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1 Introduction

Ever since the Higgs boson was discovered at the Large Hadron Collider (LHC) by the
ATLAS [1] and CMS [2] collaborations, the measurement of the Higgs couplings to the
remaining Standard Model (SM) particles became a powerful tool in constraining the pa-
rameter space of extensions of the SM. Another important ingredient when building ex-
tensions of the SM with dark matter (DM) candidates is the measurement of the invisible
Higgs branching ratio. Very recently, a new result by the ATLAS collaboration combin-
ing 139 fb−1 of data at

√
s = 13TeV with the results obtained at

√
s = 7 and 8TeV was

published. The observed upper limit on the SM-like Higgs (HSM) to invisibles branching
ratio (BR) is 0.11 [3], which is an improvement from the previous result with an invisible
BR above 0.2. The results of the Higgs coupling measurements together with those of the
invisible Higgs decay are our best tools at colliders to constrain extensions of the scalar
sector of the SM with DM candidates.
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We will focus on a specific phase of the next-to-minimal 2-Higgs-doublet model
(N2HDM) with a scalar sector consisting of two complex doublets and one real singlet.
Only one of the doublets and the singlet acquire vacuum expectation values (VEVs) and
we end up with two possible DM candidates. This particular phase of the N2HDM is known
as the dark doublet phase (DDP). The different phases of the N2HDM are described in
detail in [4]. The DDP can be identified as the singlet extension of the inert doublet model
(IDM) [56], where one Higgs doublet field and one dark scalar doublet are involved. Hence,
in the DDP, two CP-even Higgs bosons and four dark scalars exist as the physical states.
The attractive point of the DDP is that, differently from the IDM, the Higgs couplings are
modified from the SM by the mixing of two Higgs boson states and at the same time DM
candidates are involved in the model. Hence, the DDP is a simple benchmark model when
one discusses the complementarity between the constraints from Higgs coupling measure-
ments and that of the invisible decay of the Higgs boson in the context of extended scalar
sectors with DM candidates. Apart from this, the different phases of the N2HDM contain
DM candidates with distinct features. Thus the investigation of specific processes could
lead to the identification of (or at least the hint to) a particular phase of the N2HDM.

While the IDM has already a rich phenomenology [5–37] (see also studies beyond
tree level [38–46]), the addition of the real singlet field involved in the DDP changes the
phenomenology relative to the IDM. One of the clear differences is that, as mentioned
above, the Higgs boson couplings deviate from the SM, compared with the IDM, where the
modification of the Higgs boson couplings arise from loop corrections involving the dark
scalars. Another phenomenological impact is that the additional Higgs boson can give
significant loop contributions to the Higgs boson decays into DM particles if the additional
Higgs boson possesses strong couplings with the DM particles.

Our analysis will be performed by first imposing the most relevant theoretical and
experimental constraints on the model. We then calculate the next-to-leading (NLO) elec-
troweak corrections to the invisible decay of the SM-like Higgs boson, that is, the Higgs
decaying into two DM candidates. The results will be presented for all allowed parameter
space points, which will enable us to understand if NLO corrections can help to constrain
the parameter space of the N2HDM. The NLO BR of Higgs to invisibles could be larger
than the experimentally measured value for some regions of the parameter space.

As shown in a recent work [4], the constraints coming from the Higgs couplings to
fermions and gauge bosons are enough to indirectly constrain the BR of the Higgs decay
into invisibles to be below 0.1 in the N2HDM (DDP phase). So until recently, the Higgs
BR to invisible was not a meaningful experimental result to constrain the parameter space.
However, the new measurement by ATLAS, reaching now 0.11, is exactly at the frontier
between the indirect bound coming from Higgs couplings and the direct one coming from
the invisibles Higgs BR. So it is extremely timely to calculate the electroweak (EW) NLO
corrections to the Higgs invisible BR.

The outline of the paper is as follows. In section 2, we will introduce the DDP phase
of the N2HDM together with our notation. Section 3 is dedicated to the description of the
different renormalization schemes used in this work. In section 4 we discuss the expressions
of the Higgs invisible decay at leading order (LO) and at NLO. In section 5, the results
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are presented and discussed. Our conclusions are collected in section 6. There are two
appendices where we discuss details of the renormalization procedure.

2 Model

We start this section by describing the dark doublet phase of the N2HDM [4, 47–50]. The
Higgs sector of the N2HDM is composed of two SU(2)L doublet fields with hypercharge
Y=1, Φi (i = 1, 2), and the real SU(2)L singlet field ΦS with hypercharge Y=0. Two
discrete Z2 symmetries, Z(1)

2 and Z(2)
2 , are imposed on the model. Under these symmetries,

each scalar field is transformed as

Z(1)
2 : Φ1 → Φ1, Φ2 → −Φ2, ΦS → ΦS , (2.1)

Z(2)
2 : Φ1 → Φ1, Φ2 → Φ2, ΦS → −ΦS . (2.2)

We require the Z2 symmetries to be exact, meaning that no soft breaking terms are intro-
duced, and therefore the Higgs potential of the N2HDM is given by [4, 47–50]

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 + λ1
2
(
Φ†1Φ1

)2
+ λ2

2
(
Φ†2Φ2

)2

+ λ3Φ†1Φ1Φ†2Φ2 + λ4Φ†1Φ2Φ†2Φ1 + λ5
2

[(
Φ†1Φ2

)2
+ h.c.

]
(2.3)

+ 1
2m

2
sΦ2

S + λ6
8 Φ4

S + λ7
2 Φ†1Φ1Φ2

S + λ8
2 Φ†2Φ2Φ2

S ,

where all parameters can be set real by rephasing Φ1 or Φ2. In the N2HDM, there are four
different minima, which break the SU(2) × U(1)Y symmetry into UEM(1), depending on
the vacuum expectation values for the doublet fields and the singlet field, i.e. 〈Φ1〉 , 〈Φ2〉
and 〈ΦS〉, respectively. The possible patterns are

broken phase (BP): 〈Φ1〉 6= 0 , 〈Φ2〉 6= 0 , 〈ΦS〉 6= 0 , (2.4)
dark doublet phase (DDP): 〈Φ1〉 6= 0 , 〈Φ2〉 = 0 , 〈ΦS〉 6= 0 , (2.5)
dark singlet phase (DSP): 〈Φ1〉 6= 0 , 〈Φ2〉 6= 0 , 〈ΦS〉 = 0 , (2.6)

full dark phase (FDP): 〈Φ1〉 6= 0 , 〈Φ2〉 = 0 , 〈ΦS〉 = 0 . (2.7)

In this study, we focus on the DDP, where Z(1)
2 remains unbroken while Z(2)

2 is spontaneously
broken.1 Hence, this phase corresponds to an extension of the IDM [56] by the additional
singlet field. The other phases are discussed in refs. [4, 47–50].

In the DDP, the components of the Higgs fields can be parameterized as

Φ1 =

 G+

1√
2
(
v + ρ1 + iG0)

 , Φ2 =

 H+
D

1√
2

(HD + i AD)

 , ΦS = vs + ρs , (2.8)

1Due to the spontaneous breaking of the discrete Z(2)
2 symmetry, cosmological domain walls are gener-

ated [51–55]. One of the solutions to avoid the unwanted domain walls is to introduce the breaking term of
the Z(2)

2 symmetry tSΦS in the potential eq. (2.3). While, in this case, the stationary condition for ΦS is
modified by the additional term tS , the effect could be insignificant as long as ts/v3

S � 1.
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where v = 246GeV is the electroweak VEV and vS is the VEV of the singlet field. The
doublet field Φ1 corresponds the SM Higgs doublet, which contains the Nambu-Goldstone
bosons G+ and G0. Due to the unbroken Z(1)

2 symmetry, the four dark scalars, HD, AD
and H±D do not mix, i.e., they are physical states. The lightest neutral dark scalar, which
can be either HD or AD, is the DM candidate. On the other hand, the two CP-even Higgs
fields ρ1 and ρS mix with each other. Together with the CP-even dark scalar HD, the mass
eigenstates for the CP-even Higgs bosons can be expressed through a rotation matrix with
the mixing angle α as,  H1

H2
HD

 =

 cα 0 sα
−sα 0 cα

0 1 0


 ρ1
HD

ρS

 , (2.9)

where by convention, we take mH1 < mH2 , and where we have introduced the short-hand
notations cα ≡ cosα and sα ≡ sinα. Either H1 or H2 can be identified as the SM-like
Higgs boson (HSM) with a mass of 125GeV. For later convenience, we define the rotation
matrix as R, so that eq. (2.9) can be rewritten by Hi = Rijρj (i, j = 1, 2, 3), defining
ρ2 = HD and ρ3 = ρS .

