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Abstract: A high-power neutrino superbeam experiment at the ESS facility has been

proposed such that the source-detector distance falls at the second oscillation maximum,

giving very good sensitivity towards establishing CP violation. In this work, we explore the

comparative physics reach of the experiment in terms of leptonic CP-violation, precision

on atmospheric parameters, non-maximal θ23, and its octant for a variety of choices for the

baselines. We also vary the neutrino vs. the anti-neutrino running time for the beam, and

study its impact on the physics goals of the experiment. We find that for the determination

of CP violation, 540 km baseline with 7 years of ν and 3 years of ν̄ (7ν + 3ν̄) run-plan

performs the best and one expects a 5σ sensitivity to CP violation for 48% of true values of

δCP. The projected reach for the 200 km baseline with 7ν+3ν̄ run-plan is somewhat worse

with 5σ sensitivity for 34% of true values of δCP. On the other hand, for the discovery of a

non-maximal θ23 and its octant, the 200 km baseline option with 7ν+3ν̄ run-plan performs

significantly better than the other baselines. A 5σ determination of a non-maximal θ23 can

be made if the true value of sin2 θ23 . 0.45 or sin2 θ23 & 0.57. The octant of θ23 could be

resolved at 5σ if the true value of sin2 θ23 . 0.43 or & 0.59, irrespective of δCP.
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1 Introduction and motivation

The current explosion of activity in hunting for signals of physics beyond the Standard

Model of particle physics received tremendous boost with the widely confirmed claim that

neutrinos have mass [1]. The credit goes to the pioneering world-class experiments involv-

ing neutrinos from the Sun [2–8], the Earth’s atmosphere [9, 10], nuclear reactors [11–17],

and accelerators [18–23] which have established the phenomenon of neutrino flavor oscilla-

tions [24–26] on a strong footing. This immediately demands that neutrinos have mass and

they mix with each other, providing an exclusive evidence for physics beyond the Standard

Model.

With the recent discovery of the last unknown neutrino mixing angle θ13 [13–17, 27], the

focus has now shifted towards the determination of the remaining unknown parameters of

the three generation neutrino flavor oscillation paradigm. These include the neutrino mass

ordering, discovery of CP violation and measurement of the CP phase δCP in the neutrino

sector, and finally determination of the deviation of the mixing angle θ23 from maximal

and its octant. Various experimental proposals have been put forth to nail these remaining

parameters of the neutrino mass matrix. Measurement of non-zero θ13 has opened up the

chances of determining the neutrino mass ordering, CP violation, as well as the octant

of θ23. In particular, the relatively large value of θ13 has ensured that the neutrino mass

ordering, aka, the neutrino mass hierarchy, could be determined to a rather high statistical

significance in the next-generation proposed atmospheric [28–33], long-baseline [34–37],

and medium-baseline reactor experiments [38, 39]. The determination of the deviation of
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θ23 from its maximal value and its octant can also be studied in a variety of proposed

long-baseline and atmospheric neutrino experiments [40–51]. The chances of exploring CP

violation1 in a given experiment depend on how well one can probe the CP asymmetry

ACP which is defined as (P − P̄ )/(P + P̄ ) where P (P̄ ) are the neutrino (anti-neutrino)

probability [56–58]. New experiments with more powerful beams and bigger detectors have

been proposed to enhance the CP discovery potential.

There has been a proposal to extend the European Spallation Source (ESS) program to

include production of a high intensity neutrino beam, which is being called the European

Spallation Source Neutrino Super Beam (ESSνSB) [59, 60]. Since the neutrino beam is

expected to have energies in the few 100s of MeV regime, the proposed detector is a 500 kt

MEMPHYS [61, 62] type water Cherenkov detector. The collaboration aims to gain from

the R&D already performed for the SPL beam proposed at CERN and the MEMPHYS

detector proposed at Frejus. The optimization of the peak beam energy and baseline of

the experiment have been studied in [60] in terms of the CP violation discovery reach of

this set-up. The choice of peak beam energy of 0.22 GeV and baseline 500 km for this

experimental proposal returns a 3σ CP violation discovery potential for almost 70% of

δCP(true) values [60]. In this paper, we focus on the octant of θ23 and its deviation from

maximal mixing for a superbeam experiment using a ESSνSB type beam and MEMPHYS

type detector. We will use the ESSνSB corresponding to 2 GeV protons and consider 500

kt of detector mass for the water Cherenkov far detector and the optimize the experimental

set-up taking various possibilities for the baseline of the experiment as well for a different

run-time fractions of the beam in the neutrino and anti-neutrino modes.

There remains some tension between the best-fit θ23 obtained from the analysis of the

MINOS data [63] with the best-fit θ23 coming from the analysis of the Super-Kamiokande

(SK) atmospheric neutrino data [64], as well as the latest data from the T2K experi-

ment [65]. While the MINOS combined long baseline and atmospheric neutrino data yield

the best-fit sin2 θ23 = 0.41(0.61) for the lower(higher) octant with a slight preference for the

lower octant, SK atmospheric data gives the best-fit at sin2 θ23 = 0.6 for both normal hierar-

chy (NH) and inverted hierarchy (IH), and T2K gives the best-fit at sin2 θ23 = 0.514(0.511)

for NH(IH). The current global fits of the existing world neutrino data by different groups

too give conflicting values for the best-fit sin2 θ23. While the analysis in [66] gives the best-

fit sin2 θ23 = 0.437(0.455) for NH(IH), the analysis in [67] gives the best-fit sin2 θ23 = 0.57

for both NH and IH. In particular, different data sets and different analyses give conflicting

answers to the question on whether θ23 is maximal. While the preliminary results from T2K

indicates near maximal mixing, SK and MINOS data disfavor maximal mixing at slightly

over 1σ. On the other hand, the global fits are all inconsistent with maximal θ23 at less than

