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1 Introduction and motivation

Recent years have seen a resurgence of activity in computing classical observables from
scattering amplitudes, motivated by interest in gravitational wave physics. There are many
open questions to address in understanding the space and properties of on-shell scattering
observables in both the classical and quantum regimes. One can ask, for example, what are
the roles of local vs. global observables and their relation with scattering dynamics? Do
these observables have a smooth high-energy limit?

We consider here the space of on-shell radiative observables in wave-particle scattering.
Global observables like the cross-section, impulse and angular impulse have been extensively
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studied but, despite this, a gauge-invariant definition of the angular momentum operator
was lacking until recently [1, 2]; it would be interesting to better understand its properties [3].
Furthermore, local observables1 like the differential cross-section and the waveform contain,
by definition, more information than their global counterparts. This begs the question of
whether the differential linear and angular momentum, sometimes referred to as ‘flows’ [4–
11], are proper local observables. For the former case, it was shown in [12] that the linear
momentum flow is directly related to the amplitude of the waveform. In this paper we will
show that angular momentum flow is related to the phase of the waveform.

Other observables for the wave scattering problem have been studied with modern
on-shell techniques, mostly working in the geometric optics approximation in order to
make contact with the eikonal expansion [13–17] but also beyond [12, 18, 19]. In particular
quantum long-range effects have been taken into account within an effective field theory
approach to gravity, with interesting consequences for the equivalence principle [14, 20–23].

Turning to the study of classical wave observables, one can ask i) what is their regime of
validity in the full theory, ii) how to perform a consistent resummation of results obtained in
perturbation theory and iii) how to resolve divergences when they are encountered. Recent
work on the eikonal operator has largely focused on the first two problems [24–26] in the
context of the classical two-body problem for a pair of massive point particles emitting
radiation. These questions have in particular been investigated also in the ultrarelativistic
limit where we can map the problem to the motion of one particle in the point-like background
generated by the other (i.e. a shockwave) [27–29]; see also [30–33]. Regarding the third
problem, recent work on the classical two-body problem both in electrodynamics [34, 35]
and in general relativity [24, 36–43] have shown that classical radiative observables may
fail to have a smooth high-energy limit: the radiated momentum, for example, exhibits a
power-law mass divergence in electrodynamics and a logarithmic mass divergence in general
relativity. In this context, it has been discussed in [24, 27, 28, 44, 45] how non-perturbative
effects place an upper bound on the radius of convergence of the classical expansion and
offer a potential resolution of the problem. In this paper, we elaborate more on these
questions in the simpler, and slightly different, setting of wave-particle scattering. This
has the advantage of giving a clear and intuitive picture with the benefit that all-orders
analytical results are available in the literature. In particular, we will show that our classical
radiative observables also exhibit mass singularities in the high-energy limit, analogous
to those found in the classical two-body problem, which are completely resolved not by
higher-order classical effects but only within a quantum approach.

We consider in this paper the scattering of a massive scalar field on gauge and gravita-
tional plane-wave backgrounds. Such systems have proven to be useful playgrounds for the
study of scattering observables due to the high degree of symmetry of plane waves. Working
in background field perturbation theory, arbitrarily strong plane waves can be treated
analytically and exactly, with high-order scattering amplitudes on the background now
available, see [46] for a review. The recent literature even offers all-multiplicity results [47]

1In this paper, local is synonymous with differential and refers to the dependence of observables on the
angles of the celestial sphere.
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and all-loop resummation of observables [48, 49]. The simplicity of many of these results
allows one to study both the quantum and classical regimes of wave scattering observables
in detail. Furthermore, results can be re-expanded in powers of the background, effectively
treating it as weak (which we will demonstrate is enough for our purposes), and then related
to familiar objects in standard perturbation theory in vacuum.

This paper is organized as follows. We present our conventions below. In section 2 we
describe our wave-particle scattering setup in both electrodynamics and gravity, along with
the on-shell observables of interest. We show in particular that the angular momentum
flow is a good local observable, by relating it to the phase and amplitude of the waveform.
The evaluation of our observables in electrodynamics is performed in section 3, as part of
which we highlight the role played by the Compton scattering cross section. This leads us
to confront, in section 4, the corresponding gravitational Compton cross section and its
collinear divergence. Using the KLN theorem we show that the divergence is cancelled by
forward scattering contributions, generalising the gauge theory results of [50]. This implies
that to define global observables in gravitational wave-particle scattering, one must dress
the asymptotic states to remove collinear divergences. Using the simplest choice of such a
dressing, we proceed to the evaluation of our on-shell gravitational observables in section 5.
In section 6 we analyse the high-energy behaviour of our observables. Classically, these
exhibit mass singularities in the high energy limit. We show that these singularities are
only resolved by quantum effects. We conclude in section 7.

Conventions. We set c = 1 and work in d = 4 unless stated explicitly, using lightfront
coordinates ds2 = 2dx+dx− − dxadxa where x± = 1√

2(x
0 ± x3) and a ∈ {1, 2} spans the

spatial ‘transverse’ directions. We introduce two null vectors nµ, ℓµ obeying n · ℓ = 1, n ·x =
x− (‘lightfront time’) and ℓ ·x = x+. We define δ̂n(·) := (2π)nδ(·) and d̂nq := dnq/(2π)n. In
our conventions e is the classical electromagnetic charge, α = e2/(4πℏ) is the fine structure
constant, κ is the gravitational coupling and G = κ2/(32π) is Newton’s constant.

2 Wave particle scattering in QFT

We will study the quantum and classical scattering problem for a minimally coupled massive
scalar field in a gauge or a gravitational plane-wave background. To describe the scattering
process we prepare an incoming state |in⟩ as the superposition

|in⟩ = |ψ⟩ ⊗ |β⟩ (2.1)

of a wavepacket |ψ⟩ for the massive scalar ϕ of mass m and a coherent state of photons
or gravitons |β⟩. In quantum electrodynamics (QED), we use the standard on-shell mode
expansion for the scalar ϕ and the photon field Aµ

ϕ(x) = 1√
ℏ

∫
dΦ(p)

[
a(p)e−i p·x

ℏ + b†(p)ei p·x
ℏ
]
, (2.2)

Aµ(x) =
1√
ℏ

∑
σ=±

∫
dΦ(k)

[
aσ(k)εσ∗

µ (k)e−i k·x
ℏ + a†σ(k)εσ

µ(k)ei k·x
ℏ
]
, (2.3)
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where εσ
µ(k) are photon polarisation vectors of definite helicity σ = ±1, and the Lorentz-

invariant phase space measure is

dΦ(k) ≡ d̂4k δ̂
(
k2
)
θ
(
k0
)
, dΦ(p) ≡ d̂4p δ̂(p2 −m2)θ(p0) . (2.4)

Turning to gravity, we treat general relativity (GR) as an effective field theory valid below
the Planck scale [51], and expand the metric in perturbation theory as

gµν = ηµν + κhµν , (2.5)

where the linearized graviton perturbation hµν corresponds to the quantum operator hµν , i.e.

hµν(x) =
1√
ℏ

∑
σ=±

∫
dΦ(k)

[
aσ(k)εσ∗

µν(k)e−i k·x
ℏ + a†σ(k)εσ

µν(k)ei k·x
ℏ
]
, (2.6)

with the graviton polarisation tensor εσ
µν(k) of helicity σ = ±2.

Using (2.2) we can write the incoming scalar state as

|ψ⟩ :=
∫
dΦ(p)ϕ(p)ei p·b

ℏ a†(p) |0⟩ , (2.7)

where ϕ(p) is a wavepacket and bµ is a shift of this wavepacket in position space — we
make this precise later. The incoming photon or graviton coherent state is defined as

|β⟩ := Nβ exp
(∑

σ

∫
dΦ(k)βσ(k)a†σ(k)

)
|0⟩ , (2.8)

with a†σ(k) the appropriate creation operator, βσ(k) the coherent state profile, or waveshape,
and Nβ a normalisation constant. We will choose specific waveshapes in a moment.

We are interested in the radiative observables of this scattering problem. Observables
are computed from expectation values of operators Ô in the final state |out⟩ := S |in⟩
defined by evolution with the S-matrix S;

⟨Ô⟩ := ⟨out| Ô |out⟩ = ⟨in|S†ÔS |in⟩ , (2.9)

as illustrated in figure 1. We are in particular interested in analyzing the ℏ expansion of
the expectation value (2.9) as ℏ → 0 in order to understand the properties of quantum
and classical contributions [52–57]. In practice, such expectation values are evaluated by
inserting complete sets of asymptotic states to either side of the operator, which immediately
yields an expression for the expectation value in terms of scattering amplitudes. The basis of
such states is arbitrary; a normal number state basis is natural for perturbative calculations
in vacuum, for example. We use instead a basis of “displaced number states”, defined by

11 = D(β)D†(β) = D(β)
∑

n

|n⟩ ⟨n|D†(β) , (2.10)

in which D(β) is the displacement operator which creates coherent states,2 while the sum
is, in compact notation, over number states of scalars, photons and gravitons in vacuum.
This expresses our observables in terms of scattering amplitudes on a background metric or
gauge field, which we will have use of below. To illustrate this, we turn to the backgrounds
of interest and explain how they are related to the coherent scattering states.

2Some of the key properties of D(β), like unitarity, are reviewed in [12, 58].
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Figure 1: The leading contribution to the expectation value of the operator Ô for the radi-
ation emitted by a scalar in a plane-wave background comes from the Compton amplitude.

2.1 Classical backgrounds from coherent states

Consider the expectation value of the gauge potential Aµ in QED, evaluated in the time-
evolved coherent state (2.8):

⟨β|S†Aµ(x)S |β⟩ := ⟨0|D†(β)S†Aµ(x)S D(β) |0⟩ (2.11)
= ⟨0| S†[Acl](Aµ(x) +Acl

µ (x))S[Acl] |0⟩
= ⟨0| S†[Acl]Aµ(x)S[Acl] |0⟩+Acl

µ (x) ,

in which we have used the key property that the displacement operator translates the
creation/annihilation operators by, essentially, the waveshape β(k); it therefore translates
the field operator by a classical field Aµ

cl which, from (2.3), is the on-shell Fourier transform
of the waveshape. As such the S-matrix on the classical background Aµ

cl appears:

S[Acl] := D†(βQED)SD(βQED) . (2.12)

The first term in the final line of (2.11) is the one-point function ⟨Aµ(x)⟩Acl on the background.
It is nonzero for general β but, because QED is an abelian theory, is purely quantum
mechanical, the first contribution being the one-loop ‘tadpole’ in the background Acl [59–62].
It is moreover zero for the Aµ

cl we will consider. We therefore have, in the classical limit,

⟨β|S†Aµ(x)S |β⟩
∣∣∣
ℏ→0

= Acl
µ (x) . (2.13)

It is time to specify the waveshape, equivalently the classical field, of interest: this is a
plane wave, conveniently represented by the potential

Aµ
cl(x) := −nµx

aEa(x−) , (2.14)

in which the two real functions Ea(x−) parameterise the physical electromagnetic fields of
the wave. We take these to be compactly supported, say x− ∈ [0, T ] with T > 0, which
separates the spacetime into well-defined asymptotic regions. We will not need the explicit
expression for β(k), for a discussion of which see [63].