The masses of the physical states can be written as

m2
H1 = v2 cos2 αλ1 + v2

s sin2 αλ6 + 2vvs sinα cosαλ7 , (2.10)
m2
H2 = v2 sin2 αλ1 + v2

s cos2 αλ6 − 2vvs sinα cosαλ7 , (2.11)

m2
HD

= 1
2(2m2

22 + v2(λ3 + λ4 + λ5) + v2
sλ8) , (2.12)

m2
AD

= 1
2(2m2

22 + v2(λ3 + λ4 − λ5) + v2
sλ8) , (2.13)

m2
H±
D

= 1
2(2m2

22 + v2λ3 + v2
sλ8) . (2.14)

Using these mass formulae together with the mixing angle α and the stationary conditions
for Φ1 and ΦS , i.e.,

〈∂V/∂Φ1〉 ≡ TΦ/v = 0 and 〈∂V/∂ΦS〉 ≡ TS/vS = 0 , (2.15)

the original parameters of the potential can be replaced by a new set to be used as input.
Together with the electroweak and singlet VEVs, we choose as our input the following 13
parameters,

v , vs , mH1 , mH2 , mHD , mAD , mH±
D
, α , m2

22 , TΦ , TS , λ2 , λ8 . (2.16)

We assign Z(1)
2 -even and Z(2)

2 -even parity to the remaining SM fields and consequently
only the Higgs doublet Φ1 has Yukawa interactions. This in turn means that the Yukawa
couplings are just the SM ones and that the dark scalars do not couple to the SM fermions.
On the other hand, due to the kinetic term for Φ2, dark scalar-dark scalar-gauge boson
type of vertices are allowed while the dark scalar-gauge boson-gauge boson type of vertices
are forbidden by the Z(1)

2 symmetry. The Feynman rules for the vertices including two
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dark scalars and a gauge boson are written in ref. [4]. In particular, the trilinear scalar
couplings that are relevant for the calculation of the invisible decay of the Higgs boson are
given by (i = 1, 2)

λHiHDHD = −1
v

[
2(m2

HD
−m2

22)Ri1 + λ8vS(vRi3 − vSRi1)
]
. (2.17)

We note that in the case of cosα = 1 and λ8 = 0 the expression of λHiHDHD is exactly the
IDM one. The other trilinear scalar couplings are also given in ref. [4].

3 Renormalization

In this section, we discuss the renormalization scheme used in the calculation of the one-
loop corrections to the Higgs boson Hi (i = 1, 2) decay into a pair of DM particles, which we
assume to be HD, unless otherwise stated, Hi → HDHD. Thus, this section focuses on the
renormalization of the scalar and gauge sectors. The renormalization of the fermion sector
as well as any treatment of infrared divergence is not necessary for this particular process.

We perform the renormalization of the Higgs sector in the DDP of the N2HDM ac-
cording to the procedure presented in ref. [57] for the 2HDM and in ref. [58] for the broken
phase of the N2HDM. Although most of the parameters in the Higgs sector of the DDP are
common with those of the broken phase, we describe the renormalization of all parameters
in order to make the paper self-contained.

3.1 Gauge sector

The renormalization of all parameters and fields in the gauge sector is done using the on-
shell (OS) scheme following ref. [59]. As the three independent parameters in this sector,
we choose the masses of weak gauge bosons and the electric charge, i.e., mW , mZ , and e,
respectively. These parameters are shifted as

m2
V → m2

V + δm2
V (V = W,Z) , (3.1)

e→ (1 + δZe)e . (3.2)

Moreover, the bare fields for the gauge bosons in the mass basis are replaced by the renor-
malized ones as

W± → (1 + 1
2δZWW )W± ,(

Z

γ

)
→
(

1 + 1
2δZZZ

1
2δZZγ

1
2δZγZ 1 + 1

2δZγγ

)(
Z

γ

)
. (3.3)

The OS conditions for these gauge fields are defined as

δm2
W = ReΣtad,T

WW (m2
W ) and δm2

Z = ReΣtad,T
ZZ (m2

Z) , (3.4)

δZWW = −Re ∂ΣT
WW (p2)
∂p2

∣∣∣∣∣
p2=m2

W

, (3.5)
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(
δZZZ δZZγ
δZγZ δZγγ

)
=


−Re ∂ΣTZZ(p2)

∂p2

∣∣∣∣
p2=m2

Z

2ReΣTZγ(0)
m2
Z

−2ReΣTZγ(m2
Z)

m2
Z

− ∂ΣTγγ(p2)
∂p2

∣∣∣∣
p2=0

 , (3.6)

where Σtad,T
WW and Σtad,T

ZZ denote the transverse part of the self-energies of the W and Z

bosons. These contain the tadpole contributions due to our renormalization scheme choice.
No “tad” superscript means that there is no contribution from the tadpole diagrams. The
different tadpole schemes will be described below. The counterterm for the electric charge
is determined from γeē in the Thomson limit and can be expressed as a function of the
self-energies as

δZα(0)
e = 1

2
∂ΣT

γγ(k2)
∂k2

∣∣∣∣∣
k2=0

+ sW
cW

ΣT
γZ(0)
m2
Z

. (3.7)

This counterterm contains large logarithmic corrections arising from the small fermion
masses, logm2

f (f 6= t). We use the “Gµ scheme” [60] in order to improve the perturbative
behaviour. In this scheme, a large universal part of the O(α) corrections is absorbed in the
leading order decay width by deriving the electromagnetic coupling constant α = e2/(4π)
from the Fermi constant, Gµ, as

αGµ =
√

2Gµm2
W

π

(
1− m2

W

m2
Z

)
. (3.8)

This allows us to take into account the running of the electromagnetic coupling constant
α(Q2), from Q2 = 0 to the electroweak scale. In order to avoid double counting, the
corrections that are absorbed in the LO decay width by using αGµ have to be subtracted
from the explicit O(α) corrections. This is achieved by subtracting the weak corrections to
the muon decay, ∆r [59, 61], from the corrections in the α(0) scheme. Hence, we redefine
the charge renormalization constant as

δZe|Gµ = δZe|α(0) −
1
2(∆r)1-loop , (3.9)

where (∆r)1-loop is the one-loop expression for ∆r given by [59]

(∆r)1-loop =
∂ΣT

γγ(k2)
∂k2

∣∣∣∣∣
k2=0

− c2
W

s2
W

(
ΣT
ZZ(m2

Z)
m2
Z

− ΣT
WW (m2

W )
m2
W

)
+ ΣT

WW (0)− ΣT
WW (m2

W )
m2
W

− 2cW
sW

ΣT
γZ(0)
m2
Z

+ α

4πs2
W

(
6 + 7− 4s2

W

2s2
W

log c2
W

)
. (3.10)

Note that through the redefinition eq. (3.9), the first term of δZα(0)
e in eq. (3.7), which

contains the large logarithmic corrections from the light fermion loops, cancels against the
corresponding term in (∆r)1-loop. The counterterms for the other EW parameters can be
expressed in terms of those presented above. For example, the SU(2)L gauge coupling,
g, is replaced by the tree level relation g = emZ/

√
m2
Z −m2

W . Thus, the counterterm is
given by

δg

g
= δZe −

1
2(1−m2

Z/m
2
W )

(
δm2

W

m2
W

− δm2
Z

m2
Z

)
. (3.11)
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3.2 Higgs sector

In the Higgs sector, we have a total of 13 free parameters, given in eq. (2.16), considering
the two tadpoles TΦ and TS . We have to renormalize the scalar fields in the mass basis,
H1, H2, HD, AD and H±D . The counterterms are introduced via the shift of the input
parameters, i.e, the masses of the scalar bosons, the mixing angle α of the CP-even Higgs
bosons and the remaining original potential parameters that appear in the vertices of the
processes under study, λ8 and m2

22,

m2
Φ → m2

Φ + δm2
Φ , α→ α+ δα ,

m2
22 → m2

22 + δm2
22 , λ8 → λ8 + δλ8 , (3.12)

where Φ denotes H1, H2, HD, AD, and H±D . There is no need to renormalize λ2 for this
particular process. Apart from the tadpoles, the remaining two parameters are the VEVs.
The electroweak VEV v is fixed by the W mass and the renormalization of vS will be
discussed later.

