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Abstract: CP asymmetries for neutrino oscillations in matter can be disentangled into the

matter-induced CPT-odd (T-invariant) component and the genuine T-odd (CPT-invariant)

component. For their understanding in terms of the relevant ingredients, we develop a new

perturbative expansion in both ∆m2
21, |a| �

∣∣∆m2
31

∣∣ without any assumptions between

∆m2
21 and a, and study the subtleties of the vacuum limit in the two terms of the CP

asymmetry, moving from the CPT-invariant vacuum limit a → 0 to the T-invariant limit

∆m2
21 → 0. In the experimental region of terrestrial accelerator neutrinos, we calculate

their approximate expressions from which we prove that, at medium baselines, the CPT-odd

component is small and nearly δ-independent, so it can be subtracted from the experimen-

tal CP asymmetry as a theoretical background, provided the hierarchy is known. At long

baselines, on the other hand, we find that (i) a Hierarchy-odd term in the CPT-odd com-

ponent dominates the CP asymmetry for energies above the first oscillation node, and (ii)

the CPT-odd term vanishes, independent of the CP phase δ, at E = 0.92 GeV (L/1300 km)

near the second oscillation maximum, where the T-odd term is almost maximal and pro-

portional to sin δ. A measurement of the CP asymmetry in these energy regions would thus

provide separate information on (i) the neutrino mass ordering, and (ii) direct evidence of

genuine CP violation in the lepton sector.
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1 Introduction

One of the most important open questions in fundamental physics is the existence of

CP symmetry breaking in the lepton sector. A positive answer could open the door to

understand the matter-antimatter asymmetry of the Universe through Leptogenesis [1] at

higher energy scales. Next generation neutrino flavor oscillation experiments, like T2HK [2]

and DUNE [3], have this challenge as their priority aim. But the neutrino propagation

from terrestrial accelerator facilities is not taking place in vacuum and there are matter

effects [4, 5] induced by the CP-asymmetric interaction with Earth. In the quest for a

direct evidence of CP violation in the lepton sector, we have recently derived a theorem [6]

for the observable CP asymmetry in neutrino oscillations propagating in matter

ACP
αβ ≡ Pαβ(ν)− Pαβ(ν̄) = ACPT

αβ +AT
αβ , (1.1)

where Pαβ is the probability for any flavor transition α → β. Its achievement consists in

providing the disentanglement of the genuine AT
αβ and matter-induced ACPT

αβ components

of CP-violating (CPV) ACP
αβ based on the concept that they have different properties under

the other discrete symmetries Time Reversal T and CPT: ACPT
αβ is CPT-odd T-invariant,

whereas AT
αβ is T-odd CPT-invariant. These two components are distinctly identified by

their behavior as functions of the baseline L: whereas the matter-induced component ACPT
αβ

is an even function of L, the genuine component AT
αβ is odd in L. For a description of

the effective Hamiltonian in which the matter-induced term is generated by the parameter
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a = 2EV of the matter potential V due to charged current interactions between electron

neutrinos and electrons and the genuine CPV term is generated by a phase δ in the three-

family PMNS mixing matrix, the ACPT
αβ andAT

αβ components of the CP asymmetry have the

correct behavior, for any neutrino energy E and baseline L, in these parameters: whereas

ACPT
αβ is odd in a ∀δ, AT

αβ is odd in sin δ ∀a. In addition, the change from a Normal

Hierarchy in the ordering of the neutrino mass spectrum to an Inverted Hierarchy leads

to the result that AT
αβ remains invariant and, for energies above the first oscillation node,

ACPT
αβ changes its sign.

The planned experiments T2HK and DUNE consider the golden transition νµ
L−−→ νe for

neutrinos propagating in the Earth mantle with fixed L and a continuum energy spectrum

E. In the search of interesting experimental signatures able to separate the ACPT
µe and AT

µe

components of ACP
µe , we study in this paper the characteristic energy dependencies of the

two terms. In doing so, we develop appropriate analytical relations between the quantities

in matter and the quantities in vacuum in order to provide guiding paths in our scrutiny

of the peculiar behavior of the separate ACPT
µe and AT

µe components with energy.

The paper is organized as follows. Section 2 identifies the two components, matter-

inducedACPT
αβ and genuineAT

αβ , of the CP asymmetry ACP
αβ by means of rephasing-invariant

mixings and neutrino masses in matter. The conceptual basis of the Disentanglement

Theorem is provided by the different behavior under T and CPT symmetries. In section 3

we build a consistent perturbative expansion of the relevant ingredients in terms of the

vacuum parameters with ∆m2
21 �

∣∣∆m2
31

∣∣ and |Ue3|2 � 1, with the interaction parameter

a moving from above to below ∆m2
21. This approach will allow us to understand the

intricacies of the ordering of the two limits a → 0 and ∆m2
21 → 0. In section 4 we

check that our analytic expansions are an excellent approximation to the exact unique

rephasing-invariant CP-odd mixing appearing in the genuine AT
µe component of the CP

asymmetry, leading in fact to AT
µe as in vacuum by an interesting compensation of matter

effects between the mixing and oscillation factors. In section 5 we discuss the dependence

of these observables on the neutrino mass hierarchy, proving that it is determined by the

sign of ACPT
µe at high energies, whereas AT

µe is blind to it. Section 6 makes a scan of the

energy dependencies of the two ACPT
µe and AT

µe components, identifying zeros and extremal

values of these functions. The occurrence of magic energies, in which ACPT
µe vanishes —

independent of δ — and
∣∣AT

µe

∣∣ is maximal, will be understood. In section 7 we discuss our

conclusions and outlook.

2 The CP asymmetry disentanglement theorem

Neutrino oscillations in matter are described through the effective Hamiltonian in the flavor

basis [4, 7–11]

H =
1

2E

U
m2

1 0 0

0 m2
2 0

0 0 m2
3

U † +

 a 0 0

0 0 0

0 0 0


 =

1

2E
ŨM̃2Ũ † , (2.1)
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where the first term describes neutrino oscillations in vacuum and the second one accounts

for matter effects. The a parameter is given by a = 2EV , with V the interaction potential

with matter and E the relativistic neutrino energy. For antineutrinos, U → U∗, originating

a genuine CP violation effect through a CP phase δ in UPMNS, as well as a→ −a, originating

matter-induced CP violation. In this description, the genuine CPV observable has to be

odd in sin δ, whereas the matter-induced CPV effect has to be odd in a. All neutrino masses

(M̃2) and mixings (Ũ) in matter, i.e. eigenvalues and eigenstates of H, can be calculated in

terms of the parameters in the vacuum Hamiltonian (M2, U) and a, as studied in section 3.

The exact Hamiltonian leads to the flavor oscillation probabilities for any α → β

transition

P (να → νβ) = δαβ − 4
∑
j<i

Re J̃ ijαβ sin2 ∆̃ij − 2
∑
j<i

Im J̃ ijαβ sin 2∆̃ij , (2.2)

where J̃ ijαβ ≡ ŨαiŨ
∗
αjŨ

∗
βiŨβj are the rephasing-invariant mixings and ∆̃ij ≡

∆m̃2
ijL

4E . Notice

that both J̃ ijαβ and ∆m̃2
ij are energy dependent in matter. Antineutrino oscillations are

given in general by the same expression with different masses (∆ ˜̄m
2
ij) and mixings ( ˜̄J ijαβ),

so one can explicitly write the CP asymmetry ACP
αβ defined in eq. (1.1).

If CPT holds, as assumed in vacuum, necessarily ∆m̄2
ij = ∆m2

ij and J̄ ijαβ = (J ijαβ)∗.

Therefore, all L-even terms will cancel out in ACP
αβ , proving they are CPT-violating. On the

other hand, the absence of genuine CP violation leads to real J̃ ijαβ and ˜̄J ijαβ , so all transition

probabilities Pαβ are L-even functions. This result shows that L-odd terms in ACP
αβ are

T-violating.

From the different behavior of each of these terms under the discrete T and CPT sym-

metry transformations, one derives the Asymmetry Disentanglement Theorem [6] by sepa-

rating the observable CP asymmetry in any flavor transition into L-even (CPT-violating)

and L-odd (T-violating) functions, ACP
αβ = ACPT

αβ +AT
αβ ,

ACPT
αβ = −4

∑
j<i

[
Re J̃ ijαβ sin2 ∆̃ij − Re ˜̄J ijαβ sin2 ˜̄∆ij

]
, (2.3a)

AT
αβ = −2

∑
j<i

[
Im J̃ ijαβ sin 2∆̃ij − Im ˜̄J ijαβ sin 2 ˜̄∆ij

]
. (2.3b)

Let us emphasize that not only ACPT
αβ is CPT-violating and AT

αβ is T-violating, we also find

that ACPT
αβ is T-invariant and AT

αβ is CPT-invariant. In this sense the two terms are truly

disentangled. To prove these properties, we analyze both CPT and T transformations.