Turning to gravity, the waveshape is chosen to describe a gravitational plane wave. In
Brinkmann coordinates this is given by [64]

hcl
µν(x) = −xaxbHab(x−)nµnν , (2.15)

– 5 –
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Figure 2: Comparison between, left, vacuum solutions such as plane-waves and, right,
point-like backgrounds. Both are generated in the classical limit ℏ → 0 by time-evolution
(indicated by the ‘blob’) from an initial state; for the plane wave this is a coherent state,
while for the point-like background it is a particle coherently emitting photons/gravitons.

where the vacuum equations require Hab to be a symmetric, traceless 2× 2 matrix. We take
this to be compactly supported in x−, as we did in QED. The relation to coherent scattering
states is, though, more subtle than in QED. The expectation value of the graviton field
hµν(x) between time-evolved coherent states of gravitons is, proceeding as in (2.11),

⟨β|S†hµν(x)S |β⟩ = hcl
µν(x) + ⟨0| S†[hcl]hµν(x)S[hcl] |0⟩ , (2.16)

and the S-matrix on the background hcl
µν(x) is now S[hcl] := D†(βGR)SD(βGR).

Due to the self-interaction of the gravitational field, the one-point function ⟨hµν(x)⟩hcl

in a background is generally non-vanishing, even classically. Here the symmetries of the
gravitational plane-wave come into play: for this geometry there is no particle production [65],
as can be shown by a direct calculation [66]. We therefore obtain, as desired,

⟨β|S†hµν(x)S |β⟩
∣∣∣
ℏ→0

= −xaxbHab(x−)nµnν . (2.17)

Plane waves are, in both gravity and electromagnetism, highly symmetric vacuum solutions
with five isometries in d = 4, corresponding to invariance under three translations and
two boosts in null directions [67–69]. This high degree of symmetry will allow us to give
compact and revealing expressions for scattering observables. Let us compare briefly with
point-like backgrounds, which arise from the S-matrix time evolution of external particles
coupled to gauge or gravitational fields in the classical limit [70], see figure 2. Usually,
these calculations require one to consider the perturbative evaluation of the three-point
function with two external particles and one messenger, which has to be considered off-shell
in Lorentzian signature. In particular, in QED and GR we define point-like backgrounds as

Acl
µ := ⟨p|S†Aµ(x)S |p⟩

∣∣∣
ℏ→0

, hcl
µν := ⟨p|S†hµν(x)S |p⟩

∣∣∣
ℏ→0

, (2.18)

where |p⟩ is the external on-shell scalar state and the domain of the field operators Aµ(x) and
hµν(x) is extended to include off-shell contributions, as in the standard Schwinger-Keldysh
formalism. At any order in perturbation theory, this defines an effective classical source
which generates the gauge potential or metric in the classical theory via time evolution:

– 6 –
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relevant solutions like Coulomb, Schwarzschild and shockwave metrics are all generated by
this procedure, see e.g. [71–74]. This provides an alternative way to generate a relevant
class of gauge potentials or classical metrics in gravity, directly from scattering amplitudes
with external particles or waves [70, 75, 76].

2.2 On-shell wave observables: from global to local

We introduce now the set of global and local observables for wave-particle scattering that
we will later compute in sections 3 and 5. Natural global observables are the scattering
cross-section, or scattering probability. Other global observables are the total momentum
and angular momentum, in particular their change due to a scattering process. The
total radiated momentum takes the same form in electromagnetism and gravity, being the
expectation value of the operator

Kµ :=
∑
σ=±

∫
dΦ(k) kµa†σ(k)aσ(k) , (2.19)

for the appropriate choice of photon or graviton mode operators.
A gauge-invariant expression for the total angular momentum was recently provided

by [1, 2]; in QED the angular momentum operator for the gauge field is3

Jµν
QED :=

∑
σ=±

∫
dΦ(k)εα

σ(k)a†σ(k)
[
(JQED)µν

αβ

]
ε∗β

σ (k)aσ(k) , (2.20)

where the mode operators aσ(k) and a†σ(k) are regarded as a function of kµ and

(JQED)µν
αβ = −iηαβk

[µ
↔
∂

∂kν]
− iδ[µ

α δ
ν]
β . (2.21)

For gravitons the relevant operator is similar, up to polarisation structure:

Jµν
GR =

∑
σ=±

∫
dΦ(k)εαα′

σ (k)a†σ(k)
[
(JGR)µν

αα′ββ′

]
ε∗ββ′

σ (k)aσ(k) , (2.22)

in which

(JGR)µν
αα′ββ′ = −iηαβηα′β′k[µ

↔
∂

∂kν]
− 2iηα′β′δ[µ

α δ
ν]
β . (2.23)

We turn to local observables. Just as we can consider, e.g. the differential rather than
total cross-section, we can construct local observables as the differential analogues of the
global observables above, when they are well-defined. For example, a detector placed in
a particular direction v̂ on the celestial sphere gives access to the angular dependence
of observables related to outgoing particles and radiation. The ‘waveform’ is a common
example [12]: it is a proper local observable which can be computed as the leading on-shell
component of the radiation field at large distances.

3Out conventions are that A[µBν] = AµBν −AνBµ, while
←→
∂ = 1

2 (
−→
∂ −

←−
∂ ).
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The local analogues of the total momentum and angular momentum are the momentum
and angular momentum ‘flow’, recently discussed for scalar, vector and tensor radiative
fields in [77]. These are trivially obtained from (2.19)–(2.22) by inserting a delta-function
under the integrals which selects out the direction of interest. Thus the momentum flow,
which we denote by PPµ, is

PPµ =
∑
σ=±

∫
dΦ(k) δ̂2(Ω− Ωv̂) kµa†σ(k)aσ(k) , (2.24)

with, as above, the appropriate choice of mode operator for electrodynamics or gravity, and
Ω denotes the angular measure. The momentum flow has been connected to the amplitude
of the waveform in [12], confirming that PPµ is a well-defined, IR finite, observable.

This naturally prompts the question, what about the phase of the waveform? To
address this, we introduce the local analogue of Jµν , the angular momentum flow NN µν :

NN µν
QED =

∑
σ=±

∫
dΦ(k) δ̂2(Ω− Ωv̂) εα

σ(k)a†σ(k)
[
(JQED)µν

αβ

]
ε∗β

σ (k)aσ(k) , (2.25)

NN µν
GR =

∑
σ=±

∫
dΦ(k) δ̂2(Ω− Ωv̂) εαα′

σ (k)a†σ(k)
[
(JGR)µν

αα′ββ′

]
ε∗ββ′

σ (k)aσ(k) . (2.26)

We will now give a new and direct connection between the angular momentum flow and the
phase of the waveform. We make this connection in the classical limit, where on general
grounds one expects the outgoing radiation created in a scattering process to be described by
a coherent state4 [25, 26, 81], except possibly for static zero-energy contributions [26, 82–84].
Let the corresponding wave-shape for this state be γσ to distinguish it from our incoming
state βσ. Beginning in QED, we consider the coherent state

|γ⟩QED = Nγ exp
(∑

σ

∫
dΦ(k) γσ(ω, ωk̂)a†σ(k)

)
|0⟩ , (2.27)

and split the waveform into a basis {vµ,v̄µ,mµ,m̄µ} where vµ,v̄µ are null, vµ = (1, v̂)
with v̂ the direction in which we measure the local observable, and mµ,m̄µ are spacelike,
corresponding to a basis of polarisation vectors. We then identify two scalar projections of
the waveform in this basis, and decompose them into real amplitudes A± and phases δ± as

A±(ω, ωv̂)eiδ±(ω,ωv̂) := mµε∗(±)
µ (v̂)γ(±)(ω, ωv̂) . (2.28)

In terms of these, the expectation value of the linear momentum flow is indeed expressed in
terms of the amplitude [12],

⟨γ| PPµ |γ⟩QED =
∑
σ=±

∫
dΦ(k)δ̂2(Ω− Ωv̂) kµ|Aσ(ω, ωv̂)|2 (2.29)

=
∑
σ=±

∫ dω ω
4π ωnµ|Aσ(ω, ωv̂)|2 ,

4The general quantum case can be treated by making use of a superposition of coherent states, and the
arguments in this section can be generalised to that case using the Glauber-Sudarshan P-representation [78,
79], see [80] for related comments in the context of back-reaction.
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Theory Global radiative observables Local radiative observables

QED σ,Kµ
QED,J

µν
QED

dσ
dΩ ,PP

µ
QED,NN

µν
QED

GR σ,Kµ
GR,J

µν
GR

dσ
dΩ ,PP

µ
GR,NN

µν
GR

Table 1: Summary of the on-shell global and local radiative observables of interest.

while the angular momentum flow becomes

⟨γ| NN µν |γ⟩QED =
∑
σ=±

∫
dΦ(k)δ̂2(Ω− Ωv̂)εα

σ(k)γ∗σ(k)
[
(JQED)µν

αβ

]
ε∗β

σ (k)γσ(k) (2.30)

=
∑
σ=±

∫ dω ω
4π |Aσ(ω, ωv̂)|2

[
k[µ∂δσ(k)

∂kν]
− iε[µ

σ (k̂)ε∗ν]
σ (k̂)

] ∣∣∣∣∣
k̂=v̂

.

This shows that, at least in the classical limit, knowledge of the amplitude and the phase of
the waveform is enough to completely determine the momentum and angular momentum
flows, and it provides a new connection between these observables on the celestial sphere.
We simply state the corresponding expression for gravity in terms of the analogue of (2.28):

⟨γ| NN µν |γ⟩GR =
∑
σ=±

∫ dω ω
4π |Aσ(ω, ωv̂)|2

[
k[µ∂δσ(k)

∂kν]
− 2iηαβε

α[µ
σ (k̂)ε∗ν]β

σ (k̂)
] ∣∣∣∣∣

k̂=v̂

. (2.31)

We conclude this section with a comment on the gauge invariance of local observables. The
linear momentum flow is trivially gauge-invariant since it does not explicitly depend on the
polarisation vectors, while the angular momentum flow requires some work. For QED, a
gauge transformation εµ

σ(k) → εµ
σ(k) + ξkµ generates the following additional contribution

to the angular momentum flow:

∆ξNN µν
QED = 1

2ξ
∑
σ=±

∫
dΦ(k) δ̂2(Ω− Ωv̂)a†σ(k)

[
kαk

[µ∂ε
∗α
σ (k)
∂kν]

+ k[µε∗ν]
σ (k)

]
aσ(k) (2.32)

+ 1
2ξ
∑
σ=±

∫
dΦ(k) δ̂2(Ω− Ωv̂)a†σ(k)

[
kαk

[µ∂ε
α
σ(k)
∂kν]

+ ε[µ
σ (k)kν]

]
aσ(k) .

One might suspect that integration-by-parts would kill these terms, but we cannot use this,
as the integral is implicitly absent, being removed by the delta-function. Instead we observe
that transversality of the polarisation vectors, k · εσ(k) = 0 implies the useful identity

∂

∂kµ
(k · εσ(k)) = 0 =⇒ kα

∂εα
σ(k)
∂kµ

= −εµ
σ(k) . (2.33)

Inserting this into (2.33) we immediately find, as desired, that ∆ξNN µν
QED = 0. A straightfor-

ward calculation similarly confirms the gauge invariance of NN µν
GR.

Table 1 summarise the observables to be considered.
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Figure 3: We study the quantum and classical radiative observables for the wave emitted
during the interaction of the massive scalar field, identified with the trajectory from i− to
i+, and the plane-wave background represented by the tightly-spaced wiggly lines.