1σ (if we do not assume any knowledge on the mass hierarchy) and have conflicting trends

on its octant (irrespective of the hierarchy). Though the tension on the value of θ23 and its

octant between the different data sets and analyses are not statistically significant, nonethe-

less they are there, and need to be resolved at the on-going and next-generation neutrino

1For a detailed discussion on the CP violation discovery potential of T2K and NOνA, see for

example [52–55].
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facilities. In addition to determining the value of sin2 2θ23, we would also like to determine

the θ23 octant, in case θ23 is found to be indeed non-maximal. The prospects of determin-

ing the octant of θ23 has been studied before in [40–50] using atmospheric neutrinos and

accelerator-based neutrinos beams, and in [68, 69] using reactor neutrinos. We checked that

the combined data from present generation long-baseline experiments, T2K and NOνA can

establish a non-maximal θ23 only if sin2 θ23(true). 0.45 and & 0.57 at 3σ. The same data

can settle the octant of θ23 at 2σ provided sin2 θ23(true) . 0.43 and & 0.58 irrespective of

the value of δCP [51]. Therefore, it is pertinent to ask whether the next-generation long-

baseline experiments can improve these bounds further. Prospects of determining the oc-

tant of θ23 has been studied in [70–72] for the Long Baseline Neutrino Experiment (LBNE)

proposal in the US, and for the Long Baseline Neutrino Oscillation (LBNO) experimental

proposal in Europe in [70, 73]. With the help of T2K and NOνA data, LBNE10 can deter-

mine the octant of θ23 at 3σ if sin2 θ23(true) . 0.44 and & 0.59 for any δCP [70]. The LBNO

proposal with a 10 kt LArTPC can do this job if sin2 θ23(true) . 0.45 and & 0.58 [70].

In this work, we study in detail the achievable precision on the atmospheric parameters

and the prospects of determining the deviation of θ23 from maximal and its correct octant

with the ESSνSB experiment. We consider various baseline and run-plan possibilities for

this set-up and optimize them for best reach for θ23 octant such that the CP violation

discovery reach of the experiment is not significantly compromised. The paper is organized

as follows. In section 2, we briefly describe the ESSνSB proposal from the phenomenological

viewpoint. In section 3, we give the details of the simulation procedure. In section 4, we

describe the results we obtain regarding the sensitivities of the ESSνSB set-up. Finally, in

section 5, we give our conclusions.

2 Experimental specifications

In this section we briefly describe the super beam set-up that we have considered in this

study. The ESS project is envisaged as a major European facility providing slow neutrons

for research as well as the industry. It is projected to start operation by 2019. The ESSνSB

proposal is an extension of the original ESS facility to generate an intense neutrino beam

for neutrino oscillation studies. The proposal is to use the 5 MW ESS proton driver with

2 GeV protons, to produce a high intensity neutrino superbeam simultaneously along with

the spallation neutrons, without compromising on the number of spallation neutrons. This

dual purpose machine would result in considerable reduction of costs in contrast to the

building of two separate proton drivers, one for neutrons and another for neutrinos. The

proton driver could later be used as a part of the neutrino factory, if and when one is

built. Detailed feasibility studies for this dual purpose machine is underway. We refer the

readers to [60] for a detailed discussion on the accelerator, target station and the beam line

being discussed for this proposal. While the proposed proton energy for the ESS facility is

2 GeV, the energy of the protons could be increased up to 3 GeV. The expected neutrino

flux for this facility has been calculated for proton energy of 2 GeV and 2.7× 1023 protons

on target per year, corresponding to 5 MW power for the beam. For the other proton

energies of 2.5 GeV and 3 GeV, the neutrino flux is calculated by keeping the power of the
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Set-up νe(ν̄e) νµ(ν̄µ) νe ν̄e NC ν̄µ(νµ)→ ν̄e(νe)

signal miss-ID intrinsic intrinsic wrong-sign contamination

360 km (ν run) 304 10 75 0.08 25 1.0

(ν̄ run) 244 6 3 53 15 11

540 km (ν run) 197 5 34 0.04 11 0.7

(ν̄ run) 164 3 1 24 7 7

Table 1. Signal and background events for the ESSνSB set-up with a 360 km baseline and a 540

km baseline. Both ν and ν̄ events are shown. To generate these numbers, we used the following

values of the neutrino oscillation parameters: ∆m2
21 = 7.5 × 10−5eV2, ∆m2

31 = 2.47 × 10−5eV2,

sin2 θ12 = 0.3, sin2 2θ13 = 0.087, sin2 θ23 = 0.415 and δCP = 0. These values are the same as that

used to generate table 3 of [60].

beam fixed at 5 MW. In this paper, we use the neutrino fluxes corresponding to the 2 GeV

proton beam and 2.7× 1023 protons on target per year [60].