Under CPT: {∆m̃2
ij ↔ ∆ ˜̄m

2
ij , J̃

ij
αβ ↔ ( ˜̄J ijαβ)∗}, neutrino and antineutrino terms in

ACPT
αβ are interchanged, so ACPT

αβ changes its sign. This sign in AT
αβ is compensated by

the change of sign in both Im J̃ ijαβ and Im ˜̄J ijαβ , leaving AT
αβ invariant. Under T: {J̃ ijαβ →

(J̃ ijαβ)∗, ˜̄J ijαβ → ( ˜̄J ijαβ)∗}, the only change in the asymmetries is a change of sign in all

imaginary parts, changing the sign of AT
αβ and leaving ACPT

αβ invariant.

These properties lead cleanly to the disentanglement of ACP
αβ = ACPT

αβ + AT
αβ , where

ACPT
αβ is T-invariant (even in sin δ) and CPT-odd in a, whereas AT

αβ is CPT-invariant
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(even in a) and T-odd in sin δ. As a consequence, ACPT
αβ vanishes for a = 0 ∀δ and AT

αβ

vanishes for δ = 0, π ∀a. These complementary behaviors of the two components of the

experimental CP asymmetry identify the CPV component AT
αβ as CPT-invariant and thus

a fully genuine CPV observable, whereas the CPV component ACPT
αβ is T-invariant and

thus a fully fake CPV observable.

3 Analytic perturbation expansions

To understand the behavior of ACPT
αβ and AT

αβ in eqs. (2.3) required by the CPT and

T symmetries, as proved in the previous section, we proceed to their analytic study for

neutrino oscillations in matter of constant density. Notice that the formal description of

the system is equivalent to neutrino oscillations in vacuum, if one parametrizes matter

effects as a redefinition of neutrino masses and mixings. However, this redefinition is

strongly dependent on the neutrino energy, so it does not provide a clear insight into the

intrinsic properties of the system. A useful description should write all observables in

matter, relevant to our two components of the experimentally accessible CP asymmetry,

as functions of the vacuum parameters and the matter potential a. A similar methodology

is being applied to calculations of the T [12] and CPT [13] asymmetries in matter.

The search of these formulae unavoidably finds the same issue: an exact description of

the matter effects in neutrino oscillations leads to cumbersome expressions which do not

provide a clear understanding [14]. The way to simplify the results is to treat perturbatively

the small parameters of the system, namely ∆m2
21 �

∣∣∆m2
31

∣∣ and |Ue3|2 � 1. The most

important drawback of this procedure is that, in perturbing in ∆m2
21, the implicit relation

∆m2
21 � |a| is also assumed, so one should not expect to reproduce the right vacuum limit

a → 0 for all matter ingredients. Even so, this perturbation theory leads to compact and

percent-level precise expressions for neutrino oscillation probabilities written in terms of

vacuum parameters only [15], as well as more precise relations mapping the mixings in

matter to the quantities in vacuum [16, 17].

We develop a new perturbative expansion in both ∆m2
21, |a| �

∣∣∆m2
31

∣∣ without as-

sumptions between ∆m2
21 and a, similar to ref. [18], oriented to the understanding of

masses, mixings and the separate behavior of ACPT
αβ and AT

αβ as functions of the different

variables. In doing so, we can check from our analytic expressions both the vacuum limit

a → 0 and the T-invariant limit ∆m2
21 → 0. The expansion in |a| �

∣∣∆m2
31

∣∣ holds for

energies below a few GeV taking into account the definite a-parity of each component of

the CP asymmetry. This way, we find the most simple expressions for ACPT
µe and AT

µe at

the energies accessible by accelerator experiments, which are accurate enough to let the

reader clearly understand their behavior.

We emphasize that any desired precision can be achieved using a numerical compu-

tation of the neutrino propagation. Our aim is not finding very precise expansions, but

precise enough to identify and understand the distinct characteristic patterns of the energy

behavior of the two components ACPT
αβ and AT

αβ , with the objective of serving as a guide

for experimental signatures.
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3.1 The crucial role of the reference m̃2
0 in matter

Since a diagonal m2
1 1 in the Hamiltonian H in eq. (2.1) leads to a global phase in time evolu-

tion, which is unobservable, the equivalent Hamiltonian 2E∆H ≡ ∆H ′ = U ∆M2 U †+aPe,

where ∆M2 = diag(0, ∆m2
21, ∆m2

31) and Pe = diag(1, 0, 0) is the e-flavor projector, is

widely used.

Analogously, one could argue that m̃2
1 is unobservable in neutrino oscillations in matter.

Even though this is true, one must take into account that either m2
1 or m̃2

1 can be chosen as

origin of phases, but not both of them at the same time when connecting the parameters

in matter to those in vacuum. Indeed, one can easily check that the Hamiltonian ∆H ′ has

three non-vanishing eigenvalues, so choosing m2
1 = 0 automatically leads to all m̃i 6= 0,

despite one of them being unobservable.

On the following, we call m̃2
0 the mass squared in matter leading to the relative phase

shift between the unobservable global phases in vacuum and matter, writing the Hamil-

tonian as ∆H ′ = U ∆M2 U † + aPe = m̃2
0 1 + Ũ ∆M̃2 Ũ †. In this notation, the three

eigenvalues of ∆H ′ will be the reference scale in matter m̃2
0 and the two observable mass

squared differences in matter ∆m̃2
ij .

As proposed in ref. [14], we choose to diagonalize the Hamiltonian in the vacuum eigen-

basis, ∆H ′ij = ∆M2+aU †PeU = m̃2
01+V∆M̃2V †. Since the eigenvalues are basis indepen-

dent and real, this cleanly shows that m̃2
0 and ∆m̃2

ij can only depend on (∆m2
ij , |Uei|, a).

Moreover, this factorizes the mixing matrix in matter into Ũ = UV , where U is the (vac-

uum) PMNS matrix and V is the change of basis between vacuum and matter eigenstates,

which must go to the identity when a→ 0.

The Hamiltonian being a 3× 3 matrix leads to the characteristic equation

p(λ) ≡ −λ3 + λ2 tr(∆H ′) +
1

2
λ
[
tr[(∆H ′)2]− tr2(∆H ′)

]
+ det

(
∆H ′

)
= 0 , (3.1)

where p(λ) is the characteristic polynomial of ∆H ′ and its roots provide the three neutrino

squared masses in matter λi, and the observable ∆m̃2
ij = λi−λj . The three invariants can

be easily calculated,

tr(∆H ′) = ∆m2
21 + ∆m2

31 + a , (3.2a)

tr[(∆H ′)2] = (∆m2
21)2 + (∆m2

31)2 + a2 + 2a
[
∆m2

21|Ue2|
2 + ∆m2

31|Ue3|
2
]
, (3.2b)

det
(
∆H ′

)
= a|Ue1|2∆m2

21∆m2
31 . (3.2c)

From this straightforward setup of the problem we find a fundamental result. Since

p(0) = a|Ue1|2∆m2
21∆m2

31 ≥ 0 , (3.3a)

p(∆m2
21) = a|Ue2|2∆m2

21(∆m2
21 −∆m2

31) ≤ 0, (3.3b)

at least one of the eigenvalues of ∆H ′ will always lie in the range [0, ∆m2
21]. All ∆m̃2

ij

are known to be nonbound by ∆m2
21, as will be shown in figure 1, so we find that 0 ≤

m̃2
0 ≤ ∆m2

21. Although the inequalities in (3.3a) and (3.3b) have been written for Normal

Hierarchy neutrinos, the reader may check that the argument is also valid for the Inverted

Hierarchy and antineutrinos.

– 5 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
3

Given that physically ∆m2
21 �

∣∣∆m2
31

∣∣, this result shows that m̃2
0 is also a good per-

turbative parameter. Therefore, we focus in this subsection on writing the two observable

∆m̃2
ij exactly as functions of (∆m2

ij , m̃
2
0, |Uei|, a), which gives enough information to calcu-

late all observables of neutrino oscillations in matter.

A simple way to calculate the physical ∆m̃2
ij is the diagonalization of the displaced

Hamiltonian ∆H ′ij − m̃2
01 = ∆M2 + aU †PeU − m̃2

01 = V∆M̃2V †. By construction, one of

its eigenvalues is zero, so det
(
∆H ′ − m̃2

01
)

= 0 and its two non-vanishing eigenvalues are

given by a quadratic equation,

∆m̃2
± =

1

2

(
∆m2

21 + ∆m2
31 + a− 3m̃2

0

)
± 1

2

√
l2 + 2m̃2

0(∆m2
21 + ∆m2

31 + a)− 3(m̃2
0)2 ,

(3.4)

l2 ≡
(
∆m2

31 + ∆m2
21 − a

)2 − 4∆m2
21∆m2

31 + 4a∆m2
21|Ue2|

2 + 4a∆m2
31|Ue3|

2 .