The tadpole renormalization can be performed in different ways and we will discuss
two approaches. These are designated by Standard Tadpole Scheme (STS) and Alternative
Tadpole Scheme (ATS). The latter was originally proposed by Fleischer and Jegerlehner,
in ref. [62], for the SM. The ATS was also discussed in detail for the CP-conserving 2HDM
in ref. [57] and for the broken phase of the N2HDM in ref. [58]. We will just briefly review
the two schemes for completeness.

In the STS, the tree level tadpoles are replaced by

TX → TX + δTX (X = Φ, S) , (3.13)

and are chosen as the renormalization parameters. On the other hand, in the ATS, the
VEVs are the renormalization parameters and are shifted as

v → v + δv , vS → vS + δvS . (3.14)

We use the ATS, which will now be explained in more detail. The reason to use this scheme
is that, as shown by Fleischer and Jegerlehner, all renormalized parameters are gauge
independent except for the wave function renormalization constants (or any parameter
that depends on the wave function renormalizaton constants as is the case of the angle α
in particular schemes).

Before moving to the discussion of the tadpole renormalization, we define the wave
function renormalization constants of the scalar fields. The bare fields are replaced by the
renormalized ones through H1

H2
HD

→
 1 + 1

2δZH1H1
1
2δZH1H2 0

1
2δZH2H1 1 + 1

2δZH2H2 0
0 0 1 + 1

2δZHDHD


 H1
H2
HD

 , (3.15)

AD → AD

(
1 + 1

2δZAD
)
, H±D → H±D

(
1 + 1

2δZH±
D

)
. (3.16)

Note that, for eq. (3.15), the exact Z(1)
2 symmetry ensures that the (3-k) and (k-3) com-

ponents (k = 1, 2) are zero.

– 7 –
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3.2.1 Tadpoles

In the ATS, the renormalized VEVs, which correspond to minima of the Higgs potential
at loop-level, are regarded as the tree-level VEVs, namely, one imposes

vbare = vren + δv
FJ= vtree + δv ,

vbare
S = vren

S + δvS
FJ= vtree

S + δvS . (3.17)

Using the tadpole conditions, one can derive expressions for δv and δvS ,

T bare
i = T tree

i + f(δv, δvS) = T loop
i (i = Φ, S) , (3.18)

where the first term, T tree
i , is zero from the stationary condition at the tree-level and the

second term, f(δv, δvS), denotes contributions from δv and δvS , which can be extracted
by inserting eq. (3.14) into the tree-level tadpole conditions. From eq. (3.18) one obtains
the following expressions for the VEV counterterms

R(α)
(
δv

δvS

)
=


T loop
H1
m2
H1

T loop
H2
m2
H2

 , (3.19)

where R(α) denotes the 2× 2 non-diagonal part of R (see eq. (2.9)),

R11 = R22 = cosα , R12 = −R21 = sinα , (3.20)

and the one-loop tadpoles in the mass basis are given by T loop
Hi

= (R(α))ijT loop
j (i, j = 1, 2)

with T1 = TΦ and T2 = TS . The left-hand side corresponds to the VEV counterterms
δvH1 and δvH2 in the mass basis and the right-hand side coincides with the tadpole dia-
grams multiplied by the propagator for the Higgs bosons at zero momentum transfer, i.e.
T loop
Hi

/m2
Hi

= (iT loop
Hi

)(−i/m2
Hi

). Therefore, eq. (3.19) shows that δvHi can be regarded as
the connected tadpole diagrams for Hi. Once the counterterms for the VEVs are fixed, the
shift is performed in all VEV terms in the Lagrangian. Hence in the ATS, one needs to
insert tadpole diagrams in all amplitudes for which the original vertices contain one of the
VEVs in addition to the usual one-particle irreducible diagrams. This general consequence
is shown by focusing on specific amplitudes in ref. [57] for the 2HDM and in ref. [58] for
the N2HDM.

Another important feature of the ATS is that, because the renormalized VEV is iden-
tified with the tree level VEV, the VEVs still have to be renormalized. For the EW VEV,
the renormalized parameter is given by

vren = vtree = 2 mW

g

∣∣∣∣tree
, (3.21)

and the tree-level parameters g and mW are shifted as

2 mW

g

∣∣∣∣tree
→ 2 mW

g

∣∣∣∣ren
+ 2mW

g

(
δm2

W

2m2
W

− δg

g

)

≡ 2 mW

g

∣∣∣∣ren
+ ∆v . (3.22)
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We have defined the shift of the tree level parameters related to the EW VEV as ∆v, which
has no relation with δv. The same discussion holds for the singlet VEV vS . Once vS is
related with some measurable quantity, a similar relation with eq. (3.21) must exist, even
if a physical process has to be used, and then ∆vS has to be introduced.

3.2.2 Mass and wave function renormalization

The counterterms for the masses and the wave function renormalization constants (WFRCs)
are determined by imposing the on-shell conditions for each scalar field. This yields the
mass counterterms

δm2
Φ = Σtad

ΦΦ(m2
Φ) , (3.23)

and the WFRCs

δZΦΦ = −∂Σtad
ΦΦ(p2)
∂p2

∣∣∣
p2=m2

Φ

, (3.24)

δZHiHj = 2
Σtad
HiHj

(m2
Hj

)
m2
Hi
−m2

Hj

(i = 1, 2, j 6= i) , (3.25)

where, to reiterate, Σtad stands for the self-energy containing one particle irreducible (1PI)
diagrams and tadpole contributions.

3.2.3 Mixing angle α

The renormalization of the mixing angle, α, requires special treatment since the gauge
dependence of δα could result in a gauge-dependent physical process [63–73]. A gauge-
independent amplitude can be obtained by starting with a gauge-independent definition
of δα. One possible solution to avoid this gauge dependence is to apply the ATS for the
renormalization of the tadpoles and to make use of the pinch technique [74, 75], while
keeping the on-shell renormalization for the mixing angle. This is the procedure that we
adopt throughout this paper.

The expression for δα in the OS scheme can be derived by relating quantities in the
gauge basis to the corresponding ones in the physical (mass) basis. This procedure is
described in detail in [57, 76, 77]. Following [57] leads to the following expression for δα
after adding the pinched terms,

δα = 1
4(δZH1H2 − δZH2H1)

+ 1
2

1
m2
H1
−m2

H2

[
ΣH1H2(m2

H2) + ΣH1H2(m2
H1)

]
, (3.26)

where ΣH1H2 stands for pinched contributions to the H1 − H2 mixing self-energy, which
remove the gauge-dependent part coming from the first two terms. They can be extracted
from the expressions obtained for the broken phase of the N2HDM (see [58]) as

ΣH1H2(q2) = − g2

32π2c2
W

cαsα

(
q2 −

m2
H1

+m2
H2

2

)
×
{
B0(q2;m2

Z ,m
2
Z) + 2c2

WB0(q2;m2
W ,m

2
W )
}
. (3.27)

– 9 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
4

The expression was obtained with the replacement (β−α1, α2, α3)→ (α, 0, 0) and the fact
that the (AD, Z) and (H±D ,W ) loop contributions do not appear in our calculation due to
the existence of an exact Z(1)

2 symmetry.

3.2.4 Counterterms for λ8 and m2
22

The counterterms for the quartic coupling δλ8 and the invariant mass for the dark scalars
δm2

22 cannot be renormalized using OS conditions for the Higgs states. Hence we will
renormalize these parameters using three different schemes: the MS scheme, a process-
dependent scheme and one derivation of the latter that consists of taking the external
momenta to be zero instead of taking them on-mass-shell.