The on-axis neutrino flux for the 2 GeV protons on target peaks at 0.22 GeV. Hence,

megaton class water Cherenkov detector has been proposed as the default detector option

for this set-up. At these energies, the detection cross-section is dominated by quasi-elastic

scattering. We have used the GLoBES software [74, 75] to simulate the ESSνSB set-up. We

obtain the fluxes from [76] and consider the properties of the MEMPHYS detector [61, 77]

to simulate the events. We take the fiducial mass of the detector to be 500 kt and a total

run-time of 10 years.

For the peak neutrino energy of 0.22 GeV obtained for the 2 GeV protons on target,

the first oscillation maximum corresponds to 180 km while the second oscillation maximum

comes at 540 km. The possible detector locations are discussed in [60]. Existing mines in

Sweden where the detector can be housed are at distances of about 260 km (Oskarshamn),

360 km (Zinkgruvan), 540 km (Garpenberg) and 1090 km (Kristineberg) from the ESS

site, which is in Lund. The study in [60] uses the mine location at Garpenberg to place the

detector, giving a baseline of 540 km which corresponds to the second oscillation maximum,

well suited for CP violation discovery [78]. The study shows that the CP violation discov-

ery can be achieved for up to 50% values of δCP(true) at more than 5σ. In what follows,

we optimize the baseline for the deviation of θ23 from maximal and its octant, without

severely compromising the sensitivity to CP violation. The number of events that we get

for the set-up described above is shown in table 1. It can be seen that event numbers in

table 1 have a good match with table 3 of [60].

3 Oscillation probability and simulation details

Here, we focus on the relevant oscillation channels and simulation methods which go in

estimating the final results.
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3.1 θ23-dependence in the disappearance and appearance channels

The precision measurement of the mixing angle θ23 in long-baseline experiments comes

from the disappearance channel. This channel depends on the survival probability for

muon neutrinos, which in the approximation that ∆m2
21 = 0 is given as [44]

P (νµ → νµ) ≈ 1 − sin2 θM13 sin2 2θ23 sin2 [(∆m2
31 +A)− (∆m2

31)
M ]L

8E

− cos2 θM13 sin2 2θ23 sin2 [(∆m2
31 +A) + (∆m2

31)
M ]L

8E

− sin2 2θM13 sin4 θ23 sin2 (∆m2
31)

ML

4E
, (3.1)

where θM13 and (∆m2
31)

M are the mixing angle θ13 and ∆m2
31 in matter and A is the

Wolfenstein matter term [79] and is given by A(eV2) = 0.76×10−4ρ (g/cm3)E(GeV). The

disappearance data through its sensitivity to sin2 2θ23 as seen in the leading first term in

eq. (3.1) provides stringent constraint. This provides a powerful tool for testing a maximal

θ23 against a non-maximal one. However, the leading first term does not depend on the

octant of θ23. This dependence comes only at the sub-leading level from the third term in

eq. (3.1), which becomes relevant only when matter effects are very large to push sin2 θM13
close to resonance. Since the ESSνSB set-up involves very low neutrino energies and short

baselines, the disappearance channel would provide almost no octant sensitivity and if θ23
was indeed non-maximal, it would give narrow allowed-regions in both the lower and the

higher octant of θ23.

The octant sensitivity of long baseline experiments come predominantly from the elec-

tron appearance channel which depends on the P (νµ → νe) transition probability. Since

this channel also gives sensitivity to CP violation for non-zero ∆m2
21, we give here the

νµ → νe oscillation probability in matter, expanded perturbatively in α(= ∆m2
21/∆m

2
31)

and sin θ13, keeping up to the second order terms in these small parameters [80–82]

P (νµ → νe) ∼ Pµe = sin2 2θ13 sin2 θ23
sin2 ∆̂(1− Â)

(1− Â)2

+α cos θ13 sin 2θ12 sin 2θ13 sin 2θ23 cos(∆̂ + δCP)
sin ∆̂Â

Â

sin ∆̂(1− Â)

1− Â

+α2 sin2 2θ12 cos2 θ13 cos2 θ23
sin2 ∆̂Â

Â2
(3.2)

where ∆̂ = ∆m2
31L/4E and Â = A/∆m2

31 are dimensionless parameters. The leading first

term in eq. (3.2) depends on the octant of θ23. Octant dependence comes also from the third

term, however this term is suppressed at second order in α. The δCP dependence comes only

in the second term which goes as sin 2θ23. However, it was shown in [51] that the presence of

the δCP term in the probability brings in a δCP−θ23 degeneracy which can be alleviated only

through a balanced run of the experiment between the neutrino and anti-neutrino channels.

The approximate expressions in this section is given only for illustration. Our numeri-

cal analysis is done using the full three-generation oscillation probabilities. For the analysis
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performed in this paper, we simulate predicted events at the following true values of the

oscillation parameters: sin2 2θ13 = 0.089, ∆m2
21 = 7.5 ×10−5 eV2, sin2 θ12 = 0.3, while the

values for θ23 and δCP are varied within their allowed ranges. We take the true value of

atmospheric splitting to be ∆m2
µµ = ± 2.4×10−3 eV2 where +ve (-ve) sign is for NH (IH).

The relation between ∆m2
µµ and ∆m2

31 has been taken from [83, 84]. Our assumptions

for the systematic uncertainties considered are as follows. For the appearance channel,

we take 10% signal normalization error and 25% background normalization error. For the

disappearance events, we take 5% signal normalization error and 10% background normal-

ization error. For both types of events, a 0.01% energy calibration error has been assumed.