From this definition it is clear that ∆m̃2
+ > ∆m2

−, but notice that
∣∣∆m̃2

+

∣∣ > ∣∣∆m̃2
−
∣∣ for

Normal Hierarchy, whereas
∣∣∆m̃2

−
∣∣ > ∣∣∆m̃2

+

∣∣ for Inverted Hierarchy. This expression for

∆m̃2
± is a good starting point from which one can easily derive approximate formulae in the

limit m̃2
0 ≤ ∆m2

21 �
∣∣∆m2

31

∣∣. In order to write ∆m̃2
± as functions of vacuum parameters

only, this same limit can be used directly in eq. (3.1) to find m̃2
0 perturbatively, as we will

do in the following subsection.

We finish this subsection writing explicitly the eigenstates of ∆H ′ij in the canonical

basis of mass eigenstates in vacuum,

|ν̃i〉 =
1

Ni


a
[(
λi −∆m2

31

)
|Ue2|2 +

(
λi −∆m2

21

)
|Ue3|2

]
U∗e1[

λi − a|Ue1|2
] [
λi −∆m2

31

]
U∗e2[

λi − a|Ue1|2
] [
λi −∆m2

21

]
U∗e3

 , (3.5)

where the normalization factor Ni is needed to ensure 〈ν̃i|ν̃i〉 = 1, and its phase must be

chosen so that lim
a→0
|ν̃i〉 = |νi〉.

The eigenvalues λi, labeled according to λ1 < λ2 < λ3 (λ3 < λ1 < λ2) if the hierarchy

is normal (inverted), are given by m̃2
0 and ∆m̃2

± as shown in table 1 for neutrinos and

antineutrinos. The reason why λ1 = m̃2
0 whereas λ̄2 = ˜̄m2

0 will be explained analytically

when exploring the vacuum limit. This fact is also shown in figure 1 by a numerical

determination of the evolution of the eigenvalues of ∆H ′ with the matter parameter a.

All results are produced using the best-fit values in ref. [19] for Normal Hierarchy. To

show the theoretical implications of a change in mass hierarchy, we compute the Inverted

Hierarchy case using ∆m2
31

∣∣
IH

= − ∆m2
32

∣∣
NH

, which is physically consistent since it keeps

the absolute value of the largest mass splitting unchanged.

As seen, the eigenvalues that fulfill 0 ≤ m̃2
0 ≤ ∆m2

21 are λ1 and λ̄2, independently

of whether the hierarchy is normal or inverted. To distinguish these two functions, from

now on we will call them λ1 ≡ m̃2
0 and λ̄2 ≡ ˜̄m2

0. Notice that, even if both m̃2
0 and ˜̄m2

0

are bounded by ∆m2
21, they are necessarily different functions, as seen by their different

vacuum limits lim
a→0

m̃2
0 = 0 and lim

a→0
˜̄m2

0 = ∆m2
21.
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Neutrinos (a > 0) Antineutrinos (a < 0)

NH λ3 = m̃2
0 + ∆m̃2

+ λ̄3 = ˜̄m2
0 + ∆m̃2

+

(∆m2
31 > 0) λ2 = m̃2

0 + ∆m̃2
− λ̄2 = ˜̄m2

0

λ1 = m̃2
0 λ̄1 = ˜̄m2

0 + ∆m̃2
−

IH λ2 = m̃2
0 + ∆m̃2

+ λ̄2 = ˜̄m2
0

(∆m2
31 < 0) λ1 = m̃2

0 λ̄1 = ˜̄m2
0 + ∆m̃2

+

λ3 = m̃2
0 + ∆m̃2

− λ̄3 = ˜̄m2
0 + ∆m̃2

−

Table 1. Relation between the eigenvalues λi, with the convention λi
a→0−−−−→ ∆m2

i1, and the

quantities m̃2
0 and ∆m̃2

± as calculated from eq. (3.4) with the corresponding sign of a for ν/ν̄ and

the sign and value of ∆m2
31 for NH/IH. According to hierarchy, the eigenvalues are ordered from

larger to smaller. The observable ∆m̃2
ij = λi − λj can be read from the table.

3.2 The way to the vacuum limit at fixed (E, L)

The perturbation theory used in the literature to make profit of the experimental relation

∆m2
21 �

∣∣∆m2
31

∣∣ also assumes ∆m2
21 � |a|. In order to ensure that all our expressions

will reproduce the right vacuum limit, which is crucial to study the CPT-invariant limit

on ACP
αβ , we expand ∆m2

21 �
∣∣∆m2

31

∣∣ without any assumption between ∆m2
21 and a. Up

to first order in this regime, eqs. (3.1) and (3.4) reduce to

(m̃2
0)2(∆m2

31 + a)− m̃2
0[∆m2

21∆m2
31 + a∆m2

21(1− |Ue2|2) + a∆m2
31(1− |Ue3|2)] +

+ a|Ue1|2∆m2
21∆m2

31 = 0 , (3.6a)

∆m̃2
± =

1

2
(∆m2

31 + a+ ∆m2
21 − 3m̃2

0)±

± 1

2

√
(∆m2

31− a)2 + 4|Ue3|2a∆m2
31− 2(∆m2

21+ m̃2
0)(∆m2

31+ a) + 4|Ue2|2a∆m2
21 .

(3.6b)

These analytical results are shown in figure 1 for neutrinos (a > 0) and antineutrinos

(a < 0), as well as Normal (∆m2
31 > 0) and Inverted (∆m2

31 < 0) Hierarchies, and they

match perfectly the exact numerical values. Notice that the two solutions of eq. (3.6a) in

vacuum are 0, ∆m2
21. From the discussion in the previous subsection we know that the

first one corresponds to m̃2
0, which is bound by ∆m2

21 when a > 0, whereas the second one,
˜̄m2

0, is bound by ∆m2
21 when a < 0.

The appropriate expansion for ∆m̃2
± in both m̃2

0≤∆m2
21�

∣∣∆m2
31

∣∣ and |a|�
∣∣∆m2

31

∣∣ is

∆m̃2
+sign(∆m2

31) = ∆m2
31 + a|Ue3|2 − m̃2

0 . (3.7a)

∆m̃2
−sign(∆m2

31) = ∆m2
21 + a(1− |Ue3|2)− 2m̃2

0 . (3.7b)

The same expressions apply to antineutrinos changing a→ −a, m̃2
0 → ˜̄m2

0, and the depen-

dence on the Hierarchy is implicit in sign(∆m2
31), that accounts for the interchange of the

expressions ∆m̃2
±|NH ↔ ∆m̃2

∓|IH.
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Figure 1. Eigenvalues λi of the mass matrix in matter in units of ∆m2
21, for both neutrinos

(a > 0) and antineutrinos (a < 0). The horizontal axis shows both the evolution of the matter

parameter a at fixed energy (lower labels), i.e. changing the matter density, and as function of the

energy if the constant density is chosen as that of the Earth mantle (upper labels). Both the exact

(dashed) and the analytical (solid) results from eqs. (3.6) are shown to illustrate the excellence of the

analytic approximation. Normal Hierarchy (λ1 < λ2 < λ3) in the left pannel, Inverted Hierarchy

(λ3 < λ1 < λ2) in the right pannel.

The approximation of m̃2
0 and ˜̄m2

0, on the other hand, comes from neglecting ∆m2
31-

independent terms in eq. (3.6a),

m̃2
0 =

1

2

[
∆m2

21 + a(1− |Ue3|2)
]
± 1

2

√[
∆m2

21 + a(1− |Ue3|2)
]2
− 4|Ue1|2a∆m2

21 , (3.8)

where the −(+) sign corresponds to m̃2
0 ( ˜̄m2

0). In order to compare their behavior above

and below ∆m2
21, one can further expand eq. (3.8) in the two regions

m̃2
0 =



a|Ue1|2
[

1− a|Ue2|2

∆m2
21

+ · · ·

]
,

∆m2
21|Ue1|

2

1− |Ue3|2

1− ∆m2
21|Ue2|

2

a
(

1− |Ue3|2
)2 + · · ·

 ,
a� ∆m2

21 (3.9a)

∆m2
21 � a (3.9b)

˜̄m2
0 =



∆m2
21 − |a||Ue2|

2

[
1− |a||Ue1|

2

∆m2
21

+ · · ·

]
,

∆m2
21|Ue1|

2

1− |Ue3|2

1 +
∆m2

21|Ue2|
2

|a|
(

1− |Ue3|2
)2 + · · ·

 ,
|a| � ∆m2

21 (3.10a)

∆m2
21 � |a| (3.10b)

adequate when looking at the CPT-invariant (vacuum) limit or the T-invariant limit, re-

spectively. Notice that both m̃2
0 and ˜̄m2

0 converge to the same asymptotic limit in |a|
above ∆m2

21.
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At the expense of losing precision, the evolution of these parameters between the two

limits is illustrated by the approximate interpolations

m̃2
0 ≈ |Ue1|

2 a∆m2
21

a+ ∆m2
21

, ˜̄m2
0 ≈ ∆m2

21 − |Ue2|
2 |a|∆m2

21

|a|+ ∆m2
21

, (3.11)

with errors ∼ 20%, that roughly describes their behavior: their vacuum limits are m̃2
0 → 0

and ˜̄m2
0 → ∆m2

21, both vanish when ∆m2
21 goes to zero (since m̃2

0 ≤ ∆m2
21) and go to

≈ |Ue1|2∆m2
21 above ∆m2

21. Notice that first-order approximations in eqs. (3.11) reproduce

all four limits in eqs. (3.9), (3.10) if one neglects |Ue3|2 terms.

