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deformation, and show that it can also be regarded as a T -fold. This result indicates that

solutions of GSE should be non-geometric quite in general beyond the YB deformation.
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1 Introduction

A prototypical example of the AdS/CFT correspondence [1] is a conjectured equivalence

between a type IIB superstring theory on AdS5 × S5 and the four-dimensional N = 4

SU(N) super Yang-Mills theory in the large N limit. Nowadays, it is well recognized that

an integrable structure underlies this correspondence (for a comprehensive review, see [2]).

In particular, the associated supergeometry is represented by a supercoset [3],

PSU(2, 2|4)
SO(1, 4)× SO(5)

, (1.1)

and the Z4-grading of it ensures the classical integrability of the supercoset sigma model [4].
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A renewed interest for this integrable structure appeared from the development of a sys-

tematic scheme of integrable deformation called the Yang-Baxter (YB) deformation [5–9].

In fact, an application of this scheme to type IIB superstring on AdS5×S5 [10–12] opened up

a lot of new perspectives and directions including intriguing relations among YB deforma-

tions and non-commutative gauge theories, non-Abelian T -duality [13–22], and manifestly

T -/U -duality covariant formulations, which have been discovered in [23–29], and [30–33],

respectively. Our concern here is to delve deeper into the relation to a manifestly T -duality

covariant formulation called Double Field Theory (DFT) [34–38] with particular emphasis

on non-geometric aspects (i.e., the global nature) of YB-deformed backgrounds.

The original application of YB deformations to string theory is the standard q-

deformation of type IIB string on AdS5 × S5 [10, 11] with a classical r-matrix of Drinfeld-

Jimbo type [39, 40]. The metric and Neveu-Schwarz-Neveu-Schwarz (NS-NS) 2-form of

the deformed background were computed in [41] by performing coset construction for the

bosonic group elements. Note here that the deformed background is called in several ways,

as the q-deformed AdS5×S5 , the η-deformed AdS5×S5 , or the ABF background, but all of

them are identical.1 The supercoset construction for the q-deformed case was worked out

in [42]. While the q-deformation is based on the modified classical Yang-Baxter equation

(mCYBE), one may consider another category based on the homogeneous CYBE [9, 12],

for which a large number of works [23–25, 29, 43–56] have been done and led to vari-

ous backgrounds including well-known examples such as Lunin-Maldacena-Frolov back-

grounds [57, 58], gravity duals of non-commutative gauge theories [59, 60] and Schrödinger

spacetimes [61–63].

Remarkably, the full q-deformed background of [42], which includes the Ramond-

Ramond (R-R) fluxes and dilaton, is not a solution of type IIB supergravity. Afterward,

it was shown that the background should satisfy the generalized supergravity equations of

motion (GSE) [64]. At that moment, the GSE seemed to be an artifice invented so as to sup-

port the q-deformed background as a solution. However, after that, in the ground-breaking

paper by Tseytlin and Wulff [65], this GSE has been reproduced by solving the kappa-

symmetry constraints of the Green-Schwarz type IIB string theory on an arbitrary back-

ground. Therefore, the GSE has now been established on the fairly fundamental ground.

For the homogeneous CYBE case [12], there exists a significant criterion to identify

whether a YB-deformed background is a solution of type IIB supergravity or GSE, before

deriving the concrete expression of the resulting deformed background, namely, at the level

of classical r-matrix. It is called the unimodularity condition [55]. When this condition

is satisfied, the deformed background is a solution of type IIB supergravity, but if not,

the background is a solution of the GSE. Various solutions of GSE have been obtained

from YB deformations with non-unimodular classical r-matrices [52, 54]. As it has been

shown in [23–26], classical r-matrices, which characterize homogeneous YB deformations of

AdS5 geometry, are closely related to non-commutative parameters in the dual open-string

description and, as pointed out in [33], they are nothing but β-fields [66]. In terms of the

1It should be remarked that the η-deformed AdS5 × S5 means all of the YB deformations of AdS5 × S5

in some literature, but here we will not follow that convention.

– 2 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
8

β-field, the non-unimodularity is measured as [25, 26, 33]

1
√

|G|
∂m(

√

|G|βnm) 6= 0 , (1.2)

whereGmn is the so-called the open-string metric that will be defined later. The quantity on

the left-hand side is basically the trace of a non-geometric Q-flux, and this result indicates

that YB deformations with non-unimodular r-matrices lead to non-geometric backgrounds.

In this paper, we will concentrate on YB deformations of Minkowski and AdS5 ×
S5 backgrounds, and find that the deformed backgrounds we consider here belong to a

specific class of non-geometric backgrounds, called T -folds [67]. As far as we know, the

YB-deformed backgrounds have not been recognized as T -folds so far, hence this is the

first work that clearly states the relation between YB-deformed backgrounds and T -folds.

Moreover, it is worth noting that our examples have an intriguing feature that the R-

R fields are also twisted by the T -duality monodromy, in comparison to the well-known

T -folds which include no R-R fields.

This paper is organized as follows. Section 2 provides a brief review of T -folds, in-

cluding two examples that are well-known in the literature. In section 3, we consider GSE

solutions which can be realized as YB deformations of Minkowski spacetime and AdS5×S5,

and argue that these deformed backgrounds are regarded as T -folds. In addition, we study

a solution of GSE that is obtained by a non-Abelian T -duality but not as a YB deformation,

and show that this can also be regarded as a T -fold. Section 4 is devoted to conclusions

and discussions. In appendix A, we discuss how to generalize the Penrose limit [68, 69] so

as to produce various GSE solutions. To be pedagogical, appendix A.1 is devoted to a re-

view of Penrose limit of Poincaré AdS5. In appendix A.2, we discuss the modified Penrose

limit with a rescaling of the deformation parameter. Then, we apply it to YB-deformed

background and reproduce the deformed Minkowski backgrounds discussed in section 3.4.

2 A brief review of T -folds

In this section, let us explain what is T -fold. A T -fold is supposed to be a generalization

of the usual manifold. It locally looks like a Riemannian manifold, but which is glued

together not just by diffeomorphisms but also by T -duality. It plays a significant role in

studying non-geometric fluxes beyond the effective supergravity description. As illustrative

examples, we revisit two well-known cases in the literature, corresponding to a chain of

duality transformations [70, 71] and to the codimension-1 522-brane solution [72].

It is conjectured that string theories are related by some discrete dualities. One thing

that can occur is that, by duality transformations, a flux configuration transforms into

a non-geometric flux configuration, which means that it cannot be realized in terms of

the usual fields in 10/11-dimensional supergravities. Therefore, dualities suggest that we

need to go beyond the usual geometric isometries to fully understand the arena of flux

compactifications.

For the case of T -duality, one proposal to address this problem is the so-called doubled

formalism. This construction consists of a manifold in which all the local patches are ge-

ometric. However, the transition functions that are needed to glue these patches not only

– 3 –
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include usual diffeomorphisms and gauge transformations, but also T -duality transforma-

tions.

T -fold backgrounds are formulated in an enlarged space with a Tn× T̃n fibration. The

tangent space is the doubled torus Tn × T̃n and is described by a set of coordinates Y M =

(ym, ym) which transforms in the fundamental representation of O(n, n). The physical

internal space arises as a particular choice of a subspace of the double torus, Tn
phys ⊂

Tn× T̃n. Then T -duality transformations O(n, n;Z) act by changing the physical subspace

Tn
phys to a different subspace of the enlarged Tn × T̃n. For a geometric background, we

have a spacetime which is a geometric bundle, Tn
phys = Tn.2 Nevertheless non-geometric

backgrounds do not fit together to form a conventional manifold. That is to say, despite of

they are locally well-defined, their global description is not valid. Instead, they are globally

well-defined as T -folds.

This formulation is manifestly invariant under the T -duality group O(n, n;Z). How-

ever, to make contact with the conventional formulation, one needs to choose a polarization,

i.e., a particular choice of Tn
phys ⊂ Tn×T̃n. This means that we have to break the O(n, n;Z)

and pick n coordinates out of the 2n coordinates (ym, ỹm). Then, T -duality transforma-

tions allow to identify the backgrounds that belong to the same physical configuration or

duality orbit and just differ on a choice of polarization.3

Due to the O(n, n) symmetry, it is convenient to introduce the generalized metric HMN

on the double torus,

H ≡ (HMN ) ≡ e−BT Ĥ e−B =

(

(g −B g−1B)mn Bmk g
kn

−gmk Bkn gmn

)

,

Ĥ ≡
(

gmn 0

0 gmn

)

, (BM
N ) ≡

(

0 0

Bmn 0

)

, eB =

(

δmn 0

Bmn δnm

)

,

(2.1)

where gmn and Bmn are the internal components of the metric and the Kalb-Ramond 2-

form, respectively. As H ∈ O(n, n), the non-linear transformations of the T -duality group

are covariantly realized as

H → OTHO , O ∈ O(n, n) . (2.2)

Let us now review some illustrative examples of T -folds that have been studied in the

literature.

2.1 A toy example

We start by reviewing a toy model example that involves several duality transformations

of a given background. This example has been discussed in [70, 71]. To be pedagogical

and provide simple exercises, this subsection presents geometric cases like a twisted torus

and a torus with H-flux before introducing a T -fold example.

2We can also have Tn
phys = T̃n, which corresponds to a dual geometric description.

3These orbits have been determined in terms of a classification of gauged supergravities in [73].
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Twisted torus. Let us consider the metric of a twisted torus,

ds2 = dx2 + dy2 + (dz −mx dy)2 , (m ∈ Z) . (2.3)

Note that this is not a supergravity solution for m 6= 0, but still is a useful example to

reveal a non-geometric global property. As this background has isometries along y and

z directions, these directions can be compactified with certain boundary conditions. For

example, let us take

(x, y, z) ∼ (x, y + 1, z) , (x, y, z) ∼ (x, y, z + 1) . (2.4)

Apparently, there is no isometry along the x direction, but there actually exists a deformed

Killing vector,

k = ∂x +my ∂z . (2.5)

Thus, this isometry direction can be compactified as

(x, y, z) ∼ ek(x, y, z) = (x+ 1, y, z +my) . (2.6)

According to this identification, a 1-form ez ≡ dz−mx dy is globally well-defined [70], and

the metric (2.3) is also globally well-defined.

When this background is regarded as a 2-torus T 2
y,z fibered over a base S1x , the metric

of the 2-torus takes the form

(gmn) =

(

1 −mx

0 1

)(

1 0

0 1

)(

1 0

−mx 1

)

. (2.7)

Then, as one moves around the base S1x , the metric is transformed by a GL(2) rotation.