In the MS scheme, the analytic expressions for the counterterms can be extracted from
the beta functions at one-loop, yielding

δλ8 = 1
32π2β

(1)
λ8

∆div , δm2
22 = 1

32π2β
(1)
m2

22
∆div , (3.28)

where ∆div denotes the UV-divergent part, i.e., ∆div = 1/ε − γE + log(4π). γE is the
Euler-Mascheroni constant and 1/ε is the UV pole in dimensional regularisation. The beta
functions are given in terms of the original potential parameters by

β
(1)
λ8

= 2λ4λ7 + 4λ3λ7 + 1
10λ8

(
30λ6 + 40λ8 − 45g2

2 + 60λ2 − 9C2g2
1

)
, (3.29)

β
(1)
m2

22
= 2λ4m

2
11 + 4λ3m

2
11 + 6λ2m

2
22 −

9
10C

2g2
1m

2
22 −

9
2g

2
2m

2
22 + λ8m

2
S , (3.30)

where the Clebsch-Gordan coefficient C is given by C2 = 5/3 and g1 and g2 denote the
U(1)Y and SU(2)L gauge couplings, respectively. These expressions were derived using
SARAH-4.14.2 [78–82].

For the process-dependent scheme, one can fix the counterterms δλ8 and δm2
22, required

in the one-loop decays Hi → HDHD (i = 1, 2), by making use of the Higgs boson decays
into a pair of dark CP-odd scalars. We choose as renormalization condition that the decay
width for Hi → ADAD at NLO coincides with that at LO, namely,

ΓLO
Hi→ADAD

!= ΓNLO
Hi→ADAD (i = 1, 2) . (3.31)

The counterterms δλ8 and δm2
22 defined by these conditions contain not only UV-divergent

parts but also finite terms. The detailed explanation on how the counterterms are computed
is given in appendix A.

The process-dependent scheme takes all particles to be on-shell because it uses a phys-
ical process. This means, however, that the renormalization conditions eq. (3.31) can only
be used if the decay processes Hi → ADAD are kinematically allowed. There is a way to
circumvent this problem by not taking the particles on-shell.

The renormalization conditions eq. (3.31) can be written as,

2Re
(
Mtree∗

i M1-loop
i

)∣∣∣
p2
i=m

2
i , p

2
AD

=m2
AD

= 0 ⇒ Re
(
M1-loop

i

)∣∣∣
p2
i=m

2
i , p

2
AD

=m2
AD

= 0

(3.32)

– 10 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
4

because the tree-level amplitude is just a real constant. If instead we choose to use the
same condition but with all external momenta equal to zero, we will not be restricting the
parameter space of the model that can be probed. The third renormalization scheme is
therefore defined by (

M1-loop
i

)∣∣∣
p2
i= p2

AD
=0

= 0 (3.33)

while using exactly the same two processes that were used for the process-dependent
scheme. Note that the problem in the on-shell case is related to the calculation of C0 loop
functions in forbidden kinematical regions [83]. We will refer to the two schemes as OS
process-dependent and zero external momenta (ZEM) process-dependent in the following.

3.2.5 Determination of ∆vS

The quantity ∆vS , which is introduced by a similar relation to the one for the SM in
eq. (3.22), is necessary to get a UV-finite result for the processes of interest, Hi → HDHD

(i = 1, 2). We note, however, that the renormalization of vS is only needed when the
parameters λ8 and m2

22 are renormalized via the MS scheme conditions. When the process-
dependent scheme is used to renormalize λ8 and m2

22, the terms with ∆vS disappear in the
renormalized 1-loop amplitudeM1-loop

Hi→HDHD , hence in this case ∆vS is not necessary.
For the MS case, our choice is such that the remaining UV-divergent part in the

renormalized amplitudeM(H1 → HDHD), which is not removed by all other counterterms
in this vertex, is absorbed by ∆vS . This results in the following condition

∆vS = −(δvS)div , (3.34)

as given in appendix B. We checked that by using eq. (3.34) the one-loop amplitude for
H2 → HDHD is also UV-finite.

4 The invisible Higgs boson decays at NLO EW

In this section, we calculate the one-loop corrections to the partial decay widths of the
Higgs bosons decaying into a pair of DM particles. Hereafter, we regard the CP-even dark
scalar HD as the DM candidate unless otherwise specified. We will therefore present the
analytic expressions for the decay widths of Hi → HDHD (i = 1, 2) at NLO.

The decay rate for Hi → HDHD at LO is given by

ΓLO(Hi → HDHD) = 1
32π2mHi

λ2
HiHDHD

√√√√1−
4m2

HD

m2
Hi

, (4.1)

where the scalar coupling λHiHDHD is given in eq. (2.17). The 1PI diagrams contributing
to the one-loop amplitude for the process Hi → HDHD contain UV divergences that are
absorbed by introducing the corresponding counterterms in the amplitude. Shifting all
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parameters in eq. (2.17), we obtain the counterterms for the λHiHDHD couplings,

δλpara.
HiHDHD

=−2
[
Ri1
v

(
δm2

HD
−δm2

22

)
+ 1
v

(
m2
HD
−m2

22−
1
2v

2
Sλ8

)
δRi1

+ vS
2 λ8δRi3+ 1

2
vS
v

(Ri3v−Ri1vS)δλ8+Ri1
v2

(
m2

22−m2
HD

+ 1
2v

2
Sλ8

)
∆v

+
(
Ri3
2 −Ri1

vS
v

)
λ8∆vS

]
. (4.2)

The counterterms δRi1 and δRi3 are those of the 3 × 3 mixing matrix for the neutral Higgs
bosons, R (eq. (2.9)). For instance, when i = 1, we obtain

δR11 = δcα = −sαδα , (4.3)
δR13 = δsα = cαδα . (4.4)

As previously discussed we have three options for the counterterms δλ8 and δm2
22, namely,

the MS scheme, the OS process-dependent scheme and the ZEM process-dependent scheme.
The corresponding conditions and counterterms are given in eq. (3.28), eq. (3.32) and
eq. (3.33), respectively, together with appendix A. In addition, performing the shift of the
fields present in the tree-level Lagrangian for the HiHDHD vertices, we obtain

δλfield
HiHDHD

= λHiHDHD

(
δZHD + 1

2δZHi + 1
2
λHjHDHD
λHiHDHD

δZHjHi

)
, (j 6= i). (4.5)

Therefore, the counterterms for the one-loop amplitudes for Hi → HDHD are given by

MCT
Hi→HDHD = δλfield

HiHDHD
+ δλpara.

HiHDHD
. (4.6)

With this counterterm, the renormalized one-loop amplitude for Hi → HDHD is ex-
pressed as

M1-loop
Hi→HDHD =M1PI

Hi→HDHD +MCT
Hi→HDHD . (4.7)

We can finally write the decay width at NLO as

ΓNLO(Hi → HDHD) = ΓLO(1 + ∆1-loop) , (4.8)

where the one-loop corrections are written as

∆1-loop = 2
Re(M1-loop

Hi→HDHD)
λHiHDHD

. (4.9)

5 Numerical results

In this section, we analyze the impact of the one-loop corrections to the invisible decay
of the SM-like Higgs boson. In section 5.1, we start by discussing the behavior of the
corrections to the partial decay width of H1 → HDHD with the most relevant parameters
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of the model, namely the trilinear tree-level coupling of the 125GeV Higgs with the two DM
candidates and the mass difference between the two neutral scalars from the dark sector.
We then perform a scan in the allowed parameter space, in section 5.2, and present the
results for the branching ratios for the invisible decays of the Higgs bosons Hi (i = 1, 2).
The calculations of the NLO corrections were performed using FeynRules 2.3.35 [84–
86], FeynArts 3.10 [87, 88] and FeynCalc 9.3.1 [89, 90]. The same calculations were
independently done using SARAH 4.14.2 [78–82], FeynArts 3.10 and FormCalc 9.8 [91].
Loop integrals were computed using LoopTools [91, 92]. We have checked numerically that
the results obtained with the two different procedures were in agreement.

5.1 Impact of the one-loop corrections on the decay rates

We start by analysing our model in the Inert Doublet Model (IDM) [56], which can be
obtained as a limit of the DDP of the N2HDM by setting (in this order) λ8 = 0, α =
0, vS → ∞. The parameters chosen take into account the bounds for the IDM presented
in [34]. We will present numerical results for the one-loop corrected partial decay widths of
the CP-even Higgs bosons to dark matter particles. For a particular choice of parameters,
we will compare the three renormalization schemes for δλ8 and δm2

22 showing the one-
loop corrections in the MS scheme, in the on-shell process-dependent scheme and in the
ZEM process-dependent scheme. For this comparison we are not taking into account any
theoretical constraints yet. The goal is to understand the theoretical behavior of the
one-loop corrections. Numerical results considering the theoretical constraints as well as
experimental constraints will be presented in the next section.

