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Abstract. The group of the almost-Riordan arrays with exponential gen-
erating functions is defined. The subgroups of the exponential almost-
Riordan group are presented. Also, some isomorphisms between the expo-
nential almost-Riordan group and the exponential Riordan group are con-
sidered. Then, the production matrix for the exponential almost-Riordan
array is obtained.
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1. Introduction

Generating functions are a very useful tool in combinatorics, analysis, and
other areas of mathematics. By using the properties of generating functions,
some combinatorial identities can be obtained more easily.

For the integer sequence {an}n≥0, the formal power series

f(x) = a0 + a1x + a2x
2 + a3x

3 + . . . .

represents an ordinary generating function. The coefficient of xn in the formal
power series f(x) is

an = [xn]f(x) (1.1)

in [12]. Additionally, the following identities are valid:

[xn](xkf(x)) = [xn−k]f(x) (1.2)

and
[xn]f ′(x) = (n + 1)[xn+1]f(x) (1.3)
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in [18]. The detailed information regarding the generating functions and coeffi-
cient extraction can be found in [6,12,17,18,23,27]. Also, the following power
series

g(x) = a0 + a1x + a2
x2

2!
+ a3

x3

3!
+ . . .

represents the ordinary generating function of the sequence {an

n! }n≥0. This
generating function is known as the exponential generating function of the
sequence {an}n≥0. Then, the coefficient an of xn in g(x) is denoted by

an = n![xn]g(x) (1.4)

in [6]. Sometimes, the properties of the ordinary generating function of the
sequence {an}n≥0 can be complex. In such cases, we can consider the gener-
ating function of the sequence {an

n! }n≥0. For instance, the ordinary generating
function of factorial numbers sequence is as follows:

∞∑

n=0

n!xn =
∫ ∞

n=0

e−t

1 − tx
dt.

The exponential generating function of factorial numbers sequence is given as
∞∑

n=0

n!
xn

n!
=

1
1 − x

.

Obviously, the exponential generating function of factorial numbers sequence is
simpler than the ordinary generating function for factorial numbers sequence.
Similarly, the ordinary generating function for the first kind of Stirling numbers
sequence is complicated and divergent. However, the exponential generating
function of the same sequence is more useful than the ordinary generating
function.

Riordan arrays play a crucial role in deriving combinatorial identities
and solving combinatorial sums. Renzo Sprugnoli has contributed significantly
to the utilization of Riordan arrays in computing combinatorial sums [21,22].
Also, Sprugnoli has investigated sums involving binomial coefficients and Stir-
ling numbers by using the fundamental theorem of Riordan arrays in [20].
Riordan arrays are infinite lower triangular matrices defined by ordinary gen-
erating functions. There are many studies about Riordan arrays in literature,
and some of these can be found in [6,8,11,13–16,19,23,26].

We consider the following formal power series:

g(x) = g0 + g1x + g2
x2

2!
+ g3

x3

3!
+ . . .

and

f(x) = f0 + f1x + f2
x2

2!
+ f3

x3

3!
+ . . .

with g0 �= 0, f0 = 0 and f1 �= 0. The functions g(x) and f(x) represent
the exponential generating functions of the sequences {gn}n≥0 and {fn}n≥0,
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respectively. The exponential generating function of the kth column of the
exponential Riordan arrays is defined as follows:

g(x)
f(x)k

k!
, k = 0, 1, 2, . . . .

Additionally, the exponential Riordan arrays are denoted as pairs of expo-
nential generating functions, represented as [g(x), f(x)]. The multiplication
operation between two exponential Riordan arrays is defined as follows:

[g(x), f(x)][h(x), l(x)] = [g(x)h(f(x)), l(f(x))]. (1.5)

The set of exponential Riordan arrays is a group with the multiplication oper-
ation defined in (1.5). This group is known as the exponential Riordan group.
The identity element of the exponential Riordan group is defined as

I = [1, x] (1.6)

and the inverse of [g(x), f(x)] is given by

[g(x), f(x)]−1 =
[

1
g(f(x))

, f(x)
]

(1.7)

where f(x) is the compositional inverse of f(x) in [10].
Let R be the exponential Riordan matrix. Then, we have

P = R−1R (1.8)

which P , R−1 and R represent the production matrix of the matrix R, the
inverse of the matrix R and the version of the matrix R with the 0th row
removed, respectively in [10]. The characterization and production matrices of
exponential Riordan arrays are provided in [6,10,11].

Proposition 1.1 [11]. Let D = (dn,k)n,k≥0 = [g(x), f(x)] be an exponential
Riordan matrix with g0 �= 0, f0 �= 0. Let

c(y) = c0 + c1y + c2y
2 + . . . , r(y) = r0 + r1y + r2y

2 + . . . (1.9)

be two formal power series such that

r(xf(x)) = (xf(x))′,

c(xf(x)) =
g′(x)
g(x)

.
(1.10)

Then

dn+1,0 =
∑

i

i!cidn,i, (1.11)

dn+1,k = r0dn,k−1 +
1
k!

∑

i≥k

i!(ci−k + kri−k+1)dn,i (1.12)
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or, defining c−1 = 0,

dn+1,k =
1
k!

∑

i≥k−1

i!(ci−k + kri−k+1)dn,i. (1.13)

Conversely, starting from the sequences defined by (1.9), the infinite array
(dn,k)n,k≥0 defined by (1.13) is an exponential Riordan matrix.

In [11], the production matrix P of the exponential Riordan matrix D is
given as follows:

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

c0 r0 0 0 0 . . .
1!c1 1!

1! (c0 + r1) r0 0 0 . . .
2!c2 2!

1! (c1 + r2) 2!
2! (c0 + 2r1) r0 0 . . .

3!c3 3!
1! (c2 + r3) 3!

2! (c1 + 2r2) 3!
3! (c0 + 3r1) r0 . . .

4!c4 4!
1! (c3 + r4) 4!

2! (c2 + 2r3) 4!
3! (c1 + 3r2) 4!