These ‘simulated events’ is then fitted by means of a χ2 to determine the sensitivity of the

experiment to the different performance indicators. We use the following definition of χ2:

χ2 = minξs,ξb

[
2

n∑
i=1

(ỹi − xi − xi ln
ỹi
xi

) + ξ2s + ξ2b

]
, (3.3)

where n is the total number of bins and

ỹi({ω}, {ξs, ξb}) = N th
i ({ω}) [1 + πsξs] +N b

i

[
1 + πbξb

]
. (3.4)

Above, N th
i ({ω}) is the predicted number of events in the i-th energy bin for a set

of oscillation parameters ω and N b
i are the number of background events in bin i. The

quantities πs and πb in eq. (3.4) are the systematical errors on signals and backgrounds

respectively. The quantities ξs and ξb are the pulls due to the systematical error on signal

and background respectively. xi is the predicted event rates corresponding to the i-th

energy bin, consisting of signal and backgrounds. χ2 corresponding to all the channels

defined in the experiment are calculated and summed over. Measurements of oscillation

parameters available from other experiments are incorporated through Gaussian priors.

χ2
total =

c∑
j=1

χ2
j + χ2

prior (3.5)

where c is the total number of channels. Finally, χ2
total is marginalized in the fit over the

allowed ranges in the oscillation parameters to find ∆χ2
min. More details of χ2 definition,

as given in eqs. (3.3) and (3.4), can be found in [85, 86].

3.2 Numerical procedure

Leptonic CP-violation: to evaluate the sensitivity to leptonic CP-violation, we follow

the following approach. We first assume a true value of δCP lying in the allowed range of

[−180◦, 180◦]. The event spectrum assuming this true δCP is calculated and is labeled as

predicted event spectra. We then calculate the various theoretical event spectra assuming

the test δCP to be the CP-conserving values 0 or π and by varying the other oscillation pa-

rameters in their ±2σ range (the solar parameters are not varied) except θ23 which is varied

in the ±3σ range. We add prior on sin2 2θ13 (σ = 5%) as expected after the full run of Daya

Bay [87]. We use the software GLoBES to calculate the ∆χ2 between each set of predicted

and theoretical events. The smallest of all such ∆χ2: ∆χ2
min is considered. The results are

shown by plotting ∆χ2
min as a function of assumed true value in the range [−180◦, 180◦].

– 6 –
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Precision on ∆m2
µµ and sin2 θ23: we simulate the predicted events due to a true value

of ∆m2
µµ. For generating the theoretical spectrum, values of ∆m2

µµ in the ±2σ range around

the central true value are chosen. We marginalize over rest of the oscillation parameters

including hierarchy in order to calculate the ∆χ2
min. Similar procedure is followed in the

case of sin2 θ23, with the exception that for non-maximal true values of θ23, we confine the

test range to be in the true octant only.

Sensitivity to maximal vs. non-maximal θ23: we consider true sin2 θ23 values in

the allowed 3σ range and calculate events, thus simulating the true events. This is then

contrasted with theoretical event spectra assuming the test sin2 θ23 to be 0.5. Rest of the

oscillation parameters, including hierarchy, are marginalized to obtain the least ∆χ2. This

procedure is done for a fixed true δCP value of 0 and normal mass hierarchy.

Sensitivity to Octant of θ23: to calculate the sensitivity to the octant of θ23, the

following approach is taken. We take a true value of sin2 θ23 lying in the lower octant. The

other known oscillation parameters are kept at their best-fit values. Various test sin2 θ23
values are taken in the higher octant. Test values for other oscillation parameters are

varied in the ±2σ range. We marginalize over the hierarchies. ∆χ2 values between the

true and test cases are calculated and the least of all such values: ∆χ2
min is considered.

This is repeated for a true sin2 θ23 lying in the higher octant, but this time the test values

of sin2 θ23 are considered from the lower octant only. This is done for both NH and IH as

true choice and various values of δCP(true) in [−180◦, 180◦].

4 Results

In this section, we report our findings regarding the leptonic CP-violation, achievable

precision on atmospheric parameters, non-maximality of θ23 and its octant for the proposed

ESSνSB set-up.

4.1 Discovery of leptonic CP-violation

We first show the results for the sensitivity of the ESSνSB set-up to CP violation. We

compare the sensitivity of the set-up for different possible baseline options. We have chosen

the representative values of 200 km, 360 km, 540 km and 800 km which are the same as what

has been considered in [60]. In figure 1, we show the discovery reach towards CP violation

for these prospective baselines.2 In the y-axis, we have plotted the confidence level (C.L.),

(defined as
√

∆χ2
min) and in the x-axis we have plotted the true δCP values lying in the

range [−180◦, 180◦]. The left panel is assuming the NH to be the true hierarchy while, in

the right panel we have assumed IH to be the true hierarchy. The run plan considered here

is two years of neutrino running followed by eight years of anti-neutrino running (2ν+ 8ν̄),

to match with the run plan assumed in the ESSνSB proposal [60]. In producing these

plots, we have considered the test hierarchy to be the same as the true one which implies

2It should be noted that for producing the results for CP violation, the values of true oscillation pa-

rameters considered are the same as those in table 1. While, these values are the same as those considered

in [60], they are different from what we have taken for producing other results in this paper.
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Figure 1. CP violation discovery potential (in σ) as a function of δCP(true). The left(right) panel

assumes NH(IH) to be the true hierarchy. Baselines corresponding to 200 km, 360 km, 540 km and