That is to say, for x → x+ 1, the metric is given by

gmn(x+ 1) =
[

ΩT g(x) Ω
]

mn
, Ωm

n ≡
(

1 0

−m 1

)

. (2.8)

This monodromy twist can be compensated by a coordinate transformation

y = y′ , z = z′ +my′ . (2.9)

Thus the metric is single-valued up to the above coordinate transformation. Then this

background can be understood to be geometric because general coordinate transformations

belong to the gauge group of supergravity.

Torus with H-flux. When a T -duality is formally performed on the twisted torus (2.3)

along the x direction, we obtain the following background

ds2 = dx2 + dy2 + dz2 , B2 = −mx dy ∧ dz , (2.10)

equipped with the H-flux,

H3 = dB2 = −mdx ∧ dy ∧ dz . (2.11)

– 5 –
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If we consider the generalized metric (2.1) on the doubled torus (y, z, ỹ, z̃) associated to

this background, then we can easily identify the induced monodromy when x → x+ 1. In

this case, the monodromy matrix is given by

HMN (x+ 1) =
[

ΩTH(x) Ω
]

MN
, ΩM

N =

(

δmn 0

2mδy[m δz
n] δ

n
m

)

∈ O(2, 2;Z) . (2.12)

Then, the induced monodromy can be compensated by a constant shift in the B-field,

Byz → Byz −m. (2.13)

This shift transformation, which makes the background single-valued, belongs to the gauge

transformations of supergravity. Hence we conclude that the background is geometric.

T -fold. Finally, let us perform another T -duality transformation along the y-direction

on the twisted torus (2.3). Then we obtain the following background [70]:

ds2 = dx2 +
dy2 + dz2

1 +m2 x2
, B2 =

mx

1 +m2 x2
dy ∧ dz . (2.14)

In this case, neither general coordinate transformations nor B-field gauge transformations

are enough to remove the multi-valuedness of the background. This can also be seen by

calculating the monodromy matrix. The associated generalized metric is given by

H(x) =

(

δpm 0

−2mxδ
[m
y δ

p]
z δmp

)(

δpq 0

0 δpq

)(

δqn 2mxδ
[q
y δ

n]
z

0 δnq

)

. (2.15)

Then, we find that, upon the transformation x → x+ 1, the induced monodromy is

HMN (x+ 1) =
[

ΩTH(x) Ω
]

MN
, ΩM

N ≡
(

δmn 2mδ
[m
y δ

n]
z

0 δnm

)

∈ O(2, 2;Z) . (2.16)

The present O(2, 2;Z) monodromy matrix Ω takes an upper-triangular form (called a β-

transformation) which is not part of the gauge group of supergravity. Hence, to keep

the background globally well defined, the transition functions that glue the local patches

should be extended to the full set of O(2, 2;Z) transformations beyond general coordinate

transformations and B-field gauge transformations. This is what happens to the T -fold case.

In summary, we conclude that a non-geometric background with a non-trivial

O(n, n;Z) monodromy transformation, such as a β-transformation, is a T -fold. The back-

ground (2.14) is a simple example.

From a viewpoint of DFT, by choosing a suitable solution of the section condition, the

β-transformations can be realized as the gauge symmetries. Indeed, the above O(2, 2;Z)

monodromy matrix Ω can be canceled by a generalized coordinate transformation on the

double torus coordinates (y, z, ỹ, z̃),

y = y′ +mz̃′ , z = z′ , ỹ = ỹ′ , z̃ = z̃′ . (2.17)

In this sense, the twisted doubled torus is globally well-defined in DFT.

– 6 –
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In addition, it is also possible to make the single-valuedness manifest by introducing

the dual fields Gmn and βmn [66, 74–77] defined by

(G−1 + β)mn ≡ (E−T)mn , Emn ≡ gmn +Bmn , (2.18)

or equivalently,

Gmn = Emk Enl g
kl = (g −B g−1B)mn , βmn = (E−T)mk (E−T)nl Bkl . (2.19)

The dual metric Gmn is precisely the same as the open-string metric [78], and the original

metric gmn may be called the closed-string metric. In terms of these fields, the generalized

metric can be parameterized as (see for example [79])

H = eβ
T Ȟ eβ =

(

Gmn Gmk β
kn

−βmk Gkn (G−1 − β Gβ)mn

)

,

Ȟ ≡
(

Gmn 0

0 Gmn

)

, (βM
N ) ≡

(

0 βmn

0 0

)

, eβ =

(

δmn βmn

0 δnm

)

,

(2.20)

which is referred to as a non-geometric parameterization of the generalized metric. At the

same time, the parameterization of the DFT dilaton is also changed by introducing the

dual dilaton φ̃,

e−2d = e−2φ̃
√

|G| . (2.21)

In the non-geometric parameterization, the background (2.15) becomes

ds2dual ≡ Gmn dx
m dxn = dx2 + dy2 + dz2 , βyz = mx , (2.22)

and the O(2, 2;Z) monodromy matrix (2.16) corresponds to a constant shift in the β field;

βyz → βyz + m . Namely, up to a constant β-shift, which is a gauge symmetry (2.17) of

DFT, the background becomes single-valued.

In this paper, we define a non-geometric Q-flux as [80]

Qp
mn ≡ ∂pβ

mn . (2.23)

Then, upon a transformation x → x+1, the induced monodromy on the β-field is measured

by an integral of the Q-flux,

βmn(x+ 1)− βmn(x) =

∫ x+1

x

dx′p ∂pβ
mn(x′) =

∫ x+1

x

dx′pQp
mn(x′) . (2.24)

This expression plays the central role in our argument.

After this illustrative example we conclude that Q-flux backgrounds are globally well-

defined as T -folds. In the next subsection, let us explain a codimension-1 example of the

exotic 522-brane by using the above Q-flux.

– 7 –
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2.2 Codimension-1 522-brane background

The second example is a supergravity solution studied in [72]. It is obtained by smearing the

codimension-2 exotic 522-brane solution [81, 82], which is related to the NS5-brane solution

by two T -duality transformations. It is also referred to as a Q-brane, as it is a source of

Q-flux, as we are going to check. The codimension-1 version of this solution is given by

ds2 = mx (dx2 + dy2) +
x (dz2 + dw2)

m (x2 + z2)
+ ds2

R6 ,

B2 =
x

m (x2 + z2)
dz ∧ dw , Φ =

1

2
ln

[

x

m (x2 + z2)

]

.

(2.25)

With the non-geometric parameterization (2.20), this solution is simplified as

ds2dual = mx (dx2 + dy2) +
dz2 + dw2

mx
+ ds2

R6 ,

βzw = my , φ̃ =
1

2
ln

[

1

mx

]

.

(2.26)

Assuming that the y direction is compactified with y ∼ y + 1, the monodromy under

y → y + 1 is given by a constant β-shift;

βzw → βzw +m. (2.27)

As the background is twisted by a β-shift, this example can be considered as a T -fold. In

terms of the Q-flux, this solution has a constant Q-flux,

Qy
zw = m. (2.28)

Finally, the monodromy matrix is given by

HMN (y + 1) =
[

ΩTH(y) Ω
]

MN
, ΩM

N ≡
(

δmn 2mδ
[m
z δ

n]
w

0 δnm

)

∈ O(10, 10;Z) . (2.29)

By employing the knowledge on T -folds introduced in this section, we will elaborate

on a non-geometric aspect of YB-deformed backgrounds as T -folds.

3 Non-geometric aspects of YB deformations

Let us show that various YB-deformed backgrounds can be regarded as T -folds.

Subsection 3.1 is devoted to a brief review of the generalized supergravity to fix our

convention and notation. In subsection 3.2, we explain how the homogeneous Yang-Baxter

deformations are interpreted as β-twists and how a YB-deformed background can be de-

rived from a given classical r-matrix. In subsection 3.3, the general structure of T -duality

monodromy is revealed for the YB-deformed backgrounds studied in this paper. In sub-

section 3.4, various T -folds are obtained as YB-deformations of Minkowski spacetime. In

subsection 3.5, we study a certain background which is obtained by a non-Abelian T -duality

but is not described as a Yang-Baxter deformation. It is shown that this background is a

solution of GSE and can also be regarded as a T -fold. In section 3.6, in order to study a

more non-trivial class of T -folds with R-R fields, we consider some backgrounds obtained

as YB-deformations of AdS5 × S5.

– 8 –
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3.1 Generalized supergravity

The generalized type IIB supergravity equations of motion were originally derived in [64,

65]. Just for later convenience, we will follow the convention utilized in [32] hereafter.

Then the generalized type II supergravity equations of motion are given by

Rmn−
1

4
HmpqHn

pq+2Dm∂nΦ+DmUn+DnUm=Tmn ,

R+4Dm∂mΦ−4|∂Φ|2− 1

2
|H3|2−4

(

ImIm+UmUm+2Um∂mΦ−DmUm
)

=0,

−1

2
DkHkmn+∂kΦHk

mn+UkHkmn+DmIn−DnIm=Kmn , (3.1)

d∗F̂p−H3∧∗F̂p+2−ιIB2∧∗F̂p−ιI ∗F̂p−2=0,

where I = Im ∂m is a Killing vector satisfying

£Igmn = DmIn +DnIm = 0 . (3.2)

Here Dm is the covariant derivative associated with the metric gmn, ∗ is the Hodge star

operator, and ιI is the interior product with the vector I. In addition, we have introduced

the following quantities:

Tmn ≡ 1

4
e2Φ

∑

p

[

1

(p− 1)!
F̂(m

k1···kp−1 F̂n)k1···kp−1
− 1

2
gmn |F̂p|2

]

,

Kmn ≡ 1

4
e2Φ

∑

p

1

(p− 2)!
F̂k1···kp−2 F̂mn

k1···kp−2 , Um ≡ InBnm .

(3.3)

Here, 0 ≤ p ≤ 9 takes an even/odd number for type IIA/IIB theory, respectively. The R-R

field strengths should satisfy the self-duality relation,

∗ F̂p = (−1)
p(p+1)

2
+1

F̂10−p , F̂p = (−1)
p(p−1)

2 ∗ F̂10−p . (3.4)

Given the R-R field strengths, the R-R potentials can be determined through the relation,

F̂p = dĈp−1 +H3 ∧ Ĉp−3 − ιIB2 ∧ Ĉp−1 − ιI Ĉp+1 . (3.5)

Note that when I = 0, the above expressions reduce to those of the usual supergravity.