4! (c0 + 4r1) . . .
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(1.14)

The detailed information about the exponential Riordan arrays can be
found in [2–4,6,9].

Subgroups in group theory are significant topic, and there has been ex-
tensive research on the subgroups of the Riordan group. The subgroups of the
Riordan group are investigated and isomorphisms among these subgroups are
given by Jean-Louis and Nkwanta in [15]. Some generalization of the Riordan
arrays are examined. The generalized Riordan arrays are defined using the
generalized generating functions, and their properties are investigated in [26].
The generalization forms of the Riordan subgroups are defined in [8,16].

Another generalization of the Riordan arrays is the almost-Riordan ar-
rays. Let’s now present the definition and some properties of the almost-
Riordan arrays, as introduced by Barry in [5].

Let’s consider the following formal power series:

a(x) = a0 + a1x + a2x
2 + . . . ,

g(x) = g0 + g1x + g2x
2 + . . .

and

f(x) = f0 + f1x + f2x
2 + . . .

with a0 �= 0, g0 �= 0, f0 = 0 and f1 �= 0. The notation for first order almost-
Riordan arrays is (a(x)|g(x), f(x)). The generating function of the kth column
of a first order almost-Riordan array is

a(x), for k = 0, (1.15)

xg(x)(f(x))k−1, for k = 1, 2, 3, . . . . (1.16)
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Additionally, the multiplication of two almost-Riordan arrays is defined
as follows:

(a(x)|g(x), f(x))(b(x)|h(x), l(x)) = ((a(x)|g(x), f(x))b(x)
∣∣g(x)h(f(x)), l(f(x)))

(1.17)
where the operation (a(x)|g(x), f(x))b(x) is given as

(a(x)|g(x), f(x))b(x) = b0a(x) + xg(x)
b(f(x)) − b0

f(x)
. (1.18)

The set of the first order almost-Riordan arrays is a group with the
multiplication defined in (1.17). The identity element of this group is

I = (1|1, x) (1.19)

and the inverse of the almost-Riordan arrays is given as follows:

(a(x)|g(x), f(x))−1 =
(

1
a0

(
1 − x

g(f(x))
a(f(x)) − a0

f(x)

) ∣∣∣∣
1

g(f(x))
, f(x)

)
.

(1.20)
The sequence characterizations of the almost-Riordan arrays are provided

in [1]. The pseduo-involutions and involutions in the almost-Riordan arrays are
studied in [7,25].

Based on the preceding studies, we introduce the exponential almost-
Riordan arrays. Also, we examine the subgroups of the exponential almost-
Riordan group and provide some isomorphisms among them. Furthermore,
the production matrix of the exponential almost-Riordan arrays is presented
in this paper.

2. Exponential almost-Riordan arrays

In this section, we define the exponential almost-Riordan arrays and give some
row sums of them. Additionally, we introduce the exponential almost-Riordan
group.

Definition 2.1. Let’s consider the following exponential generating functions:

a(x) = a0 + a1x + a2
x2

2!
+ a3

x3

3!
+ . . . ,

g(x) = g0 + g1x + g2
x2

2!
+ g3

x3

3!
+ . . .

and

f(x) = f0 + f1x + f2
x2

2!
+ f3

x3

3!
+ . . .

with a0 �= 0, g0 �= 0, f0 = 0 and f1 �= 0. The notation for the exponential
almost-Riordan arrays is [a(x)|g(x), f(x)]. The exponential generating func-
tion of the kth column of the exponential almost-Riordan arrays is defined as
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follows:

a(x), for k = 0, (2.1)
1

(k − 1)!

∫ x

0

g(t)fk−1(t)dt, for k = 1, 2, 3, . . . . (2.2)

Example 2.2. The exponential almost-Riordan array
[

1
1−x | 1

1−x , ln( 1
1−x )

]
is given

as ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 1 1 0 0 0 0 0 . . .
6 2 3 1 0 0 0 0 . . .
24 6 11 6 1 0 0 0 . . .
120 24 50 35 10 1 0 0 . . .
720 120 274 225 85 15 1 0 . . .
5040 720 1764 1624 735 175 21 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the column 0th is composed of the factorial numbers which is the se-
quence A000142 in OEIS [24].

Proposition 2.3. Let D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)] be an exponential
almost-Riordan array. Then, the elements of D are as follows:

dn,k =n![xn]a(x), for k = 0, (2.3)

dn,k =
(n − 1)!
(k − 1)!

[xn−1]g(x)fk−1(x), for k ≥ 1. (2.4)

Proof. From (1.4) and (2.1), the equation (2.3) is clear. Considering (1.4) and
(2.2), we have

dn,k =
n!

(k − 1)!
[xn]F (x)

where F (x) =
∫ x

0
g(t)fk−1(t)dt. From (1.3), we get

[xn]F (x) =
1
n

[xn−1]F ′(x) =
1
n

[xn−1]g(x)fk−1(x).

Then, we obtain

dn,k =
(n − 1)!
(k − 1)!

[xn−1]g(x)fk−1(x).

�

Example 2.4. Let’s take the following exponential almost-Riordan array:

D =
[
αeαx − βeβx

α − β

∣∣∣∣e
x(1 + x), x

]
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where α = 1+
√
5

2 and β = 1−√
5

2 . From (2.3), we have

dn,0 = n![xn]
(

αeαx − βeβx

α − β

)
= n![xn]

∞∑

n=0

Fn+1
xn

n!
.

Using (1.4), we obtain dn,0 = Fn+1 that Fn is the nth Fibonacci number. By
using (2.4), we get

dn,k =
(n − 1)!
(k − 1)!

[xn−1]ex(1 + x)xk−1.

From (1.2), we have

dn,k =
(n − 1)!
(k − 1)!

[xn−k](ex + xex).