The eigenstates in eq. (3.5) up to leading order, together with the eigenvalues in

eqs. (3.7), reduce to the simple expressions

|ν̃1〉 =
1

N1

 1
m̃2

0−a|Ue1|
2

aU∗
e1Ue2

0

 , |ν̃2〉 =
1

N2


aU∗

e1Ue2

∆m2
21−m̃2

0+a|Ue2|2

1

0

 , |ν̃3〉 =

 0

0

1

 , (3.12)

valid for both hierarchies. Antineutrino eigenstates are given by

|˜̄ν1〉 =
1

N̄1

 1

−∆m2
21− ˜̄m2

0−a|Ue2|
2

aUe1U∗
e2

0

 , |˜̄ν2〉 =
1

N̄2

−
aUe1U∗

e2

˜̄m2
0+a|Ue1|2

1

0

 , |˜̄ν3〉 =

 0

0

1

 . (3.13)

These eigenstates determine the columns of the V mixing matrix between matter and

vacuum mass eigenstates, which allows us to write Ũ = UV as

Ũα1 =
1

N1

[
Uα1 +

m̃2
0 − a|Ue1|

2

aU∗e1Ue2
Uα2

]
, ˜̄Uα1 =

1

N̄1

[
U∗α1 −

∆m2
21− ˜̄m2

0−a|Ue2|
2

aUe1U∗e2
U∗α2

]
,

Ũα2 =
1

N2

[
Uα2 +

aU∗e1Ue2

∆m2
21−m̃2

0+a|Ue2|2
Uα1

]
, ˜̄Uα2 =

1

N̄2

[
U∗α2 −

aUe1U
∗
e2

˜̄m2
0 + a|Ue1|2

U∗α1

]
,

Ũα3 = Uα3 ,
˜̄Uα3 = U∗α3 . (3.14)

Since matter effects do not depend on all elements of UPMNS but only Uei, the above

expressions are simpler in the α = e case. In particular, notice that both

Ũe1 =
Ue1
N1

m̃2
0

a|Ue1|2
, ˜̄Ue2 =

U∗e2
N̄2

˜̄m2
0

˜̄m2
0 + a|Ue2|2

, (3.15)

vanish if ∆m2
21 = 0 for all a. This fact originates in the transmutation [20] of masses in

vacuum to mixings in matter, leading to the absence of genuine CP violation in matter if

∆m2
21 = 0, even though there are three non-degenerate neutrino masses.

These expressions reproduce the right vacuum limit, as seen by developing |a| � ∆m2
21,

Ũα1 = Uα1 −
a

∆m2
21

Ue1U
∗
e2Uα2 , Ũα2 = Uα2 +

a

∆m2
21

Ue2U
∗
e1Uα1 . (3.16)
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A surprising result, however, appears when assuming ∆m2
21 � |a|,

Ũα1 =
|Ue2|√

1− |Ue3|2

[
Uα1 −

Ue1
Ue2

Uα2 +
∆m2

21 Ue1

a
(

1− |Ue3|2
)2 (U∗e1Uα1 + U∗e2Uα2)

]
, (3.17a)

Ũα2 =
|Ue2|√

1− |Ue3|2

[
Uα2 +

U∗e1
U∗e2

Uα1 −
∆m2

21 U
∗
e1

a
(

1− |Ue3|2
)2 (Ue2Uα1 − Ue1Uα2)

]
, (3.17b)

showing that lim
a→0

lim
∆m2

21→0
Ũ 6= UPMNS = lim

∆m2
21→0

lim
a→0

Ũ ! This is strongly illustrated in the

case lim
∆m2

21→0
Ũe1 = lim

∆m2
21→0

˜̄Ue2 = 0 ∀a. The reason behind this subtlety is the following.

Setting ∆m2
21 = 0 in vacuum means that ν1 and ν2 are degenerate. Therefore, any two in-

dependent linear combinations of them can be chosen as basis states, which in the language

of the standard parametrization would mean that θ12 is nonphysical. Adding the matter

potential to this system breaks the degeneracy: the arbitrariness in θ12 is lost in favor of

the eigenstates of the perturbation. Since the matter term in the neutrino Hamiltonian

adds a > 0 to the e-flavor component, this fact results in ν̃1 and ν̃2 such that ν̃2 is mainly

νe, forcing the Ũe1 = 0 we obtained. The change of sign in a for the antineutrino case

forces analogously ˜̄ν1 to be mainly ν̄e, explaining the limit ˜̄Ue2 = 0.

This behavior shows that the vacuum connection should be analyzed in the regime

where |a| � ∆m2
21 �

∣∣∆m2
31

∣∣. The definite a-parity of the two components of the CP

asymmetry defined in the previous section forces the leading-order term in AT
αβ to be

independent of a, whereas ACPT
αβ is linear. To provide a precise description of ACPT

αβ in this

region, we keep |Ue3|2 terms in the leading order, as well as all linear terms in a/∆m2
21 and

a/∆m2
31 in both the mass squared differences,

∆m̃2
21 ≈ ∆m2

21−a(|Ue1|2−|Ue2|2) , ∆m̃2
31 ≈ ∆m2

31−a|Ue1|
2 , ∆m̃2

32 ≈ ∆m2
32−a|Ue2|

2 ,

(3.18)

and the mixings,

Ũα1 = Uα1 −
aUe1
∆m2

21

U∗e2Uα2 −
aUe1
∆m2

31

U∗e3Uα3 , (3.19a)

Ũα2 = Uα2 +
aUe2
∆m2

21

U∗e1Uα1 −
aUe2
∆m2

31

U∗e3Uα3 , (3.19b)

Ũα3 = Uα3 +
aUe3
∆m2

31

U∗e1Uα1 +
aUe3
∆m2

31

U∗e2Uα2 . (3.19c)

The CP asymmetry components ACPT
µe and AT

µe computed using these expressions are

represented in figure 2, compared with the exact results, for both hierarchies at fixed E

and L as functions of the matter potential.

The analytic approximations for constant AT
µe and linear ACPT

µe work well at low matter

densities, as they should, but their range of validity is much larger than expected. For the

values used in the figure, the point a = ∆m2
21 corresponds to ρ = 0.44ρE , so the previous

expansions should only work for ρ� 0.44ρE . The fact that they work reasonably well even

above ρE hints that higher-order corrections are dominated by (a/∆m2
31)2.
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Figure 2. CPT-odd (green) and T-odd (blue) components of ACP
µe as functions of the matter

density ρ in units of that of the Earth mantle, at fixed (E, L) = (0.75 GeV, 1300 km). Both

the exact (dashed) and the analytical (solid) results from eqs. (3.18), (3.19) are shown. Normal

Hierarchy in the left pannel, Inverted Hierarchy in the right pannel. The bands correspond to all

possible values changing δ in (0, 2π); the upper/central/lower lines for ACPT
µe (AT

µe) correspond to

cos δ(sin δ) = −1, 0, 1.

This surprising feature stems from the fact that corrections (a/∆m2
21)2 are inoperative

in the region |a| � ∆m2
21 �

∣∣∆m2
31

∣∣ for the ACPT
µe and AT

µe observables. This behavior is

explained by peculiar dependence on the mixings and masses of the oscillation probabilities,

as can be understood from the matter-vacuum invariants we will exploit in the following

sections for both ImJ̃ ijαβ (section 4) and ReJ̃ ijαβ (section 5). As will be discussed, they lead

to dependencies in the oscillation probabilities in eq. (2.2) on the phases associated to the

small quatities a and ∆m2
21 of the form 1

∆ sin ∆, which cancel out if both of them are small,

independently of whether |a| � ∆m2
21 or ∆m2

21 � |a|. This cancellation will happen as long

as ∆ = εL
4E � 1, for ε = a, ∆m2

21. This peculiar dependence in the oscillation probabilities

is responsible for the restoration of the commutability of the limits a→ 0 and ∆m2
21 → 0

at this level, even though they do not commute at the mixings level.