800 km have been considered. The choice of run-plan is 2ν + 8ν̄ years of running.

that we have not marginalized over hierarchies while calculating the ∆χ2. Note that the

CP discovery reach results shown in [60] are obtained after marginalizing over the neutrino

mass hierarchy. We have performed our analysis for the CP discovery reach both with

and without marginalizing over the mass hierarchy and have presented the results for the

fixed test hierarchy case. The underlying justification for doing this is the fact that by

the time this experiment comes up, we may have a better understanding of the neutrino

mass hierarchy. In addition, from the observation of atmospheric neutrino events in the

500 kt water Cherenkov detector deployed for the ESSνSB set-up, 3σ to 6σ sensitivity to

the mass hierarchy is expected, depending on the true value of sin2 θ23. Here one assumes

that the ESSνSB far detector will have similar features to the Hyper-Kamiokande proposal

in Japan [88]. The impact of marginalization over the hierarchy is mainly in reducing

somewhat the CP coverage for the L = 200 km baseline option. For the other baselines,

the impact of marginalizing over the test hierarchy is lower mainly because for these longer

baselines the hierarchy degeneracy gets resolved via the ESSνSB set-up alone.

Figure 1 shows that our results for CP violation are in agreement with those in [60].

From the left panel of figure 1, it can be seen that for the 200 km baseline, which is

the smallest amongst the four choices considered, a 3σ C.L. evidence of CP violation is

possible for 60% of δCP(true), while a 32% coverage is possible at 5σ C.L. For the 540 km

baseline, which shows the best sensitivities among the four choices considered, discovery

of CP violation at the 3σ C.L. is expected to be possible for 70% of δCP(true), while a

5σ significance is expected for 45% of δCP(true). Thus, we are led to the conclusion that

the 540 km choice is better-suited for the discovery of CP-violation with this set-up than

any other choice of baseline. However, the CP violation discovery reach of the 360 km

and 200 km baselines are only marginally lower. In particular, we note that if we have to
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Figure 2. Statistical significance (σ) for CP violation discovery potential as a function of δCP(true).

NH has been assumed to be the true hierarchy. The left(right) panel corresponds to the choice of

200 km (540 km) as the baseline. Results for different run-plans corresponding to 2ν + 8ν̄, 5ν + 5ν̄

and 7ν + 3ν̄ years of running have been shown.

change from the 540 km baseline to 200 km baseline, the CP coverage for CP violation

discovery goes down only by ∼13% (10%) at the 5σ (3σ ) C.L.

In [60], the nominal choice for the neutrino vs. anti-neutrino run-plan for the ESSνSB

was taken as 2ν + 8ν̄. The motivation behind this choice was to have similar number of

events for both ν and ν̄ running. However, in order to explore this further, we calculate the

sensitivity to CP violation for different run-plans. We have taken three cases: 2ν+8ν̄, 5ν+

5ν̄, and 7ν+3ν̄. The left (right) panel in figure 2 shows the projected CP discovery potential

for the 200 km (540 km) baseline option, for different run-plans. From these plots, it can be

seen that at lower C.L., all the three run-plans have similar sensitivity. However, at 5σ C.L.,

the larger coverage in δCP comes with 7ν + 3ν̄ running. While this holds true for both 200

km and 540 km, the effect is marginally more pronounced for the 200 km baseline option.

4.2 Precision on atmospheric parameters

We now focus on the achievable precision on atmospheric parameters with the proposed set-

up. The precision3 is mainly governed by the P (νµ → νµ) channel (see eq. (3.1)). Because

of huge statistics in this channel, we expect this set-up to pin down the atmospheric param-

eters to ultra-high precision. Indeed, this is the case as can be seen from table 2. Table 2

shows the relative 1σ precision on ∆m2
µµ and sin2 θ23 considering three different values of

true sin2 θ23. Here, we have taken the baseline to be 200 km and the run-plan to be 7ν+3ν̄.

It can be seen that around 0.2% precision on the atmospheric mass splitting is achiev-

able which is a factor of ∼ 5 better than what can be achieved with combined data from

3We define the relative 1σ error as 1/6th of the ±3σ variations around the true choice.
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sin2 θ23(true) 0.4 0.5 0.6

δ(∆m2
µµ) 0.24% 0.2% 0.22%

δ(sin2 θ23) 1.12% 3.0% 0.8%

Table 2. Relative 1σ precision (1 dof) on ∆m2
µµ and sin2 θ23 considering three different values of

true sin2 θ23. Here, for all the cases, we consider the true value of ∆m2
µµ to be 2.4× 10−3eV2. We

consider NH as the true hierarchy. We have considered the 200 km as the baseline and 7ν + 3ν̄ as

the run-plan for generating these numbers.

T2K and NOνA [89]. While the precision on ∆m2
µµ is weakly-dependent on the true value

of sin2 θ23, the precision in sin2 θ23 shows a large dependence on its central value. We see

that for sin2 θ23 = 0.5, the precision is 3.0%, while for sin2 θ23 = 0.6, its 0.8%. The precision

in sin2 θ23 is worst for the maximal mixing due to the fact that a large Jacobian is asso-

ciated with transformation of the variable from sin2 2θ23 to sin2 θ23 around the maximal

mixing [41].