Considering the formal power series of ex, we obtain

dn,k = (n − k + 1)
(

n − 1
k − 1

)
,

which is the sequence A093375 in OEIS [24]. The matrix D is given as follows:

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 2 1 0 0 0 0 0 . . .
3 3 4 1 0 0 0 0 . . .
5 4 9 6 1 0 0 0 . . .
8 5 16 18 8 1 0 0 . . .
13 6 25 40 30 10 1 0 . . .
21 7 36 75 80 45 12 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proposition 2.5. Let [a(x)|g(x), f(x)] be an exponential almost-Riordan array,
and let h(x) be an exponential generating function of the sequence {hn}n≥0.
Then,

[a(x)|g(x), f(x)]h(x) = h0a(x) +
∫ x

0

g(t)h′(f(t))dt (2.5)

where h′(x) is the first order derivative of h(x).

Proof. If we consider the product of [a(x)|g(x), f(x)] and h(x), we obtain

[a(x)|g(x), f(x)]h(x)

= h0a(x) + h1

∫ x

0

g(t)dt + h2

∫ x

0

g(t)f(t)dt + h3

∫ x

0

g(t)
f2(t)

2!
dt + . . . .
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Then, we have

[a(x)|g(x), f(x)]h(x) = h0a(x) +
∫ x

0

g(t)
(

h1 + h2f(t) + h3
f2(t)

2!
+ . . .

)
dt

= h0a(x) +
∫ x

0

g(t)h′(f(t))dt.

�
For example, let’s consider [e2x|ex, x] and h(x) = ex, we have

[e2x|ex, x]ex = e2x +
∫ x

0

e2tdt =
1
2
(3e2x − 1).

The sequence of this exponential generating function is A003945 in OEIS [24].

Proposition 2.6. Let D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)] be an exponential
almost-Riordan array, and let h(x) be the exponential generating function of
the sequence {hn}n≥0. Then,

n∑

k=0

dn,khk = h0an + n![xn]
∫ x

0

g(t)h′(f(t))dt. (2.6)

Specially, taking h(x) = ex in (2.6), we obtain the row sums for the
exponential almost-Riordan array. Similarly, taking h(x) = e−x in (2.6), the
alternating row sums for the exponential almost-Riordan array are obtained,
as stated in the following corollary.

Corollary 2.7. The row sums and the alternating row sums for an exponential
almost-Riordan array D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)] are given by the
following expressions:

n∑

k=0

dn,k = an + n![xn]
∫ x

0

g(t)ef(t)dt (2.7)

and
n∑

k=0

(−1)kdn,k = an − n![xn]
∫ x

0

g(t)e−f(t)dt. (2.8)

Example 2.8. Let’s consider the exponential almost-Riordan array D = [1|2 −
ex, x]. The matrix D is given as

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 −1 1 0 0 0 0 0 . . .
0 −1 −2 1 0 0 0 0 . . .
0 −1 −3 −3 1 0 0 0 . . .
0 −1 −4 −6 −4 1 0 0 . . .
0 −1 −5 −10 −10 −5 1 0 . . .
0 −1 −6 −15 −20 −15 −6 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.



Vol. 79 (2024) Exponential Almost-Riordan Arrays Page 9 of 27 173

Firstly, let’s find the row sums of the matrix D = (dn,k)n,k≥0. Using (2.7), we
have

n∑

k=0

dn,k = an + n![xn]
∫ x

0

(2 − et)etdt.

Then, we obtain

n∑

k=0

dn,k = an + n![xn]

(
2

∞∑

n=1

xn

n!
− 1

2

∞∑

n=1

2nxn

n!

)
.

Hence, we have
n∑

k=0

dn,k =
{

1, n = 0
2 − 2n−1, n ≥ 1

where is the sequence A122958 in OEIS [24].
Now, let’s find the alternating row sums of the matrix D = (dn,k)n,k≥0.

By utilizing the equation (2.8), we obtain

n∑

k=0

(−1)kdn,k = an − n![xn]
∫ x

0

(2 − et)e−tdt.

Considering the formal power series of e−x, we find

n∑

k=0

(−1)kdn,k =

⎧
⎨

⎩

1, n = 0
−1, n = 1
2(−1)n, n ≥ 2

.

Specially, if we take h(x) = ex(x + 1) in (2.6), we obtain the weighted
row sums for the exponential almost-Riordan array. Similarly, taking h(x) =
e−x(1 − x) in (2.6), the alternating weighted row sums for the exponential
almost-Riordan array are obtained as stated in the following corollary:

Corollary 2.9. The weighted row sums and the alternating weighted row sums
for an exponential almost-Riordan array D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)]
are given as follows:

n∑

k=0

(k + 1)dn,k = an + n![xn]
∫ x

0

(f(t) + 2)g(t)ef(t)dt (2.9)

and
n∑

k=0

(−1)k(k + 1)dn,k = an + n![xn]
∫ x

0

(f(t) − 2)g(t)e−f(t)dt. (2.10)
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Example 2.10. Let’s consider the exponential almost-Riordan array given by

D =
[

1
1−x

∣∣∣∣e
x2

, 2x

]
. The matrix D is obtained as

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 0 2 0 0 0 0 0 . . .
6 2 0 4 0 0 0 0 . . .
24 0 12 0 8 0 0 0 . . .
120 12 0 48 0 16 0 0 . . .
720 0 120 0 160 0 32 0 . . .
5040 120 0 720 0 480 0 64 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let’s calculate the weighted row sums of the matrix D. Using (2.9), we have
n∑

k=0

(k + 1)dn,k = an + n![xn]
∫ x

0

(2t + 2)et2+2tdt.

Considering the formal power series of ex2+2x, we find the weighted row sums
of the matrix D as follows:

n∑

k=0

(k + 1)dn,k =
{

1, n = 0
n! + dn, n ≥ 1

where {dn} is the sequence A000898 in OEIS [24].
Now, we find the alternating weighted row sums of the matrix D. If we

use (2.10), we get
n∑

k=0

(−1)k(k + 1)dn,k = an + n![xn]
∫ x

0

(2t − 2)et2−2tdt.