Among the 13 free parameters given in eq. (2.16), the EW VEV is fixed by the input
parameters from the gauge sector, which we choose to be mZ , mW and αGµ . Using αGµ
allows us to resum large logarithms from the light fermion contributions. In this sense,
our result for the decay width at LO does not correspond to the pure tree-level result as
a large universal part of the O(α) corrections is already included at LO. The remaining
10 parameters, besides the two tadpoles TΦ = TS = 0, are set as follows: H1 is the SM-
like Higgs boson with mH1 = 125.09GeV, and the mass of the heavier Higgs boson H2 is
fixed as

mH2 = 500 GeV . (5.1)

The parameters of the dark sector, mHD , mH±
D

and λ2, are set to

mHD = 50 GeV or 60 GeV , mH±
D

= 100 GeV or 500 GeV , λ2 = 0.12 , (5.2)

while the remaining mass parameters mAD and m2
22 can be either scanned over or fixed in

the following plots. We assume mAD > mHD , meaning that the dark scalar HD is the DM
candidate. As previously stated we choose for λ8, α and vS ,

λ8 = 0, α = 0, vS →∞ , (5.3)

in that order, which is equivalent to take m2
S , λ6, λ7 and λ8 equal to zero in the scalar

potential in eq. (2.3). This is in turn equivalent to the IDM potential. Hence, eq. (5.3)
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Figure 1. Decay width H1 → HDHD at LO and NLO as a function of the tree-level coupling
λH1HDHD

for mHD
= 60GeV and mAD

= 62GeV, and for two different values of mH±
D
, mH±

D
= 100

and 500GeV. The variable m2
22 is scanned in a range such that the DM direct detection constraints

hold. Other input parameters are fixed to the values given in eqs. (5.1), (5.2) and (5.3). The
left panel shows the results for the MS scheme, while the right panel presents results for the two
process-dependent schemes.

gives the IDM limit in the DDP phase of the N2HDM and we should recover the IDM
results. When the MS scheme is used to calculate δλ8 and δm2

22, the one-loop amplitude
for H1 → HDHD depends on the renormalization scale µ and we set it as µ2 = m2

H1
.

In figure 1, we show the correlation between the tree-level coupling H1HDHD and
the decay width for the corresponding process H1 → HDHD at LO and NLO and for
two different charged Higgs masses, mH±

D
= 100GeV and 500GeV. In this plot, we set

the mass of the CP-odd dark scalar to mAD = 62GeV. We are aware that the choice
of mH±

D
= 500 GeV is already excluded by constraints from EW precision bounds while

the case of mH±
D

= 100 GeV is still allowed. However, here we are showing the result for
mH±

D
= 500 GeV in addition to that of mH±

D
= 100 GeV just because we want to describe

how the one-loop corrections are altered by a change in the mass of dark charged scalars.
Note, however, that the results presented from the next section on, include EW precision
bounds, together with all relevant experimental and theoretical constraints. We vary m2

22
in a range that forces the tree-level coupling to be |λH1HDHD/(2v)| < 0.05 [34].

The upper bound for |λH1HDHD/(2v)| corresponds to the current bounds for direct
detection of DM from XENON1T [93]. From the left panel, in which the MS scheme
results are shown, one can see a parabolic behaviour for the decay width at both LO and
NLO, with the width vanishing at λH1HDHD/(2v) = 0. The most important feature is that
the NLO corrections strongly depend on the value of mH±

D
and can be very large even for

relatively small λH1HDHD if the mass of the dark charged scalars is large (mH±
D

= 500GeV
in the plot). In the right panel of figure 1, results for the two process-dependent schemes
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Figure 2. Relative size of the NLO corrections for H1 → HDHD as a function of the mass
difference between HD and AD, denoted by ∆m = mAD

−mHD
, and for two different values ofmH±

D
,

mH±
D

= 100 and 500GeV. The parameters are chosen asmHD
= 50GeV andm2

22 = (42 GeV)2 while
the mass of the CP-odd scalar mAD

is scanned keeping mHD
< mAD

. The other input parameters
are fixed as in eqs. (5.1), (5.2) and (5.3). The line colours for the different schemes are explained
in the legend.

are shown. The behaviour of the results at NLO for mH±
D

= 100GeV is similar for all
three renormalization schemes. In particular, we have confirmed that the result for the
ZEM process-dependent scheme almost coincides with that for the OS process-dependent
scheme. However, the NLO corrections for the decay width at mH±

D
= 500GeV are quite

moderate in both process-dependent schemes, in contrast with the MS scheme.
In figure 2, we show the relative size of the NLO corrections

∆NLO ≡ ΓNLO/ΓLO − 1 (5.4)

as a function of the mass difference between the CP-odd dark scalar and the CP-even dark
scalar, ∆m ≡ mAD − mHD , for the three different renormalization schemes and for two
different charged Higgs masses, mH±

D
= 100GeV and 500GeV. The parameters are chosen

as mHD = 50 GeV and m2
22 = (42 GeV)2, which corresponds to λH1HDHD/(2v) = 0.01214.

The upper limit ∆m . 12GeV is used because we want to compare the renormalization
schemes in a region where they all can be applied. The SM-like Higgs decay into a pair
of CP-odd scalars, H1 → ADAD, has to be kinematically allowed so that eq. (3.31) is
applicable. The NLO corrections for the MS scheme, with mH±

D
fixed to 100GeV, are

almost constant, i.e., they do not depend on the mass difference between the two dark
neutral scalars. Nonetheless, as we have seen before, they do depend quite strongly on the
charged Higgs mass. In both process-dependent schemes, the NLO corrections strongly
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depend on the mass difference, ∆m, but also on the value of the charged Higgs mass.
For a low value of the charged Higgs mass, mH±

D
= 100 GeV, the maximum value of the

relative correction for the process-dependent schemes is ∆NLO=4% at ∆m = 12 GeV,
while the minimum is ∆NLO ∼ 0%. These corrections increase for larger charged Higgs
mass. Considering mH±

D
= 500 GeV, the value of ΓNLO/ΓLO − 1 has a minimum of about

4% (24%) for the OS (ZEM) case for ∆m = 0 and a maximum of about 40% (57%) for
the OS (ZEM) case for ∆m = 12 GeV. This behaviour can be understood from the fact
that there is a significant number of terms in M1-loop

H1→HDHD that are proportional to ∆m
and, consequently, they have a large impact on the one-loop result. The latter is also
proportional to the charged Higgs mass and, therefore, sizable corrections are found for
mH±

D
= 500GeV. In the MS scheme, the NLO corrections for mH± = 500GeV are well

above 100% in the entire mass range, ∆m ∈ [0, 12]GeV, and not shown in the plot.

5.2 Scan analysis for the branching ratios

In this section, we will perform a scan over the allowed parameter space of the model.
This will enable us to understand the overall behavior of the NLO corrections to the SM-
like Higgs decays into a pair of DM particles. The evaluation of the branching ratio is
performed using N2HDECAY [94] which is an extension of the original code HDECAY [95, 96]
to the N2HDM. The program computes the branching ratios and the total decay widths
of the neutral Higgs bosons H1 and H2, including the state-of-the art QCD corrections.
Using the value of the partial widths evaluated by N2HDECAY, ΓN2HDECAY, we evaluate the
branching ratios for Hi → HDHD with the NLO EW corrections as

BR(Hi → HDHD) =
ΓN2HDECAY
Hi→HDHD(1 + δEW

Hi→HDHD)
ΓN2HDECAY
Hi→SM + ΓHi→ΦΦ

, (5.5)

where the correction factor δEW
Hi→XX is defined by

δEW
Hi→XX =

ΓNLO
Hi→XX − ΓLO

Hi→XX
ΓLO
Hi→XX

. (5.6)

In eq. (5.5), the total decay width is separated into the decays into the SM particles,
ΓN2HDECAY
Hi→SM , and the decay into a pair of the scalar bosons ΓHi→ΦΦ, defined as