4.3 Deviation from maximality

As discussed in the Introduction, currently different data sets have a conflict regarding the

best-fit value of θ23 and its deviation from maximal mixing. While global analysis of all

data hint at best-fit θ23 being non-maximal, these inferences depend on the assumed true

mass hierarchy and are also not statistically very significant. Therefore, these results would

need further corroboration in the next-generation experiments. If the deviation of θ23 from

maximal mixing is indeed small, it may be difficult for the present generation experiment to

establish a deviation from maximality. It has been checked that the combined results from

T2K and NOνA will be able to distinguish a non-maximal value of θ23 from the maximal

value π/4 at 3σ C.L. if sin2 θ23(true). 0.45 and & 0.57. In such a situation, it will be

interesting to know how well the ESSνSB set-up can establish a non-maximal sin2 θ23. In

figure 3, we show the sensitivity of various baselines towards establishing a non-maximal

sin2 θ23. These plots show the ∆χ2 as a function of the true sin2 θ23, where ∆χ2 is as

defined in section 3.

The results are shown for the prospective baselines of 200 km, 360 km, 540 km and

800 km. The top left (right) panel corresponds to the choice of δCP (true) of 0 (90◦). The

bottom left (right) panel corresponds to the choice of true δCP of −90◦ (180◦). The true hi-

erarchy for all these plots is assumed to be NH and the run-plan is taken to be 7ν+3ν̄. Here,

we have marginalized the ∆χ2 over the hierarchy. It can be seen from figure 3 that the best

sensitivity occurs for the 200 km baseline. For true δCP = 0, a 3σ determination of non-

maximal sin2 2θ23 can be made if sin2 θ23 . 0.47 or if sin2 θ23 & 0.56. A 5σ determination is

possible if sin2 θ23 . 0.45 or if sin2 θ23 & 0.57. We checked that the contribution to the sensi-

tivity from the appearance channels is small compared to that from the disappearance chan-

nels. This is reflected in the fact that there is a small dependence of ∆χ2 on the assumed

true value of δCP. An interesting observation is that the ∆χ2 curve is not symmetric around

the sin2 θ23 = 0.5 line. It seems that, as far as observing a deviation from maximality is

concerned, the lower octant is more favored than the higher octant. The reason behind this
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Figure 3. ∆χ2
min for a non-maximal θ23 discovery vs. sin2 θ23(true) for the ESSνSB set-up.

NH has been assumed to be the true hierarchy and the choice of run-plan has been taken to be

7ν + 3ν̄ years of running. Results corresponding to various choices: 200 km, 360 km, 540 km and

800 km for the baseline have been shown. The top-left/top-right/bottom-left/bottom-right panel

corresponds to 0/90◦/−90◦/180◦ assumed as δCP(true). The horizontal black lines show 2σ and

3σ confidence level values.
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Figure 4. ∆χ2
min for a non-maximal θ23 discovery vs. sin2 θ23 (true) for the ESSνSB set-up. NH

has been assumed to be the true hierarchy and δCP(true) has been assumed to be 0. The choice of

baseline has been taken to be 200 km. Results corresponding to various choices: 2ν + 8ν̄, 5ν + 5ν̄

and 7ν + 3ν̄ years of running for the run-plan have been shown. The purpose of having vertical

lines at sin2 θ23 true = 0.46 and 0.56 is to show the effect of run-plan on sensitivity (see table 3 for

discussion on this).

feature is the following. The sensitivity here, is mostly governed by the disappearance data

in which the measured quantity is sin2 2θµµ. Since sin2 θ23 = sin2 θµµ/ cos2 θ13 [83, 84, 90],

the θ13 correction shifts the θ23 values towards 45◦ in the lower octant and away from 45◦

in the higher octant. This results in the shifting of the curve towards the right in sin2 θ23
and is reflected as the asymmetric nature of the curve. We have checked that for the (now)

academic case of θ13(true)= 0, the ∆χ2 curve is symmetric around 45◦.

To find an optimal run-plan in the case of deviation from maximality, we generated the

results for 200 km baseline for ESSνSB set-up, assuming NH and δCP = 0. Three run-plans

were assumed as before: 2ν + 8ν̄, 5ν + 5ν̄ and 7ν + 3ν̄. It can be seen from figure 4 that

the best results are observed for 7ν+ 3ν̄. Thus, this run-plan seems to be optimally suited

for measurement of deviation from maximality as well. Note that apparently it seems from

figure 4 that the sensitivity in the case of different run-plans are roughly the same despite

there being huge change of statistics in terms of neutrino and anti-neutrino data. However,

a closer look will reveal that the ∆χ2 indeed changes as expected with the increase in the

total statistics collected by the experiment and in fact it is the very sharp rise of the curves

which hides the difference. To illustrate this further, we show in table 3 the ∆χ2 values

corresponding to different run-plans at different true sin2 θ23 values and for two choices of

sin2 θ23(true).

– 12 –



J
H
E
P
1
2
(
2
0
1
4
)
0
2
0

sin2 θ23 (true) 2ν + 8ν̄ 5ν + 5ν̄ 7ν + 3ν̄

0.46 8.7 12.3 14.2

0.56 7.8 10.1 11.6

Table 3. ∆χ2
min for sin2 θ23 (true) = 0.46 and 0.56. Here, the sensitivity of the ESSνSB set-up

to the deviation from a maximal θ23 has been considered. NH has been assumed to be the true

hierarchy and δCP(true) has been assumed to be 0. The choice of baseline has been taken to be 200

km. Results corresponding to various choices: 2ν + 8ν̄, 5ν + 5ν̄ and 7ν + 3ν̄ years of running for

the run-plan have been shown in different columns.