From the formal power series of ex2−2x, we obtain the alternating weighted
row sums of the matrix D as follows:

n∑

k=0

(−1)k(k + 1)dn,k =
{

1, n = 0
n! + (−1)ndn, n ≥ 1

where {dn} is the sequence A000898 in OEIS [24].

The multiplication operation of two exponential almost-Riordan arrays
is defined as follows:[

h0a(x) +
∫ x

0

g(t)h′(f(t))dt

∣∣∣∣g(x)h(f(x)), l(f(x))
]

. (2.11)

Example 2.11. Let D1 and D2 be the exponential almost-Riordan arrays as
follows:

D1 =
[

1
1 − x

∣∣∣∣2 − ex, x

]
and D2 =

[
1
∣∣∣∣1 − x, x

(
1 − x

2

)]
.
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Then, we have

D1D2 =
[

1
1 − x

∣∣∣∣(2 − ex)(1 − x), x
(
1 − x

2

)]
.

Namely, the matrix

D1D2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 − 2 1 0 0 0 0 0 . . .
6 1 − 5 1 0 0 0 0 . . .
24 2 9 − 9 1 0 0 0 . . .
120 3 2 33 − 14 1 0 0 . . .
720 4 − 5 − 40 85 − 20 1 0 . . .
5040 5 − 21 − 30 − 245 180 − 27 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

is equal to

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 −1 1 0 0 0 0 0 . . .
6 −1 −2 1 0 0 0 0 . . .

24 −1 −3 −3 1 0 0 0 . . .
120 −1 −4 −6 −4 1 0 0 . . .
720 −1 −5 −10 −10 −5 1 0 . . .

5040 −1 −6 −15 −20 −15 −6 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 −1 1 0 0 0 0 0 . . .
0 0 −3 1 0 0 0 0 . . .
0 0 3 −6 1 0 0 0 . . .
0 0 0 15 −10 1 0 0 . . .
0 0 0 −15 45 −15 1 0 . . .
0 0 0 0 −105 105 −21 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 2.12. The set of the exponential almost-Riordan arrays is a group
with the multiplication defined in (2.11), and denoted by Ra

e .
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Proof. The set Ra
e is closed and associative for multiplication in (2.11). The

identity element of this set is [1|1, x]. Additionally, the inverse of the exponen-
tial almost-Riordan arrays is defined as follows:

[a(x)|g(x), f(x)]−1 =
[

1
a0

(
1 −

∫ x

0

a′(f(t))
g(f(t))

dt

) ∣∣∣∣
1

g(f(x))
, f(x)

]
(2.12)

where f(x) is the compositional inverse of f(x). �

Example 2.13. Let’s consider an exponential almost-Riordan array

D =
[
1
∣∣∣∣1 − x, x

(
1 − x

2

)]
. The matrix D is given as

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 −1 1 0 0 0 0 0 . . .
0 0 −3 1 0 0 0 0 . . .
0 0 3 −6 1 0 0 0 . . .
0 0 0 15 −10 1 0 0 . . .
0 0 0 −15 45 −15 1 0 . . .
0 0 0 0 −105 105 −21 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Using (2.12), we have D−1 =
[
1
∣∣∣∣

1√
1−2x

, 1 − √
1 − 2x

]
. The matrix D−1 is as

follows:

D−1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
0 1 1 0 0 0 0 0 . . .
0 3 3 1 0 0 0 0 . . .
0 15 15 6 1 0 0 0 . . .
0 105 105 45 10 1 0 0 . . .
0 945 945 420 105 15 1 0 . . .
0 10395 10395 4725 1260 210 21 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

3. Subgroups and isomorphisms

In this section, we consider the subgroups of the exponential almost-Riordan
group Ra

e and provide the isomorphisms between these subgroups.

Proposition 3.1. The set of the elements in the form [a(x)|g(x), x] is a subgroup
of Ra

e .
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Proof. Let [a(x)|g(x), x] and [b(x)|h(x), x] be the elements in the set. Using
(2.11) and (2.12), we have

[a(x)|g(x), x][b(x)|h(x), x] =
[
b0a(x) +

∫ x

0

g(t)b′(t)dt

∣∣∣∣g(x)h(x), x
]

and

[a(x)|g(x), x]−1 =
[

1
a0

(
1 −

∫ x

0

a′(t)
g(t)

dt

) ∣∣∣∣
1

g(x)
, x

]
.

Therefore, the set of the exponential almost-Riordan arrays in the form [a(x)|
g(x), x] is a subgroup of Ra

e . �

For example, an exponential almost-Riordan array belonging to the sub-

group, denoted as
[
e

x
1−x

∣∣∣∣
1

1−x , x

]
, is given as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .

1 1 0 0 0 0 0 0 . . .

3 1 1 0 0 0 0 0 . . .

13 2 2 1 0 0 0 0 . . .

73 6 6 3 1 0 0 0 . . .

501 24 24 12 4 1 0 0 . . .

4051 120 120 60 20 5 1 0 . . .

37633 720 720 360 120 30 6 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the column 0th consists of the elements of the sequence A000262 in
OEIS [24].

Proposition 3.2. The set of the elements in the form [a(x)|1, f(x)] is a subgroup
of Ra

e .

Proof. Let [a(x)|1, f(x)] and [b(x)|1, l(x)] be the elements in the set. Using
(2.11) and (2.12), we obtain

[a(x)|1, f(x)][b(x)|1, l(x)] =
[
b0a(x) +

∫ x

0

b′(f(t))dt

∣∣∣∣1, l(f(x))
]

.

and

[a(x)|1, f(x)]−1 =
[

1
a0

(
1 −

∫ x

0

a′(f(t))dt

) ∣∣∣∣1, f(x)
]

.