3 Wave scattering observables in quantum electrodynamics

The scattering process of interest is illustrated in figure 3: the massive field enters (resp.
leaves) the wave at the lightfront time n · x = 0 (resp. n · x = T ), emitting radiation whose
properties we wish to study. We define the scalar wavepacket such that bµ is its center at
lightfront time n · x = 0; in the classical limit, this will essentially become the position
of the scalar when it hits the wave.5 In this section, we will compute the wave scattering
observables discussed in section 2 in quantum (and classical) electrodynamics at leading
order in the perturbative expansion.

Before doing so, it is worth discussing the relevant length scales in the problem. The first
is given by the electron radius re = e2/(4πm), which controls the weak coupling expansion.
The natural length scale of quantum effects is the Compton wavelength λC = ℏ/m. A third,
classical, length scale, emerges from the observation that, for a field of typical wavenumber
k̄ = ω̄n (localised along the nµ direction), ω̄ n · p = k̄ · p is the invariant product of particle
energies. Hence ω̄ n · p/m is the invariant wave frequency seen by the particle in its rest
frame, and the corresponding classical length scale is λ = m/(ω̄ n · p). In contrast to the
Compton wavelength, this goes like the mass, λ ∼ m. Summarizing, we have

re = e2

4πm , λC = ℏ
m
, λ = m

ω̄ (n · p) . (3.1)

For the calculation of quantum observables, we simply assume

re ≪ λC , λ (3.2)
5As such, bµ does not have the same interpretation as the impact parameter in classical 2 → 2

scattering [57].
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while for classical observables we will impose the hierarchy

re ≪ λC ≪ λ . (3.3)

3.1 Differential cross section

Natural observables in 2 → 2 and 1 → n scattering in vacuum are, respectively, the
cross-section and decay rate. A natural observable in 1 → n scattering on a plane wave
background is the total scattering probability [46]. We discuss this probability here, in
particular its relation to the cross-section of Compton scattering in vacuum. Making this
connection is important because the different behaviour of the cross-sections in QED and
gravity has consequences (discussed in section 4) for other observables.

The three-point amplitude A3 = ⟨p′; kσ|S[Acl] |ψ⟩ for photon emission on the plane
wave background is [46, 85]

A3 =
∫
dΦ(p)ϕ(p)eib·pδ̂(n · (p′ + k − p))δ̂2

⊥(p′ + k − p)I3(p, kσ) , (3.4)

in which the nontrivial part of the amplitude is, up to an irrelevant phase,

I3(p, kσ) = 2e
∫ T

0
dx− n · (p− k) exp

[
i

∫ x−

0
ds k · P (s)
n · (p− k)

]
∂

∂x−

[
εσ(k) · P (x−)
k · P (x−)

]
, (3.5)

where the ‘dressed momentum’ Pµ(x−) is

Pµ(x−) = pµ − eAµ(x−) + nµ
2eA(x−) · p− e2A2(x−)

2n · p
, Aµ(x−) :=

∫ x−

−∞
dy δb

µEb(y) .

(3.6)
The amplitude (3.5) is manifestly all-orders in the coupling to the background ∼ eE. The
spacetime integral over x− in (3.5) cannot be performed exactly in general. Gauge invariance
is manifest — the integrand vanishes identically if εσ(k) is replaced by k [86]. Mod-squaring
and summing over final states yields the total scattering probability

PQED =
∫
dΦ(p) |ϕ(p)|2

∑
σ

∫
dΦ(k) 1

2(n · p)
|I3(p, kσ)|2

2n · (p− k) . (3.7)

All dependence on bµ drops out. Under the usual assumption that the wavepacket is strongly
peaked around a given momentum it can be integrated out — the effect is simply to set
everything preceding the sum in (3.7) to unity.

The phenomenology of the differential probability (essentially the emission spectrum),
is very rich due to its all-orders nature [46], and has been probed in various experiments [87–
89]. Though we return to some all-orders results below, we restrict for the remainder of
this section to leading-order perturbative results, in which the connection to the Compton
cross-section is buried. Expanding the amplitude (3.4) in e, the tree-level contribution is

A(0)
3,σ = ie2

∫
dΦ(p)ϕ(p)eib·pδ̂(n · (p′ + k − p))δ̂2

⊥(p′ + k − p) (n · (p− k)) (3.8)

× 2
∫ T

0
dx− e

i k·p
n·(k−p) x− (εσ(k) · p) x ra − (k · p)εa

σ(k)
k · p

Aa(x−) ,
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in which we have parameterised the outgoing photon momentum by its lightfront momentum
fraction x, and a transverse two-vector r⊥ defined by

x := n · k
n · p

, r⊥ := k⊥ − xp⊥
x . (3.9)

Eq. (3.8) has the interpretation of a Compton-scattering amplitude, in which the incoming
photon is directed along the plane-wave. To this order in perturbation theory, the background
profile enters essentially as a wavepacket for this photon.

Squaring up, one finds that the (differential and) total probability (3.7) takes the
simplest form when parameterised in terms of the variables (3.9). It will be important to
understand the physical content of r⊥. To do so define the null Lorentz boost

Λµν = exp
( 1
n · p

n[µδ
a
ν]pa

)
, (3.10)

which, acting on any on-shell qµ, shifts the transverse momenta as q⊥ → q⊥ − (n · q/n · p)p⊥,
while leaving n · q unchanged. In particular, the boost kills the transverse momenta in pµ

and leaves the plane wave vector nµ invariant, thus (3.10) takes us to the frame in which
the wave-particle collision is head-on, and the photon has momentum degrees of freedom
n · k and k⊥ − xp⊥, equivalently x and r⊥. With our conventions the plane wave travels in
the negative z-direction, so we define, along with an azimuthal angle ϕ, a polar angle θ
measured from the south pole, such that θ = 0 corresponds to propagation collinear with
the wave. One finds

r⊥ =
√
2(n · p) sin θ
1− cos θ (cosϕ, sinϕ) , (3.11)

showing that r⊥ describes two angular degrees of freedom, with θ a boosted generalisation
of the scattering angle in the ‘lab’ frame, in which the collision would be head on. The
calculation from here is straightforward; the leading order scattering probability is

PQED →
∫ ∞

0

dω
πω

|Ea(ω)|2
∫ 1

−1
d(cos θ) πα2(1 + cos2 θ)

m2(1 + ν(1− cos θ))2 , (3.12)

in which the dimensionless frequency ν is

ν ≡ ν(ω) := ωn · p
m2 (3.13)

and the Fourier transform of the electric field is

Ea(ω) :=
∫ T

0
dx−eiωx−

Ea(x−) . (3.14)

We recognise the final factor in (3.12): it is the textbook differential Compton cross-section,

1
2π

dσQED(ν, θ)
d cos θ = α2(1 + cos2 θ)

2m2(1 + ν(1− cos θ))2 , (3.15)

and so our (total or differential) scattering probability is given by the frequency convolution
of the (total or angular-resolved) cross section with the wave profile:

PQED =
∫ ∞

0

dω
πω

|Ea(ω)|2
∫ 1

−1
d(cos θ)dσQED(ν, θ)

d cos θ . (3.16)
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3.2 The momentum flow PPµ
QED and the total momentum Kµ

QED

The total radiated momentum produced in the wave scattering process is

⟨Kµ⟩QED =
∑

σ

∫
dΦ(k)dΦ(p′)kµ|A(0)

3,σ|
2 . (3.17)

Inserting the amplitude (3.8) we find

⟨Kµ⟩QED = α2
∫ T

0
dx−dy−

∫ 1

0
dx x2

1− x

∫ ∞

0
dr r (3.18)

× (Aa(x−)Aa(y−))e
ix(m2+r2)
2n·p(1−x) (x−−y−) 16π3 (m4 + r4)

(n · p)2 (m2 + r2)2 p̃
µ

where we have defined

p̃µ :=
(
n · p, p

2
⊥ + r2

2n · p
, p⊥

)
. (3.19)

Fourier transforming the fields simplifies the r-dependence of the integrand, allowing the dr
integral to be performed exactly. The final result can be written, as for the cross-section, as
an integral over the frequency of the wave profile:

⟨Kµ⟩QED = α2
∫ +∞

0
dω |Ea(ω)|2

[
pµF 1

K,QED(ν(ω)) + nµF 2
K,QED(ν(ω))

]
(3.20)

where the ‘form factors’ F j are functions of the dimensionless frequency ν in (3.13)

F 1
K,QED(ν) =

8π3(n · p)
ν4m4

[
2ν(ν + 1)(2ν(ν + 4) + 3)

(2ν + 1)2 − (2ν + 3) log (2ν + 1)
]
, (3.21)

F 2
K,QED(ν) =

8π3(ν + 1)
ν4m2

[
3 log (2ν + 1) + 2ν(ν + 1)(2(ν − 3)ν − 3)

(2ν + 1)2

]
.

To take the classical limit we assume the wavepacket ϕ(p) to be peaked around some classical
4-momentum pµ, and we restore the ℏ dependence of all quantities, expressing the emitted
photon momentum kµ in terms of wavenumber k̄µ as kµ = ℏk̄µ. From the discussion of
length scales, recall (3.3), we identify the ratio of scales for the classical expansion as6

ν = λC

λ
= ℏω̄n · p

m2 ≪ 1 . (3.22)

The classical radiated momentum is then found as

⟨Kµ⟩QED
∣∣∣
ℏ=0

= (4π)3α2
cl
(n · p)
3m4 pµ

∫ ∞

0
dω̄ |Ea(ω̄)|2 , (3.23)

in which the ‘classical coupling’ is

αcl =
e2

4π , (3.24)

6Strictly, one should perform the frequency integrals in order to properly compare terms in the expansion,
but this will just have the effect of replacing ω̄ with some fixed classical frequency characterising the field.
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with no factor of ℏ. As expected, both the quantum and classical radiated momentum
depends only on the absolute value of the electric field strength.

We now consider the radiated momentum flow, which is given at by

⟨PPµ⟩QED =
∑

σ

∫
dΦ(k)δ̂2(Ω− Ωv̂) kµ

∫
dΦ(p′)|A(0)

3,σ|
2 . (3.25)

In order to simplify the geometry, we work in the frame where p⊥ = 0 so that r⊥ = k⊥ and
we can identify the direction v̂ on the celestial sphere with spherical coordinates with the
natural angles introduced in (3.11). In particular, we can define a new vector Rµ which is
completely determined by the location of the detector v̂ ↔ (ϑ, φ), and in terms of which
localized observables are naturally expressed:

R⊥ =
√
2(n · p) cot

(
ϑ

2

)
(cos(φ), sin(φ)) , (3.26)

R+ = p⊥ ·R⊥

(n · p) + |R⊥|2 −m2

2(n · p) , n ·R = 0 .

A direction calculation yields

⟨PPµ⟩QED = α2 8π2 |R⊥|4

(n · p) (|R⊥|2 +m2)2 (p
µ +Rµ) (3.27)

×
∫ +∞

0
dω 1

(|R⊥|2 + (2ν(ω) + 1)m2)3

×
{
(|R⊥|4 +m4)|Ea(ω)|2 − 2m2|R⊥|2

[
cos(2φ)(|E1(ω)|2 − |E2(ω)|2)

+ sin(2φ)(E1(ω)E∗
2(ω) + E∗

1(ω)E2(ω))
]}
.