4.4 Octant resolution

In this section, we explore the octant resolving capability of the ESSνSB set-up. As

discussed in the previous section, we generate true event rates at certain sin2 θ23(true) and

fit this by marginalizing over the entire sin2 θ23 range in the wrong octant. The ∆χ2 is also

marginalized over |∆m2
31|, sin2 θ13, δCP and the neutrino mass hierarchy. Figure 5 shows

the ∆χ2 obtained as a function of sin2 θ23(true) assuming NH to the true hierarchy. The

corresponding results for the IH(true) case is shown in figure 6. We show the results for

200 km, 360 km, 540 km, and 800 km baselines in the first, second, third, and fourth rows

respectively. The first column corresponds to the 2ν + 8ν̄ run-plan. The second column

corresponds to the 5ν + 5ν̄ run-plan while the third column corresponds to the 7ν + 3ν̄

run-plan. The band in each of these plots correspond to variation of δCP(true) in the range

[−180◦, 180◦]. Thus, for any sin2 θ23(true), the top-most and the bottom-most ∆χ2 values

lying in the band shows the maximum and minimum ∆χ2 possible depending on the true

value of δCP.

From the plots in figure 5 and figure 6, it can be seen that the best choice for θ23
octant resolution seems to be the 200 km baseline. Since amongst the various choices, the

200 km baseline is the closest to the source, it has the largest statistics for both ν and ν̄

samples. This is the main reason why the 200 km option returns the best octant resolution

prospects. We have explicitly checked that if the statistics of the the other baseline options

were scaled to match the one we get for the 200 km baseline option, they would give θ23
octant sensitivity close to that obtained for the 200 km option. We can also see from these

figures that the best sensitivity is expected for the run-plan of 7ν + 3ν̄. Note also that

the 5ν + 5ν̄ run-plan is just marginally worse than the 7ν + 3ν̄ plan. However, these two

run-plans are better than 2ν + 8ν̄ run-plan. This again comes because of the fact that

this option allows for larger statistics while maintaining a balance between the ν and ν̄

data, which is required to cancel degeneracies for maximum octant resolution capability as

was shown in [51]. The impact of the run plans are again seen to be larger for the larger

baselines. We can also see that the impact of δCP(true) is larger for larger baselines. The

δCP band is narrowest for the 200 km baseline option, implying that this baseline choice

suffers least uncertainty from unknown δCP(true) for octant studies.

Assuming NH(true) and with the 200 km baseline and 7ν + 3ν̄ run-plan option, one

can expect to resolve the correct octant of θ23 at the 3σ level for sin2 θ23(true). 0.43
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Figure 5. Octant resolution potential as a function of sin2 θ23(true) for the ESSνSB set-up. NH

has been assumed as the true hierarchy. The variation in the assumed value of δCP(true) leads to

the formation of the band. Results corresponding to various run-plans and the assumed baseline

for ESSνSB set-up have been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km

from top to bottom and the columns correspond to 2ν + 8ν̄, 5ν + 5ν̄ and 7ν + 3ν̄ years of running,

from left to right. The horizontal black lines show 1σ and 2σ confidence level values.
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Figure 6. Octant resolution potential as a function of sin2 θ23(true) for the ESSνSB set-up. IH

has been assumed as the true hierarchy. The variation in the assumed value of δCP(true) leads to

the formation of the band. Results corresponding to various run-plans and the assumed baseline

for ESSνSB set-up have been shown. The rows correspond to 200 km, 360 km, 540 km, and 800 km

from top to bottom and the columns correspond to 2ν + 8ν̄, 5ν + 5ν̄ and 7ν + 3ν̄ years of running,

from left to right. The horizontal black lines show 1σ and 2σ confidence level values.
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Figure 7. 3σ C.L. contours in the sin2 θ23(true)-δCP(true) plane for the octant-resolution sensitivity

of the ESSνSB set-up. The left(right) panel corresponds to NH(IH) assumed as the true hierarchy.

Results for various possible choices of baseline have been shown. The run-plan considered here is

7ν + 3ν̄ years of running.

and & 0.59 irrespective of δCP(true). Correct octant can be identified with this option

at 5σ confidence level for sin2 θ23(true). 0.37 and & 0.63 for all values of δCP(true). For

IH(true) the corresponding values for 3σ (5σ) sensitivity are sin2 θ23(true). 0.43(0.37)

and & 0.59(0.62). These numbers and a comparison of figure 5 and 6 reveals that the

octant sensitivity of the ESSνSB set-up does not depend much on the assumed true mass

hierarchy. The octant sensitivity for both true hierarchies and all run-plan options is seen

to deteriorate rapidly with the increase in the baseline. For the 540 km baseline option,

we find that even for sin2 θ23(true)> 0.35 and < 0.63, we do not get a 3σ resolution of the

octant for 100% values of δCP(true).