It is also convenient to define the R-R fields (F, A) and (F̌, Č) as

F ≡ eB2∧ F̂ , A ≡ eB2∧ Ĉ , F̌ ≡ eβ∨ F , Č ≡ eβ∨ A , (3.6)

satisfying

Fp = dAp−1 − ιIAp+1 ,

F̌p = dČp−1 −
1

2
Qmn ∧ ιmιnČp+1 − ιI Čp+1

(

Qmn ≡ Qk
mn dxk

)

.
(3.7)

Here, for a bi-vector βmn and a p-form αp, we have defined

β ∨ αp ≡
1

2
βmn ιm ιnαp . (3.8)
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In order to distinguish three definitions of R-R fields, we call (F̂, Ĉ) B-untwisted R-R

fields while (F̌, Č) β-untwisted R-R fields,

(F̌, Č)
eβ∨←−−−−−−−−−

β-untwist
(F, A)

e−B2∧−−−−−−−−−→
B-untwist

(F̂, Ĉ) . (3.9)

Following the same terminology, we call the dual metric and the dual dilaton (Gmn, φ̃) the

β-untwisted fields,

H = e−BT Ĥ e−B −−−−−−−−−→
B-untwist

Ĥ =

(

gmn 0

0 gmn

)

Ȟ =

(

Gmn 0

0 Gmn

)

←−−−−−−−−−
β-untwist

= eβ
T Ȟ eβ

e−2φ̃ ←−−−−−−−−−
β-untwist

√

|G| e−2φ̃ = e−2d =
√

|g| e−2Φ −−−−−−−−−→
B-untwist

e−2Φ . (3.10)

The B-untwisted fields are invariant under B-field gauge transformations while the β-

untwisted fields are invariant under β-transformations.

When I = 0, the B-untwisted fields (F̂, Ĉ, gmn, Φ) together with Bmn are fre-

quently utilized in some contexts. For example, these are the background fields ap-

pearing in the Green-Schwarz superstring action. On the other hand, the β-untwisted

fields (F̌, Č, Gmn, φ̃) are unfamiliar quantities but play an important role in the context

of YB deformation. To study the monodromy of T -folds, the objects in the middle, i.e.,

(F, A, HMN , d) will play an important role, as we will discuss later.

Before closing this subsection, it is worth noting the divergence formula observed in [25,

26, 33]. For the solutions of GSE obtained as YB deformations and a non-Abelian T -duality

discussed in this paper, the Killing vector I can always be found from the following formula:

Im = D̃nβ
mn , (3.11)

where D̃ is associated with the β-untwisted metric gmn . The general proof of this expression

for the general YB deformations based on the mCYBE and the homogeneous CYBE will

be reported in the coming paper [83].

3.2 YB deformations as β-deformations

YB deformations of type IIB string theory on AdS5×S5 have been presented in [10, 12].

It used to be quite a difficult problem to read off the full expression of YB deformed

background, because it is necessary to perform supercoset construction but it is really

complicated and the computation becomes messy.

In the pioneering work [42], the supercoset construction was done for the q-deformed

AdS5×S5. Then the technique was generalized to the homogeneous CYBE case in [52].

After these developments, this technique was refined in [55] based on κ-symmetry. In the

recent paper [33],4 a much simpler way has been proposed. This is a direct formula between

the fields in GSE and classical r-matrices satisfying the homogeneous CYBE and relies on

4A similar way has been elaborated also from the viewpoint of the invariance of the Page form [84].

– 10 –



J
H
E
P
1
2
(
2
0
1
7
)
1
0
8

the divergence formula (3.11). In the following, we will give a brief review of this simple

formula and explain how to use it by taking a simple example.

As we introduced in section 2, the β-deformations (or the β-transformations) belong

to a particular class of O(D,D) transformations under which the β-field is shifted as

βmn(x) → β′mn(x) = βmn(x) + rmn(x) (rmn = −rnm) , (3.12)

while the β-untwisted fields remain invariant,

Ȟ′ = Ȟ , φ̃′ = φ̃ , F̌
′ = F̌ , Č

′ = Č . (3.13)

Unlike the B-field gauge transformations, the β-deformation is not a gauge transformation,

and in general, the β-deformed background may not satisfy the (generalized) supergravity

equations (3.1) even if the original background is a solution of the supergravity (or DFT).

Now, let us explain a relation between the β-deformation and the YB deformation. For

this purpose, we concentrate on deformations of a background with vanishing B-field, and

then the β-field in the original background also vanishes. A homogeneous YB deformation

is specified by taking a skew-symmetric classical r-matrix

r =
1

2
rij Ti ∧ Tj = rij Ti ⊗ Tj , rij = −rji , (3.14)

which satisfies the homogeneous classical Yang-Baxter equation (CYBE),

fl1l2
i rjl1 rkl2 + fl1l2

j rkl1 ril2 + fl1l2
k ril1 rjl2 = 0 . (3.15)

Here rij is a constant skew-symmetric matrix and Ti’s are the elements of the Lie algebra

g associated with the bosonic isometry group G, satisfying commutation relations

[Ti, Tj ] = fij
k Tk (fij

k : the structure constant) . (3.16)

An important observation made in [33] is that a YB-deformed background associated with

the classical r-matrix (3.14) can also be generated by a β-deformation,

βmn(x) → βmn(x) + rmn(x) ,
1

2
rmn(x) ∂m ∧ ∂n ≡ η rij T̂i(x) ∧ T̂j(x) . (3.17)

Here, a real constant η is a deformation parameter and T̂i are Killing vector fields on the

original background satisfying the same commutation relations (3.16). Since βmn = 0 in

the undeformed background, we obtain the following expression

β(r)mn(x) = rmn(x) = 2 η rij T̂m
i (x) T̂n

j (x) (3.18)

for the YB-deformed background.

In terms of the usual supergravity fields (gmn, Bmn, Φ, F̂, Ĉ), the YB-deformed back-

ground can be expressed as

g(r)mn +B(r)
mn =

[

(G−1 − β(r))
]−1

mn
,

e−2Φ(r)
= e−2φ̃

√

det[δmn − (Gβ(r)Gβ(r))mn] ,

F̂
(r) = e−B

(r)
2 ∧ e−β(r)∨

F̌ , Ĉ
(r) = e−B

(r)
2 ∧ e−β(r)∨

Č ,

(3.19)
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where the β-untwisted fields (Gmn = gmn, φ̃ = Φ, F̌ = F̂, Č = Ĉ) are the original un-

deformed background with B2 = 0. The deformed background solves the (generalized)

supergravity equations of motion (3.1). In this way, we can generate YB-deformed back-

grounds by using the formula (3.19) with the β-field (3.18).

Furthermore, it is interesting to note that the homogeneous CYBE (3.15) can also be

expressed as

R ≡ [β(r), β(r)]S = 0 , (3.20)

where [ , ]S denotes the Schouten bracket and the tri-vector R is known as the non-geometric

R-flux. The Schouten bracket is defined for a p-vector and a q-vector as

[a1 ∧ · · · ∧ ap, b1 ∧ · · · ∧ bq]S

≡
∑

i,j

(−1)i+j [ai, bj ] ∧ a1 ∧ · · · ǎi · · · ∧ ap ∧ b1 ∧ · · · b̌j · · · ∧ bq ,
(3.21)

where the check ǎi denotes the omission of ai . This fact implies that the non-geometric

R-flux vanishes for the homogeneous YB-deformed backgrounds (as far as the undeformed

background has vanishing B-field).

Minkowski and AdS5 × S5 backgrounds. In the following subsections, we will con-

sider YB deformations of 10D Minkowski spacetime and the AdS5×S5 background. Before

presenting various examples, we will introduce the coordinate systems and show the ex-

plicit form of the Killing vector fields T̂i in 10D Minkowski spacetime and the AdS5 × S5

background.

For a 10D Minkowski spacetime, we take the standard Minkowski metric,

ds2Min = ηmn dx
m dxn (m,n = 0, 1, . . . , 9) , (3.22)

where ηmn = diag(−1,+1, . . . ,+1) . In this coordinate system, the Killing vector fields

{T̂i} = {P̂m, M̂mn} are expressed as

P̂m = −∂m , M̂mn = xm ∂n − xn ∂m . (3.23)

These vector fields realize the following Poincaré algebra:

[Pm, Mnk] = ηmn Pk − ηmk Pn ,

[Mmn, Mkl] = −ηmk Mnl + ηnk Mml + ηml Mnk − ηnl Mmk .
(3.24)

Here Pm and Mmn are the translation and Lorentz generators of the Poincaré group

ISO(1, 9) .

When we consider the AdS5 × S5 background as the original background, we choose

the following coordinate system:

ds2
AdS5×S5

= ds2AdS5 + ds2
S5

,

ds2AdS5 =
dz2 − (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

z2
,

ds2
S5

= dr2 + sin2 r dξ2 + cos2 ξ sin2 r dφ2
1 + sin2 r sin2 ξ dφ2

2 + cos2 r dφ2
3 .

(3.25)
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The R-R 5-form field strength in the AdS5 × S5 background is given by

F̂5 = 4
(

ωAdS5 + ωS5
)

, ωAdS5 = ∗̄ωS5 , (3.26)

where the volume forms ωAdS5 and ωS5 are defined as, respectively,

ωAdS5 = −dz ∧ dx0 ∧ dx1 ∧ dx2 ∧ dx3

z5
,

ωS5 = sin3 r cos r sin ξ cos ξ dr ∧ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3 ,

(3.27)

and ∗̄ is the Hodge star operator associated with the undeformed AdS5 × S5 background,

(∗̄αp)n1···n2n3n4n10−p =
1

p!
εm1···mp

n1···n2n3n4n10−p αm1···mp , εz0123rξφ1φ2φ3 = +
√

|g| .
(3.28)

It is also convenient to define ω4 as

ω4 ≡ sin4 r sin ξ cos ξ dξ ∧ dφ1 ∧ dφ2 ∧ dφ3 . (3.29)

Note that dω4 = 4ωS5 .

The non-vanishing commutation relations for the isometry group SO(2, 4) of AdS5 are

[Pµ, Kν ] = 2 (Mµν + ηµν D) , [D, Pµ] = Pµ , [D, Kµ] = −Kµ ,

[Pµ, Mνρ] = ηµν Pρ − ηµρ Pν , [Kµ, Mνρ] = ηµν Kρ − ηµρKν ,

[Mµν , Mρσ] = ηµσ Mνρ + ηνρMµσ − ηµρMνσ − ηνσ Mµρ ,

(3.30)

where µ , ν = 0, 1, 2, 3, and D, and Kµ are generators of the dilatation and special confor-

mal transformations, respectively. The commutation relations (3.30) are realized by the

following Killing vector fields, {T̂i} = {P̂m, K̂m, M̂mn, D̂}:

P̂µ = −∂µ , K̂µ = −(z2 + xν x
ν) ∂µ + 2xµ (z ∂z + xν ∂ν) ,

M̂µν = xµ ∂ν − xν ∂µ , D̂ = −z ∂z − xµ ∂µ .
(3.31)

We will use the above Killing vector fields (3.24), (3.31) to obtain an explicit expression

of the β-field β(r) = η rij T̂i ∧ T̂j associated with a given r-matrix r = 1
2 r

ij Ti ∧ Tj . In the

following, we will omit the superscript (r) for the YB-deformed backgrounds.