3.3 Actual experiments: fixed L in the Earth mantle and variable E

In the previous subsection we discussed the way to obtain analytic approximated expres-

sions for neutrino oscillations in matter that reproduce the right vacuum limit, i.e. the limit

when the matter parameter a→ 0 at fixed energy due to the matter density going to zero.

In the following we consider the constant value of the matter density in the Earth

mantle [21], and discuss dependencies in a as dependencies in the neutrino energy in νµ → νe
transitions. In fact, the actual best-fit value [19] for ∆m2

21 shows that the relation between

a and ∆m2
21 is given by |a| ≈ 3(E/GeV)∆m2

21, so we can use eqs. (3.14) from the previous

subsection expanding up to second order in ∆m2
21/a, with errors only ∼ 3% around 1 GeV.

As in eq. (2.2), all observable quantities can be written in terms of the rephasing-

invariant mixings J̃ ijαβ . Since Ũe1 in eq. (3.15) is a first order quantity, as we discussed, and

expanding up to second order also in |Ue3| � 1, which is of the same size than ∆m2
21/a,

we find that all J̃ ijeα can be calculated at second order in these two quantities using our
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first-order Ũαi in eqs. (3.17),

J̃13
eα =

∆m2
21

a

(
|Ue2|2J13

eα − |Ue1|
2J23
eα

)
, (3.20a)

J̃23
eα = J23

eα + J13
eα −

∆m2
21

a

(
|Ue2|2J13

eα − |Ue1|
2J23
eα

)
, (3.20b)

J̃12
eα =

∆m2
21

a

[
|Ue2|2J12

eα − |Ue1|
2J21
eα + |Ue1|2|Ue2|2

(
|Uα1|2 − |Uα2|2

)]
−
[

∆m2
21

a

]2

|Ue1|2|Ue2|2(1− |Uα3|2) . (3.20c)

However, as discussed in the previous subsection, the definite odd a-parity of the CPT

component of the CP asymmetry implies that linear terms in a/∆m2
31 are relevant to de-

scribe ACPT
αβ , so we must keep them as well. These linear terms can be easily calculated

setting ∆m2
21 → 0 in the eigenstates in eq. (3.5). Analogously, we obtain linear correc-

tions in ∆m2
21/∆m

2
31 to the previous J̃ ijαβ setting a → 0 in the eigenstates. The resulting

rephasing-invariant mixings, written in the standard parametrization for α = µ, which is

the relevant transition for accelerator experiments, are

J̃13
eµ = −

(
∆m2

21

a
+

∆m2
21

∆m2
31

)
c12c

2
13c23s12s13s23 e

iδ , (3.21a)

J̃23
eµ = −c2

13s
2
13s

2
23

(
1 +

2a

∆m2
31

)
+

(
∆m2

21

a
+

∆m2
21

∆m2
31

)
c12c

2
13c23s12s13s23 e

iδ , (3.21b)

J̃12
eµ =

(
∆m2

21

a
+

∆m2
21

∆m2
31

)
c12c

2
13c23s12s13s23 e

iδ −
[

∆m2
21

a

]2

c2
12s

2
12c

2
23 . (3.21c)

We find in the rephasing-invariant mixings of eqs. (3.21) the four observable reparametriza-

tion invariants J ≡ Jr sin δ = c12c
2
13c23s12s13s23 sin δ, R ≡ Jr cos δ, S ≡ c2

13s
2
13s

2
23 and

T ≡ c2
12s

2
12c

2
23. Notice that these are the same results found in ref. [15] after further

expanding in |a| �
∣∣∆m2

31

∣∣, as expected. Since
∣∣∆m2

31

∣∣ ≈ 33∆m2
21, it turns out that∣∣∆m2

31

∣∣ ≈ 11|a|/(E/GeV), so expanding in |a| �
∣∣∆m2

31

∣∣ around the E ∼GeV region is as

reasonable as expanding in |Ue3| � 1. All J̃ ijµe are already second order in ∆m2
21 and |Ue3|,

so we can neglect them in the oscillation arguments,

∆m̃2
21 ≈ a , ∆m̃2

31 ≈ ∆m2
31 , ∆m̃2

32 ≈ ∆m2
31 − a ,

∆ ˜̄m2
21 ≈ |a| , ∆ ˜̄m2

31 ≈ ∆m2
31 + |a| , ∆ ˜̄m2

32 ≈ ∆m2
31 . (3.22)

In this regime, the only oscillation phases are the vacuum phase ∆31 ∝ L/E and the

constant (for a given baseline through the Earth mantle)

A ≡ aL

4E
= 3.8 ∆m2

21(eV2)L(km) = 0.29
L

1000 km
. (3.23)

This value is not particularly small at long baselines, but we remind the reader that both

ACPT
µe and AT

µe have definite parity in a, the first one being odd and the second one even, as

we proved in section 2. This means that corrections to the leading order in each component

of the CP asymmetry will be quadratic in a, and so we can also expand up to leading order.
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Figure 3. CPT-odd (green) and T-odd (blue) components of ACP
µe as functions of the neutrino

energy E through the Earth mantle (of constant density) and a baseline of L = 1300 km. Both

the exact (dashed) and the analytical (solid) results from eqs. (3.25) are shown. Normal/Inverted

Hierarchy in the left/right pannel. The bands correspond to all possible values changing δ in (0, 2π);

the upper/central/lower lines for ACPT
µe (AT

µe) correspond to cos δ(sin δ) = −1, 0, 1.

In summary, the expansion quantities used are the phase A and, up to second order,

∆m2
21

∆m2
31

∼ 0.030 ,
∆m2

21

a
∼ 0.34

E/GeV
,

a

∆m2
31

∼ 0.091E/GeV , |Ue3| ∼ 0.15 . (3.24)

Taking into account the rephasing-invariant mixings (3.21), with the symmetry prop-

erty J̃ ijµe = J̃ jieµ, and the mass differences in matter (3.22), we find

ACPT
µe = 16A

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ∆21 cos ∆31) +O(A3) , (3.25a)

AT
µe = −16 Jr sin δ∆21 sin2 ∆31 +O(A2) , (3.25b)

where S≡ c2
13s

2
13s

2
23, Jr≡ c12c

2
13c23s12s13s23, A≡ aL

4E ∝L and the two ∆ij ≡
∆m2

ijL

4E ∝L/E.

From these expressions, which are precise enough to provide understanding of the physics

behind these observables, we find that AT
µe in matter is well described by its vacuum value.

Since ∆21 is small, this means that AT
µe oscillates as 1

E sin2 ∆31. ACPT
µe , which vanishes

when a→ 0, is very well described by its leading (first) order in a.

The agreement of eqs. (3.25) with the exact result is shown in figure 3, which makes

clear that, even if the value of the asymmetries in the maxima are a bit off, their position

and the general behavior are well reproduced. Therefore, eqs. (3.25) are the perfect tool to

understand the energy dependencies of the two disentangled components ACPT
µe and AT

µe

of the CP asymmetry and search for their actual experimental separation.

4 A closer look at the genuine CPV component

The last term in eq. (2.1) indicates that the Hamiltonian of our problem in the flavor basis

is proportional to the hermitian mass matrix squared in matter

2EH ≡ H ′ = M̃νM̃
†
ν . (4.1)
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In such a basis, the necessary and sufficient condition for CP invariance is [22]

Im[H ′eµH
′
µτH

′
τe] = 0 . (4.2)

For any flavor-diagonal interaction of neutrinos with matter, the last condition is equal to

that for neutrino mass matrices in vacuum. This invariance [23] of the left-hand side of

the last equation (4.2) between the CP behavior of neutrinos in vacuum and in matter has

far-reaching consequences for the observable rephasing-invariant mixings of neutrinos J̃ ijαβ

and antineutrinos ˜̄J ijαβ in matter.

The explicit calculation of the matter-vacuum invariant genuine CP violation expres-

sion for neutrinos, antineutrinos and in vacuum leads to

∆m̃2
12∆m̃2

23∆m̃2
31J̃ = ∆ ˜̄m2

12∆ ˜̄m2
23∆ ˜̄m2

31
˜̄J = ∆m2

12∆m2
23∆m2

31J , (4.3)

where J = c12c
2
13c23s12s13s23 sin δ is the rephasing-invariant CPV quantity in vacuum [24].

The proportionality of J̃ and ˜̄J to ∆m2
21 explains the absence of genuine CP violation

in matter in the limit of vanishing ∆m2
21, even in the presence of three non-degenerate

neutrinos and antineutrinos in matter. The vanishing of J̃ and ˜̄J in this limit comes from

the transmutation of masses in vacuum to mixings in matter calculated in section 3.2,

leading to Ũe1 = 0 and ˜̄Ue2 = 0. To leading order in ∆m2
21, the non-vanishing J̃ and ˜̄J

differ by linear terms in the matter potential a present in the neutrino masses in matter.