Namely, the set constitutes a subgroup of the exponential almost-Riordan
group. �
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For example, an exponential almost-Riordan array belonging to the sub-
group, denoted as

[
ex

∣∣1, ln( 1
1−x )

]
, is provided as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
1 0 1 0 0 0 0 0 . . .
1 0 1 1 0 0 0 0 . . .
1 0 2 3 1 0 0 0 . . .
1 0 6 11 6 1 0 0 . . .
1 0 24 50 35 10 1 0 . . .
1 0 120 274 225 85 15 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Proposition 3.3. The set of the elements in the form [a(x)|f ′(x), f(x)] is a
subgroup of Ra

e .

Proof. Let [a(x)|f ′(x), f(x)] and [b(x)|l′(x), l(x)] be the elements of the set.
Using (2.11) and (2.12), we get

[a(x)|f ′(x), f(x)][b(x)|l′(x), l(x)] =
[
b(f(x)) + b0a(x) − b0

∣∣∣∣f
′(x)l′(f(x)), l(f(x))

]

and

[a(x)|f ′(x), f(x)]−1

=
[

1
a0

(
1 −

∫ x

0

a′(f(t))
f ′(f(t))

dt

) ∣∣∣∣
1

f ′(f(x))
, f(x)

]
.

Therefore, the set is a subgroup of the exponential almost-Riordan group
Ra

e . �
For example, the exponential almost-Riordan array belonging to the sub-

group, denoted as
[
eex−1

∣∣ex, ex − 1
]
, is given as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 1 1 0 0 0 0 0 . . .
5 1 3 1 0 0 0 0 . . .
15 1 7 6 1 0 0 0 . . .
52 1 15 25 10 1 0 0 . . .
203 1 31 90 65 15 1 0 . . .
877 1 63 301 350 140 21 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

where the column 0th is composed of the sequence A000110 in OEIS [24].

Theorem 3.4. The set of the elements in the form [1|f ′(x), f(x)] is a subgroup
of Ra

e , and it’s isomorphic to the associated subgroup of the exponential Rior-
dan group.
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Proof. It follows from Proposition 3.3 that the set of the exponential almost-
Riordan arrays in the form [1|f ′(x), f(x)] constitutes a subgroup of Ra

e . We
consider the map ϕ such that

ϕ ([1|f ′(x), f(x)]) = [1, f(x)].

Let’s show that ϕ is a homomorphism. We get

ϕ ([1|f ′(x), f(x)][1|l′(x), l(x)]) =ϕ([1|f ′(x)l′(f(x)), l(f(x))])

=[1, l(f(x))]

=[1, f(x)][1, l(x)]

=ϕ([1|f ′(x), f(x)])ϕ([1|l′(x), l(x)]).

Because ϕ is one to one and onto, ϕ is an isomorphism. �

Theorem 3.5. The set of the elements in the form [1|1, f(x)] is a subgroup of
Ra

e and it’s isomorphic to the subgroup in the form [1|f ′(x), f(x)] of Ra
e .

Proof. It follows from the Proposition 3.2 that the set of the exponential
almost-Riordan arrays in the form [1|1, f(x)] constitutes a subgroup. Let’s
consider the map ϕ such that

ϕ([1|f ′(x), f(x)]) = [1|1, f(x)].

Let’s show that ϕ is a homomorphism. We have

ϕ ([1|f ′(x), f(x)][1|l′(x), l(x)]) =ϕ([1|f ′(x)l′(f(x)), l(f(x))])

=[1|1, l(f(x))]

=[1|1, f(x)][1|1, l(x)]

=ϕ([1|f ′(x), f(x)])ϕ([1|l′(x), l(x)]).

For ϕ is one to one and onto, ϕ is an isomorphism. �

Proposition 3.6. D = [1|f ′(x), f(x)] is an involution if and only if f(x) =
f(x).

Proof. Let D be an involution. Then

D2 = [1|f ′(x), f(x)][1|f ′(x), f(x)] = [1|1, x].

Using (2.11), we obtain

[1|f ′(x)f ′(f(x)), f(f(x))] = [1|1, x].

Namely, f(x) = f(x). Conversely, let’s take f(x) = f(x). Then, we find

D2 = [1|f ′(x)f ′(f(x)), f(f(x))] = [1|1, x].

�

Proposition 3.7. The set of the elements in the form
[
a(x)

∣∣∣∣
xf ′(x)
f(x) , f(x)

]
is a

subgroup of Ra
e .
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Proof. Let’s take elements
[
a(x)

∣∣∣∣
xf ′(x)
f(x) , f(x)

]
and

[
b(x)

∣∣∣∣
xl′(x)
l(x) , l(x)

]
from the

set. Using (2.11) and (2.12), we have

[
a(x)

∣∣∣∣
xf ′(x)
f(x)

, f(x)
] [

b(x)
∣∣∣∣
xl′(x)
l(x)

, l(x)
]

=
[
b0a(x) +

∫ x

0

tf ′(t)b′(f(t))
f(t)

dt

∣∣∣∣
xf ′(x)l′(f(x))

l(f(x))
, l(f(x))

]

and

[
a(x)

∣∣∣∣
xf ′(x)
f(x)

, f(x)
]−1

=
[

1
a0

(
1 −

∫ x

0

ta′(f(t))
f(t)f ′(f(t))

dt

) ∣∣∣∣
x(f(x))′

f(x)
, f(x)

]
.

Therefore, the set is a subgroup of Ra
e . �

For example, an exponential almost-Riordan array belonging to the sub-
group, denoted as

[
e−x

∣∣1 + x
2+x , x(1 + x

2 )
]
, is given as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
−1 1 0 0 0 0 0 0 . . .
1 1

2 1 0 0 0 0 0 . . .
−1 − 1

2 2 1 0 0 0 0 . . .
1 3

4 0 9
2 1 0 0 0 . . .

−1 − 3
2 0 6 8 1 0 0 . . .

1 15
4 0 0 25 25

2 1 0 . . .
−1 − 45

4 0 0 30 135
2 18 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3.8. The set of the elements in the form
[
1
∣∣∣∣
xf ′(x)
f(x) , f(x)

]
is a sub-

group of Ra
e and it’s isomorphic to the subgroup in the form [1|f ′(x), f(x)] of

Ra
e .