An example: the Maldacena-Russo background. To demonstrate how to use the

formula (3.19), let us consider a YB-deformed AdS5 × S5 background associated with a

classical r-matrix [23],

r =
1

2
P1 ∧ P2 . (3.32)

This r-matrix is Abelian and satisfies the homogeneous CYBE (3.15). The associated YB

deformed background is derived in [23, 52].

The classical r-matrix (3.32) leads to the associated β-field,

β = η P̂1 ∧ P̂2 = η ∂1 ∧ ∂2 . (3.33)
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Then, the AdS5 part of a 10× 10 matrix (G−1 − β) is

(

G−1 − β
)mn

=















z2 0 0 0 0

0 −z2 0 0 0

0 0 z2 −η 0

0 0 η z2 0

0 0 0 0 z2















, (3.34)

where we have ordered the coordinates as (z , x0 , x1 , x2 , x3) . By using the inverse of the

matrix (3.34) and the formula (3.19), we obtain the NS-NS fields of the YB-deformed

background,

ds2 =
dz2 − (dx0)2 + (dx3)2

z2
+

z2 [(dx1)2 + (dx2)2]

z4 + η2
+ ds2S5 ,

B2 =
η

z4 + η2
dx1 ∧ dx2 , Φ =

1

2
ln

[

z4

z4 + η2

]

.

(3.35)

The next task is to derive the R-R fields of the deformed background. From the

undeformed R-R 5-form field strength (3.26) of the AdS5 × S5 background, the R-R fields

F are given by

F = e−β∨
F̌
(0) = 4

(

ωAdS5 + ωS5
)

− 4β ∨ ωAdS5

= 4
(

ωAdS5 + ωS5
)

− 4 η
dz ∧ dx0 ∧ dx3

z5
.

(3.36)

This is nothing but a linear combination of the deformed R-R field strengths with different

rank. Hence we can readily read off the following expressions:

F3 = −4 η
dz ∧ dx0 ∧ dx3

z5
, F5 = 4

(

ωAdS5 + ωS5
)

. (3.37)

Furthermore, the B-untwisted R-R fields F̂ can be computed as

F̂ = e−B2∧ F

= −4 η
dz ∧ dx0 ∧ dx3

z5
+ 4

(

z4

z4 + η2
ωAdS5 + ωS5

)

− 4B2 ∧ ωS5 . (3.38)

Namely, we obtain

F̂1 = 0 , F̂3 = −4 η
dz ∧ dx0 ∧ dx3

z5
,

F̂5 = 4

(

z4

z4 + η2
ωAdS5 + ωS5

)

,

F̂7 = −4B2 ∧ ωS5 .

(3.39)

The full deformed background, given by (3.35) and (3.39), is a solution of the standard

type IIB supergravity. This background is nothing but a gravity dual of non-commutative

gauge theory [59, 60].

Thus, nowadays, we do not have to perform supercoset construction to obtain the full

expression of YB-deformed background. Just by using a simple formula (3.19), given a

classical r-matrix, the full background can easily be derived.
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3.3 T -duality monodromy of YB-deformed background

As we explained in the previous subsection, the YB-deformed background described by

(H, d, F) always has the following structure:

H = er
T Ȟ(0) er , d = d(0) , F = e−r∨

F̌
(0) ,

r ≡ eβ =

(

δmn rmn

0 δnm

)

, rmn ≡ 2 η rij T̂m
i T̂n

j ,
(3.40)

where (Ȟ(0), d(0), F̌(0)) represent the undeformed background. In the following examples,

B-field vanishes in the undeformed background, and the β-field in the YB-deformed back-

ground is given by

β =
1

2
rmn ∂m ∧ ∂n = η rij T̂i ∧ T̂j . (3.41)

At this stage, we know only the local property of the YB-deformed background.

In the examples considered in this paper, the bi-vector rmn (or the β-field in the

YB-deformed background) always has a linear-coordinate dependence. Suppose that rmn

depends on a coordinate y linearly like,

rmn = r
mn y + r̄

mn (rmn : constant, r̄
mn : independent of y) , (3.42)

and the β-untwisted fields are independent of y. Then, from the Abelian property,

er1+r2 = er1 er2 = er2 er1 , e−(r1+r2)∨ = e−r1∨ e−r2∨ = e−r2∨ e−r1∨ , (3.43)

we obtain

HMN (y + a) =
[

ΩT
aH(y) Ωa

]

MN
, d(y + a) = d(y) , F(y + a) = e−ωa∨ F̌(y) ,

(Ωa)
M

N ≡
(

δmn a rmn

0 δnm

)

, (ωa)
mn ≡ a rmn .

(3.44)

If we can find out an a0 (where the O(10, 10; R) matrix Ωa0 is an element of O(10, 10;Z)),

the background allows us to compactify the y direction as y ∼ y + a0 . This is because

O(10, 10;Z) is a gauge symmetry of String Theory and the background can be identified

up to the gauge transformation. In this example of T -fold, the monodromy matrices for

the generalized metric and R-R fields are Ωa0 and e−ωa0∨, respectively, while the dilaton d

is single-valued. Note that the R-R potential A has the same monodromy as F .

3.4 YB-deformed Minkowski backgrounds

In this subsection, we study YB-deformations of Minkowski spacetime [85, 86]. We begin

by a simple example of the Abelian YB deformation. Then two purely NS-NS solutions of

GSE are presented and are shown to be T -folds. These backgrounds have vanishing R-R

fields and are the first examples of purely NS-NS solutions of GSE.
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3.4.1 Abelian example

Let us consider a simple Abelian r-matrix [85]

r = −1

2
P1 ∧M23 . (3.45)

The corresponding YB-deformed background becomes

ds2 = −(dx0)2 +
(dx1)2 +

[

1 + (η x2)2
]

(dx2)2 +
[

1 + (η x3)2
]

(dx3)2 + 2 η2 x2 x3 dx2 dx3

1 + η2
[

(x2)2 + (x3)2
]

+
9

∑

i=4

(dxi)2 ,

B2 =
η dx1 ∧

(

x2 dx3 − x3 dx2
)

1 + η2
[

(x2)2 + (x3)2
] , Φ =

1

2
ln

[

1

1 + η2
[

(x2)2 + (x3)2
]

]

. (3.46)

It seems very messy, but after moving to an appropriate polar coordinate system (see

section 3.1 of [85]), this background (3.46) is found to be the well-known Melvin back-

ground [87–89]. In [85], it was reproduced as a Yang-Baxter deformation with the classical

r-matrix (3.45). For later convenience, we will keep the expression in (3.46).

The dual parameterization of this background is given by

ds2dual = −(dx0)2 +
9

∑

i=1

(dxi)2 , β = η
(

x2 ∂1 ∧ ∂3 − x3 ∂1 ∧ ∂2
)

, φ̃ = 0 . (3.47)

Hence, under a shift x2 → x2 + η−1 , the background receives the β-transformation,

β → β + ∂1 ∧ ∂3 . (3.48)

Therefore, if the x2 direction is compactified with the period η−1, then the monodromy

matrix becomes

HMN (x2 + η−1) =
[

ΩTH(x2) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
1 δ

n]
3

0 δnm

)

∈ O(10, 10;Z) . (3.49)

Thus this background has been shown to be a T -fold.

When the x3 direction is also identified with the period η−1, the corresponding mon-

odromy matrix becomes

HMN (x3+η−1) =
[

ΩTH(x3) Ω
]

MN
, ΩM

N ≡
(

δmn −2 δ
[m
1 δ

n]
2

0 δnm

)

∈ O(10, 10;Z) . (3.50)

In terms of non-geometric fluxes, this background has a constant Q-flux. In the

examples of T -folds presented in section 2, a background with a constant Q-flux, Qp
mn, is

mapped to another background with a constant H-flux, Hpmn, under a double T -duality

along xm and xn directions. On the other hand, in the present example, the background

has two types of constant Q-fluxes, Q2
13 and Q3

12 , but we cannot perform T -dualities to

make the background a constant-H-flux background because x2 and x3 directions are not

isometry directions.
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3.4.2 Non-unimodular example 1: r = 1

2
(P0 − P1) ∧ M01

Let us consider a non-unimodular classical r-matrix5

r =
1

2
(P0 − P1) ∧M01 . (3.51)

The corresponding YB-deformed background becomes

ds2 =
−(dx0)2 + (dx1)2

1− η2 (x0 + x1)2
+

9
∑

i=2

(dxi)2 ,

B2 = − η (x0 + x1)

1− η2 (x0 + x1)2
dx0 ∧ dx1 , Φ =

1

2
ln

[

1

1− η2 (x0 + x1)2

]

.

(3.52)

Apparently, this background has a coordinate singularity at x0 + x1 = ±1/η. But when

the dual parameterization (2.20) is employed, the dual fields are given by

ds2dual = −(dx0)2 +
9

∑

i=1

(dxi)2 , β = η (x0 + x1) ∂0 ∧ ∂1 , φ̃ = 0 , (3.53)

and they are regular everywhere.6

By introducing a Killing vector I with the help of the divergence formula (3.11) as

I = D̃nβ
mn ∂m = ∂nβ

mn ∂m = η (∂0 − ∂1) , (3.54)

the background (3.52) with this I solves GSE.

Since the β-field depends on x1 linearly, as one moves along the x1 direction, the back-

ground is twisted by the β-transformation. In particular, when the x1 direction is identified

with period 1/η, this background becomes a T -fold with an O(10, 10;Z) monodromy,

HMN (x1 + η−1) =
[

ΩTH(x1) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
0 δ

n]
1

0 δnm

)

. (3.55)

Note that an arbitrary solution of GSE can be regarded as a solution of DFT [32].