Using the analytic perturbation expansion of section 3 for the connection between

quantities in matter and in vacuum, we can write

J̃ =
∆m2

21

[
∆m2

31 + a
]

∆m2
31

[
∆m2

21 − 2m̃2
0 + a(1− |Ue3|2)

] J , a ≥ 0 , (4.4a)

˜̄J =
∆m2

21

[
∆m2

31 + a
]

∆m2
31

[
2 ˜̄m2

0 −∆m2
21 − a(1− |Ue3|2)

] J , a ≤ 0 , (4.4b)

Notice that the proportionality factors in eqs. (4.4) are neutrino energy dependent through

a, as shown in figure 4. The behavior at low/high energies can be easily understood using

the expansions at leading order of m̃2
0 and ˜̄m2

0 in eqs. (3.9), (3.10). Indeed, at low energies

J̃ ≈ J

[
1 +

a(|Ue1|2 − |Ue2|2)

∆m2
21

+
a

∆m2
31

]
> J , (4.5a)

˜̄J ≈ J

[
1− |a|(1− |Ue2|

2)

∆m2
21

− |a|
∆m2

31

]
< J , (4.5b)

the ratio increases (decreases) with respect to 1 for (anti)neutrinos independently of

sign(∆m2
31) due to ∆m2

21 �
∣∣∆m2

31

∣∣, whereas at high energies

J̃ ≈ J ∆m2
21(∆m2

31 + a)

a∆m2
31

, (4.6a)

˜̄J ≈ J ∆m2
21(∆m2

31 − |a|)
|a|∆m2

31

, (4.6b)
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Figure 4. J̃ /J ratio for both neutrinos (a > 0) and antineutrinos (a < 0). The horizontal axis

shows both the evolution of the matter parameter a at fixed energy (lower labels), i.e. changing the

matter density, and as function of the energy if the constant density is chosen as that of the Earth

mantle (upper labels). Both the exact (dashed) and the analytical (solid) results from eqs. (4.4)

are shown. Normal Hierarchy in the left pannel, Inverted Hierarchy in the right pannel.

both of them decrease roughly as 1/a, and changing the sign(∆m2
31) is equivalent to chang-

ing the sign(a), which explains why the two plots in figure 4 seem to be symmetrical.

The decreasing value of the J̃ /J ratio with higher energies described by eqs. (4.6),

i.e. when |a| � ∆m2
21, is a consequence of the absence of genuine CP violation in matter

in the limit ∆m2
21 = 0 even if there are three non-vanishing neutrino masses in matter.

The transmutation of masses in vacuum to mixings in matter forces the smallness of the

imaginary part of the rephasing-invariant mixing in matter at high energies. However, this

fact does not necessarily mean that genuine CP violation is unobservable at these energies,

since the genuine CPV component of the CP asymmetry contains this energy-dependent

factor together with the matter-dependent oscillation function —odd in L — that depends

on both energy and baseline. The effects of the baseline are shown in figure 5, comparing

the whole AT
µe as function of the energy for T2HK L = 295 km and DUNE L = 1300 km,

where it is seen that the oscillation amplitude of each of them (fixed L) decreases as 1/E,

as expected, and a higher baseline (at fixed E) enhances the values of AT
µe.

This behavior is understood with the perturbation expansion in |Ue3|2 � 1 in the

energy regime between the two MSW resonances, ∆m2
21 � |a| �

∣∣∆m2
31

∣∣, that we per-

formed in the previous section. The 1/E dependence in J̃ is changed by the approximated

oscillating functions into L/E, producing genuine CPV components of the same size at

the spectrum peak of both experiments. In fact, the matter effects in J̃ and oscillating

phases just compensate to generate in this approximation a genuine CPV asymmetry equal

to that in vacuum, i.e. eq. (3.25b). As such, it is odd in L/E, independent of a and the

Hierarchy, and proportional to sin δ.
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T2HK DUNE

Figure 5. Energy distribution of the T-odd component of ACP
µe at T2HK L = 295 km (left) and

DUNE L = 1300 km (right), which is Hierarchy independent. Both the exact (dashed) and the

analytical (solid) results from eq. (3.25b) are shown. The bands correspond to all possible values

changing δ in (0, 2π); the upper/central/lower lines correspond to sin δ = −1, 0, 1. Notice the

different energy range and scale of the asymmetry between T2HK and DUNE plots.

5 Neutrino mass ordering discrimination

Last section has demonstrated that the genuine AT
µe component of the CP asymmetry in

matter is, to a good approximation for energies —as planned in accelerator facilities—

between the two resonances ∆m2
21 � |a| �

∣∣∆m2
31

∣∣, given by the vacuum CP asymme-

try. Its information content is then crucial to identify experimental signatures of genuine

CPV. On the other hand, it has nothing to say about the neutrino mass ordering: it is

invariant under the change of sign in ∆m2
31. This simple change of sign, without changing

the absolute value
∣∣∆m2

31

∣∣, is in fact the only effect of changing the hierarchy under the

approximations leading to eqs. (3.25).

This section discusses the information on the neutrino mass ordering contained in

ACPT
µe , which is even in L and sin δ and odd in a. Propagation in matter is needed to

generate effects of the change of hierarchy and our ACPT
µe is able to separate out this

information, going beyond studies of its influence on transition probabilities [25].

There is no simple matter-vacuum relation such as eq. (4.3) to easily write ReJ̃ ijαβ as

function of the vacuum ReJ ijαβ —the most compact result following this idea is [26, 27]

∆m̃2
12∆m̃2

23∆m̃2
31∆m̃2

ij ReJ̃ ijαβ = Kij
αβ + ∆m2

12∆m2
23∆m2

31∆m2
ij ReJ ijαβ , (5.1)

where all Kij
αβ vanish in vacuum. This relation explains the dependence of all L-even terms

in the oscillation probabilities in each of the ∆̃ij phases as 1
∆̃2
ij

sin2 ∆̃ij , which is the reason

why the vacuum limit a→ 0 is restored in these observables even after taking ∆m2
21 � |a|,

as discussed in section 3. However, the Kij
αβ are complicated functions of the vacuum

quantities, and do not provide a clear insight into the behavior of ACPT
αβ , so we will use

eq. (3.25a) instead.

In general, this matter-induced component of the CP asymmetry has no definite trans-

formation properties under the change of sign in ∆m2
31. Under the approximations made in
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section 3, there are two distinct terms in ACPT
µe , a first one ACPT

− which is an odd function

of ∆m2
31 and a second one ACPT

+ which is an even function of ∆m2
31,

ACPT
µe = ACPT

− +ACPT
+ ,

ACPT
− = 16A

[
sin ∆31

∆31
− cos ∆31

]
S sin ∆31 , (5.2a)

ACPT
+ = 16A

[
sin ∆31

∆31
− cos ∆31

]
Jr cos δ∆21 cos ∆31 . (5.2b)

Notice that both terms, as well as the whole ACPT
µe , vanish simultaneously when the δ-

independent common prefactor vanishes. Alternatively, ACPT
µe vanishes δ-dependently when

these ACPT
− and ACPT

+ terms compensate each other.

As seen, the information content in ACPT
µe on the neutrino mass hierarchy is due to

ACPT
− , its dominant zeroth-order term in ∆m2

21, independent of the phase δ. In the limit

∆m2
21 → 0, our results from eq. (3.22) in section 3.3 show that the mass spectrum in matter

changes under a change of hierarchy from neutrinos to antineutrinos as

∆m̃2
21 ↔ ∆ ˜̄m2

21 , ∆m̃2
31 ↔ −∆ ˜̄m2

32 , ∆m̃2
32 ↔ −∆ ˜̄m2

31 , (5.3)

whereas the J̃ ijαβ do not change sign, so all L-even terms in the oscillation probabilities —

which are blind to the sign change in eq. (5.3)— are simply interchanged between neutrinos

and antineutrinos. As the CP asymmetry is a difference between neutrino and antineutrino

oscillation probabilities, we discover that ACPT
µe is only changing its sign under a change of

hierarchy in the vanishing limit of ∆m2
21.

TheACPT
+ term in eqs. (5.2) is appreciable only at low energies, needing a non-vanishing

∆m2
21 and then sensitive to the δ phase as a CP conserving cos δ factor. In figure 6 we

represent these two components of ACPT
µe as function of E for the baselines of T2HK and

DUNE for Normal and Inverted Hierarchies. To test the neutrino mass ordering from

ACPT
µe , we find that imposing the condition

∣∣ACPT
−

∣∣ > ∣∣ACPT
+

∣∣ in the non-oscillating (high

energy) region leads to E > 1.1E1st node. For these energies above the first node of the

vacuum oscillation probability, the whole effect of the change of sign in ∆m2
31 is an almost

odd ACPT
µe . In addition, the ACPT

− term in ACPT
µe dominates the whole CP asymmetry at

long baselines, as seen in figure 3, so the measurement of the sign of ACP
µe at these energies

fixes the hierarchy.