Proof. From Proposition 3.7, the set of
[
1
∣∣∣∣
xf ′(x)
f(x) , f(x)

]
is a subgroup. Let’s

consider the map ϕ such that

ϕ

([
1
∣∣∣∣
xf ′(x)
f(x)

, f(x)
])

= [1|f ′(x), f(x)].
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ϕ is one to one and onto. Then, we obtain

ϕ

([
1
∣∣∣∣
xf ′(x)
f(x)

, f(x)
] [

1
∣∣∣∣
xl′(x)
l(x)

, l(x)
])

= ϕ

([
1
∣∣∣∣
xf ′(x)l′(f(x))

l(f(x))
, l(f(x))

])

= [1|f ′(x)l′(f(x)), l(f(x))]

= [1|f ′(x), f(x)][1|l′(x), l(x)]

= ϕ

([
1
∣∣∣∣
xf ′(x)
f(x)

, f(x)
])

ϕ

([
1
∣∣∣∣
xl′(x)
l(x)

, l(x)
])

.

Consequently, ϕ is an isomorphism. �

Proposition 3.9. The set of the elements in the forms [a(x)|g(x), xg(x)] or
[a(x)| f(x)

x , f(x)] is a subgroup of Ra
e .

For example, an exponential almost-Riordan array belonging to the sub-
goup, denoted as

[
ex

∣∣ 1
1−x , x

1−x

]
, is given as follows:

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
1 1 1 0 0 0 0 0 . . .
1 2 4 1 0 0 0 0 . . .
1 6 18 9 1 0 0 0 . . .
1 24 96 72 16 1 0 0 . . .
1 120 600 600 200 25 1 0 . . .
1 720 4320 5400 2400 450 36 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3.10. The set of the elements in the form
[
1
∣∣∣∣
f(x)

x , f(x)
]
is a subgroup

of Ra
e and it’s isomorphic to the subgroup of the form [1|1, f(x)] of Ra

e .

Proof. Considering Proposition 3.9, the set of exponential almost-Riordan ar-

rays in the form
[
1
∣∣∣∣
f(x)

x , f(x)
]

is a subgroup of Ra
e . Let’s take the map ϕ such

that

ϕ([1|1, f(x)]) =
[
1
∣∣∣∣
f(x)

x
, f(x)

]
.
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It’s clear that ϕ is one to one and onto. Also, we have

ϕ ([1|1, f(x)][1|1, l(x)]) =ϕ([1|1, l(f(x))])

=
[
1
∣∣∣∣
l(f(x))

x
, l(f(x))

]

=
[
1
∣∣∣∣
f(x)

x
, f(x)

] [
1
∣∣∣∣
l(x)
x

, l(x)
]

=ϕ([1|1, f(x)])ϕ([1|1, l(x)]).

�

Now, we give the definitions of the stochastic and stabilizer subgroups of
Ra

e .

Proposition 3.11. The following subset of the group Ra
e is a subgroup, known

as the stochastic subgroup.

D =
{[

a(x)
∣∣∣∣
ex − a′(x)

ef(x)
, f(x)

]
: a0 = 1, a1 �= 1, f0 = 0, f1 �= 0

}
.

Proof. Firstly, we show that the row sums equal to 1. Using (2.5), we get

[
a(x)

∣∣∣∣
ex − a′(x)

ef(x)
, f(x)

]
ex = a(x) +

∫ x

0

(et − a′(t))dt = ex.

Let
[
a(x)

∣∣ ex−a′(x)
ef(x) , f(x)

]
and

[
b(x)

∣∣ ex−b′(x)
el(x) , l(x)

]
be two elements of the set

D. Using the multiplication defined in (2.11), we have

[
b0a(x) +

∫ x

0

et − a′(t)
ef(t)

b′(f(t))dt

∣∣∣∣
ex − a′(x)

ef(x)

ef(x) − b′(f(x))
el(f(x))

, l(f(x))
]

.

If we consider (2.12), we find

[
a(x)

∣∣∣∣
ex − a′(x)

ef(x)
, f(x)

]−1

=
[
1 −

∫ x

0

a′(f(t))
ef(t) − a′(f(t))

etdt

∣∣∣∣
ex

ef(x) − a′(f(x))
, f(x)

]
.

Thus, the set D is a subgroup of Ra
e . �

For example, an exponential almost-Riordan array belonging to the sto-
chastic subgroup, denoted as [eex−1−x|1 − eex−1−x(1 − e−x), x], is given as
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follows: ⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
0 1 0 0 0 0 0 0 . . .
1 −1 1 0 0 0 0 0 . . .
1 1 −2 1 0 0 0 0 . . .
4 −4 3 −3 1 0 0 0 . . .
11 3 −16 6 −4 1 0 0 . . .
41 −21 15 −40 10 −5 1 0 . . .
162 −10 −126 45 −80 15 −6 1 . . .
...

...
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where the elements of the column 0th is the elements of the sequence A000296
in OEIS [24]. Also, we can see that the row sums of this matrix equal to 1.

Theorem 3.12. The set of the elements in the form [1
∣∣ex−f(x), f(x)] is a sub-

group of Ra
e . The map ϕ, defined such that

ϕ
(
[1|ex−f(x), f(x)]

)
= [ex−f(x), f(x)],

is an isomorphism from the subgroup of the group Ra
e to exponential Riordan

group in the form [ex−f(x), f(x)].

Proof. It follows from Proposition 3.11 that, the set of the exponential almost-
Riordan arrays in the form [1|ex−f(x), f(x)] constitutes a subgroup. Let’s show
that ϕ is a homomorphism. We have

ϕ
(
[1|ex−f(x), f(x)][1|ex−l(x), l(x)]

)
=ϕ([1|ex−l(f(x)), l(f(x))])

=[ex−l(f(x)), l(f(x))]

=[ex−f(x), f(x)][ex−l(x), l(x)]

=ϕ([1|ex−f(x), f(x)])ϕ([1|ex−l(x), l(x)]).