ΓH1→ΦΦ = ΓN2HDECAY
H1→HDHD

(
1 + δEW

H1→HDHD

)
+ ΓN2HDECAY

H1→ADAD

(
1 + δEW

H1→ADAD

)
+ ΓN2HDECAY

H1→H+
DH

−
D
,

(5.7)

ΓH2→ΦΦ = ΓN2HDECAY
H2→HDHD(1 + δEW

H2→HDHD) + ΓN2HDECAY
H2→ADAD

(
1 + δEW

H2→ADAD

)
+ ΓN2HDECAY

H2→H+
DH

−
D

+ ΓN2HDECAY
H2→H1H1 , (5.8)

where we include our computed EW corrections to the decays into neutral dark bosons,
Hi → HDHD and Hi → ADAD. Here we highlight that, in the process-dependent scheme,
δEW
Hi→ADAD disappears because of the renormalization condition eq. (3.31).
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We consider two different scenarios in our scan. In scenario 1, the lighter Higgs boson
H1 is identified as the SM-like Higgs boson and the other CP-even Higgs boson H2 is heavier
than the SM-like Higgs boson. In scenario 2, H2 is the SM-like Higgs boson and the other
Higgs boson H1 is lighter than the SM-like Higgs boson. In both scenarios, the dark scalar
HD is the DM candidate. The scan is performed for the two scenarios to examine the
impact of the NLO corrections in the allowed parameter space. We use for both scenarios
the following ranges for the parameters,

1 GeV < mHD < 62 GeV , 1 GeV < mAD < 1500 GeV (mAD > mHD)
65 GeV < mH±

D
< 1500 GeV , 10−3 GeV2 < m2

22 < 5 · 105 GeV2 ,

1 GeV < vS < 5000 GeV , −π/2 < α < π/2 ,
0 < λ2 < 4π , −4π < λ8 < 4π . (5.9)

We chose mH±
D

to be above 65GeV to prevent the SM-like Higgs boson decay into a pair
of charged Higgs particles. Additionally, λ2 is set positive due to the boundedness from
below (BFB) conditions, see [50] for details on BFB of the N2HDM.

In scenario 1, the masses of the CP-even Higgs bosons are set as

mH1 = 125.09 GeV, 130 GeV < mH2 < 1500 GeV. (5.10)

In scenario 2, they are taken as

1 GeV < mH1 < 120 GeV, mH2 = 125.09 GeV. (5.11)

Since we focus on the case where HD is the DM particle, we assume mHD < mAD . Also,
we fix the renormalization scale as µ=125.09 GeV for both scenarios in the calculation of
the one-loop amplitudes in the MS scheme.

Using ScannerS [97, 98], we generate input parameter points that pass the most rel-
evant theoretical and experimental constraints. For the theoretical constraints [4, 50],
ScannerS evaluates perturbative unitarity, boundedness from below and vacuum stabil-
ity. The following experimental constraints are taken into account: electroweak pre-
cision data, Higgs measurements, Higgs exclusion limits, and DM constraints. These
constraints are included in ScannerS via the interface with other high energy physics
codes: HiggsBounds-5 [99] for the Higgs searches and HiggsSignals-2 [100] for the
constraints of the SM-like Higgs boson measurements. For the DM constraints, the
relic abundance and the nucleon-DM cross section for direct detection are calculated by
MicroOMEGAs-5.2.4 [101–103]. The DM relic abundance has to be below the value mea-
sured by the Plank experiment [104] and the DM-nucleon cross section has to be within
the bounds imposed by the XENON1T [93] results. All points presented in the plots have
passed all the above constraints. In figure 3 we show two projections of the allowed pa-
rameter space in the planes (λ8, m

2
22) (left) and (sinα,mother) (right), where mother is the

mass of the non-SM-like Higgs boson. The red points are for scenario 1 and the blue
points are for scenario 2. There are no particularly important features in the parame-
ters λ8 and m2

22 that probe the dark sector as expected, except for theoretical constraints
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Figure 3. Projections of the allowed parameter space in the planes (λ8, m
2
22) (left) and

(sinα,mother) (right), where mother is the mass of the non-SM-like Higgs boson. The red points are
for scenario 1 and the blue points are for scenario 2.

Figure 4. Correlation between the branching ratios at NLO and at LO in scenario 1 (left) and
scenario 2 (right), respectively. The red and blue points correspond to results in the MS scheme
and in the OS process-dependent scheme, respectively.

that limit the quartic couplings. As for sinα, due to the very SM-like behaviour of the
discovered Higgs boson, sinα is either close to zero or close to ±1, depending on the
considered scenario.

In figure 4, we show the correlation between the BR(Hi → HDHD) calculated at LO
and at NLO in scenario 1 (left panel) and in scenario 2 (right panel). The red and blue
points correspond to the calculations in the MS scheme and in the OS process-dependent
scheme, respectively. This sample has points with mAD < 125/2GeV. The first important
thing to note is that in both scenarios the LO BR is always below 10%. The main reason
for this to happen is the very precise measurements of the Higgs couplings to SM particles
which indirectly limit the Higgs coupling to new particles.
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Figure 5. Correlation between the branching ratios at NLO and at LO in scenario 1 (left) and
scenario 2 (right). All points have been obtained in the ZEM process-dependent scheme. The
grey points correspond to the previous sample where mAD

< 125/2GeV, while the blue points
correspond to a range that is only allowed in the ZEM scheme, 125/2GeV< mAD

< 1500GeV.

The NLO corrections have a very different behaviour in the two renormalization
schemes presented. For the MS scheme, the NLO corrections are not reliable with NLO
BRs reaching 100% in both scenarios.2 The reason why the NLO corrections exceed 100%
can be understand as follows. The DM experimental constraints force the tree-level cou-
pling to be λH1HDHD . 10−2. However, the counterterm δm2

HD
in the one-loop amplitude

contains terms that are not proportional to the tree-level coupling λH1HDHD , such as the
(H2, HD) loop, the (H±D , G±) loop, and the term (AD, G0) in the self-energy of HD.
These contributions can escalate the NLO corrections in the strong scalar coupling regime.
This tendency becomes of course stronger as the tree-level coupling λH1HDHD gets smaller.
Conversely, the OS process-dependent scheme is better behaved. This behaviour, in the
OS scheme, can be traced back to the suppression of the NLO corrections by the mass
difference between HD and AD, as explained in section 5.1. In our analysis, the mass
difference is in the range 0 GeV . ∆m . 6 GeV which leads to small corrections in the OS
process-dependent scheme.

In figure 5, we show results for the ZEM process-dependent scheme. Again we display
the correlation between the branching ratios at NLO and at LO in scenario 1 (left panel)
and scenario 2 (right panel). We show results for two different samples of points, all
calculated in the ZEM scheme. The grey points correspond to the previous sample where
mAD < 125/2GeV, while the blue points correspond to a range that is only allowed in
the ZEM scheme, 125/2GeV< mAD < 1500GeV. The points for which mAD < 125/2

2While we use a fixed value for the renormalization scale µ = 125.09GeV in the MS scheme, we found
that even if the NLO correction is moderate at µ = 125.09 GeV, it can exceed 100% when the value of µ
is varied.
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Figure 6. Ratio of NLO to LO corrections for BR(Hi → HDHD) in scenario 1 (left) and scenario
2 (right). The red, blue and grey points correspond to the MS, ZEM process-dependent and OS
process-dependent scheme, respectively. The black horizontal lines correspond to BRNLO/BRLO −
1 = ±50%.

have an overall similar behaviour as the ones for the OS scheme, in the sense that the
NLO BRs are all below 0.1. However, one can see that the corrections are much larger,
even for this sample. When we look at the blue points the picture changes radically. This
clearly shows that when the mass difference between HD and AD is large the corrections
become unstable.

In order to understand to what extend these corrections depend on the renormaliza-
tion schemes, we show, in figure 6, the ratio of NLO to LO corrections for the processes
BR(H1 → HDHD) (left panel) and BR(H2 → HDHD) (right panel). Here again the sam-
ple used is the one where mAD < 125/2GeV. The red, blue and grey points correspond
to the MS, OS process-dependent and ZEM process-dependent renormalization schemes,
respectively. The black horizontal lines corresponds to BRNLO/BRLO − 1 = ±50%. The
plots clearly show that the OS process-dependent scheme is more stable with most correc-
tions between -50% and 50%. In any case, the corrections in this scheme can still go up to
480%. As the corrections above 100% only occur for small values of the LO BRs, the NLO
values of the BRs are still well below the experimental bound. The other two schemes are
less stable and this is particularly true for the MS scheme.

