains
the first summand in the recursive formula.

Now consider the case na = nb = n
2 , which of course only needs to be

considered if n is even (which explains why f(n) = 0 if n is odd). In this case, if
we consider all s(na) · s(nb) = s2

(
n
2

)

combinations of Sackin minimal trees on
n
2 leaves, then due to symmetry, the ones where Ta and Tb are not isomorphic
will be counted twice, but not the ones where Ta and Tb are isomorphic. So we
first have to add once more the s

(
n
2

)

trees where Ta and Tb are isomorphic.
So now we are in total considering s2

(
n
2

)

+ s
(

n
2

)

many trees, but each tree
now occurs two times. So the number of distinct Sackin minimal trees with
na = nb equals

1
2

·
(

s2
(n

2

)

+ s
(n

2

))

=
(

s
(

n
2

)

+ 1
2

)

,

which explains the second summand in the recursion and thus completes the
proof. �

We can use Theorem 3 to derive the following corollary, which character-
izes all cases in which the binary tree with minimal Sackin index is actually
unique.

Corollary 1. Let n ∈ N. Then there is only one rooted binary tree T with
minimum Sackin index if and only if there exists an m ∈ N such that n ∈
{2m − 1, 2m, 2m + 1}.
Proof. In the following, let n = na + nb with na ≥ nb and k = �log2(n)�. Now
if n = 2m, then by Theorem 2 the minimum is indeed unique, which completes
the first part of the proof.

Next, consider the case n = 2m − 1. Then we prove the statement by
induction on m. If m = 1, we have n = 2m − 1 = 1, which implies that
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there is only one rooted binary tree (namely the one consisting of only one
node), so there remains nothing to show. So now assume that the statement
holds for m − 1 and consider m. Clearly, since n = 2m − 1, we have m = k,
and by the reasoning explained in the proof of Theorem 3, we must have
na ≤ 2k−1. On the other hand, we also have na ≥ n

2 = 2k−1 − 1
2 . As na ∈ N,

this implies na ≥ 2k−1. So altogether, we have na = 2k−1. This implies nb =
n − na = 2k − 1 − 2k−1 = 2k−1 − 1. So na and nb are uniquely determined,
which implies that the sum in the recursion stated by Theorem 3 only has one
summand. This summand, however, is s(na) · s(nb) = s(2k−1) · s(2k−1 − 1),
which by the first part of the proof and by induction equals 1·1 = 1. Moreover,
f(n) = f(2m −1) = 0 as n is odd. This completes the second part of the proof.

Next, consider the case n = 2m + 1. Then we prove the statement by
induction on m. If m = 1, we have n = 2m + 1 = 3, which implies that there
is only one rooted binary tree (namely the rooted 3-leaf caterpillar), so there
remains nothing to show. So now assume that the statement holds for m − 1
and consider m. Clearly, since n = 2m + 1, we have k = m + 1, and by the
reasoning explained in the proof of Theorem 3, we must have na ≤ 2k−1 = 2m.
On the other hand, we also have na ≥ n

2 = 2m−1 + 1
2 . As na ∈ N, this implies

na ≥ 2m−1 + 1. Thus, nb = n − na ≤ 2m + 1 − (2m−1 + 1) = 2m−1. But as
explained in the proof of Theorem 3, we must also have nb ≥ 2k−2 = 2m−1. So
in total, nb = 2m−1, which in turn implies that na = n−nb = 2m +1−2m−1 =
2m−1 + 1. So na and nb are uniquely determined, which implies that the sum
in the recursion stated by Theorem 3 only has one summand. This summand,
however, is s(na) · s(nb) = s(2m−1 +1) · s(2m−1), which by the first part of the
proof and by induction equals 1 · 1 = 1. Moreover, f(n) = f(2m + 1) = 0 as n
is odd. This completes the third part of the proof.

Now, assume that n /∈ {2m − 1, 2m, 2m +1} for any m. In particular, this
implies that n ≥ 6 and thus k = �log2(n)� ≥ 3. In particular, for k = �log2(n)�,
this implies that n ∈ {2k−1 + 2, . . . , 2k − 2}. We first show that there are at
least two choices for nb which both lead to valid choices for na.