Indeed, by introducing the light-cone coordinates and a rescaled deformation parameter as

x± ≡ x0 ± x1√
2

, η̄ =
√
2 η , (3.56)

the present YB-deformed background can be regarded as the following solution of DFT:

H =











0 −1 −η̄ x+ 0

−1 0 0 η̄ x+

−η̄ x+ 0 0 (η̄ x+)2 − 1

0 η̄ x+ (η̄ x+)2 − 1 0











, d = η̄ x̃− , (3.57)

5As far as we know, this example has not been discussed anywhere so far.
6A similar resolution of singularities in the dual parameterization has been argued in [90, 91] in the

context of the exceptional field theory.
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where only (x+, x−, x̃+, x̃−)-components of HMN are displayed. Note here that the dilaton

has an explicit dual-coordinate dependence because we are now considering a non-standard

solution of the section condition which makes this background a solution of GSE rather

than the usual supergravity.

Before perfoming this YB deformation (i.e. η̄ = 0), there is a Killing vector χ ≡ ∂+ ,

but the associated isometry is broken for non-zero η̄ . However, even after deforming the

geometry, there exists a generalized Killing vector

χ ≡ eη̄ x̃− ∂+
(

£̂χHMN = 0 , £̂χd = 0
)

, (3.58)

which goes back to the original Killing vector in the undeformed limit, η̄ → 0 . In or-

der to make the generalized isometry manifest, let us consider a generalized coordinate

transformation,

x′+ = e−η̄ x̃− x+ , x̃′− = −η̄−1 e−η̄ x̃− , x′M = xM (others) . (3.59)

By employing Hohm and Zwiebach’s finite transformation matrix [92],

FM
N ≡ 1

2

(

∂xK

∂x′M
∂x′K
∂xN

+
∂x′M
∂xK

∂xN

∂x′K

)

, (3.60)

the generalized Killing vector in the primed coordinates becomes constant, χ = ∂′
+ . We

can also check that the generalized metric in the primed coordinate system is precisely the

undeformed background. Namely, at least locally, the YB deformation can be undone by

the generalized coordinate transformation.7 This fact is consistent with the fact that YB

deformations can be realized as the generalized diffeomorphism [33].

Non-Riemannian background. Since the above background has a linear coordinate

dependence on x̃− , let us rotate the solution to the canonical section (i.e. a section in

which all of the fields are independent of the dual coordinates). By performing a T -duality

along the x− direction, we obtain

H =











0 0 −η̄ x+ −1

0 0 (η̄ x+)2 − 1 η̄ x+

−η̄ x+ (η̄ x+)2 − 1 0 0

−1 η̄ x+ 0 0











, d = η̄ x− . (3.61)

The resulting background is indeed a solution of DFT defined on the canonical section.

However, this solution cannot be parameterized in terms of (gmn, Bmn) and is called a

non-Riemannian background in the terminology of [93]. This background does not even

allow the dual parameterization (2.20) in terms of (Gmn, β
mn).8

7In the study of YB deformations of AdS5 , the similar phenomenon has already been observed in [54].
8For another example of non-Riemannian backgrounds, see [93]. A classification of non-Riemannian

backgrounds in DFT has been made in [94]. In the context of the exceptional field theory, non-Riemannian

backgrounds have been found in [91] even before [93]. There, the type IV generalized metrics do not allow

both the conventional and dual parameterizations similar to our solution (3.61).
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3.4.3 Non-unimodular example 2: r = 1

2
√

2

∑4
µ=0

(

M0µ − M1µ

)

∧ Pµ

The next example is the classical r-matrix [86],

r =
1

2
√
2

4
∑

µ=0

(

M0µ −M1µ

)

∧ Pµ . (3.62)

This classical r-matrix is a higher dimensional generalization of the light-cone κ-Poincaré

r-matrix in the four dimensional one.

By using the light-cone coordinates,

x± ≡ x0 ± x1√
2

, (3.63)

the corresponding YB-deformed background becomes

ds2 =
−2 dx+ dx− − η2 dx+

[
∑4

i=2(x
i)2 dx+ − 2x+

∑4
i=2 x

i dxi
]

1− (η x+)2
+

9
∑

i=2

(dxi)2 ,

B2 =
η dx+ ∧

(

x+ dx− −∑4
i=2 x

i dxi
)

1− (η x+)2
, Φ =

1

2
ln

[

1

1− (η x+)2

]

.

(3.64)

In terms of the dual parameterization, this background becomes

ds2dual = −2 dx+ dx− +
9

∑

i=2

(dxi)2 , φ̃ = 0 ,

β = η
4

∑

µ=0

M̂−µ ∧ P̂µ = η ∂− ∧
(

x+ ∂+ +
∑4

i=2
xi ∂i

)

.

(3.65)

Again, by introducing a Killing vector from the divergence formula (3.11) as

I = 4 η ∂− , (3.66)

the background (3.64) with this I solves GSE.

This background can also be regarded as the following solution of DFT:

H =

















0 −1 0 0 0 −η x+ 0 −η x2
−η x3

−η x4

−1 0 0 0 0 0 η x+ 0 0 0

0 0 1 0 0 0 −η x2 0 0 0

0 0 0 1 0 0 −η x3 0 0 0

0 0 0 0 1 0 −η x4 0 0 0

−η x+ 0 0 0 0 0 (η x+)2 − 1 0 0 0

0 η x+
−η x2

−η x3
−η x4 (η x+)2 − 1 η2 ∑4

i=2(x
i)2 η2 x+ x2 η2 x+ x3 η2 x+ x4

−η x2 0 0 0 0 0 η2 x+ x2 1 0 0

−η x3 0 0 0 0 0 η2 x+ x3 0 1 0

−η x4 0 0 0 0 0 η2 x+ x4 0 0 1

















,

d = 4 η x̃− ,

(3.67)

where only (x+, x−, x2, x3, x4, x̃+, x̃−, x̃2, x̃3, x̃4)-components of HMN are displayed.

When one of the (x2, x3, x4)-coordinates, say x2, is compactified with the period

x2 ∼ x2 + η−1, the monodromy matrix is given by

HMN (x2 + η−1) =
[

ΩTH(x2) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
− δ

n]
2

0 δnm

)

∈ O(10, 10;Z) , (3.68)
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and in this sense the compactified background is a T -fold. In terms of the non-geometric

Q-flux, this background has the following components of it:

Q+
−+ = Q2

−2 = Q3
−3 = Q4

−4 = η . (3.69)

3.5 A non-geometric background from non-Abelian T -duality

Before considering YB-deformations of AdS5×S5 , let us consider another example of purely

NS-NS background, which was found in [16] via a non-Abelian T -duality.

The background takes the form,

ds2 = −dt2 +
(t4 + y2) dx2 − 2x y dx dy + (t4 + x2) dy2 + t4 dz2

t2 (t4 + x2 + y2)
+ ds2T 6 ,

B2 =
(x dx+ y dy) ∧ dz

t4 + x2 + y2
, Φ =

1

2
ln

[

1

t2 (t4 + x2 + y2)

]

,

(3.70)

where ds2
T 6 is the flat metric on a 6-torus. In terms of the dual parameterization, this

background takes a Friedmann-Robertson-Walker-type form,

ds2dual = −dt2 + t−2
(

dx2 + dy2 + dz2
)

+ ds2T 6 ,

β = (x ∂x + y ∂y) ∧ ∂z , φ̃ = − ln t3 .
(3.71)

Note here that this background cannot be represented by a coset or a Lie group itself. This

is because the background (3.70) contains a curvature singularity and is not homogeneous.

Hence the background (3.70) cannot be realized as a Yang-Baxter deformation and is not

included in the discussion of [27–29].

It is easy to see that the associated Q-flux is constant on this background (3.71),

Qy
xy = Qz

xz = −1 . (3.72)

Therefore, if the x-direction is compactified as x ∼ x+1, the background fields are twisted

by an O(10, 10;Z) transformation as

HMN (x+ 1) =
[

ΩTH(x) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
x δ

n]
z

0 δnm

)

, d(x+ 1) = d(x) . (3.73)

Thus the background can be interpreted as a T -fold. If the z-direction is also compactified

as z ∼ z + 1, another twist is realized as

HMN (y + 1) =
[

ΩTH(y) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
y δ

n]
z

0 δnm

)

, d(y + 1) = d(y) . (3.74)

As stated in [16], this background is not a solution of the usual supergravity. However,

by using the divergence formula Im = D̃nβ
mn again and introducing a vector field as

I = −2 ∂z , (3.75)

we can see that the background (3.70) together with this vector field I satisfies GSE. Thus,

this background can also be regarded as a T -fold solution of DFT.

In this paper, we have considered just one example of non-Abelian T -duality, but

it would be interesting to study a lot of examples as a new technique to generate GSE

solutions. In fact, it is well-known that non-Abelian T -duality is a systematic method to

construct T -fold solutions in DFT.
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3.6 YB-deformed AdS5 × S5 backgrounds

We show that various YB deformations of the AdS5 × S5 background are T -folds. We

consider here examples associated with the following five classical r-matrices:

1. r = 1
2 η

[

η1 (D +M+−) ∧ P+ + η2M+2 ∧ P3

]

,

2. r = 1
2 P0 ∧D ,

3. r = 1
2

[

P0 ∧D + P i ∧ (M0i +M1i)
]

,

4. r = 1
2η P− ∧ (η1D − η2M+−) ,

5. r = 1
2 M−µ ∧ Pµ .

The classical r-matrices other than the first one are non-unimodular. Note here that the

S5 part remains undeformed and only the AdS5 part is deformed. As shown in appendix A,

through the (modified) Penrose limit, the second and third examples are reduced to the

two examples discussed in the previous subsection.