A clearer picture of the results for the NLO corrections that can be trusted in terms of
perturbation theory can be achieved by considering only the points for which the corrections
are below 100%. In figure 7, we present the correlation between the branching ratios at
NLO and at LO in scenario 1 (left panel) and scenario 2 (right panel), respectively. All
points presented have NLO corrections below 100% and all points with NLO corrections
above 100% were discarded. We conclude that the surviving points are all still below the
current experimental limit for the Higgs invisible BR apart from a few grey points. One
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Figure 7. Correlation between the branching ratios at NLO and at LO in scenario 1 (left) and
scenario 2 (right), respectively. The red, blue and grey points correspond to the MS, OS process-
dependent and ZEM process-dependent scheme, respectively.

should keep in mind the theoretical uncertainties due to missing higher-order corrections.
Additionally, the other decay channels do not include electroweak corrections, which has
an impact on the branching ratios. Given these caveats, the points can still be considered
compatible with the experimental results.3 Therefore, no constraints on the parameter
space come from including the NLO corrections. However, as the limit on the Higgs
invisible BR improves, there are now ranges of allowed values for the NLO corrections that
will certainly lead to constraints on the parameter space.

We end this section with a comment about the case where AD is the DM candidate.
We have also calculated the NLO corrections to Higgs boson invisible decays in the case
that AD is the DM particle. The renormalization was done using the process dependent
scheme with the decay Hi → HDHD (i = 1, 2), i.e., ΓLO

Hi→HDHD
!= ΓNLO

Hi→HDHD and we have
performed the same scan analysis presented above for HD. We confirm that the results are
virtually identical with those obtained for HD, in both scenarios 1 and 2.

6 Conclusions

In this work we have calculated the EW NLO corrections to the branching ratio of the
SM-like Higgs boson invisible decay in the DDP of the N2HDM. We have analysed two
different scenarios, one where the SM-like Higgs is the lighter of the visible two CP-even
scalars and one where it is the heavier. There are, however, no significant differences be-
tween the two scenarios. The model has 13 input parameters from the scalar sector. Masses

3While the loop-corrected decay width would clearly exemplify the effect of the corrections, we still show
the branching ratios to get an approximate estimate of the compatibility of the model with the experimental
results. We will compute and include the EW corrections to all decay processes in future work.
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and wave function renormalization constants are renormalized on-shell. The rotation angle
is renormalized by relating the fields in the gauge basis and in the mass basis and it is ulti-
mately defined with the off-diagonal terms of the wave function renormalization constants.
We apply a gauge-independent renormalization scheme based on the alternative tadpole
scheme together with the pinch technique. Besides the EW VEV, that is renormalized
exactly like in the SM, we still have four parameters left: λ2 (which does not enter in any
of the processes under study), λ8, m2

22 and vS .
Regarding λ8 and m2

22 the analysis was performed for three different renormalization
schemes. The three schemes used for these parameters were the MS, the OS process-
dependent and the ZEM process-dependent scheme. Only in the first one does vS need
to be renormalized. The discrepancy between the OS process-dependent scheme and the
ZEM process-dependent scheme is sizeable in many parameter points. This is also true
when we compare the process-dependent schemes with the MS scheme. As a result the
uncertainties due to missing higher-order corrections could still be large depending on
the parameter point, and the impact of next-to-next-to leading order (NNLO) corrections
should be studied. Nevertheless, we obtained moderate NLO corrections for the bulk of
the parameter points when we chose the OS process-dependent scheme. It is therefore
clear that the most stable scheme is the OS process-dependent one, but it can still lead to
corrections above 100 % in some regions of the parameter space. It should be noted that
one of the reasons for the OS scheme stability is that the mass difference between the two
neutral dark scalars, mAD −mHD , is bounded to be below about 10GeV. An important
point to note is that the OS process-dependent scheme needs an allowed on-shell decay of
the SM-like Higgs boson to both pairs of dark scalars.

With the LHC run 3 starting soon, the Higgs coupling and the invisible Higgs decay
width measurements will become increasingly precise. It is clearly the time to understand
what the NLO corrections can tell us about the models with more precise measurements.
In fact, these experimental results can be the best, if not the only, tools available to
probe the dark sectors postulated as extensions of the SM. One should stress that the
parameters λ8 and m2

22 are only directly accessible through processes that involve the DM
particles. The experimental sensitivity on the invisible decay width is now starting to
become comparable to the limits imposed on the parameter space of the model from the
coupling measurements.

We have found that the NLO corrections can be extremely large in some regions of
the parameter space. Also, as we move to smaller values of the BR(Hi → HDHD), the
corrections become larger and larger. This means that the more constrained the BR is
the more unstable are the NLO corrections. As a perturbativity criteria, we rejected all
points for which the NLO corrections relative to the LO results are above 100%. With this
condition, the behaviour of NLO versus LO results is very much along the line BRNLO =
BRLO. Still, if the experimental bound of BR(h → invisible) improves, for instance to
10−2, the NLO result would vary between ∼ 10−4 to ∼ 2× 10−2.
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A Determination of δλ8 and δm2
22 in the process-dependent scheme

In this appendix, we discuss how the counterterms δλ8 and δm2
22 are determined using the

process-dependent scheme. As previously discussed, although our starting point is to force
the amplitudes at LO and at NLO to be equal, we choose two different approaches. In one
approach all particles are on-shell, which is equivalent to say that the condition is set on
the actual physical process. In the other approach, the condition is set at the amplitude
level taking all external momenta to be zero. The advantage of this second approach is not
to curtail the allowed parameter space.

We will now describe in detail the renormalization procedure for the on-shell case
and discuss the differences when the external momenta are set to zero at the end of this
appendix. The on-shell process-dependent renormalization condition is to impose the decay
widths forHi → ADAD (i=1,2) calculated at NLO to be equal to the LO result, as expressed
in eq. (3.31) and repeated here for convenience,

ΓLO
Hi→ADAD

!= ΓNLO
Hi→ADAD (i = 1, 2) . (A.1)

This results in two equations where δλ8 and δm2
22 are the only unknowns. The remaining

renormalization constants are all fixed. Solving this set of equations, we can get expressions
for these two counterterms. The renormalization conditions, given in eq. (A.1), can be
written as

1
2

1
2mHi

∫
dΦ2|Mtree

i |2 = 1
2

1
2mHi

∫
dΦ2

[
|Mtree

i |2 + 2Re
(
Mtree∗

i M1-loop
i

)]
0 = Re

(
Mtree∗

i M1-loop
i

)
, (A.2)

where dΦ2 denotes the two-particle differential phase space volume and Mtree/1-loop
i ≡

Mtree/1-loop
Hi→ADAD (i = 1, 2). The tree-level amplitude is given by

Mtree
i = λHiADAD , (A.3)

where the scalar trilinear coupling λHiADAD is

λHiADAD = −1
v

[
2(m2

AD
−m2

22)Ri1 + λ8vS(vRi3 − vSRi1)
]
. (A.4)

Taking into account thatMtree
i is a real constant, the renormalization condition simplifies to

0 = Re
(
M1-loop

i

)
, (A.5)

with the one-loop amplitude expressed as

M1-loop
i =M1PI

i +MCT
i |δλ8, δm2

22=0 +MCT
i |δλ8, δm2

22 6=0 , (A.6)

where M1PI
i denotes 1PI diagrams for the loop-corrected decay widths Hi → ADAD

and the counterterm contributions are separated into δλ8 and δm2
22 dependent terms

MCT
i |δλ8, δm2

22 6=0 and the remainder MCT
i |δλ8, δm2

22=0. We note that the counterterms
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for Hi → ADAD can be obtained from those for Hi → HDHD, see eq. (4.6), with the
replacements

(mHD , λHiHDHD , δm
2
HD
, δZHD)→ (mAD , λHiADAD , δm

2
AD
, δZAD). (A.7)

Hence the counterterm amplitudes can be written as

MCT
i |δλ8, δm2

22 6=0 = 2Ri1
v
δm2

22 −
vS
v

(Ri3v −Ri1vS) δλ8 , (A.8)