• Consider nb := 2k−2 (which is possible as k ≥ 3). This leads to na =
n − nb ≥ 2k−1 + 2 − 2k−2 = 2k−2 + 2 > nb (and thus na > n

2 ) and
na = n − nb ≤ 2k − 2 − 2k−2 = 3 · 2k−2 − 2 < 2k−1. So clearly, this choice
of nb leads to a valid pair (na, nb) which will be considered in the sum of
the recursion stated in Theorem 3.

• Consider nb := 2k−2 + 1 (which is possible as k ≥ 3). This leads to
na = n − nb ≥ 2k−1 + 2 − 2k−2 − 1 = 2k−2 + 1 > nb (and thus na > n

2 )
and na = n − nb ≤ 2k − 2 − 2k−2 − 1 = 3 · 2k−2 − 3 < 2k−1. So clearly,
this choice of nb leads to a valid pair (na, nb) which will be considered in
the sum of the recursion stated in Theorem 3.

So we have found two different summands for the recursion stated in Theorem
3, and as the recursion starts with s(1) = 1, each pair contributes at least
s(na) · s(nb) = 1 · 1 = 1 to the sum. This immediately implies s(n) ≥ 2.

So in summary, the minimum is unique if and only if n ∈ {2m−1, 2m, 2m+
1} for some m ∈ N. This completes the proof. �
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Remark 5. Starting at n = 1 and continuing up to n = 32, the sequence s(n)
of numbers of trees with n leaves and with minimal Sackin index is 1, 1, 1, 1, 1,
2, 1, 1, 1, 3, 3, 5, 3, 3, 1, 1, 1, 4, 6, 14, 17, 27, 28, 35, 28, 27, 17, 14, 6, 4, 1, 1. We
have calculated the values of s(n) for up to n = 1024. These data can be found
online at [8]. Note that this sequence is new to the Online Encyclopedia of
Integer Sequences OEIS [25, Sequence A299037]; it has been submitted in the
scope of this manuscript. It had previously not been contained in the OEIS,
i.e. this sequence has so far apparently not occurred in any other context.

We end this section by noting that Theorem 2 actually guarantees that
the difference between the two maximal pending subtrees Ta and Tb of the
standard decomposition of a minimum Sackin tree does not get too large (in
terms of the number of leaves). We will quantify this in the following corollary,
which is is actually useful to investigate other balance indices like, e.g. the
Colless index [5], and particularly their extremal properties [6, Lemma 6].5

Corollary 2. Let T be a rooted binary tree with n ∈ N≥2 leaves. Moreover, let
T = (Ta, Tb) be the standard decomposition of T into its two maximal pending
subtrees, let ni denote the number of leaves in Ti for i ∈ {a, b}, respectively,
such that na ≥ nb. Let k = �log2 n�. Then the following equivalence holds: T
has minimum Sackin index if and only if Ta and Tb have minimum Sackin
index and na − nb ≤ min{n − 2k−1, 2k − n}.

Proof. We first consider the case where T has minimum Sackin index. It is
clear that Ta and Tb then also must have minimum Sackin index, because by
Definition 1, it can be easily seen that S(T ) = S(Ta) + S(Tb) + n. Thus, if,
say, Tb was not minimal, we could replace Tb in T by a tree T ′

b on nb leaves
such that S(T ′

b) < S(Tb). This would turn T into a new tree T ′ on n leaves
with S(T ′) = S(Ta) + S(T ′

b) + n < S(Ta) + S(Tb) + n = S(T ), which would
contradict the minimality of S(T ).

It remains to show that na −nb ≤ min{n−2k−1, 2k −n}. To do so, recall
that by the reasoning explained in the proof of Theorem 3, in a Sackin minimal
tree we must have nb ≥ 2k−2 and na ≤ 2k−1 (In the sum of the recursion, this
is explicitly stated, but both statements also hold if na = nb = n

2 , because
2k−1 < n ≤ 2k by the definition of k).

Now first assume that na −nb > n− 2k−1 = na +nb − 2k−1. This implies
−2nb > −2k−1 and thus nb < 2k−2, a contradiction.

Next, assume na − nb > 2k − n = 2k − na − nb. This implies 2na > 2k

and thus na > 2k−1, a contradiction.
So we must have na − nb ≤ min{n − 2k−1, 2k − n}. This completes the

proof. �

5Corollary 2 corresponds to Corollary 4 in a preprint of the present manuscript, which was
cited in [6].
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4. Counting Different Types of Extremal Sackin Trees

In this section, we first generalize our considerations to non-binary trees and
then transfer our findings on the Sackin index back to the two disciplines where
they are probably needed the most, namely mathematical phylogenetics and
theoretical computer science.