3.6.1 Non-Abelian unimodular r-matrix

Let us consider a non-Abelian unimodular r-matrix (see R5 in table 1 of [55]),

r =
1

2 η

[

η1 (D +M+−) ∧ P+ + η2M+2 ∧ P3

]

, (3.76)

where, for simplicity, it is written in terms of the light-cone coordinates,9

x± ≡ x0 ± x1√
2

. (3.77)

The corresponding YB-deformed background is given by

ds2=
dz2

z2
+
z2 [(dx2)2+(dx3)2]

z4+(η2x−)2
− 2z2dx+dx−−4η21z

−1x−dzdx−

z4−(2η1x−)2

+
2{[x2(2η21+η22)−η1η2x

3]z2x−dx2+η1(2η1x
3−η2x

2)dx3}dx−
[z4−(2η1x−)2][z4+(η2x−)2]

− (η21+η22)(zx
2)2−2η1η2z

2x2x3+η21 [z
4+(zx3)2+(η2x

−)2]

[z4−(2η1x−)2][z4+(η2x−)2]
(dx−)2+ds2

S5
,

B2=−
[

η1{x2 [z4+2(η2x
−)2]−2η1η2(x

−)2x3}dx2+{η1z4x3−η2x
2 [z4−2(η1x

−)2]}dx3
[z4−(2η1x−)2][z4+(η2x−)2]

+
η1(zdz−2x−dx+)

z4−(2η1x−)2

]

∧dx−+ η2x
−dx2∧dx3

z4+(η2x−)2
,

Φ=
1

2
ln

[

z8

[z4−(2η1x−)2][z4+(η2x−)2]

]

,

F̂1=
4η1η2x

−(2x−dz−zdx−)

z5
,

9In the following, our light-cone convention is taken as εz+−23rξφ1φ2φ3
= +

√

|g| rather than (3.28).
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F̂3=−B2∧F1+
4η1
z5

(

2x−dz−zdx−
)

∧dx2∧dx3

+
4

z5
dz∧dx−∧

[

η1(x
3dx2−x2dx3)+η2(x

−dx+−x2dx2)
]

,

F̂5=4

[

z8

[z4−(2η1x−)2][z4+(η2x−)2]
ωAdS5+ωS5

]

,

F̂7=−B2∧F5 , F̂9=−1

2
B2∧F7 . (3.78)

In terms of the dual fields, we obtain the following expression:

ds2dual =
dz2 − 2 dx+ dx− + (dx2)2 + (dx3)2

z2
+ ds2

S5
, φ̃ = 0 ,

β = η1
(

z ∂z + 2x− ∂− + x2 ∂2 + x3 ∂3
)

∧ ∂+ + η2
(

x2 ∂+ + x− ∂2
)

∧ ∂3 .

(3.79)

It is straightforward to check that the R-R field strengths are given by

F̂ = e−B2∧ F , F ≡ e−β∨
F̌ , F̌ = 4

(

ωAdS5 + ωS5
)

. (3.80)

Namely, as advocated in section 3.2, the β-untwisted R-R fields F̌ are invariant under the

YB deformation.

This background has the following components of Q-flux:

Qz
z+ = η1 , Q−

−+ = 2 η1 , Q2
2+ = η1 , Q3

3+ = η1 , Q2
+3 = η2 , Q−

23 = η2 .

(3.81)

Accordingly, for example, when the x3 direction is compactified with a period x3 ∼ x3+η−1
1 ,

this background becomes a T -fold with the monodromy,

HMN (x3 + η−1
1 ) =

[

ΩTH(x) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
3 δ

n]
+

0 δnm

)

∈ O(10, 10;Z) . (3.82)

The R-R fields F are also twisted by the same monodromy,

F(x3 + η−1
1 ) = e−ω∨

F(x3) , ωmn = 2 δ
[m
3 δ

n]
+ . (3.83)

Note that the R-R potentials are twisted by the same monodromy as well, though their

explicit forms are not written down here.

3.6.2 r = 1

2
P0 ∧ D

Let us next consider a classical r-matrix [50, 54],

r =
1

2
P0 ∧D . (3.84)

Because [P0, D] 6= 0 , this classical r-matrix does not satisfy the unimodularity condition.

By introducing the polar coordinates,

x1 = ρ sin θ cosφ , x2 = ρ sin θ sinφ , x3 = ρ cos θ , (3.85)
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the deformed background can be rewritten as [54]10

ds2 =
z2

[

dz2 − (dx0)2 + dρ2
]

− η2 (dρ− ρ z−1 dz)2

z4 − η2 (z2 + ρ2)
+

ρ2 (dθ2 + sin2 θ dφ2)

z2
+ ds2

S5
,

B2 = −η
dx0 ∧ (z dz + ρ dρ)

z4 − η2 (z2 + ρ2)
, Φ =

1

2
ln

[

z4

z4 − η2 (z2 + ρ2)

]

, I = −η ∂0 ,

F̂1 = 0 , F̂3 =
4 η ρ2 sin θ

z5
(z dρ− ρ dz) ∧ dθ ∧ dφ ,

F̂5 = 4

[

z4

z4 − η2 (z2 + ρ2)
ωAdS5 + ωS5

]

,

F̂7 =
4 η dx0 ∧ (z dz + ρ dρ)

z4 − η2 (z2 + ρ2)
∧ ωS5 , F̂9 = 0 . (3.86)

This background is not a solution of the usual type IIB supergravity, but that of GSE [64].

By setting η = 0, this background reduces to the original AdS5 × S5.

In the dual parameterization, the dual metric, the β field and the dual dilaton are

given by

ds2dual =
dz2 − (dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

z2
+ ds2

S5
, φ̃ = 0 ,

β = η P̂0 ∧ D̂ = η ∂0 ∧ (z ∂z + x1 ∂1 + x2 ∂2 + x3 ∂3) = η ∂0 ∧ (z ∂z + ρ ∂ρ) .

(3.87)

The Killing vector Im satisfies the divergence formula,

I0 = −η = D̃mβ0m . (3.88)

The Q-flux has the following non-vanishing components:

Qz
0z = Q1

01 = Q2
02 = Q3

03 = η . (3.89)

Thus, when at least one of the (x1, x2, x3) directions is compactified, the background can be

interpreted as a T -fold. For example, when the x1 direction is compactified, the monodromy

is given by

HMN (x1 + η−1) =
[

ΩTH(x1) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
0 δ

n]
1

0 δnm

)

. (3.90)

From (3.86), the R-R potentials can be found as follows:

Ĉ0 = 0 , Ĉ2 =
η ρ3 sin θ

z4
dθ ∧ dφ ,

Ĉ4 =
ρ2 sin θ

z4
dx0 ∧ dρ ∧ dθ ∧ dφ+ ω4 −B2 ∧ Ĉ2 ,

Ĉ6 = −B2 ∧ ω4 , Ĉ8 = 0 .

(3.91)

10Only the metric and NS-NS two-form were computed in [50].
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Providing the B-twist, we obtain

F1 = 0 , F3 =
4 η ρ2 sin θ

z5
(ρ dz − z dρ) ∧ dθ ∧ dφ ,

F5 = 4
(

ωAdS5 + ωS5
)

, F7 = 0 , F9 = 0 ,

A0 = 0 , A2 =
η ρ3 sin θ

z4
dθ ∧ dφ ,

A4 =
ρ2 sin θ

z4
dx0 ∧ dρ ∧ dθ ∧ dφ+ ω4 , A6 = 0 , A8 = 0 .

(3.92)

We can further compute the β-untwisted fields,

F̌1 = 0 , F̌3 = 0 , F̌5 = 4
(

ωAdS5 + ωS5
)

, F̌7 = 0 , F̌9 = 0 ,

Č0 = 0 , Č2 = 0 , Č4 =
ρ2 sin θ

z4
dx0 ∧ dρ ∧ dθ ∧ dφ+ ω4 , Č6 = 0 , Č8 = 0 .

(3.93)

As expected, the β-untwisted R-R fields are precisely the R-R fields in the undeformed

background, and they are single-valued. In terms of the twisted R-R fields, (F, A), the R-R

fields have the same monodromy as (3.90),

A(x1 + η−1) = e−ω∨
A(x1) , F(x1 + η−1) = e−ω∨

F(x1) , ωmn = 2 δ
[m
0 δ

n]
1 . (3.94)

3.6.3 A scaling limit of the Drinfeld-Jimbo r-matrix

Let us consider a classical r-matrix [53, 54],

r =
1

2

[

P0 ∧D + P i ∧ (M0i +M1i)
]

, (3.95)

which can be obtained as a scaling limit of the classical r-matrix of Drinfeld-Jimbo type [39,

40]. By using the polar coordinates (ρ, θ),

(dx2)2 + (dx3)2 = dρ2 + ρ2 dθ2 , (3.96)

the YB-deformed background, which satisfies GSE, is given by [53, 54]

ds2 =
dz2 − (dx0)2

z2 − η2
+

z2
[

(dx1)2 + dρ2
]

z4 + η2 ρ2
+

ρ2 dθ2

z2
+ ds2

S5
,

B2 = η

[

dz ∧ dx0

z (z2 − η2)
− ρ dx1 ∧ dρ

z4 + η2 ρ2

]

,

Φ =
1

2
ln

[

z6

(z2 − η2)(z4 + η2 ρ2)

]

, I = −η (4 ∂0 + 2 ∂1) ,

F̂1 = −4 η2 ρ2

z4
dθ , F̂3 = 4 η ρ

(

ρ dz ∧ dx0

z (z4 − η2 z2)
+

dx1 ∧ dρ

z4 + η2 ρ2

)

∧ dθ ,

F̂5 = 4

[

z6

(z2 − η2)(z4 + η2 ρ2)
ωAdS5 + ωS5

]

,

F̂7 = 4 η

(

− dz ∧ dx0

z (z2 − η2)
+

ρ dx1 ∧ dρ

z4 + η2 ρ2

)

∧ ωS5 ,

F̂9 = − 4 η2 ρ

z (z2 − η2)(z4 + η2 ρ2)
dz ∧ dx0 ∧ dx1 ∧ dρ ∧ ωS5 . (3.97)
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The R-R potentials can be found as follows:

Ĉ0 = 0 , Ĉ2 = −η ρ2

z4
dx0 ∧ dθ , Ĉ4 =

ρ

z4 + η2 ρ2
dx0 ∧ dx1 ∧ dρ ∧ dθ + ω4 ,

Ĉ6 = −B2 ∧ ω4 , Ĉ8 =
η2 ρ

z (z2 − η2)(z4 + η2 ρ2)
dx0 ∧ dx1 ∧ dρ ∧ dz ∧ ω4 . (3.98)

Then the corresponding dual fields in the NS-NS sector are given by

ds2dual =
dz2 − (dx0)2 + (dx1)2 + dρ2 + ρ2 dθ2

z2
+ ds2

S5
, φ̃ = 0 ,

β = η
[

P̂0 ∧ D̂ + P̂ i ∧ (M0i +M1i)
]

= η (z ∂0 ∧ ∂z − x2 ∂1 ∧ ∂2 − x3 ∂1 ∧ ∂3)

= η (z ∂0 ∧ ∂z − ρ ∂1 ∧ ∂ρ) ,

and the Killing vector Im again satisfies the divergence formula,

I0 = −4 η = D̃mβ0m , I1 = −2 η = D̃mβ1m . (3.99)

Providing the B-twist to the R-R field strengths, we obtain

F1 = −4 η2ρ2

z4
dθ , F3 =

4 η ρ

z5
(

ρ dz ∧ dx0 + z dx1 ∧ dρ
)

∧ dθ ,

F5 = 4
(

ωAdS5 + ωS5
)

, F7 = 0 , F9 = 0 ,

A0 = 0 , A2 = −η ρ2

z4
dx0 ∧ dθ ,

A4 =
ρ

z4
dx0 ∧ dx1 ∧ dρ ∧ dθ + ω4 , A6 = 0 , A8 = 0 .