As for the differential cross-section, the momentum flow carries information about the
angular dependence of the emitted radiation. In particular, there is not only a term
dependent on the strength |E1(ω)|2 + |E2(ω)|2 of the electric field but also contributions
related to the single components E1(ω), E2(ω). The classical limit of (3.27) is

⟨PPµ⟩QED
∣∣∣
ℏ=0

=α2
cl

8π2 |R⊥|4

2(n·p)(|R⊥|2+m2)5 (p
µ+Rµ) (3.28)

×
∫ +∞

0
dω̄
{
(|R⊥|4+m4)|Ea(ω̄)|2−2m2|R⊥|2

[
cos(2φ)(|E1(ω̄)|2−|E2(ω̄)|2)

+sin(2φ)(E1(ω̄)E∗
2(ω̄)+E∗

1(ω̄)E2(ω̄))
]}
.

3.3 The angular momentum flow NN µν
QED and the total angular impulse Jµν

QED

The radiated angular momentum can be computed from the definition

⟨Jµν⟩QED = ⟨inQED|S†Jµν
QEDS |inQED⟩ (3.29)

=
∫
dΦout

∑
σ

∫
dΦ(k)⟨inQED|S†εα

σ(k)a†
σ(k) |out⟩(JQED)µν

αβ ⟨out|ε∗β
σ (k)aσ(k)S |inQED⟩

=−i
∫
dΦ(p′)

∫
dΦ(k)ηαβΠαξ ⟨inQED|S† |out⟩ξ

(
k[µ ∂

∂kν]

)
Πβζ ⟨out|S |inQED⟩ζ

−i
∫
dΦ(p′)

∫
dΦ(k)δ[µ

α δ
ν]
β Παξ ⟨inQED|S† |p′,k⟩ξ Π

βζ ⟨p′,k|S |inQED⟩ζ ,
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where we have defined the matrix elements stripped of their polarisation vectors〈
p′, k

∣∣S |inQED⟩ =: εξ(k)
〈
p′, k

∣∣S |inQED⟩ξ , (3.30)

and the light-cone projector

Παξ := −ηαξ + kαnξ + kξnα

k · n
. (3.31)

At leading order, (3.29) becomes

⟨Jµν⟩QED = −i
∫
dΦ(p′)

∫
dΦ(k) (3.32)

×
{(

Παξ ϕ
∗(p′ + k)e−i

b·(p′+k)
ℏ

2n · (p′ + k) A∗(0)
3,ξ

)(
k[µ

↔
∂

∂kν]

)(
Π ζ

α

ϕ(p′ + k)ei
b·(p′+k)

ℏ

2n · (p′ + k) A(0)
3,ζ

)

+ δ[µ
α δ

ν]
β

|ϕ(p′ + k)|2

4(n · (p′ + k))2 (Π
αξA∗(0)

3,ξ )(ΠβζA(0)
3,ζ)
}
,

which can now be explicitly evaluated with the amplitude in (3.8). As expected from (3.32),
the classical bµ dependence is factored out, and therefore ⟨Jµν

QED⟩ contains a term

⟨Jµν⟩QED ⊃ b[µ⟨Kν]⟩QED . (3.33)

We therefore obtain

⟨Jµν⟩QED = α2
∫ ∞

0
dω
[
|Ea(ω)|2

(
F 1

J,QED(ν(ω)) b[µpν] + F 2
J,QED(ν(ω)) b[µnν]

)
(3.34)

+ F 3
J,QED(ν(ω))(E2(ω)E∗

1(ω)− E1(ω)E∗
2(ω))iϵµναβnαpβ

]
,

in terms of the form factors

F 1
J,QED(ν) =

1
2F

1
K,QED(ν) , F 2

J,QED(ν) =
1
2F

2
K,QED(ν) , (3.35)

F 3
J,QED(ν) =

16π3(1 + ν)
m4ν4(1 + 2ν) ((2ν + 1) log ((2ν + 1))− 2ν(ν + 1)) .

It is worth noting that, provided bµ is only transverse so that b− = b+ = 0, only the
components ⟨Jab

QED⟩ and ⟨J+a
QED⟩ are non-vanishing at this order. The first contribution

in (3.34) is related to the standard “mechanical” angular momentum due to the position and
momentum of the scalar emitting radiation (see (3.33)). The latter term is more interesting

— it is orthogonal to both the scalar momentum pµ and the plane wave direction nµ — and
it represents a genuine spin-orbit contribution. The classical limit gives

⟨Jµν⟩QED
∣∣∣
ℏ=0

= α2
cl(4π)3 (n · p)

3m4 b[µpν]
∫ +∞

0
dω̄ |Ea(ω̄)|2 (3.36)

− α2
cl
(4π)3iϵµναβnαpβ

3m2(n · p)

∫ +∞

0
dω̄ (E2(ω̄)E∗

1(ω̄)− E1(ω̄)E∗
2(ω̄))

ω̄
.
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We now turn our attention to the angular momentum flow, working in the same frame
p⊥ = 0 as for the momentum flow. We expect that in our geometry the dependence on the
wavefunction position will be of the form

⟨NN µν⟩QED ⊃ b[µ⟨PPν]⟩QED , (3.37)

as we showed for the global analogues in (3.33). A straightforward calculation then gives

⟨NN µν⟩QED =α2 8π2|R⊥|6iϵµναβ

(n·p)2 (m2+|R⊥|2)2

[
pαRβ+

m6+|R⊥|6

2m4(n·p) Rαnβ+
m2(m2+|R⊥|2)
2|R⊥|2(n·p) pαnβ

]

×
∫ +∞

0
dω (E1(ω)E∗

2(ω)−E2(ω)E∗
1(ω))

ω ((2ν+1)m2+|R⊥|2)2 +b[µ⟨PPν]⟩QED , (3.38)

where a more involved tensor structure appears: on top of the mechanical-type of angular
momentum contribution due to the radiated momentum flow, there are new non-zero
components compared to the global contribution. In particular, the components ⟨NN ab

QED⟩,
⟨NN+a

QED⟩ and ⟨NN−b
QED⟩ are all non-vanishing at this order. The classical limit of (3.38) yields,

⟨NN µν⟩QED

∣∣∣∣
ℏ=0

=α2
cl

8π2|R⊥|6iϵµναβ

(n·p)2 (m2+|R⊥|2)4

[
pαRβ+

m6+|R⊥|6

2m4(n·p) Rαnβ+
m2(m2+|R⊥|2)
2|R⊥|2(n·p) pαnβ

]

×
∫ +∞

0
dω̄ (E1(ω̄)E∗

2(ω̄)−E2(ω̄)E∗
1(ω̄))

ω̄
+b[µ⟨PPν]⟩QED

∣∣∣∣
ℏ=0

. (3.39)

4 Gravitational Compton cross-section and the KLN theorem

Our gravitational observables are expectation values built from a scattering probability,
which is closely related to the cross-section of gravitational Compton scattering. This cross
section is however divergent at forward scattering, with dσGR/dΩ ∼ 1/θ4 [90, 91]. The
same issue arises in gauge theories, including massless QED.7 Here the KLN theorem, a
hallmark of unitarity in QFT, is widely used to define infrared-safe observables by summing
over a complete set of degenerate configurations [95] (see also [96]).

The importance of the collinear divergence in gravitational Compton scattering cannot
be overstated: it is a thorny issue for the gravitational S-matrix bootstrap in d = 4, ultimately
related to the t-channel pole of the four-point amplitude [97]. In this section, we therefore
begin by recovering the standard tree-level Compton amplitude and the corresponding cross-
section. We then show that the collinear singularity can only be resolved by summing over
forward scattering diagrams, consistent with S-matrix unitarity and generalising the results
of [50] from gauge theory to gravity. We will subsequently address the consequences of this
result for the definition of global observables in the scattering of particles on gravitational
plane-wave backgrounds.

7We remark that mixed photon/graviton Compton processes are also divergent at forward scattering,
see [91] as well as [92–94].
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Figure 4: The tree-level gravitational Compton amplitude is given by the sum of 4 diagrams,
where the t-channel contribution (bottom left) is relevant for the collinear divergence.

4.1 Conventional contribution from the tree-level amplitude

Using a field redefinition and an improved gauge fixing, an efficient framework for both tree
and loop-level perturbative quantum gravity calculations with a minimally coupled scalar
was provided in [98]. We adopt this approach here. The relevant fields are the scalar ϕ, the
graviton h and the ghosts χ, χ̄. The Lagrangian takes the form

L(h, ϕ, χ, χ̄) = Lgrav(h) + Lmatter(h, ϕ) + Lghost(h, χ, χ̄) , (4.1)

where, up to the order we are interested in,

Lgrav(h) = Lhhh + Lhhhh + Lhhhhh +O(κ4) , (4.2)
Lmatter(h, ϕ) = Lϕϕh + Lϕϕhh + Lϕϕhhh +O(κ4) ,

Lghost(h, χ, χ̄) = Lχ̄χh + Lχ̄χhh +O(κ3) .

We refer the reader to appendix A for the explicit form of the propagator and interaction
vertices; we focus here on the calculation itself. The tree-level gravitational Compton
amplitude for minimally coupled scalars is given by the sum of s, t, u channel contributions,
and the contact term, as illustrated in figure 4. We therefore obtain from the Lagrangian
above (see also [90, 91])

M(0)
4 (p1,k

σ1
1 ;p2,k

σ2
2 )= 16πG (p1 ·k1)(p1 ·k2)

k1 ·k2
(4.3)

×
[

(εσ1
1 (k1)·p1)(ε∗σ2

2 (k2)·p2)
p1 ·k1

− (εσ1
1 (k1)·p2)(ε∗σ2

2 (k2)·p1)
p1 ·k2

− ε∗σ2
2 (k2)·εσ1

1 (k1)
k1 ·k2

]2
,

where p1 (p2) is the incoming (outgoing) momentum of the massive particle while k1 (k2)
is the incoming (outgoing) graviton momentum. Defining |M(0)

4 |2 to be the spin-averaged
square of the tree-level amplitude, i.e.

|M(0)
4 |2 ≡ 1

2
∑

σ1,σ2=±2
|M(0)

4 (p1, k
σ1
1 ; p2, k

σ2
2 )|2 , (4.4)
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Figure 5: The conventional contribution to the cross-section is given by the phase space
integration of the tree-level amplitude and its conjugate.

the conventional (‘real’) contribution to the total scattering cross-section, see figure 5, is
given by the phase space integral

σR =
∫

dΦ(k2)
∫

dΦ(p2)δ̂d(p1 + k1 − p2 − k2)
1
F
|M(0)

4 |2 (4.5)

=
∫ ddk2

(2π)d−1 δ(k
2
2)Θ(k0

2)δ̂(2p1 · (k1 − k2)− 2k1 · k2)
1
F
|M(0)

4 |2
∣∣∣
p2=p1+k1−k2

,

in which F = 4(p1 · k1) is the flux factor and we work here in d dimensions in order to
regulate the collinear divergence. For the actual evaluation of the integrals we choose the
rest frame of the massive scalar particle, which means we can parametrize the kinematics as

k1 = ω1(1, 0, . . . , 0︸ ︷︷ ︸
d−2

, 1) , p1 = m(1, 0, . . . , 0︸ ︷︷ ︸
d−2

, 0) , (4.6)

k2 = ω2(1, sin(θ), 0, . . . , 0︸ ︷︷ ︸
d−3

, cos(θ)) , p2 = (E2, p⃗2︸︷︷︸
d−1

) .