Also, ϕ is one to one and onto. �

Theorem 3.13. The sets of the elements in the forms [1|f ′(x), f(x)] and [1|ex−f(x),
f(x)] are isomorphic subgroups.

Proof. Let’s consider the map ϕ such that

ϕ([1|f ′(x), f(x)]) = [1|ex−f(x), f(x)].

Clearly, ϕ is a homomorphism, one to one and onto. �

Proposition 3.14. D = [1|ex−f(x), f(x)] is an involution if and only if f(x) =
f(x).

Proof. Let D be an involution.Then

D2 = [1|ex−f(x), f(x)][1|ex−f(x), f(x)] = [1|1, x].
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Using (2.11), we get

[1|ex−f(f(x)), f(f(x))] = [1|1, x].

Thus, we have f(x) = f(x). Conversely, let’s take f(x) = f(x), we find

D2 = [1|ex−f(f(x)), f(f(x))] = [1|1, x].

�

Let h(x) be the exponential generating function of the sequence {hn}n≥0.
A column vector whose elements are determined by the generating function
h(x) must satisfy the following condition in order to an exponential almost-
Riordan array to stabilize it.

[a(x)|g(x), f(x)]h(x) = h(x). (3.1)

Now, we define the stabilizer subgroup of the exponential almost-Riordan
group Ra

e .

Proposition 3.15. The following subset of the group Ra
e is a subgroup, known

as the stabilizer subgroup.

B =
{[

a(x)
∣∣∣∣
h′(x) − h0a

′(x)
h′(f(x))

, f(x)
]

: a0 = 1, a1h0 �= h1, h1 �= 0, f0 = 0, f1 �= 0
}

.

Proof. Using (2.5), we get
[
a(x)

∣∣∣∣
h′(x) − h0a

′(x)
h′(f(x))

, f(x)
]

h(x) = h0a(x) +
∫ x

0

(h′(t) − h0a
′(t))dt = h(x).

Let
[
a(x)

∣∣h′(x)−h0a′(x)
h′(f(x)) , f(x)

]
and

[
b(x)

∣∣h′(x)−h0b′(x)
h′(l(x)) , l(x)

]
be two elements of

the set B. Using (2.11), we get
[
a(x) +

∫ x

0

h′(t) − h0a
′(t)

h′(f(t))
b′(f(t))dt

∣∣∣∣
h′(x) − h0a

′(x)

h′(f(x))

h′(f(x)) − h0b
′(f(x))

h′(l(f(x)))
, l(f(x))

]
.

From (2.12), we obtain the inverse as

[
a(x)

∣∣∣∣
h′(x) − h0a

′(x)
h′(f(x))

, f(x)
]−1

=
[
1 −

∫ x

0

a′(f(t))h′(t)
h′(f(t)) − h0a′(f(t))

dt

∣∣∣∣
h′(x)

h′(f(x)) − h0a′(f(x))
, f(x)

]
.

Thus, the set B is a subgroup of Ra
e . �
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For example, let’s take h(x) = 2ex + 1 and
[
ex

∣∣ − 1
2ex−ex+1, ex − 1

]
.

Hence, we obtain
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 − 1

2 0 0 0 0 0 0 . . .
1 0 − 1

2 0 0 0 0 0 . . .
1 1

2 − 1
2 − 1

2 0 0 0 0 . . .
1 1

2 1 − 3
2 − 1

2 0 0 0 . . .
1 −1 9

2 − 1
2 −3 − 1

2 0 0 . . .
1 − 9

2
9
2

25
2 − 15

2 −5 − 1
2 0 . . .

1 − 9
2 −25 52 10 −25 − 15

2 − 1
2 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

It’s noted that the multiplication of this matrix and (3, 2, 2, 2, . . . )T is (3, 2, 2,
2, . . . )T .

4. Production matrix

In this section, we present the production matrix of the exponential almost-
Riordan arrays.

Proposition 4.1. Let D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)] be an exponential
almost-Riordan array and P = (pn,k)n,k≥0 be the production matrix of the
matrix D. Then, we have

dn+1,0 =p0,0dn,0 + p1,0dn,1 + p2,0dn,2 + . . . (4.1)
dn+1,1 =p0,1dn,0 + p1,1dn,1 + p2,1dn,2 + . . . (4.2)
dn+1,k+1 =pk,k+1dn,k + pk+1,k+1dn,k+1 + pk+2,k+1dn,k+2 + . . . . (4.3)

Proposition 4.2. Let the matrix P be the production matrix of D = [a(x)|g(x),
f(x)]. The exponential generating function of the kth column of the matrix P
is given as follows:

P0(x) =
a1

a0
+

∫ x

0

1
g(f(t))

(
a′′(f(t)) − a1

a0
a′(f(t))

)
dt, (4.4)

P1(x) =
g0
a0

+
∫ x

0

1
g(f(t))

(
g′(f(t)) − g0

a0
a′(f(t))

)
dt, (4.5)

and

Pk+1(x) =
∫ x

0

tk−1

(k − 1)!

(
t

k

g′(f(t))
g(f(t))

+ f ′(f(t))
)

dt (4.6)

for k ≥ 1.

Proof. Considering (4.1), (2.1) and (2.2), we have

a′(x) = p0,0a(x) + p1,0

∫ x

0

g(t)dt + p2,0

∫ x

0

g(t)f(t)dt + . . . .
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Then, we get

a′′(x) = p0,0a
′(x) + p1,0g(x) + p2,0g(x)f(x) + . . . .

Hence, we have
a′′(x) − p0,0a

′(x)
g(x)

= P ′
0(f(x)).

Considering (1.8), we find p0,0 = a1
a0

. From the previous equation, the equation
(4.4) is obtained.

Using (4.2), (2.1) and (2.2), we obtain

g(x) = p0,1a(x) + p1,1

∫ x

0

g(t)dt + p2,1

∫ x

0

g(t)f(t)dt + . . . .