4.1. Non-binary Trees

Both in computer science as well as in mathematical phylogenetics, where
tree balance plays an important role, binary trees are by far the most relevant
trees. However, in both contexts, at times also non-binary trees6 play a role (for
instance, in phylogenetics you can depict insecurity concerning the speciation
order by non-binary trees). Also, as opposed to some other balance indices like,
e.g. the Colless index [5], the definition of the Sackin index works for general
rooted trees and not just for binary ones. Therefore, we drop the assumption
of our trees being binary in this subsection and compare the extremal Sackin
trees derived this way with the ones from the binary setting.

Again we start with the maximum Sackin index. In fact, we will show that
nothing changes—the binary caterpillar is still the unique tree maximizing the
Sackin index even if the restriction to binary trees is dropped.

Theorem 4. Let T be a rooted non-binary tree with maximal Sackin index and
n leaves. Then T equals the caterpillar T cat

n .

Proof. Let T be a non-binary tree with maximal Sackin index. Assume T has
an inner vertex v that has at least three children x, y and z (and possibly more).
We now construct a tree T ′ as follows: We replace v by two new vertices v1
and v2, which are connected by a new edge (v1, v2), such that v1 is adjacent to
x and v2 and—if v is not the root of T—the ancestor of v in T . Moreover, v2 is
adjacent to all other vertices to which v is adjacent in T , that is, in particular,
y and z. So both v1 and v2 have at least two descendants. However, all leaves
that descend from v2 have increased their depth by 1 in T ′ compared to T .
This is due to the additional edge (v1, v2) on the way from the root to these
leaves. On the other hand, no depth has decreased in T ′ compared to T . So by
Definition 2, this implies that the Sackin index of T ′ is strictly larger than that
of T , which contradicts the maximality of T . So the assumption was wrong,
which implies that T is binary. Thus, as T is binary and has maximal Sackin
index, by Theorem 1 T is a binary caterpillar. This completes the proof. �

Remark 6. Note that both for Theorem 1 as well as for Theorem 4 it is crucial
that we excluded rooted trees with degree 2 vertices (other than possibly the
root) from our considerations, because by adding more and more degree 2
vertices to a tree, we could increase the leaf depths and thus, by Definition 2,
the Sackin index would be unbounded.

6Recall that “non-binary” is used here as is common in the phylogenetic literature, i.e. in
the sense of “not necessarily binary”.
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Now we turn our attention to the minimum Sackin index in the non-
binary case. It turns out that interestingly, this scenario differs from the binary
case, because while the minimum need not be unique in the binary case, in the
non-binary case it is unique for all leaf numbers—and even in the case where
n = 2k for some k, the unique non-binary tree minimizing the Sackin index is
not T fb

k . In fact, the star tree turns out to be optimal for all n.

Theorem 5. Let n ≥ 2. Then, the star tree T star
n is the unique rooted non-

binary tree minimizing the Sackin index, and we have S(T star
n ) = n.

Proof. We first show the second assertion. Clearly, in a star tree, all leaves have
distance 1 to the root, so S(T star

n ) =
∑

x∈V 1
δx =

∑

x∈V 1
1 = n. Moreover, this is

clearly minimal, as in a tree with at least two leaves, we have δx ≥ 1 for all
leaves. So the only thing left to show is uniqueness. Assume that T is a rooted
tree on n leaves that also has minimal Sackin index but is not a star tree. Then
T has at least two inner vertices (the root ρ and at least one more). Let v be
a child of ρ that is also an inner vertex. Now we construct a tree T ′ from T by
contracting the edge (ρ, v). This way, all leaves descendant from v now have
strictly decreased their depths by 1, and no leaf has increased its depth. Thus,
the Sackin index of T ′ is strictly smaller than that of T , clearly contradicting
the minimality of T . Thus, the assumption was wrong. This completes the
proof of the theorem. �

In the following section, we turn our attention to mathematical phyloge-
netics, i.e. to leaf-labelled trees.

4.2. Phylogenetic Trees

As mentioned earlier, trees play a fundamental role in mathematical phylo-
genetics. In fact, trees can be used to depict the evolutionary relationships
between present-day species. However, mere graph theoretic trees as discussed
so far in this manuscript do not suffice to do so; instead, we need phylogenetic
trees as introduced in Sect. 2.