(3.100)

Furthermore, the β-untwist leads to the following expressions:

F̌1 = 0 , F̌3 = 0 , F̌5 = 4
(

ωAdS5 + ωS5
)

, F̌7 = 0 , F̌9 = 0 ,

Č0 = 0 , Č2 = 0 , Č4 =
ρ

z4
dx0 ∧ dx1 ∧ dρ ∧ dθ + ω4 , Č6 = 0 , Č8 = 0 .

(3.101)

These are the same as the undeformed R-R potentials.

Then the non-zero component of Q-flux are given by

Qz
0z = η , Q2

12 = −η , Q3
13 = −η . (3.102)

When the x2-direction is compactified as x2 ∼ x2+ η−1, this background becomes a T -fold

with the monodromy,

HMN (x2 + η−1) =
[

ΩTH(x2) Ω
]

MN
, ΩM

N ≡
(

δmn −2 δ
[m
1 δ

n]
2

0 δnm

)

,

F(x2 + η−1) = e−ω∨
F(x2) , ωmn = −2 δ

[m
1 δ

n]
2 .

(3.103)
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3.6.4 r = 1

2 η
P− ∧ (η1 D − η2 M+−)

Let us consider a non-unimodular r-matrix,11

r =
1

2 η
P− ∧ (η1D − η2M+−) . (3.104)

Here we have introduced the light-cone coordinates and polar coordinates as

x± ≡ x0 ± x1√
2

, (dx2)2 + (dx3)2 = dρ2 + ρ2 dθ2 . (3.105)

The YB-deformed background is given by

ds2 =
dz2 + dρ2 + ρ2 dθ2

z2
− 2 z2 dx+ dx−

z4 − (η1 + η2)2 (x+)2

+ η1 dx
+ 2x+ (η1 + η2) (z dz + ρ dρ)− η1 (z

2 + ρ2) dx+

z2 [z4 − (η1 + η2)2 (x+)2]
+ ds2

S5
,

B2 = η1
x+ dx+ ∧ dx− + z dz ∧ dx+ − ρ dx+ ∧ dρ

z4 − (η1 + η2)2 (x+)2
+ η2

x+ dx+ ∧ dx−

z4 − (η1 + η2)2 (x+)2
,

Φ =
1

2
ln

[

z4

z4 − (η1 + η2)2 (x+)2

]

, I = −(η1 − η2) ∂− ,

F̂1 = 0 , F̂3 = −4 ρ
[

η1 (ρ dz ∧ dx+ + z dx+ ∧ dρ− x+ dz ∧ dρ)− η2 x
+ dz ∧ dρ

]

∧ dθ

z5
,

F̂5 = 4

[

z4

z4 − (η1 + η2)2 (x+)2
ωAdS5 + ωS5

]

,

F̂7 = −4
[

η1 (x
+ dx+ ∧ dx− + z dz ∧ dx+ − ρ dx+ ∧ dρ) + η2 x

+ dx+ ∧ dx−
]

∧ ωS5

z4 − (η1 + η2)2 (x+)2
,

F̂9 = 0 . (3.106)

The R-R potentials are also given by

Ĉ0 = 0 , Ĉ2 =
ρ [η1 ρ dx

+ − (η1 + η2)x
+ dρ] ∧ dθ

z4
,

Ĉ4 =
ρ dx+ ∧ [z3 dx− − η1 (η1 + η2)x

+ dz] ∧ dρ ∧ dθ

z3 [z4 − (η1 + η2)2 (x+)2]
+ ω4 ,

Ĉ6 = −B2 ∧ ω4 , Ĉ8 = 0 .

(3.107)

The dual fields are given by

ds2dual =
dz2 − 2 dx+ dx− + dρ2 + ρ2 dθ2

z2
+ ds2

S5
, φ̃ = 0 ,

β = P̂− ∧ (η1 D̂ + η2 M̂+−) = η1 ∂− ∧ (z ∂z + x+ ∂+ + ρ ∂ρ) + η2 x
+ ∂− ∧ ∂+

= η1 ∂− ∧ (z ∂z + x+ ∂+ + x2 ∂2 + x3 ∂3) + η2 x
+ ∂− ∧ ∂+ ,

(3.108)

11This r-matrix includes the known examples studied in section 4.3 (η1 = −η2 = −η) and 4.4 (η1 = −η,

η2 = 0) of [54] as special cases.
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and the Q-flux has the following non-vanishing components:

Qz
−z = Q+

−+ = Q2
−2 = Q3

−3 = η1 , Q+
−+ = η2 . (3.109)

In a similar manner as the previous examples, by compactifying one of the x1, x2, and x3

directions with a certain period, this background can also be regarded as a T -fold. For

example, if we make the identification, x3 ∼ x3 + η−1
1 , the associated monodromy becomes

HMN (x3 + η−1
1 ) =

[

ΩTH(x3) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
− δ

n]
3

0 δnm

)

,

F(x3 + η−1
1 ) = e−ω∨

F(x3) , ωmn = 2 δ
[m
− δ

n]
3 .

(3.110)

A solution of generalized type IIA supergravity equations. In the back-

ground (3.97), by performing a T -duality along the x1-direction (see [32] for the duality

transformation rule), we obtain the following solution of the generalized type IIA equations

of motion:

ds2 =
dz2 − (dx0)2

z2 − η2
+ z2 (dx1)2 +

(dρ+ η ρ dx1)2 + ρ2 dθ2

z2
+ dsS5 ,

B2 =
η dz ∧ dx0

z (z2 − η2)
, Φ = −2 η x1 − 1

2
ln

(

z2 − η2

z4

)

, I = −4 η ∂0 ,

F̂2 =
4 η e2 η x

1
ρ (dρ+ η ρ dx1) ∧ dθ

z4
,

F̂4 = −4 e2 η x
1
ρ dz ∧ dx0 ∧ (dρ+ η ρ dx1) ∧ dθ

z3 (z2 − η2)
,

F̂6 = −4 e2 η x
1
dx1 ∧ ωS5 , F̂8 =

4 η e2 η x
1
dz ∧ dx0 ∧ dx1 ∧ ωS5

z (z2 − η2)
. (3.111)

Here the R-R potentials are given by

Ĉ1 = 0 , Ĉ3 = e2 η x
1 ρ dx0 ∧ (dρ+ η ρ dx1) ∧ dθ

z4
,

Ĉ5 = e2 η x
1
dx1 ∧ ω4 , Ĉ7 = − e2 η x

1 η dz ∧ dx0 ∧ dx1 ∧ ω4

z (z2 − η2)
.

(3.112)

This background cannot be regarded as a T -fold, but it is the first example of the solution

for the generalized type IIA supergravity equations.

3.6.5 r = 1

2
M−µ ∧ Pµ

The final example is associated with the r-matrix [54]

r =
1

2
M−µ ∧ Pµ . (3.113)

This r-matrix is called the light-cone κ-Poincaré. Again, by introducing the coordinates,

x± ≡ x0 ± x1√
2

, (dx2)2 + (dx3)2 = dρ2 + ρ2 dθ2 , (3.114)
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the YB-deformed background is given by (see section 4.5 of [54])

ds2=

z4

z4−(ηx+)2
(dz2−2dx+dx−)−η2 (x+dz)2+(ρdx+)2−2x+ρdx+dρ

z4−(ηx+)2
+dρ2+ρ2dθ2

z2
+ds2

S5
,

B2=
ηdx+∧(x+dx−−ρdρ)

z4−(ηx+)2
, Φ=

1

2
ln

[

z4

z4−(ηx+)2

]

, I−=3η,

F̂1=0, F̂3=−4ηρ

z5
dz∧

(

ρdx+−x+dρ
)

∧dθ, F̂5=4

[

z4

z4−(ηx+)2
ωAdS5+ωS5

]

,

F̂7=− 4η

z4−(ηx+)2
dx+∧

(

x+dx−−ρdρ
)

∧ωS5 , F̂9=0. (3.115)

The R-R potentials can be found as follows:

Ĉ0 = 0 , Ĉ2 =
η ρ

z4
(

ρ dx+ − x+ dρ
)

∧ dθ ,

Ĉ4 =
ρ

z4 − (η x+)2
dx+ ∧ dx− ∧ dρ ∧ dθ + ω4 , Ĉ6 = −B2 ∧ ω4 , Ĉ8 = 0 .

(3.116)

The corresponding dual fields are given by

ds2dual =
dz2 − 2dx+ dx− + dρ2 + ρ2 dθ2

z2
+ ds2

S5
, φ̃ = 0 ,

β = η M̂−µ ∧ P̂µ = η ∂− ∧ (x+ ∂+ + ρ ∂ρ) = η ∂− ∧ (x+ ∂+ + x2 ∂2 + x3 ∂3) ,

(3.117)

and it is easy to check that the divergence formula is satisfied:

I− = 3 η = D̃mβ−m . (3.118)

We can calculate other types of the R-R field fields as

F1 = 0 , F3 = −4 η ρ

z5
dz ∧ (ρ dx+ − x+ dρ) ∧ dθ ,

F5 = 4
(

ωAdS5 + ωS5
)

, F7 = 0 , F9 = 0 ,

A0 = 0 , A2 =
η ρ

z4
(

ρ dx+ − x+ dρ
)

∧ dθ ,

A4 =
ρ

z4
dx+ ∧ dx− ∧ dρ ∧ dθ + ω4 , A6 = 0 , A8 = 0 ,

(3.119)

and

F̌1 = 0 , F̌3 = 0 , F̌5 = 4
(

ωAdS5 + ωS5
)

, F̌7 = 0 , F̌9 = 0 ,

Č0 = 0 , Č2 = 0 , Č4 =
ρ

z4
dx+ ∧ dx− ∧ dρ ∧ dθ + ω4 , Č6 = 0 , Č8 = 0 ,

(3.120)

and the β-twisted fields are again invariant under the YB deformation.

The non-geometric Q-flux has the non-vanishing components,

Q+
−+ = Q2

−2 = Q3
−3 = η , (3.121)

and again by compactifying one of the x1, x2, and x3 directions, this background becomes

a T -fold. Namely, if we compactify the x3-direction as, x3 ∼ x3 + η−1, the associated

monodromy becomes

HMN (x3 + η−1) =
[

ΩTH(x3) Ω
]

MN
, ΩM

N ≡
(

δmn 2 δ
[m
− δ

n]
3

0 δnm

)

,

F(x3 + η−1) = e−ω∨
F(x3) , ωmn = 2 δ

[m
− δ

n]
3 .