Using (4.6) in (4.5) we obtain

σR = 1
(2π)d−24mF

∫
dΩd−2

∫
dω2 ω

d−3
2

δ(ω2 − ω1
1+ ω1

m
(1−cos(θ)))

1 + ω1
m (1− cos(θ)) |M(0)

4 |2 (4.7)

y=cos(θ)= 21−dπ1− d
2

mFΓ(d
2 − 1)

∫ +1

−1
dy (1− y2)

d−4
2(

1 + ω1
m (1− y)

)d−2ω
d−3
1 |M(0)

4 |2 .

The differential cross-section, when restricting to d = 4, is

dσR

dΩ = G2m2
(
ω2
ω1

)2
(
sin8 ( θ

2
)
+ cos8 ( θ

2
)

sin4 ( θ
2
) )

, (4.8)
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Figure 6: The virtual contribution to the cross-section is given by sum of the phase space
integration of the disconnected amplitude and the one-loop forward amplitude.

which agrees exactly with [91]. The final integration in dim. reg. with d = 4− 2ϵIR gives

σR = 16πG2m(m+ ω1)
ϵIR

(4.9)

− 4πmG2

3ω2
1(m+ 2ω1)3

[
− 3m6 − 21m5ω1 + 6(2γE − 7)m4ω2

1 + 6(9 + 14γE)m3ω3
1

+ 24(17 + 9γE)m2ω4
1 + 24(27 + 10γE)mω5

1 + 32(11 + 3γE)ω6
1

]
− 4πmG2

3ω3
1

[(
3m4 + 6m3ω1 − 24mω3

1 + 8ω4
1

)
tanh−1

(
ω1

m+ ω1

)

− 12ω3
1(m+ ω1) log

(
π

ω2
1

)]
.

Observe that the collinear divergence comes from the t-channel contribution to the gravita-
tional Compton amplitude, and manifests as a 1/ϵIR infrared pole in the total cross-section.

4.2 One-loop forward amplitude contribution and IR-finiteness

According to the KLN theorem, collinear divergences in observables can be removed by
summing over degenerate states and processes, the relevant diagrams being required by
S-matrix unitarity. In our case, there is a one-loop forward-scattering contribution to the
total cross section which is of the same order as the tree-level Compton cross section. We
will now show that this generates virtual contributions, localized in the forward region at
t = 0, which cancel the collinear divergence above. While this will solve the problem, it will
leave us with an open question from a practical perspective.

The (virtual) contribution to the cross-section from forward scattering diagrams is
shown in figure 6 and is given by

σV = 1
F

∫
dΦ(k2)

∫
dΦ(p2) 2ℑ

[
δΦ(p1 − p2)δΦ(k1 − k2)M(1)

4

]
(4.10)

in which M(1)
4 is the one-loop Compton amplitude. Though we may be tempted to write

σV
?∼ 1
F
2ℑ
(
M(1)

4

)∣∣∣
k1=k2,p1=p2

, (4.11)
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Figure 7: The set of diagrams with t-channel cuts contributing to the imaginary part of
the one-loop Compton amplitude, which are relevant for the collinear divergence.

this is ambiguous, because some diagrams include intermediate propagators of the form
∼ 1/(k1 − k2)2 which can go on-shell, making the contribution formally divergent.8 Using
FeynArts and FeynCalc with the Lagrangian (4.1) we obtain 72 diagrams for the one-loop
Compton amplitude. We focus here only on those relevant for the collinear divergence, which
are those contributing to the t-channel cut and are depicted in figure 7. They are smooth
in the forward limit. We compute the sum of those diagrams in dimensional regularization
and then extract the infrared-divergent part; we find

σV

∣∣∣
t-channel cuts,IR

= 1
F
2ℑ
(
M(1)

4 (p1, k
σ1
1 ; p1, k

σ1
1 )
)∣∣∣

t-channel cuts,IR
(4.12)

= −16πG2m(m+ ω1)
ϵIR

,

which exactly cancels the infrared-divergent real contribution in (4.10),

(σR + σV )
∣∣∣
t-channel cuts,IR

= 0 . (4.13)

This is the gravitational analogue of the result in section 6 of [50] for Compton scattering
in massless QED, where a similar collinear divergence arises. Unitarity ensures that if all
forward scattering terms are included, the final sum of all terms will vanish

σR + σV = 0 . (4.14)

This can be interpreted as the fact that for hard gravitons (which in our case will compose
the gravitational plane-wave background) there is no energy penalty in producing a pair of
collinear soft and hard gravitons asymptotically.

8Evaluating the virtual cross section in this manner would require a detailed analysis for such diagrams
which make explicit use of the iϵ prescription, as in appendix A of [50].
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The presence of collinear divergences seems to be in contrast with the seminal discussion
of Weinberg [99] and recent work on the cancellation of collinear divergences in quantum
gravity [100, 101], but it is not: it is the Compton amplitude, and not the soft emissions on
top of such amplitude, which is responsible for the divergence.9

Ultimately, the cancellation in (4.14) will force us to change our physical interpretation
of some gravitational backgrounds, such as plane waves. We will discuss this in our
calculation of gravitational observables, to which we now turn.

5 Wave scattering observables in Einstein gravity

In this section we compute the wave scattering observables discussed in section 2 in Einstein
gravity, treating general relativity as an effective field theory valid below the Planck scale.
The collinear divergence of the gravitational Compton amplitude implies problems in defining
global, infrared-finite observables in gravitational scattering on plane-wave backgrounds.
We make this concrete here, by relating observables to the cross section in section 4.

As in electrodynamics it is useful to begin by exploring the relevant length scales. The
natural scale for the gravitational interaction is the effective Schwarzschild radius for our
problem, i.e. RS = Gm. We also have, as in electrodynamics, the Compton wavelength λC

and the classical length scale λ defined in (3.1). For quantum observables we will assume10

RS ≪ λC , λ , (5.1)

whereas for classical observables we will impose

RS ≪ λC ≪ λ . (5.2)

5.1 Gravitational scattering probability

Under the assumption that memory effects are negligible,11 the amplitude and probability
for graviton emission from a scalar on a gravitational plane wave background have the same
overall structure as in (3.4) and (3.7) respectively, for k, σ now the momentum and helicity
of the emitted graviton; the analogue of Iσ

3 in (3.5) is however more complicated than in
QED, and we refer the reader to [66, 104] for details. Here, as in QED, we only need the
leading order weak-field expansion of the three-point amplitude to exhibit its relation to
the Compton gravitational cross-section; this is

M(0)
3,σ = iκ2

∫
dΦ(p)ϕ(p)eib·pδ̂(n·(p′+k−p))δ̂2

⊥(p′+k−p)n·p
n·k

(n·(p−k)) (5.3)

×
∫ T

0
dx− ei k·p

n·(k−p) x− [(εσ(k)·p)x ra−(k ·p)εa
σ(k)]

k ·p
Hab(x−)

[
(εσ(k)·p)x rb−(k ·p)εb

σ(k)
]

k ·p
,

9Indeed, as shown earlier taking the soft limit ω1 → 0 implies also ω2 → 0: only simultaneous double soft
theorems are well-defined in this context [102, 103].

10We note that the condition Gω̄(n ·p)≪ 1 follows directly from these inequalities, similar to the condition
of validity for the post-Minkowskian expansion.

11See [63] for a recent discussion of memory in wave-particle scattering.
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in which H is the integral of the curvature

Hab(x−) :=
∫ x−

0
dy−Hab(y−) . (5.4)

We see that (5.3) has a clear double-copy structure in relation to the QED amplitude (3.8):
for a summary of double copy relations between gauge and gravitational Compton amplitudes
see [105]. The variables r⊥ and x are the same combinations of graviton momentum as used
in QED for photon momentum, and the same kinematics holds. As such we present the
differential scattering probability at leading order in G2,

dPGR
d cos θ = 8

∫ dω
π

| detH(ω)|
ω

dσGR(ν, θ)
d cos θ , (5.5)

in which the gravitational cross section is exactly as in our earlier calculation (4.8) and we
have defined the Fourier transform of the (integrated) wave profile in (5.4)

Hab(ω) :=
∫ T

0
dx−eiωx−Hab(x−) . (5.6)

We emphasise that the 1/θ4 divergence of the gravitational Compton cross section at θ = 0
is inherited directly by the scattering probability.

Now, recall that θ is a boosted generalisation of the scattering angle in the frame where
the collision is head on. The point θ = 0 corresponds to scattering collinear with the
background, equivalently scattering in the single direction for which the background metric
is not asymptotically flat; clearly this should be expected to be a subtle limit [106], and
potentially ill-defined. While local (i.e. differential) observables are well-defined everywhere
on the celestial sphere aside from this point, how do we properly define (global) gravitational
observables integrated over the sphere? The analysis of section 4 suggests that we should
redefine the external gravitational wave profile, along the plane-wave direction, in order
to absorb the collinear divergence. Equivalently, we should dress our incoming state to
effectively regulate the gravitational field contribution coming from collinear gravitons inter-
acting at late times; this is similar to what is done for parton distributions in perturbative
QCD [107, 108], and we will borrow these ideas now to address the collinear divergence in
gravitational observables.

5.2 Coherent state dressing for gravitational Compton observables

We address here the problem of collinear divergences by dressing the initial state, which ef-
fectively regulates the gravitational plane-wave profile in the n̂ direction. This is reminiscent
of a proposal in the gravitational flat space S-matrix bootstrap program in [109, 110], where
a similar regulator was used to tackle the forward limit divergence for practical applications.
We define the incoming dressed state as ||inGR⟩⟩ = |ψ⟩ ⊗ ||β⟩⟩, where

||β⟩⟩ := Nβ exp
(∑

σ

∫
dΦ(k) [βσ(k)− βσ

dress(k)Θ (Λθ − Λ)] a†σ(k)
)
|0⟩ , (5.7)
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in which, on top of the gravitational plane-wave background βσ(k), we include a new
perturbative contribution to the waveshape βσ

dress(k) which receives contributions at, in
principle, each order in the coupling,

βσ
dress(k) = Gβ

(1)σ
dress(k) +G2β

(2)σ
dress(k) + . . . . (5.8)

As indicated by the step function in (5.7), βσ
dress has support in a narrow cone around the

plane-wave direction n̂, the size of which is fixed by a universal dimensionless cutoff Λ (a
detector resolution)

Λ < Λθ = r

(n · p) =
√
2 cot

(
θ

2

)
. (5.9)

For later convenience we also define the dimensionless variable µΛ as

µΛ := n · p
m

Λ . (5.10)

The next task is to define (5.8), i.e. determine a scheme for the perturbative calculation.
We adopt the simplest choice by directly computing the on-shell expectation value of the
graviton field at large distances generated by the time evolution of the undressed state
|inGR⟩. The leading order contribution comes from gravitational Compton, i.e.