We know from Theorems 1 and 4 that there is only one (graph theoretic)
tree maximizing the Sackin index for any value of n both in the binary and
non-binary case (namely the caterpillar), but the story is quite different for
phylogenetic trees: For instance, already for n = 3, there are three different
phylogenetic caterpillars (the one with the cherry [1, 2], the one with the cherry
[1, 3] and the one with the cherry [2, 3]), so the maximum need not be unique
anymore. Concerning minimal trees, we know from Theorem 3 how to calculate
the number s(n) of Sackin minimal (graph theoretical) trees, but we do not
know yet how this generally translates to phylogenetic trees, as it is known
that, due to symmetry, not all trees with n leaves lead to the same number of
phylogenetic trees. In fact, as a consequence of the famous Burnside Lemma
[2,12], the following assertion is well-known in mathematical phylogenetics.

Proposition 1. (Corollary 2.4.3 in [22]) Let T be a rooted binary tree with n
leaves. Let s̃(T ) denote the number of symmetry nodes of T , i.e. the number
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of inner vertices of T whose maximal pending subtrees are isomorphic. Then,
the number of phylogenetic trees on leaf set X = {1, . . . , n} of shape T equals

n!
2s̃(T )

.

This immediately leads to the following corollary for Sackin maximal
phylogenetic trees.

Corollary 3. Let pmax(n) denote the number of phylogenetic X-trees with X =
{1, . . . , n} and with maximal Sackin index. Then, we have pmax(n) = n!

2 , and
all of these trees have a binary caterpillar as underlying graph theoretic tree.
This statement is still true even if we do not restrict the maximization to
binary trees.

Proof. As the Sackin index does not depend on the leaf labeling, it is clear by
Theorems 1 and 4 that the underlying graph theoretic (i.e. non-leaf-labelled)
tree must be a caterpillar. Moreover, a caterpillar has precisely one symmetry
node, namely the parent of its only cherry. Thus, the assertion immediately
follows by Proposition 1. �

Remark 7. Starting at n = 1 and continuing up to n = 20, the sequence
pmax(n) of numbers of phylogenetic trees with n leaves and with maximal
Sackin index is 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400,
239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 17784-
3714048000, 3201186852864000, 60822550204416000, 1216451004088320000.
Note that this sequence is well known and plays a role in several contexts in
combinatorics, for instance, it describes the number of permutations of the
numbers 1, . . . , n in which 2 follows 1. For more details and other examples,
we refer the interested reader to sequence A001710 in the Online Encyclopedia
of Integer Sequences OEIS [25].

So as Proposition 1 shows, symmetry nodes play a fundamental role to
determine the number of phylogenetic trees per graph theoretic tree. For in-
stance, tree T1 from Fig. 2 has 3 symmetry nodes and six leaves, so there are
6!
23 = 90 phylogenetic trees associated with T1. But T2, which has 4 symmetry
nodes, only leads to 6!

24 = 45 phylogenetic trees. So both trees lead to differ-
ent numbers of phylogenetic trees, but both trees form the set of maximally
balanced graph theoretic trees according to the Sackin index (s(6) = 2 and
we have already seen that T1 and T2 are both maximally balanced). So to
determine the number of maximally balanced phylogenetic trees, we cannot
simply multiply s(T ) with some number depending on n, because in fact, the
number of associated phylogenetic trees might be different for all trees counted
by s(T ). However, we can use similar arguments as in Theorem 3 to derive a
recursive formula for the number of binary phylogenetic trees that minimize
the Sackin index.

Theorem 6. Let pmin(n) denote the number of rooted binary phylogenetic X-
trees with X = {1, . . . , n} and with minimal Sackin index, and let k = �log2(n)�.
For any partition of n into two integers na, nb, i.e. n = na + nb, we use ka
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and kb to denote �log2(na)� and �log2(nb)� = �log2(n − na)�, respectively.
Moreover, let

g(n) =

{

0 if n is odd,
1
2 · (

n
n
2

) · (

pmin
(

n
2

))2 else.

Then the following recursion holds:
• pmin(1) = 1
• pmin(n) =

∑

(na,nb):
na+nb=n,

n
2 <na≤2k−1,

nb≥2k−2

(
n
na

) · pmin(na) · pmin(nb) + g(n).