6 Signatures of the peculiar energy dependencies

In this section we identify those aspects of the energy distribution of the CP asymmetry that

can offer an experimental signature for the separation of its genuine and matter-induced

components. With experiments in which the fingerprint of the baseline dependence, L-odd

and L-even functions, cannot be used, the peculiar patterns of the energy distribution

provide precious information. The general trend of this dependence for L = 1300 km is

given in figure 3, showing the appearance of oscillations in the low and medium energy

regions of the spectrum with different behavior for the two components AT
µe and ACPT

µe ,

where nodes and extremal values are at different energies.
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T2HK DUNE

Figure 6. Energy distribution of the two distinct terms of ACPT
µe as defined in eqs. (5.2),

ACPT
− (green, δ-independent, hierarchy-odd) and ACPT

+ (red, cos δ-odd, hierarchy-invariant), at

T2HK L = 295 km (left) and DUNE L = 1300 km (right). Both Normal Hierarchy (solid) and In-

verted Hierarchy (dashed) shown. The bands correspond to all possible values changing δ in (0, 2π).

Notice the different energy range and scale of the asymmetry between T2HK and DUNE plots.

NH IH

Figure 7. CPT-odd (green) and T-odd (blue) components of ACP
µe as functions of the neutrino

energy E through the Earth mantle (of constant density) at T2HK baseline L = 295 km. Both

the exact (dashed) and the analytical (solid) results from eqs. (3.25) are shown. Normal/Inverted

Hierarchy in the left/right pannel. The bands correspond to all possible values changing δ in (0, 2π);

the upper/central/lower lines for ACPT
µe (AT

µe) correspond to cos δ(sin δ) = −1, 0, 1.

However, this rich structure is lost when the baseline is decreased to L = 295 km and

a threshold energy of 300 MeV is imposed. The emerging picture under these conditions is

given in figure 7 and the main conclusion is the relative suppression of ACPT
µe with respect

to AT
µe, due to its proportionality to A ∝ L. In addition, this small ACPT

µe is mainly the

δ-independent ACPT
− in eq. (5.2a) and so it can be subtracted away from the experimental

ACP
µe , if the neutrino mass hierarchy is previously known, as a theoretical background. This

would allow to separate the genuine AT
µe component.

Using the analytical approximate expressions of the observable components given in

eqs. (3.25), we perform a detailed study of the position of extremal values and zeros of each

of them, as well as their behavior around the zeros. The energy dependence is controlled by

the phase ∆31 ∝ 1/E and we will take as reference the functional form of the CP-conserving

transition probability f(∆) = sin2 ∆.
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Figure 8. Illustration of the position of the relevant zeros of ACPT
µe , given by tan ∆31 = ∆31, and

the maxima of
∣∣AT

µe

∣∣, given by tan ∆31 = −2∆31. The vertical dashed lines are the asymptotes of

tan ∆ (black), corresponding to oscillation maxima, and the perturbative solutions of the previous

equations, ∆CPT
0 = (2n + 1)π2 −

[
(2n+ 1)π2

]−1
(green) and ∆T

max = (2n + 1)π2 + 1
2

[
(2n+ 1)π2

]−1
(blue). As calculated in eq. (6.5), the δ-dependent zeros of ACPT

µe around ∆0 = nπ are bounded

within the orange regions of tan ∆. The highest-energy point, i.e. smallest ∆, where ACPT
µe vanishes

δ-independently is emphasized by the red ellipse.

For the genuine component AT
µe, the energy distribution is

fT(∆) = ∆ sin2 ∆ . (6.1)

Contrary to f(∆), the amplitude of the oscillations of fT(∆) decreases as 1/E, but the zeros

are the same ∆0 = 0, π, 2π . . . as for f(∆). There are, however, two series of extremal

values. The first kind, those corresponding to solutions of sin ∆ = 0 as for the zeros,

are double zeros, which indicates that AT
µe keeps the same sign around the zeros, and

so in the whole energy spectrum. From eq. (3.25b) it is clear that the sign is given by

sign(AT
µe) = −sign(sin δ).

The additional extremal values appear for

tan ∆ + 2∆ = 0 . (6.2)

In figure 8 we identify graphically the solutions to eq. (6.2), which appear slightly above

the oscillation maxima ∆osc
max = (2n+ 1)π2 . This is a first fortunate fact, implying that the

experimental configurations with maximal
∣∣AT

µe

∣∣ are close to those with highest statistics.

A perturbative expansion of cot ∆ around ∆osc
max leads to the approximate solutions

∆T
max = (2n+ 1)

π

2
+

1

2

[
(2n+ 1)

π

2

]−1
+ · · · , n ≥ 0

≈ π

2
+

1

π
,

3π

2
+

1

3π
,

5π

2
+

1

5π
. . . , (6.3)

which show that the interesting (see below) second and higher maxima in
∣∣AT

µe

∣∣ are within

a 3% interval above the oscillation maxima.
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In the case of the matter-induced ACPT
µe component of the CP asymmetry, the energy

distribution in eq. (3.25a) is

fCPT(∆) =

(
sin ∆

∆
− cos ∆

)(
S sin ∆ + Jr

∆m2
21

∆m2
31

cos δ∆ cos ∆

)
, (6.4)

which has two kinds of zeros with distinct implications. The vanishing condition for the

second factor are the δ-dependent solutions of

tan ∆ = −Jr
S

∆m2
21

∆m2
31

cos δ ∆ = −0.09 cos δ ∆ , (6.5)

that reduce to vacuum nodes sin ∆ = 0 if cos δ = 0, where AT
µe also vanishes. The actual

position of these zeros is strongly dependent on cos δ, and the set of solutions is illustrated

in figure 8 by the region around ∆0 = nπ where tan ∆ is orange.

The second kind of zeros in eq. (6.4) are solutions of the equation

tan ∆ = ∆ , (6.6)

and are graphically depicted in figure 8 too. As seen, they appear slightly below the

oscillation maxima in f(∆) starting from the second one, with approximate values

∆CPT
0 = (2n+ 1)

π

2
−
[
(2n+ 1)

π

2

]−1
+ · · · , n ≥ 1

≈ 3π

2
− 2

3π
,

5π

2
− 2

5π
. . . , (6.7)

which almost coincide with the maxima ∆T
max in eq. (6.3) of

∣∣AT
µe

∣∣. Not only that: these

zeros ∆CPT
0 of ACPT

µe are again near the oscillation maxima ∆osc
max = (2n + 1)π2 , so we

conclude that there are “magic energies” at these (6.7) phase values, within a 5% interval

below the corresponding oscillation maximum, in which ACPT
µe vanishes and

∣∣AT
µe

∣∣ is close

to a maximum. These magic points have additional bonuses: i) the zero of ACPT
µe is inde-

pendent of cos δ, providing no ambiguity in its position; ii) these are simple zeros, in such

a way that the sign of ACPT
µe is changing around them; iii) although

∣∣AT
µe

∣∣ is not exactly at

its maximum value when ACPT
µe = 0, the leading order deviations from ∆osc

max we calculated

show that its value is above 90%
∣∣AT

µe

∣∣
max

. A look into the derivative of fCPT(∆) shows

that the sign-change of ACPT
µe around these zeros is such that ACPT

µe is always decreasing

(increasing) around the relevant δ-independent zeros for Normal (Inverted) Hierarchy, and

opposite around δ-dependent zeros.

Taking into account the dependence in L/E of these remarkable values of the phases,

we give in table 2 the relevant energies around the second oscillation maximum for both

the baselines of the T2HK and DUNE experiments. The precise position of this energy,

which is slightly above the second oscillation maximum, is proportional to L
∣∣∆m2

31

∣∣ as

E = 0.92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2.5× 10−3 eV2 , (6.8)

which explains the absence of this rich oscillatory structure in figure 7: at the short baseline

of T2HK, all interesting points lie below the threshold energy of 300 MeV.
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∆31
L
E

(
km

GeV

) E (GeV)

T2HK DUNE

Vanishing ACPT
µe 4.50 1420 0.21 0.92

2nd Oscillation Maximum 4.71 1480 0.20 0.88

Maximum
∣∣AT

µe

∣∣ 4.82 1520 0.19 0.86

Table 2. Specific position of the first zero ∆CPT
0 in eq. (6.7), the second vacuum oscillation

maximum and the second maximum ∆T
max in eq. (6.3), corresponding to the highest-energy zero of

ACPT
µe independent of δ. For each of these three points, we show the value of the oscillation phase,

which is independent of any experimental parameter; the L/E, whose value depends linearly on

the inverse of
∣∣∆m2

31

∣∣; and the particular energy associated to this L/E for T2HK L = 295 km and

DUNE L = 1300 km. Notice that these three values of the phase ∆31 correspond to the position of

the green/black/blue dashed lines within the red ellipse in figure 8.