β
(1)σ
dress(k) =

∫
dΦ(p′) ⟨in|S† ∣∣p′〉 〈p′kσ

∣∣S |in⟩ (5.11)

= 32π
∫
dΦ(p) |ϕ(p)|2 (n · (p− k))

2(n · k) i

∫ T

0
dx− e

i k·p
n·(k−p) x−

× [(εσ(k) · p)x ra − (k · p)εa
σ(k)]

k · p
Hab(x−)

[
(εσ(k) · p)x rb − (k · p)εb

σ(k)
]

k · p
,

which (up to the external projection) is nothing else than the leading order waveform.
Physically, this means that we are changing our gravitational field profile at infinity to
reabsorb the collinear divergence coming from the graviton self-interaction at late times.
For radiative observables, the effect of working with the dressed state (5.7) at leading order
is that we can effectively use Λ as a regulator for the phase space integration.12

5.3 The momentum flow PPµ
GR and the total momentum Kµ

GR

The total radiated momentum emitted during the evolution of the dressed incoming
state (5.7) is given by, at leading order,

⟨⟨Kµ⟩⟩GR =
∑

σ

∫
dΦ(k)dΦ(p′)kµ|M(0)

3,σ|
2Θ(Λθ − Λ) , (5.12)

which, expressing the final state integrals in terms of x and r, becomes

⟨⟨Kµ⟩⟩GR = G2
∫ T

0
dx−

∫ T

0
dy−

∫ 1

0
dx (1− x)

∫ +∞

0
dr r e

ix(m2+r2)
2n·p(1−x) (x−−y−) (5.13)

×Θ(Λ− Λθ)
(32π)2π(n · p)

(
m8 + r8) (Hab(x−)Hab(y−))
4 (m2 + r2)4 p̃µ ,

12We are confident that this procedure can be carried out systematically at higher orders, as the dominant
contribution in the collinear region is always related to the gravitational Compton amplitude.
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where p̃µ was defined in (3.19). Inspection confirms that the r-integral divergence at large
r, meaning small scattering angle θ of the graviton, is indeed regulated by working with
the new gravitational wave profile (5.8). Physically, this means that the observer is only
looking at the portion of the sky which is complementary to the cone of size Λ around the
plane-wave direction n̂. Performing the integrals, the final result can be written

⟨⟨Kµ⟩⟩GR = G2
∫ ∞

0
dω| detH(ω)|

[
pµF 1

K,GR(ν(ω)) + nµF 2
K,GR(ν(ω))

]
(5.14)

in terms of the form factors

F 1
K,GR(ν) :=

(4π)3(n·p)
ν4

[(
8ν4+4ν+3

)
log
(
µ2

Λ+2ν+1
2ν+1

)
−(4ν+3)log

(
µ2

Λ+1
)

+
(
µ2

Λ+1
)(
µ10

Λ +µ8
Λ(4ν−3)−4µ6

Λ(2ν+1)+5µ2
Λ+12ν+5

)
4
(
µ2

Λ+2ν+1
)2

−µ8
Λ
4 +µ6

Λ+µ4
Λν

2+2µ2
Λν

2(1−2ν)− 2µ2
Λ
(
µ4

Λ−2
)
ν

µ2
Λ+1

− 12ν+5
4(2ν+1)2

]
,

F 2
K,GR(ν) :=

(4π)3m2

ν4

[
−2
(
24(ν+1)ν4+5ν+3

)
arccoth

(
µ2

Λ+4ν+2
µ2

Λ

)

+(5ν+3)log
(
µ2

Λ+1
)
+ 7ν+3
4(2ν+1)2 −

µ2
Λ
(
µ8

Λ+5µ6
Λ−4µ4

Λ+16
)
ν

4
(
µ2

Λ+1
)

+
(
µ2

Λ+1
)(
µ2

Λ
(
µ8

Λ(ν−3)−µ6
Λ(7ν+1)+µ4

Λ(4ν+2)+2µ2
Λ+5ν−1

)
−7ν−3

)
4
(
µ2

Λ+2ν+1
)2

+1
4µ

2
Λ

(
3µ6

Λ+4
(
µ4

Λ−3
)
ν2−2µ4

Λ−12
(
µ2

Λ−2
)
ν3+48ν4−2

)]
. (5.15)

Taking the classical limit proceeds as usual, by restoring the dependence on ℏ with the
effective replacement ν → ℏν̄ and G→ G/ℏ [57] and we impose the hierarchy of scales (5.2).
This yields the classical radiated momentum

⟨⟨Kµ⟩⟩GR

∣∣∣
ℏ=0

=G2 (8π)3(n·p)
3
(
µ2

Λ+1
)4

{
pµ
(
6
(
µ2

Λ+1
)4 log

(
µ2

Λ+1
)
−µ4

Λ
(
11µ4

Λ+20µ2
Λ+12

))
+nµ m2

(n·p)

(
15µ2

Λ−18
(
µ2

Λ+1
)4 log

(
µ2

Λ+1
)
+
(
µ2

Λ+10
)(
3µ4

Λ+7µ2
Λ+6

)
µ4

Λ

)}
×
∫ ∞

0
dω̄|detH(ω̄)| (5.16)

Compared to the analogous result in electrodynamics (3.23), we see here that a component
along the plane-wave direction nµ survives the classical limit: this is related to the presence
of classical tail effects, which are purely of gravitational origin.

The momentum flow ⟨⟨PPµ⟩⟩GR can be computed similarly, but in this case we choose
our detector (i.e. the angle Ωv̂) to be in the complement of the cone around the plane wave
direction. Therefore, local observables will not be sensitive to the dressing of the incoming
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state. We then have for the momentum flow

⟨⟨PPµ⟩⟩GR = ⟨PPµ⟩GR =
∑

σ

∫
dΦ(k)dΦ(p′)kµδ̂2(Ω− Ωv̂)|M(0)

3,σ|
2 , (5.17)

and, working in the frame where p⊥ = 0 as in QED, we find

⟨⟨PPµ⟩⟩GR = G2 64π2|R⊥|4

(n · p) (m2 + |R⊥|2)2 (p
µ +Rµ) (5.18)

×
∫ +∞

0
dω 1

(|R⊥|2 + (2ν(ω) + 1)m2)3

×
{
(m8 + |R⊥|8)| detH(ω)|+ 2|R⊥|4m4

[
sin(4φ)(H11(ω)H∗

12(ω) +H∗
11(ω)H12(ω))

+ cos(4φ)(|H11(ω)|2 − |H12(ω)|2)
]}
,

where Rµ = rµ(ϑ, φ) is defined as in (3.26). We notice that there are remarkable similarities
between (3.20) and (5.14) and between (3.27) and (5.18), which are a consequence of the
double copy of the 3-pt amplitude discussed earlier. The classical limit of (5.18) gives

⟨⟨PPµ⟩⟩GR
∣∣∣
ℏ=0

= (5.19)

G2 64π2|R⊥|4

(n·p)(m2+|R⊥|2)5 (p
µ+Rµ)

×
∫ +∞

0
dω̄
{
(m8+|R⊥|8)|detH(ω̄)|+2|R⊥|4m4

[
sin(4φ)(H11(ω̄)H∗

12(ω̄)+H∗
11(ω̄)H12(ω̄))

+cos(4φ)(|H11(ω̄)|2−|H12(ω̄)|2)
]}
.

5.4 The angular momentum flow NN µν
GR and the total angular impulse Jµν

GR

The radiated angular momentum for the gravitational radiation is given by

⟨⟨Jµν⟩⟩GR = ⟨⟨inGR||S†Jµν
GRS||inGR⟩⟩ (5.20)

=
∫
dΦout

∑
σ

∫
dΦ(k)Θ (Λ− Λθ)

× ⟨⟨inGR||S†εαα′
σ (k)a†σ(k) |out⟩ (JGR)µν

αα′ββ′ ⟨out| ε∗ββ′
σ (k)aσ(k)S||inGR⟩⟩ .

At leading order, from (5.20) we get

⟨⟨Jµν⟩⟩GR =−i
∫
dΦ(p′)

∫
dΦ(k)Θ(Λ−Λθ) (5.21)

×
{(

Παα′ξξ′ ϕ∗(p′+k)e−i
b·(p′+k)

ℏ

2n·(p′+k) M∗(0)
3,ξξ′

)(
k[µ

↔
∂

∂kν]

)(
Π ζζ′

αα′
ϕ(p′+k)ei

b·(p′+k)
ℏ

2n·(p′+k) M(0)
3,ζζ′

)

+2ηα′β′δ[µ
α δ

ν]
β

|ϕ(p′+k)|2

4(n·(p′+k))2 (Π
αα′ξξ′

M∗(0)
3,ξξ′)(Πββ′ζζ′

M(0)
3,ζζ′)

}
,

where we have defined the matrix elements stripped from their polarisation vectors〈
p′, k

∣∣S||inGR⟩⟩ =: εζζ′(k)
〈
p′, k

∣∣S||inGR⟩⟩ζζ′ , (5.22)
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and the gravitational light-cone projector [111]

Παα′ξξ′ := 1
2
(
ΠαξΠα′ξ′ +Παξ′Πα′ξ −Παα′Πξξ′

)
. (5.23)

The final radiated angular momentum has a compact expression,

⟨⟨Jµν⟩⟩GR = G2
∫ +∞

0
dω
[
| detH(ω)|

(
F 1

J,GR(ν(ω))b[µpν] + F 2
J,GR(ν(ω))b[µnν]

)
(5.24)

+ (H11(ω)H∗
12(ω)−H∗

11(ω)H12(ω))F 3
J,GR(ν(ω))iϵµναβnαpβ

]
,

where the form factors are given by

F 1
J,GR(ν)=

1
2F

1
K,GR(ν) , F 2

J,GR(ν)=
1
2F

2
K,GR(ν) , (5.25)

F 3
J,GR(ν)=

256π3

ν4

[
2
(
24(ν+1)ν3−6ν−1

)
arccoth

(
µ2

Λ+4ν+2
µ2

Λ

)
+(6ν+1)log(µ2

Λ+1)

+ 3µ8
Λ

4 −12µ2
Λν

3+3
(
µ2

Λ−2
)
µ2

Λν
2−
(
3µ6

Λ+5
)
µ2

Λν

2
(
µ2

Λ+1
) +−3µ10

Λ −3µ8
Λ+µ2

Λ+1
4
(
µ2

Λ+2ν+1
) − 1

4(2ν+1)

]
.