Proof. First consider n = 1. In this case, it is clear that there is only one rooted
binary phylogenetic tree, namely the one consisting of only one node labelled
with 1, which, therefore, has minimal Sackin index, which implies pmin(1) = 1.

Now let n > 1 and recall the proof of Theorem 3: As explained there, n
can be partitioned into two summands na and nb such that na ≥ nb and thus
in particular na ≥ n

2 . We first consider the case where na �= nb.
Again as in the proof of Theorem 3, a Sackin minimal rooted binary

phylogenetic tree T with at least 2 leaves can be decomposed into its two
maximal pending subtrees Ta and Tb, both of which must be Sackin minimal,
too (otherwise we could replace the non-minimal one by a minimal one on
the same number of leaves and thus achieve a tree with a lower Sackin index,
which would contradict the minimality of T ). So we need to count the number
of such combinations, where Ta has na leaves and Tb has nb many leaves.

We first consider the trees for which na > n
2 and thus na > nb. As we only

consider Sackin minimal phylogenetic trees and as the Sackin index depends
only on the underlying graph theoretic tree and not on the leaf labelling, we
can conclude by the same arguments as in the proof of Theorem 3 that we
only need to consider cases with nb ≥ 2k−2 and na ≤ 2k−1, as no other tree
can be Sackin minimal.

So all pmin(na) · pmin(nb) such combinations of Sackin minimal rooted
binary phylogenetic trees on na and nb leaves (where n

2 ≤ na ≤ 2k−1 and
nb ≥ 2k−2 and na + nb = n, respectively) lead to different Sackin minimal
phylogenetic trees on n leaves (counting trees twice has been prevented by
the restriction na ≥ n

2 ). However, we need to multiply these options with all
possible ways to label Ta and Tb: We have

(
n
na

)

many ways to pick na labels
from our label set of size n to assign these labels to Ta. The remaining labels get
assigned to Tb. In summary, this explains the first summand in the recursion.

Now consider the case na = nb = n
2 , which of course only needs to be

considered if n is even (which explains why g(n) = 0 if n is odd).
Now if n is even, there is another summand: We can proceed as in Case 1,

but here we have to consider all combinations of 2 trees from the p(na) = p(nb)
phylogenetic trees with na = nb leaves and with minimum Sackin index, and
there are p(na) · p(na) = p

(
n
2

) · p
(

n
2

)

such ordered combinations. However,
note that this implies that we now have counted some combinations twice
if you disregard the ordering; namely all those for which Ta and Tb are not
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isomorphic (and thus the root ρ of T is not a symmetry node), but not the
ones for which Ta and Tb are isomorphic. We will come back to this fact in a
bit. Now first note that we still need to consider all possible leaf labelings, of
which there are

(
n
na

)

=
(

n
n
2

)

. However, if we label the trees like this, every tree
that has non-isomorphic Ta and Tb subtrees will lead to different phylogenetic
trees for each choice of leaf labels. So of every phylogenetic tree resulting
from such a graph theoretic tree, we now have two copies in our multiset.
For the trees with isomorphic Ta and Tb, however, of which we only have one
graph theoretic copy in the set, we have now also two phylogenetic trees each,
because for instance the assignment of {1, . . . , n

2 } to Ta and {n
2 + 1, . . . , n}

to Tb results in precisely the same trees as the assignment of {n
2 + 1, . . . , n}

to Ta and {1, . . . , n
2 } to Tb. In summary, we now have a multiset containing

(
n
n
2

) ·p (
n
2

) ·p (
n
2

)

many phylogenetic trees, but each of them appears twice. So
to count every phylogenetic tree only once, we have to multiply their number
by 1

2 . This explains the second summand in the recursion and thus completes
the proof. �

Remark 8. Starting at n = 1 and continuing up to n = 20, the sequence
pmin(n) of numbers of rooted binary phylogenetic trees with n leaves and
with minimal Sackin index is 1, 1, 3, 3, 30, 135, 315, 315, 11340, 198450,
2182950, 16372125, 85135050, 297972675, 638512875, 638512875, 86837751000,
5861548192500, 259861969867500, 8445514020693750. We have calculated the
values of p(n) for up to n = 100. These data can be found online at [10]. Note
that this sequence is so far not contained in the Online Encyclopedia of Integer
Sequences OEIS [25], but it has recently been submitted and will soon appear
online. As it had previously not been contained in the OEIS, this sequence has
so far apparently not occurred in any other context.