To show the impact of δCP(true) on the determination of the octant of θ23 at ESSνSB,

we show in figure 7 the 3σ contours in the sin2 θ23(true)-δCP(true) plane for different base-

lines. We assume the 7ν + 3ν̄ run-plan for this figure. The left hand panel shows the

contours for NH(true) while the right hand panel is for IH(true). The different lines show

the contours for the different baselines. Comparison of the different lines reveals that the

200 km baseline is better-suited for the resolution of octant. Not only does it gives the

best octant determination potential, it also shows least δCP−sin2 θ23 correlation. For other

baselines, the contours fluctuate more depending on δCP(true) as for these baselines, the

ESS fluxes peak close to the second oscillation maximum, where a larger sensitivity to δCP

exists. Hence, we see larger dependence of the sensitivity on the assumed true value of δCP.

In particular, the performance is seen to be worst for δCP(true)' −90◦ and best for 90◦.
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5 Summary and conclusions

The ESS proposal is envisaged as a major European facility for neutron source, to be used

for both research as well as the industry. A possible promising extension of this project

could be to use it simultaneously to produce a high intensity neutrino superbeam to be

used for oscillation physics. Since the energy of the beam is comparatively lower, it has

been proposed to do this oscillation experiment at the second oscillation maximum, for

best sensitivity to CP violation discovery. In this work we have made a comparative study

of all oscillation physics searches with ESSνSB, allowing for all possible source-detector

distances and with different run-plan options for running the experiment in the neutrino

and anti-neutrino modes.

In particular, we have evaluated the sensitivities of the ESSνSB proposal towards the

discovery of CP violation in the lepton sector, achievable precision on atmospheric pa-

rameters, deviation of sin2 θ23 from 0.5, and finally the octant in which it lies. We have

considered the prospective baselines - 200 km, 360 km, 540 km, and 800 km for the res-

olution of the above mentioned unknowns. We also tested different run-plans i.e. varying

combination of ν and ν̄ data with a total of 10 years of running. We considered 2ν + 8ν̄,

5ν + 5ν̄ and 7ν + 3ν̄. In the case of CP violation, we find that the best sensitivity comes

for 540 km baseline where 70% coverage is possible in true δCP at 3σ while a 45% coverage

is possible at 5σ . For the 200 km baseline, we find that 60% coverage is possible at 3σ and

32% coverage is possible at 5σ . We further find that all the three run-plans give the same

coverage at 2σ C.L. but, at 5σ C.L., a better coverage is possible with the 7ν+3ν̄ run-plan.

For determination of deviation of θ23 from maximality, the best sensitivity is expected for

the 200 km baseline with the 7ν + 3ν̄ run-plan, as this combination provides the largest

statistics. For true δCP = 0, a 3σ determination of non-maximal sin2 2θ23 can be made if

true value of sin2 θ23 . 0.47 or & 0.56. A 5σ determination is possible if the true value of

sin2 θ23 . 0.45 or & 0.57. In the case of octant also, we find that the 200 km baseline and

7ν+3ν̄ run-plan provides the best sensitivity. We find that, assuming NH to be the true hi-

erarchy, a 3σ resolution of octant is possible if sin2 θ23(true) . 0.43 and & 0.59 for all values

of δCP(true). A 5σ determination could be possible if sin2 θ23(true) . 0.37 and & 0.63.

Finally, we end this paper with a comparison of the deviation from maximality and

octant of θ23 discovery reach of the ESSνSB set-up with the other next-generation pro-

posed long baseline superbeam experiments. We show in figure 8 this comparison for the

ESSνSB set-up with the 200 km baseline option and 7ν + 3ν̄ run-plan (green short dashed

lines), LBNE with 10 kt liquid argon detector (orange dotted lines), and LBNO with 10 kt

liquid argon detector (purple dot-dashed lines). For LBNE and LBNO, we have used the

experimental specifications as given in [70]. In generating the plots for these three future

facilities, we have added the projected data from T2K (2.5ν + 2.5ν̄) and NOνA (3ν + 3ν̄).

The details of these experiments are the same as considered in [53]. The left hand panel of

this figure shows the ∆χ2 as a function of sin2 θ23(true) for deviation of θ23 from its maxi-

mal value for δCP(true)= 0. The ESSνSB set-up is seen to perform better than the other

two superbeam options, mainly due to larger statistics. With larger detectors, both LBNE

and LBNO will start to be competitive. The right hand panel shows 5σ contours for the
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Figure 8. A comparison of the future facilities LBNE and LBNO with the ESSνSB set-up. Left

panel: non-maximal θ23 discovery potential. Right panel: octant resolution potential. For ESSνSB,

a 200 km long baseline and a 7ν + 3ν̄ running is considered. For both LBNE and LBNO, a 10 kt

LArTPC detector and a 5ν + 5ν̄ running is considered. The horizontal black lines show 2σ and

3σ C.L.

octant of θ23 discovery reach in the δCP(true)-sin2 θ23(true) plane. The three experiments

are very comparable, with the best reach coming for the ESSνSB set-up with the 200 km

baseline option and 7ν + 3ν̄ run-plan.

To conclude, among all four choices of the baselines, the best results for sensitivity to

deviation from maximality and resolution of octant is expected for the 200 km baseline

option. On the other hand, chances for discovery of CP violation are best for the 540

km baseline, which sits on the second oscillation maximum and hence gives the maximum

coverage in true δCP. However, the CP violation discovery prospects for the 200 km baseline

is only slightly worse. We have also seen that for all oscillation physics results, the 7ν+ 3ν̄

run-plan provides the best sensitivity amongst the three run-plan choices considered. While

we appreciate the merit of putting the detector at the second oscillation peak, this paper

shows the advantage of another baseline option, in particular, 200 km.
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