The classical radiated angular momentum is

⟨⟨Jµν⟩⟩GR
∣∣∣
ℏ=0

=G2 128π3(n·p)
3

[
b[µpν]

(
6log

(
µ2

Λ+1
)
−µ4

Λ
(
11µ4

Λ+20µ2
Λ+12

)(
µ2

Λ+1
)4

)

+ m2

(n·p)b
[µnν]

(
15µ2

Λ+
(
µ2

Λ+10
)(
3µ4

Λ+7µ2
Λ+6

)
µ4

Λ(
µ2

Λ+1
)4 −18log

(
µ2

Λ+1
))]

×
∫ +∞

0
dω̄ |detH(ω̄)|

+G2 (8π)3m2

3(n·p) iϵ
µναβnαpβ

[
µ2

Λ
(
9µ6

Λ+65µ4
Λ+87µ2

Λ+33
)

4
(
µ2

Λ+1
)3 −9log

(
µ2

Λ+1
)]

×
∫ +∞

0
dω̄ (H11(ω̄)H∗

12(ω̄)−H∗
11(ω̄)H12(ω̄))

ω̄
. (5.26)

For the angular momentum flow, we can follow a procedure similar to the electromagnetic
case and take advantage of the fact that (3.37) holds also in the gravitational case. We
then obtain, in the p⊥ = 0 frame, the following compact result

⟨⟨NN µν⟩⟩GR = G2 128π2|R⊥|10iϵµναβ

(n · p)m2 (m2 + |R⊥|2)2 (5.27)

×
[
pαRβ + 3|R⊥|8 −m8

2|R⊥|6(n · p)Rαnβ + 2|R⊥|8 −m2|R⊥|6 −m8

2|R⊥|6(n · p) pαnβ

]

×
∫ +∞

0
dω H11(ω)H∗

12(ω)−H∗
11(ω)H12(ω)

ν(ω) ((2ν(ω) + 1)m2 + |R⊥|2)2 + b[µ⟨⟨PPν]⟩⟩GR ,

where we remind that Rµ = rµ(ϑ, φ) is defined as in (3.26). As noticed earlier for the
momentum flow, we notice that the double copy of the amplitude manifest itself in a
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remarkable similarity between the electromagnetic (3.38) and gravitational (5.27) result.
The classical limit of (5.27) yields,

⟨⟨NN µν⟩⟩GR
∣∣∣
ℏ=0

= G2 128π2|R⊥|10iϵµναβ

(n · p)m2 (m2 + |R⊥|2)4 (5.28)

×
[
pαRβ + 3|R⊥|8 −m8

2|R⊥|6(n · p)Rαnβ + 2|R⊥|8 −m2|R⊥|6 −m8

2|R⊥|6(n · p) pαnβ

]

×
∫ +∞

0
dω̄ H11(ω̄)H∗

12(ω̄)−H∗
11(ω̄)H12(ω̄)

ω̄
+ b[µ⟨⟨PPν]⟩⟩GR

∣∣∣
ℏ=0

.

6 The high-energy limit of wave scattering observables

In this section we study the behaviour of our classical and quantum radiative observables
in the high-energy limit. There are several motivations for this beyond intrinsic interest.
For the classical two-body problem, the power emitted has power-law mass singularities for
massive point charges in electrodynamics at α3

cl [34, 35] and logarithmic mass divergences
for point masses in general relativity at G3 [24, 36–43]. Similar mass singularities appear in
other classical observables, such as the angular momentum and the scattering angle, raising
questions about the regime of validity of the classical expansion [24, 27, 28, 44, 45].

In our framework of a point particle emitting radiation in a plane-wave background we
will see similar mass singularities arise much earlier in the perturbative expansion. This
motivates us to reconsider the high-energy limit from the perspective of the full quantum
theory, to see whether this can offer a solution. Geometrically, the high-energy limit
(denoted H.E.) is characterised by either13 n · p→ ∞, in which the wave-particle collision is
almost head-on, or n · p→ 0, in which the collision is almost collinear. The fact that there
are two options is due to nµ being a null vector. We focus on the former case, which is
more natural and intuitive; the latter case gives similar results.

6.1 Classical theory: power-law and logarithmic mass divergences

We begin in the classical theory, taking the high-energy limit of the radiated lightfront energy
⟨n · K⟩ in QED (3.23) and in gravity (5.16). This is the simplest of our global observables,
and its behaviour typifies that of all our observables. In classical electrodynamics we find

⟨n · K⟩QED
∣∣∣
ℏ=0

H.E.= α2
cl(4π)3 (n · p)2

3m4

∫ ∞

0
dω̄ |Ea(ω̄)|2 . (6.1)

We notice that the field dependence has factored out and the frequency integral is clearly
finite for smooth wave shapes, e.g. Gaussian type profiles. We conclude that the classical
radiated energy grows quadratically in the high energy limit (n · p) → ∞, and exhibits a
power-law singularity in the massless limit. In general relativity, the situation is similar. If

13We can phrase the discussion entirely in terms of dimensionless variables by defining the rapidity
γ = (n · p)/m, so that γ >> 1 corresponds to the high-energy limit. Given that we want to isolate the mass
singularities, though, we prefer to keep an explicit dependence on m.
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we restrict our attention to the high-energy behaviour, we obtain

⟨n · K⟩GR

∣∣∣∣
ℏ=0

H.E.∼ G2(8π)3(n · p)2
(
log (n · p)2Λ2

m2 − 11
6

)∫ ∞

0
dω̄ | detH(ω̄)| , (6.2)

which grows as (n · p)2 log n · p, and presents a logarithmic mass singularity as m → 0.
The radiated angular momentum shows a similar pattern; focusing for example on the
component J12 we obtain in the high-energy regime

⟨J12⟩QED
∣∣
ℏ=0

H.E.= α2
cl
(4π)3

3m2 i

∫ +∞

0
dω̄ (E1(ω̄)E∗

2(ω̄)− E2(ω̄)E∗
1(ω̄))

ω̄
, (6.3)

⟨J12⟩GR
∣∣
ℏ=0

H.E.∼ G2(8π)3m2
[
12 log

(
Λ2(n · p)2

m2

)
− 3Λ

2(n · p)2

m2 − 38
3

]

× i

∫ +∞

0
dω̄ (H11(ω̄)H∗

12(ω̄)−H∗
11(ω̄)H12(ω̄))

ω̄
.

We conclude that the presence of mass singularities in the high energy behaviour of global
classical radiative observables is a universal phenomenon. Local classical observables,
instead, can be shown to be free of mass singularities except along the collinear direction
nµ where R⊥ → 0, see (3.28), (3.39) for electrodynamics and (5.19), (5.28) for gravity.14

In our wave-particle scattering setup we have been able to see these mass singularities for
radiative observables at leading order in perturbation theory, namely at α2 and G2, unlike
the analogous wave observables for the classical two-body problem [24, 34, 35, 40, 41].

The high-energy limit in electrodynamics to all orders in the coupling. Staying
in the classical theory, and focusing on electrodynamics, we now ask whether higher-order
effects (in the coupling) can resolve the mass singularities found above. Here we avail
ourselves of the QED literature, which contains all-orders results for classical and quantum
scattering in plane-wave backgrounds.

Our observables receive two types of corrections, both related to higher powers of the
coupling. Higher powers of eE describe (conservative) Lorentz force effects. Each order in
eE also receives an infinite series of corrections in e2, which are radiation reaction effects.15

The impact of classical radiation and radiation reaction on a particle orbit is described
by the Lorentz-Abraham-Dirac equation (LAD), which famously suffers from unphysical
runaway and pre-acceleration effects, see [113, 114] for reviews. The Landau-Lifshitz (LL)
equation [115],

mẍµ = eFµν(x)ẋν + 2
3
e2

4π
[
eḞµν(x)ẋν + e2F 2

µν(x)ẋν ẋ2 − e2ẋµẋ
νF 2

νσ(x)ẋσ
]
, (6.4)

is an approximation to LAD obtained by reduction of order. It is blind to the unphysical
features of LAD (as are its generalisations [116]), but, as argued in e.g. [117–119], the
difference between LAD and LL is terms which are smaller than quantum effects. LL admits
an exact solution in plane wave backgrounds [120–122], and this has recently been re-derived

14This mirrors the discussion for the waveform in [24, 44, 45, 106].
15See [57, 112] for some interesting comments on radiation reaction from a pure amplitude perspective.
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analytically from an all-orders resummation of QED loop diagrams [48]. Equation (6.4)
thus allows us to explicitly explore the impact of higher-order and all-order classical effects.
(The unphysical problems of radiation reaction as described by LAD are expected to be
resolved by quantum effects [123, 124] — we will see a manifestation of this idea below.)

As our interest is only in the high-energy and massless limits of these existing results,
we will be brief here, referring the reader to [119, 122] for more complete expressions.16 Let
the all-orders classical radiated momentum be Kµ. At high energy we find

lim
n·p→∞

n · K
n · p

= 1 , (6.5)

while the three remaining components are of order ∼ (n · p)0. In this way, adding all-orders
radiation reaction effects gives sensible high-energy behaviour; while n · K formally diverges
as n · p → ∞, it is bounded above by the initial particle energy. However, the mass
singularities remain. To exhibit these compactly, we define quantities f and g which are
purely functions of the driving field,

f(x−) :=
∫ x−

−∞
dy−Ea(y−)2 , ga(x−) :=

∫ x−

−∞
dy− f(y−)Ea(y−) , (6.6)

stripped of all factors of the coupling. In terms of these, the high energy part of the radiated
momentum behaves as, writing down only the terms most singular at zero mass,

Kµ H.E.∼ (n · p)ℓµ + e6

m4
1

12πn
µ
∫
dx f ′(x)ga(x)ga(x)

f(x)2 − eδa
µ

∫
dx f ′(x) ga(x)

f(x)2 . (6.7)

Observe that, compared to the lowest-order perturbative calculations above, these all-order
result diverge with the same power of the mass, 1/m4, even though the ‘coefficients’ of
these divergences are different. These calculations show us that, strictly, the perturbative
limit and the massless limit do not commute. However, the leading power of the mass
divergence is the same independent of whether we work to leading order in perturbation
theory in the coupling, or to all orders in perturbation theory. This is why, a posteriori, it
is sufficient to work to leading perturbative order, as we did in earlier sections. (We stress
that the same mass singularities persist beyond the high-energy limit.)

The conclusion is that there are no classical effects which can remove the mass divergence
of the theory. Thus, if anything can secure a finite massless limit, it must be quantum
effects, and we will indeed demonstrate this below. In gravity, while all-orders corrections
in κH are available in plane wave backgrounds [66, 125], all-orders radiation reaction (or
self-force) effects are not. We believe, though, that essentially the same story holds — there
are no classical effects which remove the logarithmic mass divergence seen above.

6.2 Quantum theory: the resolution for a smooth limit

We begin by considering perturbative quantum corrections to classical results. It is again
sufficient to focus on ⟨n ·K⟩ to convey the main message. Quantum corrections are obtained

16In [119], arXiv version, eq. (21) gives the solution of the LL equation, in terms of functions defined in
eqs. (22)–(23). The radiated energy-momentum Kµ is computed from the current via the standard classical
formula in eq. (28), the final expression in the plane wave case being eq. (30).
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simply by retaining higher orders in the ℏ-expansion. In electrodynamics we obtain

⟨n·K⟩QED =α2
cl(4π)3 (n·p)2

3m4

∫ ∞

0
dω̄ |Ea(ω̄)|2

[
1− 21

5
ℏω̄n·p
m2 +66

5

(ℏω̄n·p
m2

)2
+. . .

]
(6.8)

Rather than eliminating the classical mass singularities, each quantum correction also
diverges as n · p→ ∞ or m→ 0! A similar story holds in gravity. However, the conclusion
that the quantum theory is sick at m = 0 is incorrect: there are terms which are not
captured by a perturbative expansion in powers of ℏ, and which yield a finite quantum
result.

To show this we return to the full quantum result (3.20) and take the high-energy limit
directly, finding

⟨n · K⟩QED
H.E.∼ α2(8π3)

∫ ∞

0
dω̄ |Ea(ω̄)|2

ω̄2ℏ2 . (6.9)

This is manifestly free of mass singularities. Similarly, in gravity, the leading-order behaviour
of the radiated momentum (5.14) in the high-energy limit is

⟨n · K⟩GR
H.E.∼ G2(8π)3(n · p)2

∫ ∞

0
dω̄ | detH(ω̄)|

(
log

[Λ2n · p
2ℏω̄

]
− 3

2

)
, (6.10)

and we can (trivially) take the mass to zero, given that there is no singularity. The same
holds also for the other components of the radiated momentum, as well as for the angular
momentum. Indeed, considering the component J12 as before, we have

⟨J12⟩QED
H.E.∼ α2 32π3

(n · p) i
∫ +∞

0
dω̄ (E1(ω̄)E∗

2(ω̄)− E2(ω̄)E∗
1(ω̄))

ℏ2ω̄2 , (6.11)

⟨J12⟩GR
H.E.∼ G2(8π)3m2i

∫ +∞

0
dω̄ (H11(ω̄)H∗

12(ω̄)−H∗
11(ω̄)H12(ω̄))

×
[
12 log

(
Λ2(n · p)

2ℏω̄

)
− 3Λ

2(n · p)
2ℏω̄ − 6

]
,

which have a smooth massless limit. Thus we find that the quantum theory has regulated
completely the mass singularities of the classical theory.