Before we end this subsection, we turn our attention again to the non-
binary case and the minimal Sackin index. By Theorem 5, the star tree is the
unique non-binary tree with minimal Sackin index. This directly leads to the
following corollary.

Corollary 4. Let n ≥ 2. Then the unique rooted non-binary phylogenetic tree
on leaf set X = {1, . . . , n} is T star

n with its leaves bijectively labelled by X.

Proof. By Theorem 5, it is clear that the underlying graph theoretic tree of
a Sackin minimal rooted non-binary tree necessarily is T star

n . Moreover, it can
be easily seen (formally: using the Burnside lemma, where all leaves are in the
same equivalence class) that all permutations of leaf labels lead to the same
phylogenetic tree due to symmetry. This completes the proof. �

4.3. Ordered Trees

We now turn our attention to computer science, where so-called search trees
play a fundamental role. Such trees basically form a kind of data structure
which can be used to locate certain keys from within a set. However, just as in
the previous subsection, mere graph theoretic trees are not sufficient to operate
as search trees. This is due to the fact that for instance all keys to the left of an
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inner node with key K must be smaller than K, whereas the keys to the right
of this inner node must be larger than K (or vice versa, but the convention
that the smaller keys are in the left subtree is quite common) [16,17]. But
this immediately implies that we need to be able to distinguish between left
and right, which we did not do in the graph theoretic setting. This is why in
computer science, rooted binary ordered trees as introduced in Sect. 2 play a
fundamental role. However, as we do not limit our analyses to the binary case,
the example with left and right needs to be thought of in a more general way,
accordingly.

Remark 9. In computer science, as opposed to the settings discussed so far in
this manuscript, inner vertices of total degree 2 are sometimes allowed, i.e. in
such settings may happen that a vertex only has a left or only a right child.
However, by the same reasoning as mentioned in Remark 6, this would mean
that the maximum of the Sackin index would be unbounded. Moreover, it can
be easily seen that the set of Sackin minimal trees will not change if we allow
for the optimization to consider trees with degree-2 vertices, too, because a
tree with a degree-2 vertex can never have minimal Sackin index. This is due
to the fact that suppressing a degree-2 vertex would strictly decrease the leaf
depths of all leaves descending from this vertex. As degree-2 vertices thus do
not contribute anything to the understanding of Sackin minimal ordered trees,
we keep excluding them from our considerations, i.e. we still only consider
trees without such vertices.

We now recall the following result from the literature.

Lemma 3. (c.f. Lemma 2.6 in [4])
Let T be a rooted binary graph theoretic tree with n ≥ 2 leaves. Then, the

number of ordered trees corresponding to T is 2n−1−s̃(T ), where s̃(T ) denotes
the number of symmetry nodes of T , i.e. the number of inner nodes whose two
maximal pending subtrees are isomorphic.

The idea of Lemma 3 is that each of the n − 1 internal nodes in a rooted
binary tree except for the symmetry nodes doubles the number of orderings.
The fact that symmetry nodes do not do this is due to the fact that isomorphic
trees are undistinguishable and thus can only be counted once.

Lemma 3 together with Theorem 1 immediately leads to the following
result.

Corollary 5. The number of binary rooted and ordered trees with n leaves with
maximal Sackin index is 2n−2 if n ≥ 2 or 1 otherwise, and all of these trees
have T cat

n as underlying graph theoretic tree. This statement is still correct in
the non-binary case, i.e. even if we drop the restriction of the maximization to
binary trees.

Proof. As the Sackin index does not depend on the leaf labeling, it is clear by
Theorems 1 and 4 that the caterpillar is the only tree that can underlie an
ordered tree that maximizes the Sackin index, binary or non-binary. Moreover,
a caterpillar has precisely one symmetry node, namely the parent of its only
cherry. Thus, the assertion immediately follows by Lemma 3. �
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Remark 10. Starting at n = 1 and continuing up to n = 32, the sequence
of numbers of ordered trees with n leaves and with maximal Sackin index is
1,1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768,
65536, 131072, 262144, 524288, 1048576, 2097152, 4194304,8388608, 16777216,
33554432, 67108864,134217728, 268435456, 536870912, 1073741824. This se-
quence has already long been contained in the Online Encyclopedia of Integer
Sequences OEIS [25] as sequence A011782. Note that this sequence is well
known and plays a role in several contexts in combinatorics, for instance, to
count so-called unimodal permutations of n items. For more details and other
examples, we refer the interested reader to sequence A011782 in the OEIS.