MCT
i |δλ8, δm2

22=0 = −2
[
Ri1
v
δm2

AD
+ 1
v

(
m2
AD
−m2

22 −
1
2v

2
Sλ8

)
δRi1 + vS

2 δRi3

+ Ri1
v2

(
m2

22 −m2
AD

+ 1
2v

2
Sλ8

)
∆v +

(
Ri3
2 −Ri1

vS
v

)
λ8∆vS

]

+ λHiADAD

(
δZAD + 1

2δZHi + 1
2
λHjADAD
λHiADAD

δZHjHi

)
, (j 6= i) . (A.9)

Finally we obtain the following set of equations,

2Ri1
v
δm2

22 −
vS
v

(Ri3v −Ri1vS)δλ8 = −M1PI
i −MCT

i |δλ8, δm2
22=0 , (A.10)

which give us the expressions for δλ8 and δm2
22. Note that the left-handed side of eq. (A.10)

corresponds to the linear combinations of δλ8 and δm2
22 that also appear in the counterterms

for Hi → HDHD (see eq. (4.2)).
The second process-dependent scheme, where all external momenta are set to zero,

also starts from the same set of eq. (A.10). The only difference is in the calculation of
M1PI

i in which the external momenta are set to zero instead of on-shell.
The two schemes are compared in figure 8, where we plot the ratio of the NLO correc-

tions of the two process-dependent schemes, the zero external momenta over the on-shell
scheme, in per-cent, as a function of the LO branching ratio. The left plot corresponds to
the decay H1 → HDHD while the right one corresponds to H2 → HDHD. We conclude
that the differences can be quite large. In fact, although we have cut the y-axis at 500 %
for clarity, there are points where the corrections can go above 103%, which, however, is
not the case for the larger values of the LO branching ratios. The important point is that
very large corrections only occur for the lower values of the BRs so that the NLO results
for the larger values of the BRs are quite similar.

B Derivation of ∆vS

In this appendix, we derive the analytic expressions for ∆vS for the case where λ8 and m2
22

are renormalized in the MS scheme. As mentioned before, if these parameters are renormal-
ized via a physical process there in no need to renormalize vS . We stated in section 3.2.5,
that δvS is determined such that the remaining UV divergence in the renormalized one-loop
amplitude for H1 → HDHD is absorbed by the ∆vS term in the process.

As schematically depicted in figure 9, self-energies and one-loop amplitudes for H1 →
HDHD can be separated into two parts: diagrams coming from the traditional tadpole
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Figure 8. Comparison of the two process-dependent renormalization schemes, on-shell vs. zero
external momenta. We show the ratio between the NLO values vs. the corresponding BR(H1 →
HDHD) (left) and BR(H2 → HDHD) (right) at LO.

Figure 9. Self-energy diagrams and triangle vertex diagrams in the alternative tadpole scheme.

scheme and new diagrams including tadpole contributions due to the alternative tadpole
scheme. This is in fact the main difference between the two schemes. Quantities in the usual
tadpole scheme will be denoted by X|usual while tadpole contributions for the quantities
X, which correspond to the second diagrams in figure 9, are written as X|tad. One can
check that, in the usual tadpole scheme, the UV divergences inM1−loop

H1→HDHD are cancelled
without the need for introducing ∆vS . By using the MS counterterms δλ8 and δm2

22, we
can show that

M1PI
H1→HDHD

∣∣∣
div,usual

+ MCT
H1→HDHD

∣∣∣∆vS=0

div,usual
= 0. (B.1)

In the following paragraphs, we will show that this is not the case in the alternative
tadpole scheme. There are UV divergences coming from the tadpole diagrams in the one-
loop amplitude M1−loop

H1→HDHD that lead to an extra infinity in the amplitude that will be

– 25 –



J
H
E
P
1
0
(
2
0
2
1
)
0
4
4

cancelled by the vS counterterm. First, we define the tadpole diagrams as

THi ≡ (B.2)

where i = 1, 2. Then the tadpole parts of the 1PI diagram contributions are expressed as

M1PI
H1→HDHD

∣∣∣
tad

= λH1H1HDHD

TH1

m2
H1

+ λH1H2HDHD

TH2

m2
H2

, (B.3)

where

λH1H1HDHD = c2
α

v2 (2m2
22 − 2m2

HD
+ λ8v

2
S)− s2

αλ8, (B.4)

λH1H2HDHD = −cαsα
v2

{
2m2

22 − 2m2
HD

+ λ8(v2
S + v2)

}
. (B.5)

In the MS scheme, the counterterms for δλ8 and δm2
22 do not contain tadpole contributions.

The same is true for δZHDHD and δZH1H1 because they are defined as the derivatives of
self-energies. Therefore, they do not contribute toMCT

H1→HDHD , which allows us to write

MH1→HDHD |
∆vS=0
tad = λH2HDHD

(1
2δZH2H1 + δα

) ∣∣∣∣∣
tad

− 2cα
v2

(
m2

22 −m2
HD

+ 1
2vSλ8

)
∆v
∣∣
tad − 2cα

v
δm2

HD

∣∣
tad. (B.6)

The various terms are given by the following expressions:

• 1
2δZH2H1 + δα:

We can see that the tadpole parts are cancelled out:(1
2δZH2H1 + δα

)
tad

= 1
2

1
m2
H1
−m2

H2

[
Σtad
H1H2(m2

H2)− Σtad
H2H1(m2

H1)
] ∣∣

tad

= 0, (B.7)

where we have used the following expressions for the tadpole parts of ΣH1H2 and
ΣH2H1

Σtad
H1H2 |tad = Σtad

H2H1 |tad = λH1HDHD

TH1

m2
H1

+ λH2HDHD

TH2

m2
H2

. (B.8)

• ∆v:

The tadpole contributions of the gauge boson (V = Z,W ) self-energies are given by

Σtad
V V |tad = −

(
cα
TH1

m2
H1

− sα
TH2

m2
H2

)
. (B.9)
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This yields

∆v
v

∣∣∣
tad

= 1
2

(
s2
W − c2

W

s2
W

1
m2
W

Σtad
WW

∣∣
tad + c2

W

s2
W

1
m2
Z

Σtad
ZZ

∣∣
tad

)
(B.10)

= −1
v

(
cα
TH1

m2
H1

− sα
TH2

m2
H2

)
.

• δm2
HD

:
The tadpole contribution for the mass counterterm δm2

HD
reads

δm2
HD
|tad = λH1HDHD

TH1

m2
H1

+ λH2HDHD

TH2

m2
H2

. (B.11)

Putting together all the results, the tadpole part ofM1−loop
H1→HDHDcan be written as

M1−loop
H1→HDHD

∣∣∆vS=0
tad =λH1H1HDHD

TH1

m2
H1

+λH1H2HDHD

TH2

m2
H2

+2cα
v2

(
m2

22−m2
HD

+ 1
2vSλ8

)(
cα
TH1

m2
H1

−sα
TH2

m2
H2

)

−2cα
v

(
λH1HDHD

TH1

m2
H1

+λH2HDHD

TH2

m2
H2

)

= TH1

m2
H1

[
λH1H1HDHD+2cα

v2

(
m2

22−m2
HD

+ 1
2vSλ8

)
−2cα

v
λH1HDHD

]
+ TH2

m2
H2

[
λH1H2HDHD−2cαsα

v2

(
m2

22−m2
HD

+ 1
2vSλ8

)
−2cα

v
λH2HDHD

]
=λ8

(
2vS
v
cα−sα

)
δvS . (B.12)

In the last equality, we have used eqs. (2.17), (3.19), (B.4) and (B.5). Because of (δvS)div 6=
0, the UV divergence, which is proportional to λ8, remains. Apart from this remaining
term, we note that terms with m2

22 as well as m2
HD

are cancelled out.
The remaining UV-divergent term in eq. (B.12) can be absorbed by using the ∆vS

dependent part M1−loop
H1→HDHD

∣∣∆vS 6=0. Hence we set ∆vs so as to eliminate the divergent
part of eq. (B.12),

∆vS = − (δvS)div . (B.13)

Consequently, the one-loop amplitude for H1 → HDHD is UV finite.
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