In summary, while one can take the high energy or massless limit in the full quantum
theory, as in (6.9) and (6.10), quantum effects are large in this regime, as signalled by inverse
powers or logs of ℏ. These forbid the classical limit from being taken,17 which explains why
the classical mass divergences were not resolved by adding perturbative quantum corrections.
Starting in the classical theory, on the other hand, the high-energy limit means harder
collisions and more radiation, and classical observables become large (formally diverge),
but in the same limit the classical wavelength λ becomes small relative to the Compton
wavelength, λ/λC ≪ 1. This means that quantum effects are, naturally, large. Thus trying
to take, in either order, the limits m → 0 or ℏ → 0 leads to a divergence. This is in-line
with literature results for the conservative observables of [127] where the origin of mass
singularities was traced back to the inability to interchange the classical and massless limits.
The situation is summarised in figure 8.

17Radiation emitted by massless charged particles has previously been identified as fully quantum in [126].
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High-energy expansion
of quantum observables

High-energy expansion
of classical observables

Quantum observables

Classical observables

Smooth
h̄ → 0

expansion

Divergent
h̄ → 0

expansion

(n · p) → +∞
Free of mass
singularities

(n · p) → +∞
Power-law or
Logarithmic

mass divergences

Figure 8: A schematic representation of the behaviour of classical and quantum global
observables in electrodynamics and gravity, which shows their high-energy behaviour and
highlights the non-commutativity of different limits.

A comment is on order on the relation of our findings to analogous discussions of the
classical two-body problem in [24, 27, 28, 44, 45, 127]. In our case the impact parameter
b plays a different role because of the symmetries of the plane-wave, moreover we have
performed our calculations perturbatively (see the inequalities (3.3) and (5.2)). Nevertheless,
a comparison between the functions arising in the high-energy limit of [34, 35] and [24, 36–43]
and their dependence on the rapidity γ′ = (p1 · p2)/(m1m2) shows remarkable similarities
with our results expressed in terms of our γ = (n · p)/m. It is tempting to suggest that the
quantization of the electromagnetic (and gravitational) field is eventually needed if we are
interested in obtaining radiative observables18 free of mass singularities in perturbation
theory, as shown earlier with our analysis of classical and quantum results.

7 Conclusion and outlook

The space and analytic structure of wave scattering observables is not only of theoretical
interest, but also relevant for physical applications from collider to gravitational wave
physics. In this paper, we have explored the space and properties of local and global
observables for the radiation emitted by a scalar moving in a plane-wave background
both in quantum electrodynamics and in general relativity treated as an effective field
theory. Such plane-wave profiles have the interesting feature that some observables can
be computed exactly at all orders in perturbation theory, which makes them an ideal
playground for addressing some of the important questions which arise in the study of the
two-body problem.

In this paper we have been interested in understanding both global and local angle-
dependent properties of the emitted radiation. Just as the differential cross-section is
the local analogue of the cross-section, we have studied the local versions of the radiated
momentum and angular momentum. We began by discussing gauge invariant representations
for the operators corresponding to the momentum and angular momentum flow, whose
expectation value is closely related to the waveform profile structure at infinity. Indeed, we

18A complementary analysis for conservative observables has instead been performed in [127].
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showed that those local observables are completely determined by the amplitude and the
phase of the radiative waveform, at least for a coherent state profile.

We then proceeded to compute, in perturbation theory, the radiated momentum and
angular momentum, as well as their local analogues, first in the quantum theory and
then in the classical limit. The leading contribution is given by integrating a tree-level
Compton-like amplitude and its conjugate against an operator kernel related to the specific
observable. We saw that, in gravity, the collinear divergence of the gravitational Compton
cross-section poses conceptual challenges for the calculations of global observables. We
have analysed this fundamental issue and shown with the KLN theorem that summing
over degenerate forward-scattered gravitons is required to formally achieve an infrared-
finite cross-section, thus generalising results of [50] from gauge theory to gravity. This
demonstrated the need to dress the incoming state in the collinear direction, in order to define
gravitational observables integrated over the celestial sphere. With this prescription, we
found new compact expressions for our observables at order α2 in quantum electrodynamics
and G2 in the gravitational effective theory. In our overlap with the literature, we find
complete agreement.

We observed that, on general grounds, the high-energy limit of our classical radiative
observables presents power-law mass singularities in QED and logarithmic mass singularities
in GR. This resonates with recent results obtained for the classical observables of the
two-body problem, and allow us to offer an explanation of the puzzle and its resolution in
the simpler context of wave-particle scattering. These mass singularities eventually arise
when we scatter objects with wavelengths larger than the Compton wavelength in a classical
context, and can only be fully resolved within the quantum theory, as we showed explicitly.
In particular, there are large quantum corrections to observables in the high-energy region,
which manifest themselves in 1/ℏ effects which cannot have a classical interpretation.
Moreover, thanks to the all-order results available in the ‘strong field QED’ literature for the
energy emitted in plane-wave backgrounds, we can see in such cases that resumming all-order
radiation effects cannot cure the mass singularity, and a smooth massless limit can only be
achieved within the quantum theory. Interestingly, a related problem in electrodynamics,
on the overestimation of energy emitted in the classical scattering process is also solved by
quantum effects; see [128, 129] for reviews, and [88, 89] for experimental results.

There are many open avenues for future research. It is not yet clear how many collider
QCD observables, mainly developed for jet physics, can be imported into the gravitational
context. It would be interesting to explore this further for the full two-body problem,
as it might offer a new perspective for gravitational wave physics observables and their
all-order resummation. Moreover, it would be nice to provide a complementary derivation
of the observables discussed here from a CFT point of view [130–134], where questions like
IR-finiteness can be answered in a more straightforward way through their non-perturbative
definition [8, 10, 11, 135, 136].
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A Perturbation theory in the EFT approach to quantum gravity

Here we collect the perturbative Feynman rules [98] which we use for the one-loop calculation
in the EFT approach to quantum gravity in section 4. The propagators of our fields in
momentum space in d dimensions are

Gϕ(p) =
i

p2 −m2 + iϵ
, Gµν

χ (p) = − iηµν

p2 + iϵ
,

Gµναβ
h (p) = iPµναβ

p2 + iϵ
, Pµναβ = 1

2

(
ηµαηνβ + ηµβηνα − 1

d− 2η
µνηαβ

)
.

(A.1)

The interaction lagrangian we use is,

Lhhh =
κ

2

(1
4hµ

µ∂νhα
α∂νhβ

β−hµν∂µh
αβ∂νhαβ+2hµν∂µh

αβ∂αhνβ−
1
2h

µν∂αhµν∂
αhβ

β
)
,

Lhhhh =
κ2

4

(
− 5
16hµ

µhν
ν∂αhβ

β∂αhτ
τ +1

2hµ
µhνα∂νhβτ∂αh

βτ −hµ
µhνα∂νh

βτ∂βhατ

+hµ
µhνα∂βhντ∂

βhα
τ − 1

8hµνh
µν∂αhβ

β∂αhτ
τ +hµν∂µhνα∂

βhατhβτ

+1
4h

µν∂µhα
αhνβ∂

βhτ
τ −2hµν∂µh

αβhνα∂
τhβτ +hµν∂µhαβhντ∂

τhαβ

−2hµν∂µhαβh
ατ∂τhν

β+hµνhνα∂βhµτ∂
βhατ +2hµν∂νhαβh

αβ∂τhµτ

)
,

Lϕϕh =
κ

2

(
−1
2h

µ
µϕ

2m2+1
2h

µ
µ∂νϕ∂

νϕ−hµν∂µϕ∂νϕ

)
,

Lϕϕhh =
κ2

4

(
hµνhν

α∂µϕ∂αϕ−
1
2hµ

µhνα∂νϕ∂αϕ

)
,

Lϕϕhhh =
κ3

8

(
−1
4m

2ϕ2hµ
µhναhνα−

1
16ϕ∂µϕ∂

µhν
νhα

αhβ
β− 1

2ϕ∂µϕ∂
µhναhν

βhαβ

+1
4∂µϕ∂

µϕhν
νhαβhαβ+

1
8∂µϕ∂νϕh

µνhα
αhβ

β− 1
2∂µϕ∂

νϕhµαhναhβ
β

−∂µϕ∂νϕhµαhνβh
αβ
)
,

Lχ̄χh =
κ

2
(
−χ̄µχν∂µ∂νhα

α+χ̄µ∂
µχν∂αh

να+2χ̄µχ
ν∂ν∂αh

µα− 1
2 χ̄µ∂νχ

ν∂µhα
α

−χ̄µ∂νχα∂
µhνα+χ̄µ∂νχα∂

αhµν−∂µχ̄µ∂νχαh
να−∂µχ̄ν∂µχνhα

α

−∂µχ̄ν∂
µχαh

να+∂µχ̄ν∂αχ
νhµα−∂µχ̄ν∂αχ

αhµν
)
,
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Lχ̄χhh =
κ2

8
(
−χ̄µ∂νχνhµα∂βh

αβ+χ̄µ∂
µχνhνα∂βh

αβ+2χ̄µ∂
µχν∂νh

αβhαβ

+χ̄µ∂
µχν∂αhναhβ

β+2χ̄µχ
νhµα∂ν∂αhβ

3+χ̄µχν∂µhα
α∂νhβ

β

+2χ̄µχν∂νhµα∂
αhβ

β+2χ̄µχν∂ν∂
αhµαhβ

β+χ̄µ∂νχµhνα∂βh
αβ

+χ̄µ∂
µχνh

να∂αhβ
β−χ̄µ∂νχν∂αhµβh

αβ+χ̄µ∂νχαhµν∂αhβ
β

+χ̄µ∂νχ
αhµν∂βhαβ−χ̄µ∂νχα∂µhναhβ

β−χ̄µ∂νχαhµα∂νhβ
β

+χ̄µ∂νχαhµα∂
βhνβ−χ̄µ∂νχα∂µhβ

βhνα−χ̄µ∂νχα∂νhµαhβ
β

−4χ̄µ∂νχαhνα∂
βhµβ+χ̄µ∂νχα∂αhµνhβ

β−∂µχ̄µ∂
νχαhναhβ

β

−∂µχ̄ν∂µχνh
αβhαβ−2∂µχ̄ν∂µχ

αhναhβ
β+∂µχ̄ν∂αχνhµαhβ

β

−∂µχ̄ν∂αχαhµνhβ
β−∂µχ̄ν∂

αχαhµβh
νβ−4∂µχ̄ν∂αχβhµνhαβ

+2∂µχ̄ν∂αχβhµαhνβ+2∂µχ̄ν∂αχβhµβhνα

)
, (A.2)

and we refer to [98] for explicit details about the field redefinition and the gauge choice.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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