One of the main reasons why tree balance plays a fundamental role in
theoretical computer science is that if ordered search trees are reasonably
balanced, they lead to an efficient search time [16]. Therefore, the number
of maximally balanced trees, i.e. of trees with minimum Sackin index, is of far
greater interest than the number stated by Corollary 5. Thus, we now proceed
with considering the number of such minima in the binary case, which can
very easily be calculated.

Theorem 7. Let ot(n) denote the number of rooted binary ordered trees with n
leaves and with minimal Sackin index, and let k = �log2(n)�. Then we have

ot(n) =
(

2k−1

n − 2k−1

)

.

Proof. As we have seen in Theorem 2, all maximally balanced trees can be
constructed by taking T fb

k−1, i.e. a fully balanced tree of height k − 1, and

replacing n−2k−1 leaves by cherries. There are
(

2k−1

n−2k−1

)

ways to choose n−2k−1

leaves from the 2k−1 leaves of T fb
k−1 to turn them into cherries (unordered

sampling without replacement). As we are considering ordered trees here, every
such choice leads to a different tree. This completes the proof. �

Remark 11. Starting at n = 1 and continuing up to n = 20, the sequence ot(n)
of numbers of ordered trees with n leaves and with minimal Sackin index is
1, 1, 2, 1, 4, 6, 4, 1, 8, 28, 56, 70, 56, 28, 8, 1, 16, 120, 560, 1820, 4368, 8008,
11440, 12870, 11440, 8008, 4368, 1820, 560, 120, 16, 1. We have calculated the
values of ot(n) for up to n = 256. These data can be found online at [9]. Note
that this sequence is so far not contained in the Online Encyclopedia of Integer
Sequences OEIS [25], but it has recently been submitted and will soon appear
online. As it had previously not been contained in the OEIS, this sequence has
so far apparently not occurred in any other context.

Last, we once more turn our attention to the non-binary case and the
minimal Sackin index. By Theorem 5, the star tree is the unique non-binary
tree with minimal Sackin index. This directly leads to the following corollary.

Corollary 6. Let n ≥ 2. Then the unique rooted non-binary ordered tree with
n leaves is T star

n (regarded as ordered tree).
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Proof. By Theorem 5, it is clear that the underlying graph theoretic tree of
a Sackin minimal rooted non-binary tree necessarily is T star

n . Moreover, it can
be easily seen that due to symmetry, there is only one ordering of the star tree
(as all leaves pendant from the root can be considered as isomorphic subtrees
which are thus indistinguishable). This completes the proof. �

5. Discussion

One aim of this manuscript was to provide deep insight into Sackin minimal
and maximal trees both in the binary and non-binary settings—partially by
proving new results and partially by transferring results from other research
areas. The main aim, however, was to provide a way to count Sackin minimal
trees in the binary case (as the maxima in the binary and non-binary cases
as well as the minimum in the non-binary case are all unique, so there is
nothing to count). This was achieved through the recursion given by Theorem
3.

An additional aim of this manuscript was to count different types of
Sackin minimal trees, too, and thus to make these results interesting and rele-
vant for the very disciplines where balanced trees are most important: mathe-
matical phylogenetics and theoretical computer science. This led to a recursive
formula for rooted binary phylogenetic trees in Theorem 6 and an explicit for-
mula for rooted binary ordered trees in Theorem 7. We also showed that in
all other cases, the extremal Sackin trees are unique, so there is nothing to
count.

Our enumerations of trees with n leaves have led to some sequences
which are new to the Online Encyclopedia of Integer Sequences and some
which are well known and have occurred in other areas of combinatorics be-
fore. This link between tree balance and other topics might inspire future
research.

Another possible area of future research is the relatedness of the Sackin
index to other balance indices. It was recently proven that the set of Sackin
minimal binary trees contains all Colless minimal and Cophenetic minimal
trees [6], for instance, but there are various other balance indices whose rela-
tionship to the Sackin index has not been investigated yet. Possibly the most
important aspect for future research resulting from this manuscript, however,
might be implications of our findings concerning the number of extremal trees
concerning the Sackin index on evolutionary models and their induced proba-
bility distributions on the tree space.
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