(3.122)
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4 Conclusion and discussion

In this paper, we have first reviewed the notion of T -folds by showing two examples: (1)

a toy model which shows how to obtain a T -fold background upon a chain of dualizations

of a geometric torus and (2) the (co-dimension 1) exotic 522-brane background. These T -

folds require the full set of T -duality transformations as transition functions to be globally

well-defined.

Then, we have elucidated that the simple formula (3.19) proposed in [33] and the

divergence formula (3.11) reproduce various YB-deformed backgrounds. This means that

the YB deformation with a classical r-matrix r = 1
2 r

ij Ti∧Tj satisfying the (homogeneous)

CYBE, is equivalent to the β-deformation with the deformation parameter

rmn = 2 η rij T̂m
i T̂n

j . (4.1)

We also considered a known background obtained by the non-Abelian T -duality and showed

that the extra vector I determined by the divergence formula (3.11) makes the background

a solution of GSE.

We have then computed monodromy matrices for various YB-deformed backgrounds

and a non-Abelian T -dual background. In order to clarify the general pattern, let us

consider a YB deformation associated with a classical r-matrix,

r =
1

2

[

aµνρMµν ∧ Pρ + bµD ∧ Pµ

]

(aµνρ = a[µν]ρ, bµ : constant) , (4.2)

where bµ = 0 for YB-deformations of Minkowski spacetime, and aµνρ and bµ should be

chosen such that r satisfies the homogeneous CYBE. In this case, the β-field in the YB-

deformed background becomes

β = 2 η aµνρ xµ ∂ν ∧ ∂ρ + η bµ (z ∂z + xν ∂ν) ∧ ∂µ , (4.3)

and this provides the constant Q-flux,

Q = η
(

2 aµ
νρ + δ[νν bρ]

)

dxµ ⊗ ∂ν ∧ ∂ρ + η bµ dz ⊗ ∂z ∧ ∂µ . (4.4)

By compactifying some of xµ directions, the background becomes a T -fold. Importantly,

as long as the r-matrix solves the homogeneous CYBE, the deformed background is

a solution of DFT. Therefore, the YB deformation is a very systematic procedure to

obtain solutions with Q-fluxes in DFT. Although we have considered YB deformations

of Minkowski and AdS5 × S5 backgrounds, it is applicable to more general cases such as

AdS3 × S3 × S3 × S1 solutions.

On the other hand, let us remember that the GSE exhibits one isometry direction.

This may suggest that they are effectively a 9-dimensional theory. In this respect, as

it was denoted in [31], it is still an open problem what is the explicit relation, if any,

between the GSE and the 9-dimensional gauged supergravities that involve the gauging

of the trombone symmetry of type IIB supergravity [95, 96].12 If this were the case, then

12As it occurs with GSE, gauged supergravities that are obtained by gauging the trombone symmetry or

dimensional reduction on non-unimodular group manifolds cannot be derived from an action principle.
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an additional question is in order. As the trombone symmetry is considered an accidental

symmetry which is broken at higher order α′-corrections [95], it would be interesting to

seek for the relation between type IIB supergravity and GSE, including α′-corrections.

It is also interesting to study the Poisson-Lie (PL) T-duality in our context. The η-

deformation [10, 11, 41, 42], which is an example of YB-deformations, is related to another

integrable deformation called the λ-deformation [55, 97–100] via the PL T-duality [101,

102]. This relation has been further generalized by intriguing works [103, 104]. Hence by

generalizing our work to include the modified CYBE case, it should be possible to study

the PL T-duality in our context. In fact, it is remarkable that the PL T-duality in DFT has

been discussed in the recent work [105] from another angle, the global structure of DFT,13

independently of a series of our works. As a matter of course, these directions meet up at

some point.

In summary, we have shed light on a non-geometric aspect of YB deformation. Namely,

using the formulas (3.19) and (3.11), we have established a mapping between YB deforma-

tions and non-geometric backgrounds involving Q-fluxes. We hope that our result could

be the starting point to delve into the relation between integrable deformations and non-

geometric backgrounds.
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A Generating GSE solutions with Penrose limits

In this appendix, we consider Penrose limit [68, 69] of YB-deformed AdS5×S5 backgrounds

and reproduce solutions of GSE studied in section 3.4. The R-R fluxes in the YB-deformed

AdS5× S5 backgrounds may disappear under the Penrose limit. In that case, the resulting

backgrounds become purely NS-NS solutions of GSE.

Penrose limit [68, 69] is formulated for the standard supergravity. But, at least so far,

there is no general argument on Penrose limit for the GSE case. Hence, it is quite non-

trivial whether it can be extended to GSE or not. Here, we will not discuss a general theory

13In relation to the global structure, the topology of DFT is discussed in [106].
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of Penrose limit for GSE, but explain how to take a scaling of the extra vector I. The

point here is that a YB-deformed background contains a deformations parameter and I is

proportional to it. Hence, there is a freedom to scale the deformation parameter in taking

a Penrose limit. Without scaling the deformation parameter, 5D Minkowski spacetime is

obtained as in the undeformed case. On the other hand, by taking an appropriate scaling of

the deformation parameter, one can obtain a non-trivial solution of GSE with non-vanishing

extra vector fields. We refer to the latter manner as the modified Penrose limit. As a result,

this modified Penrose limit may be regarded as a technique to generate solutions of GSE.14

A.1 Penrose limit of Poincaré AdS5

Let us first recall how to take a Penrose limit of the Poincaré metric of AdS5 .

The metric is given by

ds2 =
r2

R2

(

−dt2 + d~x2
)

+R2 dr
2

r2
, (A.1)

where ~x = (x1, x2, x3) .

The first task is to determine a null geodesic. Here we are interested in a radial null

geodesic described by
(

ds

dτ

)2

= R2 ṙ
2

r2
+

r2

R2
(−ṫ2) = 0 . (A.2)

Here τ is an affine parameter and the symbol “·” denotes a derivative in terms of τ . From

the energy conservation, we obtain that

r2

R2
ṫ ≡ E (constant) . (A.3)

Hereafter, we will set E = 1 by rescaling τ . Then the equation (A.2) can be rewritten as

ṙ2 = 1 . (A.4)

Hence, we will take a solution as

r = −τ , (A.5)

by adjusting an integration constant to be zero. Then t can also be determined as follows:

t = −R2

τ
. (A.6)

As a result, the radial null geodesic is described as

t =
R2

r
. (A.7)

14Without any general argument, it is not ensured that the resulting background should satisfy the GSE.

However, this point can be overcome by directly checking the GSE for the resulting background. As far as

we have checked, it seems likely that this procedure works well.
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Let us take a Penrose limit by employing the radial null geodesic (A.7). The first step

is to introduce a new variable t̃ as a fluctuation around the null geodesic as

t =
R2

r
− t̃ . (A.8)

Then, the metric of Poincaré AdS5 is rewritten into the pp-wave form:

ds2 = −2 dr dt̃− r2

R2
dt̃2 +

r2

R2
d~x2 . (A.9)

Next, by further transforming the coordinates as

~x =
R

r
~y , t̃ = v − 1

2r
~y2 , (A.10)

the metric can be rewritten as

ds2 = −2 dr dv + d~y2 +O
(

1/R2
)

. (A.11)

Finally, by taking the R → ∞ limit, the metric of 5D Minkowski spacetime is obtained.

A.2 Penrose limits of YB-deformed AdS5 × S5

Our aim here is to consider the modified Penrose limit of YB-deformed AdS5 × S5 with

classical r-matrices satisfying the homogeneous CYBE. In the following, we will focus upon

two examples of non-unimodular classical r-matrices.

Example 1) [solution of section 3.6.2]
Penrose limit−→ [solution of section 3.4.2].

The first example is a YB-deformed background associated with r = 1
2 P0 ∧D, which was

studied in section 3.6.2. To take a Penrose limit of the background (3.86), let us rescale

the fields as follows:

ds2 → ds̃2 = R2 ds2 , B2 → B̃2 = R2B2 ,

F3 → F̃3 = R2 F3 , F5 → F̃5 = R4 F5 .
(A.12)

After performing a coordinate transformation for the radial direction,

z =
R2

r
, (A.13)

the radial null geodesic is given by

x0 =
R2

r
. (A.14)

This expression coincides with the one (A.7) even after performing the deformation.

As in the case of Poincaré AdS5 , a new variable t̃ is introduced as a fluctuation around

the null geodesic (A.14):

x0 =
R2

r
− t̃ . (A.15)

Let us perform a further coordinate transformation,

ρ =
R

r
p , t̃ = v − p2

2r
. (A.16)
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If the R → ∞ limit is taken naively, one can perform the usual Penrose limit, but it again

leads to 5D Minkowski spacetime as in the case of the Poincaré AdS5 .

It is interesting to add a modification to the usual process. That is to rescale the

deformation parameter η as well,

η = R2 ξ . (A.17)

We refer to this modification as the modified Penrose limit.

By taking the R → ∞ limit and also the flat limit of the S5 part, we obtain the

YB-deformed Minkowski background (3.52) with the following identifications:

{x+, x−, x, y, z, η} ←→ {r, v, ρ sin θ cosφ, ρ sin θ sinφ, z, ξ} . (A.18)

Remarkably, all of the R-R fluxes have vanished under this modified Penrose limit.

Example 2) [solution of section 3.6.3]
Penrose limit−→ [solution of section 3.4.3].

Let us next consider another YB-deformed background studied in section 3.6.3. To consider

a Penrose limit of the background (3.97), let us rescale the fields as follows:

ds2 → ds̃ = R2 ds2 , B2 → B̃2 = R2B2 ,

F3 → F̃3 = R2 F3 , F5 → F̃5 = R4 F5 .
(A.19)

After performing a coordinate transformation,

z =
R2

r
, (A.20)

we obtain a radial null geodesic, which again takes the form,

x0 =
R2

r
. (A.21)

Let us next introduce a new variable t̃ as a fluctuation around the null geodesic (A.21):

x0 =
R2

r
− t̃ . (A.22)

Then, we perform a further coordinate transformation

x1 =
R

r
z , ρ =

R

r
p , t̃ = v − p2 + z2

2r
. (A.23)

As in the previous case, the deformation parameter is rescaled as

η = R2 ξ . (A.24)

After taking theR → ∞ limit, the resulting background is given by (3.64) with the following

replacements:

{r, v, p, θ, ξ} →
{

x+, x−,
√

x2 + y2 , arctan(y/x) , η
}

. (A.25)

Note that all of the R-R fluxes have vanished again as in the previous example (3.52).
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