Hence,
g′(x) = p0,1a

′(x) + p1,1g(x) + p2,1g(x)f(x) + . . . .

Then, we have
g′(x) − p0,1a

′(x)
g(x)

= P ′
1(f(x)).

Considering (1.8), we find p0,1 = g0
a0

. Therefore, the equation (4.5) is found.
Considering (4.3) and (2.2), we have

g(x)
fk(x)

k!
= pk,k+1

(∫ x

0

g(t)
fk−1(t)
(k − 1)!

dt

)
+ pk+1,k+1

(∫ x

0

g(t)
fk(t)

k!
dt

)

+pk+2,k+1

(∫ x

0

g(t)
fk+1(t)
(k + 1)!

dt

)
+ . . . .

Then, we get

g′(x)fk(x)
k!

+
g(x)f ′(x)fk−1(x)

(k − 1)!

= g(x)
(

pk,k+1
fk−1(x)
(k − 1)!

+ pk+1,k+1
fk(x)

k!
+ pk+2,k+1

fk+1(x)
(k + 1)!

+ . . .

)
.

Thus, we have

fk−1(x)
(k − 1)!

(
g′(x)
g(x)

f(x)
k

+ f ′(x)
)

= P ′
k+1(f(x)).

Hence, the equation (4.6) is clear. �

Corollary 4.3. Let P = (pn,k)n,k≥0 be the production matrix of the exponential
almost-Riordan array [a(x)|g(x), f(x)]. For n ≥ 1,

pn,0 =cn−1 − a1

a0
rn−1, (4.7)

pn,1 =zn−1 − g0
a0

rn−1, (4.8)
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and for k ≥ 2,

pn,k =
(

n − 1
k − 1

)
zn−k +

(
n − 1
k − 2

)
sn−k+1 (4.9)

where rn, cn, zn and sn are the nth elements of the following exponential gen-
erating functions, respectively.

r(x) =
∞∑

i=0

ri
xi

i!
=

a′(f(x))
g(f(x))

, (4.10)

c(x) =
∞∑

i=0

ci
xi

i!
=

a′′(f(x))
g(f(x))

, (4.11)

Z(x) =
∞∑

i=0

zi
xi

i!
=

g′(f(x))
g(f(x))

, (4.12)

S(x) =
∞∑

i=0

si
xi

i!
= f ′(f(x)). (4.13)

Proof. Considering (1.4) and (4.4), we get

pn,0 = n![xn]
∫ x

0

(
c(t) − a1

a0
r(t)

)
dt.

Using (1.3), we have

pn,0 = (n − 1)![xn−1]
(

c(x) − a1

a0
r(x)

)
.

From (1.4), the equation (4.7) is found. By the similar way, the equations (4.8)
and (4.9) are obtained. �

According to Corollary 4.3, the production matrix of the exponential
almost Riordan array [a(x)|g(x), f(x)] is given as follows:

P =

⎛

⎜⎜⎜⎜⎜⎜⎜⎝

a1
a0

g0
a0

0 0 0 0 . . .

c0 − a1
a0

r0 z0 − g0
a0

r0 s0 0 0 0 . . .

c1 − a1
a0

r1 z1 − g0
a0

r1 z0 + s1 s0 0 0 . . .

c2 − a1
a0

r2 z2 − g0
a0

r2 2z1 + s2 z0 + 2s1 s0 0 . . .

c3 − a1
a0

r3 z3 − g0
a0

r3 3z2 + s3 3z1 + 3s2 z0 + 3s1 s0 . . .
...

...
...

...
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎠

.

(4.14)
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Corollary 4.4. Let D = (dn,k)n,k≥0 = [a(x)|g(x), f(x)] be an exponential almost-
Riordan array. Then,

dn+1,0 =
a1

a0
an +

n∑

i=1

(
ci−1 − a1

a0
ri−1

)
dn,i, (4.15)

dn+1,1 =
g0
a0

an +
n∑

i=1

(
zi−1 − g0

a0
ri−1

)
dn,i, (4.16)

and

dn+1,k =
n∑

i=k−1

((
i − 1
k − 1

)
zi−k +

(
i − 1
k − 2

)
si−k+1

)
dn,i (4.17)

for k ≥ 2.

Proof. Considering the Proposition 4.1 and Corollary 4.3, the result is clear.
�

Example 4.5. Let’s consider an exponential almost-Riordan array

D =
[

1
1−x

∣∣∣∣e
−x, x(1 + x

2 )
]
, the matrix D is given as

D =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 . . .
1 1 0 0 0 0 0 0 . . .
2 −1 1 0 0 0 0 0 . . .
6 1 −1 1 0 0 0 0 . . .
24 −1 0 0 1 0 0 0 . . .
120 1 2 −3 2 1 0 0 . . .
720 −1 −5 5 −5 5 1 0 . . .
5040 1 9 0 −5 0 9 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, we find the production matrix of the matrix D. By using (4.10), we
have

r(x) =
e

√
2x+1−1

(2 − √
2x + 1)2

which is exponential generating function of the sequence

1, 3, 8, 25, 87, 386, 1663, 11313, 39560 . . . .

If we use (4.11), we get

c(x) =
2e

√
2x+1−1

(2 − √
2x + 1)3

which is exponential generating function of the sequence

2, 8, 30, 122, 548, 2802, 15638, 100760 . . . .
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Similarly, we obtain Z(x) = −1. From (4.13), we find S(x) =
√

2x + 1 which
is the exponential generating function of the following sequence

1, 1,−1, 3,−15, 105,−945, 10395, . . . .

Then, the production matrix is obtained as follows:

PD =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0 0 0 0 0 . . .
1 −2 1 0 0 0 0 0 . . .
5 −3 0 1 0 0 0 0 . . .
22 −8 −1 1 1 0 0 0 . . .
97 −25 3 −3 2 1 0 0 . . .
461 −87 −15 12 −6 3 1 0 . . .
2416 −386 105 −75 30 −10 4 1 . . .

...
...

...
...

...
...

...
...

. . .

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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