NH IH

Figure 9. Zoom of figure 3 at low E, showing ACPT
µe (green) and AT

µe (blue) at DUNE L = 1300 km.

This magic configuration around the second oscillation maximum is well apparent in

the results presented in figure 9 for1 L = 1300 km. One can observe that the uninterest-

ing (increasing/decreasing for NH/IH) zeros in ACPT
µe are strongly dependent on cos δ, as

seen in eq. (6.5), and their position when cos δ = 0 is that of the δ-independent zeros in

AT
µe. As understood from the previous discussion, we have identified the most relevant

δ-independent zeros (6.7) of ACPT
µe , decreasing/increasing for NH/IH, correlated to near

maximal
∣∣AT

µe

∣∣ proportional to sin δ. Due to the first-order character of this δ-independent

(and hierarchy-independent too) zero, ACPT
µe is changing sign around it.

Integrating statistics in an energy bin around this point would still result in a vanishing

fake CPV term in the experimental CP asymmetry, providing a direct test of CP violation

in the lepton sector as clean as in vacuum. As shown in figure 10, we have checked that this

is the case for an energy bin width up to 0.15− 0.20 GeV, which keeps an almost vanishing

ACPT
µe ∀δ and an almost maximal AT

µe ∝ sin δ. Such an energy resolution appears to be

1Notice that an equivalent figure could be obtained at L = 295 km for energies between 100 and 350 MeV,

with the same energy-dependence for both components of the CP asymmetry, but a relatively smaller ACPT
µe

due to its proportionality to A ∝ L.
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NH IH

Figure 10. Average value of the CPT-odd (green) and T-odd (blue) compoments of ACP
µe , at

DUNE baseline L = 1300 km, in an energy bin width ∆Ebin centered on the magic energy (6.8).

Both the exact (dashed) and the analytical (solid) results from eqs. (3.25) are shown. Nor-

mal/Inverted Hierarchy in the left/right pannel. The bands correspond to all possible values

changing δ in (0, 2π); the upper/lower lines for ACPT
µe (AT

µe) correspond to cos δ(sin δ) = −1, 1.

feasible at DUNE [28] around the second oscillation maximum, and the accumulated events

would provide enough statistical significance to the transition probability distribution.

The whole discussion in this section, which stems from the analytical expressions (3.25),

allows the reader to understand the peculiar energy distributions of the two components

of the experimental CP asymmetry. In particular, the value of the magic energy (6.8), as

well as its (in)dependence on the different oscillation parameters, is explained. This result

in the energy distribution of the experimental CP asymmetry provides a positive response

to our search of observable signatures able to separate out the genuine and matter-induced

components.

7 Conclusions

A direct evidence of genuine CP violation means the measurement of an observable odd

under the symmetry. The CP asymmetry for long baseline neutrino oscillation experiments

suffers from fake effects induced by the interaction with matter. This matter effect is,

however, welcome as a source of information for the ordering of the neutrino mass spectrum.

Based on the different transformation properties under T and CPT of the genuine and

matter-induced CP violation we have proved a Disentanglement Theorem for these two

components. In order to raise this disentanglement to a phenomenological separation of

the two components we have identified in this work their peculiar signatures from a detailed

study in terms of the experimentally accessible variables.

For a precise-enough understanding of the problem, we have developed a new analytical

perturbative expansion in both ∆m2
21, |a| �

∣∣∆m2
31

∣∣ without any assumption between

∆m2
21 and a, which we use to analyze each of the disentangled components of the CP

asymmetry, ACP
αβ = ACPT

αβ +AT
αβ , the first one (L-even) accounting for matter effects, the

second one (L-odd) being genuine.

– 22 –



J
H
E
P
1
1
(
2
0
1
8
)
0
6
3

The two components of the CP violation asymmetry for the νµ → νe transition are

shown in figure 2 as function of the interaction parameter a. They fulfill all the T and

CPT symmetry requirements proved in section 2: the CPT-odd component ACPT
αβ is an

odd function of a and vanishes linearly in the limit a → 0 for any value of the CP phase

δ, as well as being an even function of sin δ due to T-invariance. The T-odd component

AT
αβ is an odd function of sin δ that vanishes, even in matter, if there is no genuine CP

violation, as well as being even in a due to CPT-invariance, which means that its value is

that of the CP asymmetry in vacuum up to small quadratic corrections O(a/∆m2
31)2.

By analyzing the vacuum limit a → 0 both above and below the T-invariant limit

∆m2
21 → 0, some intricacies for the mixings in matter appear. If one assumes |a| � ∆m2

21,

the vacuum limit of the mixing matrix in matter will be the free PMNS matrix. On the

other hand, ∆m2
21 � |a| will force Ue1 = 0 in the vacuum limit. This different behavior

stems from the fact that setting ∆m2
21 = 0 in the vacuum Hamiltonian leads to degenerate

ν1, ν2 mass eigenstates. The two limits mentioned above correspond to breaking this

degeneracy in favor of ∆m2
21 or a, respectively, projecting onto different bases in the 12

subspace. At the level of oscillation probabilities and asymmetries, the matter-vacuum

invariant relations studied in sections 4 and 5, which involve both mixings and masses,

show that the dependence on the phases associated to the small quantities ε = a, ∆m2
21

are of the form 1
ε sin εL

4E , which cancel out if both of them are small, independently of

whether |a| � ∆m2
21 or ∆m2

21 � |a|. Therefore, the commutability of the two limits a→ 0

and ∆m2
21 → 0 is restored for the final observables.

We have searched for experimental signatures in the νµ → νe oscillation channel assum-

ing ∆m2
21 � |a|, valid for actual accelerator neutrino energies through the Earth mantle.

The definite a-parity of each component of the CP asymmetry allows us to expand in

|a| �
∣∣∆m2

31

∣∣ to leading (linear in ACPT
µe , constant in AT

µe) order, since corrections are

quadratic. For baselines and energies such that both ε = ∆m2
21, a lead to εL/4E � 1, and

taking |Ue3| � 1, we find compact expressions that faithfully reproduce the exact results,

ACPT
µe = 16A

[
sin ∆31

∆31
− cos ∆31

]
(S sin ∆31 + Jr cos δ∆21 cos ∆31) +O(A3) ,

AT
µe = −16 Jr sin δ∆21 sin2 ∆31 +O(A2) ,

where S ≡ c2
13s

2
13s

2
23, Jr ≡ c12c

2
13c23s12s13s23, A ≡ aL

4E ∝ L and ∆ij ≡
∆m2

ijL

4E ∝ L/E.

Equipped with such precise-enough analytical results, we have performed a detailed study

of the different features of these quantities, focusing especially on signatures of genuine CP

violation and hierarchy effects.

Since AT
µe is blind to sign(∆m2

31), a determination of the neutrino mass ordering must

come from regions where the hierarchy-odd (and δ-independent) term of ACPT
µe dominates,

which can only happen at long baselines due to the proportionality of ACPT
µe to A ∝ L.

Our analysis at DUNE L = 1300 km shows that this is the case for energies above the first

node of the vacuum oscillation, where the sign of the experimental ACP
µe determines the

hierarchy.

The strategy towards the measurement of genuine CP violation depends on the base-

line. At medium baselines such as T2HK L = 295 km, the CPT-odd component ACPT
µe
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is small and, for energies above the first oscillation node, dominated by its δ-independent

term. Therefore, it can be theoretically subtracted from the experimental ACP
µe , if the

hierarchy is previously known, in order to obtain the genuine component AT
µe.

At long baselines, both ACPT
µe and AT

µe are of the same order, so ACP
µe will directly

test genuine CP violation only when the CPT-odd component vanishes. We find a family

of simple zeros of ACPT
µe with decreasing/increasing slope for Normal/Inverted Hierarchy

corresponding to the solutions of tan ∆31 = ∆31. These zeros are close to the second and

higher vacuum oscillation maxima sin2 ∆31 = 1, implying that their position is independent

of δ and corresponds to a nearly maximal
∣∣AT

µe

∣∣ proportional to sin δ.

The main conclusion is thus that the magic energy around the second oscillation max-

imum is the ideal choice to find a direct evidence of genuine CP violation in the lepton

sector. This vanishing of ACPT
µe occurs at

E = 0.92 GeV
L

1300 km

∣∣∆m2
31

∣∣
2.5× 10−3 eV2 .
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